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Abstract— Real signals are often corrupted by noise. In ap-
plications where the noise power spectrum is variable with time,
dynamic noise estimation and compensation can potentially
improve the performance of signal processing algorithms. One
such application is scalp EEG monitoring in epilepsy, where the
electrical activity generated by cranio-facial muscle contraction
and expansion, often obscures the measured brainwave signals.
This work presents a data reduction algorithm which is based
on differentiating interictal from normal background activity, in
epileptic scalp EEG signals, using a modified phase congruency
technique. The modification is based on dynamically estimating
muscle activity from the signal and incorporating this estima-
tion in phase congruency computations. The proposed algo-
rithm identifies 90% of interictal spikes whilst transmitting only
45% of EEG data. This is in the order of 15% improvement
in data reduction when compared to the performance obtained
with the state–of–the–art denoised phase congruency—which
calculates a constant noise threshold—applied to the same
dataset.

I. INTRODUCTION

Epilepsy is a common neurological disorder that affects

50 million people worldwide [1]. Electroencephalography

(EEG) is a key tool for diagnosing the condition. The

benefits of long term ambulatory EEG monitoring for both

diagnosis and treatment have been extensively reported [1]–

[3]. Unfortunately, the lack of in–patient resources coupled

with limitations of current EEG technologies for out–patient

monitoring make long term monitoring an option to only

those with refractory epilepsy [1]. During an ambulatory

test, the patient is tethered to a portable EEG system for a

period that can vary from hours to even weeks. Ambulatory

EEG systems (AEEG) are battery operated but despite this,

current battery packs are still too bulky and heavy which

significantly limits the patients’ ability to carry out normal

activities [4]. From the usability point of view, the limi-

tations of current AEEG technologies could potentially be

overcome by a miniaturized solution, in which the signals

are wireless transmitted to a receiver. However, this poses

an important technological problem: wireless transmission is

power hungry [4]. It also determines the size and duration of

the battery. Power consumption could be reduced by either

fully customizing the design of all the electronic blocks that

form the EEG system [5] and/or coming up with strategies

to reduce the amount of data that needs to be transmitted.

This paper presents a data selection algorithm to identify

candidate epileptic interictal activity and reject normal back-
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ground brain activity. This retains the necessary information

for diagnostic purposes whilst reducing the amount of data

that would need to be transmitted. The proposed algorithm

bases its performance on the relationship between the phase

of different frequency components of the signal at any instant

in time, since it is found that the latter changes considerably

between background and interictal activity. Analyzing the

relationship between the different phases of a signal at a

certain point in time is a technique that has been widely used

in image processing as a tool for detecting edges, steps and

impulses [6]–[8], and is generally known as phase congru-

ency. Originally phase congruency was calculated just using

the local energy function and amplitudes of multiple fre-

quency components of the input signal [9]. This method was

later modified to include an estimation of noise. The most

cited method to remove noise [6] assumes a constant noise

power spectrum to estimate a fixed noise threshold, which is

incorporated in the phase congruency calculation. However,

many real signals (including EEG) do not have a constant

noise power spectrum. The algorithm proposed in this paper

is based on a novel modification to the phase congruency

technique, tailored to scalp EEG signals. This modification

is based on dynamically estimating the interference generated

by the cranio-facial muscles and incorporating this estimation

into the phase congruency calculations.

The paper is organized as follows: Section II describes

the traditional phase congruency calculation, the modification

to phase congruency by estimating muscle artefacts and the

data selection algorithm for identifying interictal spikes. The

performance of the algorithm is analyzed in Section III

and compared with the performance of traditional phase

congruency and denoised phase congruency [6] on the same

test database.

II. METHODS

The proposed algorithm computes modified phase con-

gruency as the feature for identifying candidate spikes and

rejecting background activity. An interictal spike is a sharp

transient with a duration ranging from less than 70 ms up to

200 ms [10]. Hence, it is expected that a transient would

have higher phase congruency than background activity.

This difference in phase congruency between spikes and

background is exploited in the algorithm to extract candidate

spikes.

A. Phase congruency
Phase information at different frequencies can be extracted

using log Gabor wavelet filters [6]. Log Gabor filters are

better suited for this application because they provide zero

dc component at wide bandwidth. To avoid phase distor-

tion by the filters, a linear phase response is designed
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(a) Phase congruency
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(b) Modified phase congruency

Fig. 1. Phase congruency and modified phase congruency calculated for 20 s EEG data with a single expert marked spike at 10 s

using nonorthogonal wavelets in symmetric/anti-symmetric

quadrature pairs [6].

Considering an input EEG signal I(x) at a time x,

the even-symmetric and odd-symmetric filter components

are Me

n
and Mo

n
respectively, where n represents the wavelet

scale which relates to the frequency bands of the filters [6].

