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Abstract: The ductile–brittle transition temperature (DBTT) in a plain carbon steel 

has been studied in a series of Charpy V notch samples. Both non-standard and 

standard samples were used in the as drawn, normalised and annealed conditions. 

In all cases, a hump was recorded on the upper shelf of the DBTT. Examination of 

fractures in the SEM in the vicinity of the hump showed typical microvoid 

coalescence. Low temperature fractures showed classical cleavage fractures with 

river markings. In the normalised and annealed conditions, both yield stress y and 

impact transition temperature Tc varied inversely with square root of the ferrite grain 

size, in agreement with previous workers. However, the points for ‘as drawn’ 

samples lay off the linear plot. The reasons for this are discussed. The hump on the 

upper shelf of the DBTT is thought to be associated with dynamic strain aging. 

 

Key Words: Ductile–brittle transition, Plain carbon steel, Hall–Petch relationship, 
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Background 

 
In Fig. 4 of Ref. 1, there was suspicion of a hump on the upper shelf, in the vicinity of 100C, 

of the ductile–brittle transition temperature (DBTT) of a Fe–8Mn alloy. Half-size Charpy V notch 

specimens 5x10x55 mm were used to determine this DBTT. There were two points at 141C (68 

J) and 159C (69 J) and one at 120C (76 J) significantly above the other two. The present 

paper describes work to confirm this suspicion on a plain carbon steel. It was also planned to 

develop a practical for undergraduates using a 9 or 10 mm square bar and a minimum of 

machining. 

 

Experimental procedure and results 

 

The composition of the plain carbon steel consisted of 0.20%C, 0.38%Mn, 0.035%Si and 

0.203% total residuals. The main study was carried out on 9 mm square bar, as it was more 

economical than using 10 mm square samples machined from bulk material.2 However, towards 

the end of the investigation, 10 mm square bars also became available and were also used.3 

The 9 mm square samples were tested in three conditions: as drawn, normalised and annealed. 

The purpose of this was to establish the difference that grain size had on the  position of the 

DBTT. 

Bars were cut to 55 mm in length. After coating in Berkatekt (a preparatory coating for 

reducing oxidation and decarburisation), the following heat treatments were applied to the 9 mm 

bars: annealing for 1 h at 1150uC followed by furnace cooling and normalising for 1 h at 920C 

followed by air cooling. The 10 mm square bars were coated in Berkatekt and homogenised for 

50 h at 1200C in clay sealed cast iron boxes, followed by air cooling. One set was then 

annealed by coating in Berkatekt and heat treated for 1 h at 1100C followed by furnace cooling. 

The other set was then also coated in Berkatekt, given 1 h at 920C followed by air cooling, i.e. 

normalised. After heat treatment, all the bars were V notched in the middle to an angle of 45 

and a depth of 2 mm with a 0.25 mm radius of curvature at the base of the notch. 

Microscopic samples from each set of samples were prepared in the longitudinal and 

transverse directions. Specimens were etched in nital. The ferrite grain sizes were measured 

using the mean linear intercept to an error or 95% confidence limit of ±2%.4 Results are given in 

Table 1, together with the impact transition temperature Tc evaluated at 26 J, hardness and 

mechanical properties to be described below. Vickers hardness was measured using a 20 kg 

load and an average of 10 impressions on two samples. The results are presented in Table 1. 

Errors are 95% confidence limits. 

Hounsfield tensile specimens with a gauge length of 10 mm and diameter of 3.58 mm were 

machined from broken Charpy specimens. These were tested in a tensometer at a velocity of 20 

mm min-1, i.e. a strain rate of 2 min-1. The yield stress y and tensile stress b were estimated 

from the stress–strain curves. Percentages of reduction of area  and total elongation t were 

measured on the broken specimens. The results,  with 95% confidence limits, are presented in 

Table 1. 
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Samples were tested on a Charpy impact machine with a maximum impact energy of 300 J. 

For testing above room temperature, samples were held for at least 30 min in an air circulating  

Table 1 Grain size d, impact transition temperature Tc (26 J), hardness and mechanical 

properties of steel in various conditions 

 

oven, and for testing below room temperature, in liquid refrigerants for at least 10 min. They 

were then transferred to the Charpy impact machine and tested within 5 s. 

 

1 Impact transition curve of annealed 

material: non-standard Charpy 

specimens, 9610655 mm, V notch 

machined after heat treatment  

 

A typical impact transition curve is shown in Fig. 1. Note the hump on the upper shelf. 

Similar results were observed on normalised and as drawn material. Impact transition 

temperatures Tc taken from these impact curves, are presented in Table 1. After impact testing, 

broken specimens were placed in alcohol and dried in an air dryer so the fracture surfaces could 

be examined in a scanning electron microscope (SEM). Fractures were examined in an FEI 

NanoSEM at acceleration voltages of 15 and 20 kV. A typical low temperature fracture is shown 

in Fig. 2. This shows classical cleavage facets with river markings. Fractures examined in the 

vicinity of peak energy showed a cellular structure due to microvoid coalescence. 

 

Hall–Petch plot 
 



K. Rourke, M. Ebrahim, Q. Luo, E.A. Wilson, Mater Sci Technol 27, 2011, 693-695. 
 

4 

 

The variation of yield stress5,6 and impact transition temperature7 with grain size is shown in 

Fig. 3. Although in the original paper,7 Tc varied linearly with ln (d-1/2), to a good approximation, 

d21/2 can be used rather than ln (d-1/2).8 

The yield stress sy is related to the grain size d by the Hall–Petch equation5,6 

 

2 Low temperature fractograph of 

normalised steel (specimen C8, 2 J at 

260uC), showing cleavage facets with 

river markings 

 

 

where i is the friction stress, equivalent to the yield stress of a constrained single crystal, and 

ky is the locking parameter, now thought to be related to the ease of generating dislocations 

from the grain boundary to move into the adjacent grain.9 

By regression analysis of the properties of plain carbon manganese steels, Gladman et al.10 

obtained the expression 

 

 

where d (mm) is the mean linear intercept in polygonal ferrite in millimetre. In the present steel, 

Mn = 0.38% and Si = 0.035%; hence, i = 105±31 MPa compared with 96±62 MPa in Fig. 3 and 

ky =15.1 MPa mm1/2 compared with 20.3±9.5 MPa mm1/2 in Fig. 3. The slope of Tc v. d-1/2 in Fig. 

3 is -11.5±2.7 K mm1/2 compared with Gladman et al.’s value of -11.5 K mm-1/2. 

The points for s y and Tc for as drawn material are off the plot in Fig. 3. This is because of 

three factors:11  

(i) residual stress in the as drawn material  

(ii) large upward shifts in the DBTT due to prestrain12  

(iii) a very marked decrease in upper shelf ductility as a result of flow localisation.13 
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3 Yield stress sy and impact transition 

temperature Tc v. d-1/2 

 

4 Temperature dependence of flow stress 

of Fe–Ni–C martensite, showing dynamic 

strain aging in vicinity of 100C: adapted 

from Owen and Roberts15 

 

Hump on upper shelf 
 

The hump on the upper shelf might be thought to be a result of using a substandard 9 mm 

square bar, but the 10 mm square bar also showed a hump on the upper shelf, both in the 

normalised and annealed conditions. The hump is thought to be associated with dynamic strain 

aging,14,15 as it occurs within the vicinity of 100C (Fig. 4). However, this has yet to be fully 

proven. Impact tests are being carried out to see if the hump is absent in a fully stabilised 

interstitial free steel. 
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