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ABSTRACT

Wetlands play a major role in Europe’s biodiversity. Despite their importance, wet-
lands are suffering from constant degradation and loss, therefore they require con-
stant monitoring. This paper presents an automatic method for the mapping and
monitoring of wetlands based on the fused processing of laser scans and multispec-
tral satellite imagery, with validations and evaluations performed over an area of
Lake Balaton in Hungary. Markov Random Field models have already been shown
to successfully integrate various image properties in several remote sensing appli-
cations. In this paper we propose the Multi-Layer Fusion Markov Random Field
(ML-FMRF) model for classifying wetland areas, built into an automatic classifi-
cation process that combines multitemporal multispectral images with a wetland
classification reference map derived from Airborne Laser Scanning (ALS) data ac-
quired in an earlier year. Using an ALS-based wetland classification map that relied
on a limited amount of ground truthing proved to improve the discrimination of land
cover classes with similar spectral characteristics. Based on the produced classifica-
tions, we also present an unsupervised method to track temporal changes of wetland
areas by comparing the class labellings of different time layers. During the evalua-
tions, the classification model is validated against manually interpreted independent
aerial orthoimages. The results show that the proposed fusion model performs bet-
ter than solely image based processing, producing a non-supervised /semi-supervised
wetland classification accuracy of 81-93% observed over different years.

KEYWORDS
wetland, Airborne Laser Scanning, multispectral satellite imagery, unsupervised
classification, Markov Random Field, multi-sensor fusion.

1. Introduction

Despite their relatively small area, wetlands have an important contribution to Eu-
rope’s biodiversity since they are crucial in regulating water flows, filtering water
and carbon storage (Vymazal 2011), and preserving wildlife against intensive human
presence. Although their importance is indisputable, wetlands are suffering from con-
tinuous degradation and loss (Reis et al. 2017; Davidson 2014). A major cause of
wetland loss is the conversion to agricultural lands due to economic and population
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growth (Berry et al. 2016). Improper water management along with peat extraction
and reed harvesting also put pressure on wetlands. To slow down the degradation
and prevent the further loss of wetlands, several European and global multilateral
agreements have been implemented, requiring regular monitoring of the extent and
condition of wetlands.

This paper’s main goal is to aid such monitoring tasks by presenting a methodol-
ogy for automatic classification of wetland areas. Our study concentrates on the Lake
Balaton area, which is a large (594 km? area) and shallow (3.3 m mean depth) lake in
western Hungary. Half of the lake’s shoreline is bordered by reed-dominated wetlands
adding up to a total area of 11 km? (Zlinszky et al. 2012). The lake is under the
protection of Natura 2000 and the Ramsar convention; both of them require regular
spatial monitoring of wetland extent and condition. Such monitoring is currently per-
formed through fieldwork, which can be extremely resource intensive. Earlier studies
have drawn attention to the ongoing loss of wetland vegetation around Lake Bala-
ton (Kovéacs et al. 1989). A time series of aerial images spanning the years 1951-2003
was analyzed in order to determine the cause of reed wetland die-back (Zlinszky 2013).
Later on, an Airborne Laser Scanning (ALS) data was acquired in August 2010 around
Lake Balaton in the framework of the EUFAR AIMWETLAB project by the NERC
(Natural Environment Research Council) Airborne Research and Survey Facility (full
technical details can be found in (Zlinszky et al. 2011)). The collected ALS data was
successfully used for the categorization of wetland vegetation (Zlinszky et al. 2012).

Nowadays there are several functioning satellites that can provide high resolution
remote sensing imagery for various applications, e.g., vegetation mapping and spatio-
temporal change monitoring (Mui, He, and Weng 2015; Mandanici and Bitelli 2015;
Benedek et al. 2015). Multispectral imagery (MS) acquires data from the visible, near
infrared (NIR) and shortwave infrared (SWIR) range. These spectral bands can be
efficiently used for vegetation monitoring through different spectral indices, such as
the widely used Normalized Difference Vegetation Index (NDVI) (Weier and Her-
ring 1999). However, for MS images with limited spectral bands, it may be difficult
to distinguish the different vegetation classes having similar spectral characteristics.
To compensate for this drawback, multi-seasonal data from different sensors can be
exploited in the segmentation process. Selecting suitable features from this heteroge-
neous data to serve as inputs for a classification process can improve the classification’s
accuracy (Lu and Weng 2007).