The output even and odd-symmetric wavelet coefficients are

defined as:

[en(x), on(x)] = [I(x) ∗Me

n
, I(x) ∗Mo

n
] (1)

Phase congruency can be calculated as [6]

PC(x) =
E(x)

∑

n
An(x) + �

, (2)

where � is a small value dependent on the precision of

computation [6]. An(x) represents the sum of amplitudes

across all scales
∑

n

An(x) ≃
∑

n

√

en(x)2 + on(x)2, (3)

and E(x) is the local energy function:

E(x) =
√

F (x)2 +H(x)2, (4)

with F (x) and H(x) being the sum of the even and odd

filters components across all the scales respectively

F (x) ≃

∑

n

en(x) (5)

H(x) ≃

∑

n

on(x) (6)

Five different frequency bands spanning over 1.5 Hz

to 15.5 Hz were selected to reject higher frequency elec-

tromyography (EMG) activity, with each filter having a

bandwidth of one octave. The traditional phase congruency

in (2) calculated for an EEG signal of 20 s duration is

shown in Fig. 1(a). A spike has been marked at 10 s in

Fig. 1(a). It can be seen how there is little variation between

the phase congruency of the spike and the background EEG.

This information has been lost due to the noise introduced

by the background EEG data on either side of the interictal

spike.

B. Interference in EEG phase congruency computations

From the point of view of epileptic activity identification

using phase congruency calculations, there are two different

forms of interference that can obscure the signal of inter-

est, i.e. in this case, interictal activity: normal background

electrical activity of the patient’s brain and, contamination

from movement of cranio-facial muscles. Background elec-

trical activity in a short time window around the interictal

manifestation can be clinically useful to the neurologist and

hence should not be eliminated. Muscle movements however,

could unnecessarily obscure the EEG making these data

sections hard to interpret. An estimation of muscle activity

incorporated in the phase congruency calculations could be

used to compensate the phase congruency calculation when

there is significant muscle movement. This could reduce the

chances of those sections being wrongly identified to be of

diagnostic relevance and hence be transmitted.

C. Dynamic Noise Compensation

The most popular technique for denoising phase congru-

ency [6] subtracts the noise threshold from the local energy

E(x) in (2). The estimated noise is assumed to be additive

and have a constant noise power spectrum. In contradiction,

the power spectrum of muscle activity varies during contrac-

tion as a function of time [11]. Hence, it could be a priori

expected that dynamic estimation of EMG contamination

could improve the accuracy of phase congruency calculation.

Although EMG activity has been proved to contaminate

scalp EEG signals at all frequencies [11], previous work has

shown that there is an increase in power at frequencies above

15 Hz [11], [12]. [13] also showed that frontal and temporal

muscle activity had maximum amplitudes at frequencies

ranging from 20 Hz to 30 Hz and 40 Hz to 89 Hz re-

spectively. In order to estimate the spectral power of muscle

activity, the wavelet amplitude Am(x) of the EEG signal was

computed using log Gabor wavelet filters spanning 15.5 Hz

to 64 Hz (scales m). The phase congruency calculation in (2)

is then modified to introduce the higher frequency amplitudes

in such a way that the phase congruency is attenuated at
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Fig. 2. Data selection algorithm to identify interictal spikes

time x when Am(x) is high:

MPC(x) =
E(x)

∑

n
An(x) + �+

∑

m
Am(x)

(7)

This technique is illustrated in Fig. 1(b), where modified

phase congruency (MPC(x)) is calculated for 20 s of

EEG data. It can be seen how the expert marked spike

at 10 s has a higher MPC(x) than the surrounding EEG

and can be clearly distinguished using a threshold at 0.6.

When compared to traditional phase congruency discussed

in Section II-A and calculated for the same 20 s data in

Fig. 1(a), it is clear that the spike is much easier to identify

using modified phase congruency.

D. Proposed data selection algorithm

The proposed data selection algorithm for identifying

interictal spikes is illustrated in Fig. 2. Modified phase

congruency is calculated to distinguish between spikes and

background EEG. On identifying a spike, a short duration

of data before and after the detection (recording window)

is transmitted. The duration of the recording window can

be chosen to allow background EEG on either side of the

detected spike to be transmitted. This additional informa-

tion could aid neurologists in diagnosing a spike from the

transmitted candidate events. Thus, recording windows of

1 s, 2.5 s, 5 s and 10 s have been chosen for performance

evaluation in Section III.

With reference to Fig. 2, the algorithm buffers the duration

of the recording window from the input single channel EEG.

The input EEG data is first high pass filtered at 0.1 Hz (as

recommended in [14]). Modified phase congruency is then

calculated as discussed in Section II-C, for each data sam-

ple x. As interictal spikes are expected to have a higher phase

congruency than background EEG, a fixed threshold could

be applied to distinguish between spikes and background.

Prior to thresholding, modified phase congruency has to be

normalized between 0 and 1. Hence, MPC(x) is passed

through a peak detector to store the maximum (or peak)

value, z. If modified phase congruency at a later time x+ �,

exceeds z, the MPC(x + �) value is then stored. To

normalize modified phase congruency, MPC(x) is divided

by z. The normalized feature is then compared with a fixed

threshold �. If MPC(x) > z�, then a detection occurs and

the buffered EEG is transmitted. If normalized MPC(x)
falls below the threshold, no detection occurs.

E. EEG test database

The data selection algorithm was tested on 21 EEG data

sections across 10 channels: F7, F8, FP1, FP2, O1, O2, T3,

T4, T5 and T6. The total duration of the data was over 35

hours. The data contained 899 spike events and corresponds

to 13 randomly chosen patients who had been monitored

with scalp EEG. The events were marked by expert markers

from the National Society of Epilepsy, UK.

III. PERFORMANCE ANALYSIS

The percentage sensitivity and data transmitted were cal-

culated to characterize the performance of the algorithm.

Sensitivity is generally defined as the number of correctly

detected events as a fraction of the number of expert marked

events. Following the recommendation in [15] time/event

weighted sensitivity is used, in order to reduce dependency of

the results on the database. Time/event weighted sensitivity

is given as

Sensitivity =
1

∑

M

i=1

Ti

Ni

M
∑

i=1

Di

Ni

Ti

Ni

× 100% (8)

where Di is the number of correctly detected events in a data

section i, being the total number of datasets analyzed M .

Each data section has a duration Ti and Ni expert marked

events.

The percentage sensitivity and data transmitted varies with

the chosen threshold �. A receiver operating characteristic

(ROC) curve can be plotted by varying � from 0 to 1, as

shown in Fig. 3. Each sensitivity and data transmitted value

plotted in Fig. 3 corresponds to a different value of �. When

� equals zero, every sample is detected and transmitted,

giving 100% sensitivity and data transmitted. For � equal

to one, there will be very few detections; hence sensitivity

and data transmitted will tend to zero. Different values of �

will give different trade-off points in–between.

A. Baseline performance

Fig. 3 shows the time/event weighted sensitivity and

percentage of data transmitted for the modified phase con-

gruency algorithm. The proposed algorithm has been plotted

for four different durations of recording window. The dashed

y=x line depicts a random or chance detector, as a random

detector would achieve 50% sensitivity when 50% of data is

transmitted by chance.

With reference to Fig. 3, it can be seen that modified

phase congruency identifies 90% of expert marked spikes

whilst transmitting almost 45% of the analyzed data. At

this threshold, the 1 s recording window achieves the lowest
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Fig. 3. Performance of modified phase congruency algorithm for different
recording windows. Chance performance is depicted as y=x line

TABLE I

PERFORMANCE OF THREE DIFFERENT PHASE CONGRUENCY METHODS

Time/event Data reduction
weighted Traditional phase Denoised phase Proposed
sensitivity congruency congruency algorithm

50% 50% 85% 75%

80% 35% 60% 65%

90% 30% 40% 55%

data reduction of 40%, while the other recording windows

achieve > 55% data reduction. All four recording windows

have similar performance at low sensitivity, with a maximum

difference of 20% data transmitted at 60% sensitivity. The

implemented algorithm performs significantly better than a

chance detector, at all values of �.

B. Comparison with alternative methods

Traditional phase congruency as described in (2) and

the most cited denoised phase congruency [6] have been

tested on different applications, including seizure detection

in epileptic EEG [16]. Hence the performance of the pro-

posed algorithm is compared with these two methods, by

characterizing the sensitivity and data transmitted of all three

methods on the same EEG database (see Table I). The data

reduction achieved by the top three recording windows have

been included in Table I, for 50%, 80% and 90% time/event

weighted sensitivity.

From Table I, it can be seen that traditional phase congru-

ency has the lowest data reduction at all values of sensitivity.

At 50% sensitivity, denoised phase congruency has the

highest data reduction, but performs worse than modified

phase congruency at higher sensitivity values. At a nominal

90% sensitivity, modified phase congruency transmits 15%

less data than denoised phase congruency.