Due to its ability to resolve vegetation structure and texture in high resolution,
ALS is rapidly emerging as a sensor for vegetation mapping (Eitel et al. 2016) (Pfeifer
et al. 2015). Several recent wetland vegetation analysis methods concentrate on the
combined use of ALS and multispectral Earth observation. In most applications, the
topographical information of the scene extracted from ALS data is used to increase
the discrimination accuracy of land-cover classes having similar spectral characteristics
(Alonzo, Bookhagen, and Roberts 2014). In (Rapinel, Hubert-Moy, and Clément 2015)
multiseasonal, multispectral, high resolution (SPOT-5, Quickbird, KOMPSAT-2 and
aerial) imagery is fused with ALS data to classify different vegetation patches present
in wetlands; the aquatic vegetation of tropical wetlands in Northern Australia is an-
alyzed in (Whiteside and Bartolo 2015) using Worldview-2 and ALS data to detect
changes during and after the rehabilitation of a mining site. The method presented in
(Niculescu et al. 2016) successfully discriminates different wetland vegetation classes
in the Danube Delta applying ALS data, RADARSAT-2 and SPOT-5 satellite images.

However, due to its high cost, high-resolution ALS data collection is usually not
repeated at regular time intervals (Eitel et al. 2016). On the other hand, satellite



sensors offer high temporal resolution and wide area coverage. Some of these satellite
data are now freely accessible, but collecting the necessary large-scale ground reference
data-sets through fieldwork is often prohibitively resource intensive. ALS data can
allow for efficient and accurate up-scaling from field plots to landscape level (Levick,
Hessenmoller, and Schulze 2016). Theoretically, if a satellite image is available close
enough in time to the airborne campaign, the output of airborne data processing
can be used as initial training data for categorizing the satellite imagery and the
developed classifier can be transferred to different MS data collection dates preceding
or succeeding the airborne data collection.

The main objective of this study is to demonstrate the above approach, developing
a method for automatic classification of wetland areas that also enables the detection
of the location as well as the type of change. The wetlands of the test area are situated
among a challenging mosaic of land cover classes such as agricultural fields, urban
areas, forests and grasslands. The extent of wetlands can vary very dynamically in
time, depending on land use and hydrological conditions. The proposed method is
developed based on the fusion of multitemporal MS imagery and ALS data. The fusion
of multitemporal MS images of the same area aims to improve the identification of
classes having rich seasonal spectral variations, such as wetlands. To further improve
the discrimination of classes with similar spectral characteristics, we used the wetland
classification map derived from ALS data in an earlier year in (Zlinszky et al. 2012)
for initial training. In our current study, two MS images representing two different
agricultural seasons (post- and pre-harvest) are selected to improve discrimination
between agricultural vegetation and wetland class.

Remote sensing images often contain regions with similar local characteristics (in-
tensity, colour, local statistics). Markov Random Field (MRF) models have the ability
to quantify the spatial dependency among pixels by a mathematically well established
methodology. MRF models were also shown to have excellent potential for the inte-
grated analysis of spectral, semantic, and textural properties. In a previous work, the
authors proposed the Multi-Layer Fusion-MRF (ML-FMRF) model (Sziranyi and Sha-
daydeh 2014) for optical image segmentation and change detection. The superiority of
the ML-FMRF model with comparison to other state-of-the-art supervised methods
was already shown in (Benedek et al. 2015). The ML-FMRF model can be applied on
the fusion of different image modalities (e.g. MS, ALS, etc.) from very different sam-
pling time instants, or partially valid ground truth annotation actions. This solution
is investigated in this paper for wetland classification using multitemporal MS data
and a wetland classification map derived from ALS data from an earlier year.

While most techniques proposed in the literature are supervised methods requiring
large amounts of training data, the proposed model can be used either as an unsu-
pervised model on two MS images only, or as a semi-supervised model using ALS and
MS data fusion. Here, the term ’semi-supervised’ means that the ALS data is used for
the initial training in one time iteration only (or whenever available); the classification
model can then be applied on MS image time series while recursively integrating new
MS images with the previous classification map without the further need for expensive
ALS data or human interaction.

We present quantitative evaluation results of the model over the Lake Balaton test
area, and validate it by using manually interpreted high resolution aerial imagery. The
results of different types of data are compared, including standalone ALS and MS data
and their fusion, justifying the superiority of fusing both data sources over using only
a single data source.



2. Materials and methods

2.1. Study area
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Figure 1. (a) Study area in Europe, Hungary (OpenStreetMap), western part of Lake Balaton marked with

the white rectangle; (b) Study area: wetland vegetation marked with yellow, based on the fieldwork in (Zlinszky
et al. 2012).
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The study area covers 80 km? around the town of Keszthely at the westernmost
end of Lake Balaton (Figure 1). Despite its population of more than 20 000, Keszthely
has a rather unique ecological setting as an urban center surrounded by an ecological
matrix of relatively intact natural habitats. The small urban wetland patches along
the shore promenade, harbours and beaches of Keszthely are crucial for sustaining the
connectivity of one of the largest unbroken wetland systems in Hungary.

2.2. Applied data

Two very high resolution multispectral Pleiades images were used for vegetation map-
ping along with the available 2010 ALS data (EUFAR AIMWETLAB survey). The
attributes of the Pleiades images and the ALS data are summarized in Table 1.

The Pleiades satellites were launched in December 2011 (Pleiades 1A) and December
2012 (Pleiades 1B). The two satellites operate in the same phased orbit and they are
offset at 180° with a mean altitude of 694 km. To get the best possible consistency
between the Pleiades images and the 2010 ALS survey, we used two Pleiades image
data acquired in August 2012 and June 2015. The chosen images, taken in August and
June, represent two different agricultural seasons (post- and pre- harvest).

In addition to the two multispectral Pleiades images, we also use the available
wetland vegetation classification map based on ALS data processing (Zlinszky et al.
2012). The ALS dataset was preprocessed by the NERC Data Analysis Node to the
level of ASPRS ”.las” files, and outlier points resulting from atmospheric or multi-
path echoes were removed. FEcho amplitudes were modulated by automatic gain control
(AGC), and the AGC and amplitude values were included in the attributes of each
point. After radiometric calibration and the identification of dropout points, an expert-
generated decision rule-set was defined, with threshold values fine-tuned using a set



of 82 field-collected ground reference polygons (1010 m each) covering the full set of
classes.

The full details of the study are explained in (Zlinszky et al. 2012) where ” wetlands”
were defined as areas where the soil is regularly fully saturated with water and where
the vegetation is mainly composed of emergent macrophytes. The classification into
9 classes (6 wetland and 3 non-wetland) was done using an expert-generated decision
tree with classification thresholds manually selected based on signature analysis. The
ALS wetland classification map was generated by summing up the 6 wetland category
class maps. For the 9 classes, (Zlinszky et al. 2012) reported a classification accuracy
(Congalton 1991) of 82.71% and Cohen’s Kappa (Jacob 1960) of 0.80. After merging
the classes belonging to wetlands to a single category, they reported a user’s accuracy
of 100% and a producer’s accuracy of 97%.

Table 1. Attributes of Pleiades MS satellite images and ALS data used in
wetland mapping.

Sensor Acquisition Attributes Value
date (unit)
Pleiades  August 2012  Spatial resolution (m): 2
June 2015 Spectral bands (pum): Blue: 0.43 — 0.55

Green: 0.50 — 0.62
Red: 0.59 — 0.71,
NIR: 0.74 — 0.94

Leica August 2010  Wavelength(nm) 1064
ALS50-11
Pulse duration (ns) 4
Scan angle (degree) 30
Flying altitude (m) 1200
Footprint size (cm) 22
Mean ground point 1

density (points m~2)
Horizontal accuracy (m) 0.15
Vertical accuracy (m) 0.10

2.3. Proposed classification model

MRF models are a useful solution for image segmentation, enabling multi-source fu-
sion and hierarchical modeling. In a previous work (Szirdnyi and Shadaydeh 2014),
the authors introduced a multi-layer MRF segmentation where multitemporal optical
images of the same area were examined on different levels of the segmentation process.
First, the combined features from multitemporal optical images were merged to form
a multi-layer image. The goal was to enhance the definition of classes having high
intraclass variations by using more sample layers while the small ratio of changed ar-
eas were considered as outliers and statistically excluded from the definition of classes
of fused multiple layers. The MRF classification based label map of this multi-layer
image was then used as training input for the classification of each separate optical
image.

In this paper, the above Multi-Layer Fusion-MRF (ML-FMRF) model is further im-
proved to fuse ALS data with multitemporal MS satellite imagery for the classification
of wetlands.

The workflow of the improved ML-FMRF is illustrated in Figure 2. The proposed
model consists of an unsupervised K-means clustering step followed by two MRF
segmentation steps. It results in an unsupervised segmentation and change detection
step at any later point in time using a preliminary ALS measurement as a reference.

In what follows, we first present a detailed description of the classification features,



followed by the main steps of the proposed ML-FMRF model.