IV. CONCLUSIONS AND FUTURE WORK

A data selection algorithm to identify interictal spikes in

scalp EEG data has been proposed. This proposed algorithm

computes phase congruency and incorporates an estimation

of muscle artefacts to reduce interference in the calculated

phase congruency value. This modified phase congruency

algorithm identified 90% of interictal spikes whilst trans-

mitting only 45% of EEG data. At 90% sensitivity, the

data reduction achieved by this algorithm is 25% more than

traditional phase congruency and 15% more than the state-of-

the-art denoised phase congruency when tested on the same

database.

So far, only sensitivity and data reduction have been

evaluated for the proposed algorithm. For a data reduction

algorithm to be beneficial in a wireless ambulatory EEG

system, the power consumption for implementing the al-

gorithm in hardware should be less than the power saving

from reduced transmission [17]. Therefore, further work

is needed to quantify the power consumption of this data

selection algorithm. Furthermore, an algorithm to select

epileptic seizures should be developed and implemented in

parallel to this data selection algorithm, in order to record

all epileptiform activity.

REFERENCES

[1] S. Sisodiya, “Etiology and management of refractory epilepsies,” Nat.

Clin. Pract. Neuro., vol. 3, no. 6, pp. 320–330, 2007.
[2] E. Waterhouse, “New horizons in ambulatory electroencephalography,”

IEEE Eng. Med. Biol. Mag., vol. 22, no. 3, pp. 74–80, 2003.
[3] R. P. Lesser, “Epilepsy: Does continuous EEG monitoring improve

seizure control?” Nat. Rev. Neurol., vol. 5, no. 11, pp. 581–582, 2009.
[4] A. J. Casson, S. Smith, J. S. Duncan, and E. Rodriguez-Villegas,

“Wearable EEG: what is it, why is it needed and what does it entail?”
in IEEE EMBC, 2008, pp. 5867–5870.

[5] R. F. Yazicioglu, P. Merken, R. Puers, and C. Van Hoof, “A 60 �W

60 nV/
√
Hz readout front-end for portable biopotential acquisition

systems,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1100–1110,
2007.

[6] P. Kovesi, “Image features from phase congruency,” Videre: J. Com-

puter Vision Research, vol. 1, no. 3, 1999.
[7] H. Zhi-Kai, L. De-Hui, Z. Wei-Zhong, and H. Ling-Ying, “Multi-view

face database recognition using phase congruency and SVM classifier,”
in ICCEE, Phuket, December 2008, pp. 219–222.

[8] Y. Punsawad and Y. Wongsawat, “Palmprint image enhancement using
phase congruency,” in IEEE ROBIO, Bangkok, February 2009, pp.
1643–1646.

[9] S. Venkatesh and R. Owens, “An energy feature detection scheme,” in
Int. Conf. Image Processing, 1989, pp. 553–557.

[10] J. Gotman, “Automatic detection of seizures and spikes,” J. Clin.

Neurophysiol., vol. 16, no. 2, pp. 130–140, 1999.
[11] R. D. O’Donnell, J. Berkhout, and W. R. Adey, “Contamination of

scalp EEG spectrum during contraction of cranio-facial muscles,”
Electroencephalogr. and Clin. Neurophysiol., vol. 37, no. 2, pp. 145–
151, 1974.

[12] J. Gotman, J. R. Ives, and P. Gloor, “Frequency content of EEG and
EMG at seizure onset:possibility of removal of EMG artefact by digital
filtering,” Electroencephalogr. and Clin. Neurophysiol., vol. 52, pp.
626–639, 1981.

[13] I. I. Goncharova, D. J. McFarland, T. M. Vaughan, and J. R. Wolpaw,
“EMG contamination of EEG: spectral and topographical characteris-
tics,” Clin. Neurophysiol., vol. 114, no. 9, pp. 1580–1593, 2003.

[14] M. R. Nuwer, G. Comi, R. Emerson, A. Fuglsang-Frederiksen, J.-M.
Gurit, H. Hinrichs, A. Ikeda, F. Jose C. Luccas, and P. Rappelsburger,
“IFCN standards for digital recording of clinical EEG,” Electroen-

cephalogr. and Clin. Neurophysiol., vol. 106, no. 3, pp. 259–261, 1998.
[15] A. J. Casson and E. Rodriguez-Villegas, “Towards online data reduc-

tion for portable electroencephalography systems in epilepsy,” IEEE

Trans. Biomed. Eng., vol. 56, no. 12, pp. 2816–2825, 2009.
[16] Y. Wongsawat, “Epileptic seizure detection in EEG recordings using

phase congruency,” in IEEE EMBC, Vancouver, August 2008, pp. 927–
930.

[17] A. J. Casson and E. Rodriguez-Villegas, “Generic vs custom; analogue
vs digital: on the implementation of an online EEG signal processing
algorithm,” in IEEE EMBC, Vancouver, August 2008, pp. 5876 – 5880.