2.8.1. Selection of classification features

An image S = {s1, s2,...sg} is considered to be a two-dimensional grid of H pixels.
We assume that K classes are present in the images and A = {\1,..., Ax} is the set
of all possible classes. Each of the image pixels may take a label A from a finite set of
labels A. Let Q = {w = (ws,,...,ws,) : w; € A,1 < i < H} be the set of all possible
labels assigned to the image pixels.

In a series of N > 2 registered images L;, ¢ = 1,2,---, N, for each pixel s € S in
image L;, we define the feature vector 2. This feature vector might contain a mixture
of spectral, textural, and statistical values. For wetland classification in particular, we
define z! as:

"Bgl = [R%v Gglv B£i7 (NIR)LIGH’ (NDVI)IS%}T’ (1)

where Rl GLi | BLi) and (NIR)L are respectively the Red, Green, Blue, and near
infrared (NIR) channel values of this pixel; (NDVI)L is its NDVI value.

In addition to the spectral features of N multitemporal images, we also define a new
statistical feature My which indicates the probability of pixel s being in a particular
class A\ € A, i.e. Mg = P(ws = Ac). The probability map M! = {M;,s € S} at an
arbitrary time ¢ is calculated from a classification map M? acquired at a different time
to (before or after ¢) as follows:

1—
M = aMto 4 1=
g

N(0,0). (2)

That is, the probability map at a certain time ¢, can be calculated from a clas-
sification map at time tg with some uncertainty. This uncertainty is represented by
white Gaussian noise A/(0,0) of zero mean and variance o2. In our study, we used
the standard normal distribution A/(0,1). The variance o? however could be defined
based on the statistical analysis of measurement errors and the probability of change
of this particular class if available. The parameter « €]0, 1] is equal to the classification
accuracy of the wetland class in M.

In this paper, we set the classification map M® equal to the ALS wetland classifi-
cation map described in Section 2.2. That is, we set M’ = 1 for pixels classified as
wetland and M? = 0 otherwise. The addition of the wetland class probability measure
to the stack of features helps in removing the ambiguity from some of the class defini-
tions. Hence, it improves the discrimination of land-cover classes with similar spectral
characteristics such as agricultural areas and wetlands.

It should be noted that although ALS wetland classification results are used in this
study to derive the wetland class probability map, any other classification results could
have been used. It is possible for example to use classification results derived from MS
data from previous years or different seasons, or to use other sensor classification data
(e.g. SAR data classification).

2.8.2.  Multi-Layer Fusion-Markov Random Field (ML-FMRF) model

The classification and change detection procedures, using the proposed ML-FMRF
Model, are described in the following main steps (see Figure 2):
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Figure 2. Workflow of the proposed Multi-Layer Fusion MRF (ML-FMRF) classification and change detection
process.

(1)
(2)

Registration of the MS images and the ALS wetland classification map.
The feature vectors of the N multitemporal images in addition to the wetland
class probability map are calculated using Equations 1 and 2 respectively, then
combined to form the stack of feature vectors:

glosion — rgln gle by M,1. (3)
Finding clusters of the multi-layer image X = {z!"" 5 ¢ S} and calculating
cluster parameters (mean and variance) of the multi-layer image clusters. This
step is performed using the unsupervised K-means algorithm. However, it is
also possible to use supervised clustering algorithms if/when user interaction is
needed.
Running MRF segmentation on the multi-layer image X using the K-means
clustering parameters to obtain the fusion labelling map Qgysion Over the multi-
layer image.
The multi-layer labelling Q¢.gion is used as the training map for the classification
of each MS image L;,i =1,2,--- | N.
For each MS image L;, an MRF segmentation is performed on its spectral features
xzli, and possibly other textural and statistical features, resulting in a labelling
Qr,.
The consecutive MS image layers (..., (i — 1), (i),...) are compared to find the
changes among the different label maps to get the d;_1; change map:

Sio14(s) = [(QLZ.(S) ”] QLi_l(s)) - TRUE}. (4)

We use a Maximum A Posterior (MAP) estimator for the label field of the MRF
in both stages (Steps 4 and 6). Here, we provide the details of the multi-layer MRF
optimization (Step 4). We use a similar optimization for the single layer MRF as
well (Step 6). In Step 4, the MAP estimator is realized by combining the conditional



random field of the observed data P(z{*°"|w,) and the unconditional Potts model
(Potts 1952). The global labelling 2 is defined by the energy minimum:

Q = argming [Z — log P(x"°%w,) + Z G(wr,ws)] , (5)

seS r,s€ES

where the minimum is searched over all the possible labellings (£2) of the input, and
the ©(w,, ws) neighbourhood-energy term is zero if s and r are not neighbouring pixels,
otherwise © can be modified by applying the S homogeneity weight:

0 if wp = wq

Oluwr,ws) = { +5 if wp Aws (6)

The likelihood functions P(zf1°%|w,) for all classes ws € A are represented by the
Gaussian distributions:

1

fusi _
P(:B us10n‘ws) - (27T)d/2|2w"1/2

S

1 . .
exp{—§($§“81°n — po) B @ — )Y, (7)

where d is the length of the feature vector 2™°", The mean and the covariance matrix

of the K clusters (output of the K-means clustering in Step 3) are used for p,, and
3., respectively.

In our experiments, we set § = 0.1 and we used a graph cut based a-expansion
algorithm (Szeliski et al. 2006) for the energy minimization of the MRF, with the
implementation accompanying (Szeliski et al. 2006).

2.4. Validation method

The presented classification model is validated against independent aerial orthoimages
(two sets of sub-meter resolution images). For the validation of the 2012 data, 40-cm
resolution aerial orthoimages from August 2010 were used. These aerial images were
collected in the same campaign as the ALS data (EUFAR AIMWETLAB survey).
For validating the 2015 data, 30-cm resolution aerial orthoimages collected in March
2014 were used. Both image series were collected using a Leica RCD 105 camera (39
megapixels) in visible true colour RGB bands.

For sampling both the aerial orthoimages and the vegetation classification data, a
regularly spaced grid of points was first generated at an even spacing of 100 m. Then
these points were overlaid on the aerial imagery, and for each point the land cover
class was registered based on the interpretation of an experienced operator, at scales
between 1 : 1000 and 1 : 2000. This was done separately for the 2010 and the 2014
images.

The proposed model is applied on the test area using MS data alone as well as
using MS/ALS data fusion. Confusion matrices are then calculated by comparing the
classification results of both cases with the manual interpretation of aerial images.

It should be noted that the landscape may have changed between years 2010 and
2012. Here we had to balance between using high-quality independent reference data
with a time lag (which was possible with the 2010 aerial images) or using lower quality,
less independent but synchronous imagery (i.e. manual interpretation of the same 2012
Pleiades images). We wanted to be certain of the independence, accepting the fact that
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Figure 3. Pleiades satellite image of Keszthely, Lake Balaton with the two selected patches marked with
yellow rectangle.

eventual changes in the landscape will decrease the accuracy. The accuracy figures we
report in this paper include this error, thus we expect to obtain higher accuracy when
using images with a smaller time difference.

3. Results and Discussion

3.1. Wetland classification

The fusion of multitemporal multi-sensor images involves several essential pre-
processing steps including registration, re-sampling, and normalization. The multi-
spectral and ALS datasets were all re-sampled to have the same spatial resolution of
2x2 m/pixel. Since for our experiments all images were provided as orthocorrected geo-
referenced images, no further refined registration was required. The 80 km? (about 20
million pixels) test area is divided into patches of approximately 4 km? (about 1 million
pixels) due to the computational constraints of the implemented MRF optimization
method. Two representative patches (Figure 3) providing a challenging mixture of
land cover classes are discussed in detail in this section. In our experiments we used
the two available multispectral images of August 2012 and July 2015 (described in
Section 2.2), which represent two different seasons, pre- and post-agricultural harvest.



However, it could be possible to use three or more images to further improve cluster
definitions depending on the quality, seasons and lighting conditions of the images. The
ideal season for the used MS images is after the agricultural harvest, when fields are
already harvested, but before late September-early October when the wetland leaves
start drying out. In addition to the two MS images, the wetland classification map
based on the August 2010 ALS data (see Section 2.2 ) is used to generate the wetland
class probability layer M in Equation 2 with classification accuracy o = 0.97.

The main processing steps of the ML-FMRF classification in Section 2.3.2 are ex-
ecuted on the input layers: L; (August 2012 MS image shown in Figures 4-5 (a))),
Lo (August 2015 MS image shown in Figures 4-5 (b)), and Lz (August 2010 wetland
classification map based on ALS data shown in Figures 4-5 (d)). The unsupervised
K-means clustering is applied with six classes on the fused multi-layer image using the
kmeans function in MATLAB where a preliminary clustering phase on a random 10%
subsample of the data is used to initialize cluster parameters.

Following the multi-layer fused classification, the single layer MRF classification of
L, is performed using its spectral features only (R, G, B, NIR and NDVI values). In
the single layer MRF classification of Lo, in addition to the spectral features, we use
a new wetland class probability map derived from the classification map of L. The
use of the wetland class probability map derived from the classification results of the
August 2012 post-harvest image helps to improve the discrimination between wetland
and agricultural fields in the pre-harvest image of June 2015.

To compare the classification accuracy using the fusion of ALS and MS data with
those using MS data alone, experiments similar to the above were performed using
only L; and Ly as input layers. Classification results are shown in Figures 4-5 (e) and
(f). Tables 2-6 show confusion matrices and classification accuracies for the 2012 and
2015 MS images, with and without ALS data fusion.

For the analysis of the obtained classification results, we have selected some specific
regions marked with dashed lines in Figures 4-5 (a). Using single data source (ALS
or MS only), we can observe that the agricultural area (marked with yellow dashed
lines in Figure 4 (a) was misclassified as wetland when using only ALS data (Figure
4 (d)), but was classified successfully as 'Other land’ using MS data alone. Similarly,
the urban areas (marked with red dashed lines in Figure 5 (a)) were misclassified as
wetland using ALS data alone, but correctly identified as urban areas using MS data.
On the other hand, the two vegetation areas (marked with white dashed lines in Figure
5 (a)) were misclassified using only MS data, while they were correctly classified as
wetlands using ALS data alone.

The quantitative analysis presented by the confusion matrices (Tables 2-5) shows
that the confusion between "Wetland’ and ’Trees/Shrubs’ classes is considerably re-
duced for both years when using MS and ALS fusion. The producer’s accuracy of the
wetland class is considerably improved from 81.37% to 84.57% for the year 2012 image
and from 85.92% to 93.06% for the 2015 image. The overall accuracy is increased from
83.50% to 85.93% for the image of year 2012, and from 81.4% to 85.61% for the year
2015. This results in an increase in Cohen’s Kappa from 0.78 to 0.81 for the 2012
image and from 0.75 to 0. 81 for the 2015 image.

However, the error in the ALS classification of the agricultural area (marked with
yellow dashed lines in Figure 4 (a)), slightly decreased the accuracy of the fused clas-
sification results when comparing to the results using only MS data. For the August
2012 post-harvest image, this agricultural area shows as bare soil (Figure 4 (a)); the
use of the spectral features of the MS images could correct the error in the ALS classi-
fication. However, for the June 2015 pre-harvest image, this agricultural area shows as
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Table 2. Confusion matrix and user’s accuracy of land cover classification of 2012
image using MS data only.

Reference class
Water Wetland  Trees/Shrubs  Other lands

Water 153 1 1 3
Predicted  Wetland 0 131 16 14
class Trees/Shrubs 0 28 80 8
Other lands 1 9 8 86
Total 154 169 105 111
User’s accuracy  99.3% 77.5% 76.2% 77.5%

Table 3. Confusion matrix and user’s accuracy of land cover classification of 2012
image using MS/ALS data fusion.

Reference class
Water  Wetland  Trees/Shrubs  Other lands

Water 144 5 1 4
Predicted  Wetland 4 137 20 1
class Trees/Shrubs 1 9 107 7
Other lands 3 8 13 76
Total 152 159 141 88

User’s accuracy  94.7 % 86.2% 76% 86.4%

Table 4. Confusion matrix and user’s accuracy of land cover classification of 2015
image using MS data only.

Reference class
Water Wetland  Trees/Shrubs  Other lands

Water 157 7 1 3
Predicted  Wetland 1 122 10 9
class Trees/Shrubs 0 26 83 3
Other lands 1 21 19 80
Total 159 176 113 95

User’s accuracy  98.7% 69.3% 73.5% 84.2%

Table 5. Confusion matrix and user’s accuracy of land cover classification of 2015
image using MS/ALS data fusion.

Reference class
Water Wetland  Trees/Shrubs  Other lands

Water 155 5 4 0
Predicted  Wetland 1 134 8 1
class Trees/Shrubs 1 4 105 5
Other lands 1 22 27 76
Total 158 165 144 82

User’s accuracy  98.1% 81.2% 72.9% 92.7%

green meadow (Figure 4 (b)) with spectral features close to the "Trees/Shrubs’ class;
as a result, some parts of this agricultural area were misclassified as "Trees/Shrubs’.
The errors of the used wetland classification map (product of the 2010 ALS data)
in the agricultural area as well as in the the marked urban areas as discussed above
are the cause of the reduced producers accuracy of the ’Other land’ class when using

MS/ALS data fusion (Table 6).

It is important to note that the presented method is an unsupervised classification
with only the wetland class having a prior definition, and the other classes receiving
their labels after the classification. Thus, the expected classification accuracy of the
non-wetland classes are less than they would be in case of pre-defined, supervised
classification. In our study, the six classes are assigned the labels: water, wetland,
trees, meadows, urban areas/shadow, and bare soil. Classification results are shown in
Figures 4-5 (g) and (h). The three classes: meadows, urban areas/shadow, and bare
soil are grouped in one class referred to as 'Other lands’ and classification results
are presented for 4 classes. The wetland ground truth based on field measurement
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Table 6. Producers accuracy, overall accuracy, and Cohen’s Kappa of clas-
sification results using MS data alone and using MS/ALS data fusion.

Dataset/Class 2012 MS 2012 MS 2015 MS 2015 MS
+ 2010 ALS + 2010 ALS

Water 96.8% 93.5% 93.5% 94.5%
Wetland 81.4% 84.6% 85.9% 93.1%
Trees/Shrubs 69.0% 86.3% 74.1% 91.3%
Other lands 82.7% 76.0% 66.1% 60.3%
Overall accuracy 83.5% 85.9% 81.4% 85.6%
Cohen’s Kappa 0.78 0.81 0.75 0.81

performed in 2010 (Zlinszky et al. 2012) is added to Figures 4(c¢) and 5(¢) for visual
comparison.

3.2. Multi-temporal change detection

A major advantage of the ML-FMRF model is that the output of the multi-layer
classification is used for the training of the single layers. As a result, similar classes are
automatically given similar labels in all layers. Thus, based on the post-classification
comparison, change maps can be directly generated by comparing the class labels
of different layers. The change maps can provide the locations and the types of the
changes simultaneously (see Section 2.3.2 and Equation 4). Figure 6 (a) and (b) show
an example of detected changes in the wetland class between August 2012 and June
2015 using only multispectral data (Figure 6 (a)) and by fusion with ALS data (Figure
6 (b)). The detected changes are coloured according to their type as new wetland or
deteriorated wetland. Visual comparison between images of 2012 and 2015 shown in
Figure 4 (a) and (b) reflects similar changes. The validity and performance of the ML-
FMRF model for change detection applications were compared with other state of the
art methods in (Benedek et al. 2015) for optical images. However, the quantitative
change analysis needs a temporal trajectory analysis of the related pixels which is out
of the scope of the present paper; instead, we analyze the resulting data in a qualitative
manner in the Discussion.

3.3. Discussion

The proposed unsupervised ML-FMRF model (without the use of the ALS reference
map) delivered an overall classification accuracy comparable to that obtained by su-
pervised models. For example, the overall accuracy of the ML-FMRF model using only
two MS satellite images (8 spectral features) is comparable to the accuracy obtained
by the supervised spatio-temporal contextual MRF approach (Wang et al. 2015) pro-
posed for land cover mapping which reported an overall accuracy of 75.62%. The MRF
approach in (Wang et al. 2015) uses eight Landsat 8 training samples and 144 features.
The unsupervised K-means clustering followed by the multi-layer MRF in the proposed
model provided an initial classification accuracy comparable to the supervised Random
Forest classification used prior to MRF in (Wang et al. 2015). On the other hand, the
combination of ALS with satellite imagery in the semi-supervised ML-FMRF model
delivered accuracies comparable to the supervised decision tree classification approach
proposed in (Rapinel, Hubert-Moy, and Clément 2015) where multi-sensor data (ALS,
KOMPSAT-2 MS (4 x4 m/pixel) and Quickbird MS (2.4 x2.4 m/pixel)) were used
for mapping different wetland types (hay meadow, reed beds, etc.) and reported a
Kappa of 0.84. However, our results were obtained using only two MS images and
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Figure 4. Land cover maps of Keszthely wetland (patch 1): (a) 2012 image (agricultural area samples are
marked with yellow dashed lines), (b) 2015 image, (¢) ground truth of wetland class (white) based on field
measurement in 2010 (Zlinszky et al. 2012), (d) wetland classification map using 2010 ALS data (Zlinszky
et al. 2012), (e) and (f) land cover classification maps using only MS data of years 2012 and 2015 respectively,
(g) and (k) Land cover classification maps using MS and ALS data fusion for years 2012 and 2015 respectively.
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Figure 5. Land cover maps of Keszthely wetland (patch 2): (a) 2012 image (urban area samples are marked
with red dashed lines; two vegetation area samples are marked with white dashed lines), (b) 2015 image, (c)
ground truth of wetland class (white) based on field measurement in 2010 (Zlinszky et al. 2012), (d) wetland
classification map using 2010 ALS data (Zlinszky et al. 2012), (e) and (f) land cover classification maps using
only MS data of years 2012 and 2015 respectively, (g) and (h) land cover classification maps using MS and
ALS data fusion for years 2012 and 2015 respectively.
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Figure 6. Change map between years 2012 and 2015 using (a¢) MS data alone and (b) MS and ALS data
fusion. New and deteriorated wetlands are shown in yellow and magenta colours respectively on 2012 image
(patch 1).

ALS-based reference data acquired in a previous year and/or a different season, and
the proposed method could achieve comparable accuracy in spite of changes in the
land cover between the used MS images and the ALS data.

The ALS-MS fusion based classification results of the year 2012 post-harvest image
can be used to derive the probability map for the classification of future MS images
(this is already implemented in the classification of the year 2015 MS image). Hence,
there is no further need to use ALS data again in future classifications. The proposed
model can be used recursively for the automatic monitoring of land covers using remote
sensing image time series. That is, the classification output of the proposed model at
certain point in time can be used as a reference map for the classification of one or more
new samples from a time series of MS images. Being a recursive solution, however, the
performance of the proposed model depends on the accuracy of the initial conditions
(ALS probability map in the proposed model), and/or the selection of the new samples
(e.g. higher accuracy is observed for the after-harvest 2012 MS).

Since separating wetlands from non-wetland classes is the main objective of this
study, only the wetland classification map is used. However, it is possible to add ref-
erence data for other categories in order to further improve the classification accuracy
of the other classes. The choice of which classification results and which sensor data
should be used to generate the probability map for a certain class is decided based
on the classification accuracy of this certain class and/or its ability to incorporate
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new information into the classification process. A possible future improvement could
be to update the used reference map based on the integration of several previous
classification maps or to use a probability map derived from fuzzy classification.

The main drawback of using MRF-based models for image segmenta-
tion/classification is its high computational complexity. In particular, an increase in
the number of classes or the dimension of the classification feature vectors can nega-
tively affect the performance of the classification. In our study we chose to apply the
proposed classification methods to the main six land cover classes. Once the wetland
class is detected, a similar ML-FMRF model can be applied to regions classified as wet-
lands to define different wetland vegetation subclasses. However, this approach needs
further investigation. It is also worth to note that MS/ALS data fusion is performed
neither on the decision level nor on the feature level, as it is the case for most data
fusion methods proposed in the literature (see (Gomez-Chova et al. 2015) and refer-
ences therein). Instead we generate one statistical feature derived from the wetland
classification map of the ALS data to be fused with the spectral features of the MS
data. We verified through exhaustive experiments that this type of fusion produces
improved results and helps to eliminate the need for dimensionality reduction on the
set of the ALS and MS data features.

4. Conclusions

This study demonstrates how high resolution ALS data and multitemporal multispec-
tral satellite images can be fused to deliver high classification accuracy for regular
monitoring of wetland extents and changes. The main steps of the presented approach
are unsupervised K-means clustering followed by two stages of MRF segmentation.
The fusion of multi-seasonal MS images (pre- and post-harvest images in this study)
of the same area improved the discrimination between classes having high seasonal
spectral variations, such as agricultural vegetation, trees, and wetlands. We use a wet-
land classification reference map derived from high resolution ALS data, improving
the discrimination of land-cover classes with similar spectral characteristics. The ALS
reference map is used for one time iteration only (or whenever available). The classi-
fication model can then recursively integrate new MS images with previous classifica-
tion map. The experimental results of the developed classification model are validated
against independent sub-meter resolution aerial images. Overall accuracies between 85
and 93 % for the wetland class and between 81 and 86 % for the 4 classes (Kappa
0.75-0.81) are observed over different years. We found that the fusion of ALS and
MS data considerably improves the classification accuracy (3-6 percentage points in
Kappa) compared to using only multispectral data. Our study sets the scene for the
operational use of satellite data for regular high-resolution wetland monitoring, and
allows the exploitation of the rich information contained in airborne data along with
the high temporal resolution offered by satellite imagery. In the future, images ob-
tained from recently deployed satellites could be used for fusion with ALS data from
regional surveys.
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