
EMERGENCE IN COMPLEX SYSTEMS BASED ON
SYNTHETIC REPLICATORS

Juergen Huck

A Thesis Submitted for the Degree of PhD
at the

University of St Andrews

2011

Full metadata for this item is available in
Research@StAndrews:FullText

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/3067

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/3067


Emergence in Complex Systems
Based on Synthetic Replicators

by

Juergen Huck

A thesis submitted to the School of Chemistry, University of St Andrews,
for the degree of Doctor of Philosophy,

June 2011



ii



1. Candidate’s declarations:

I, Juergen Huck, hereby certify that this thesis, which is approximately 80,000 words in length, has

been written by me, that it is the record of work carried out by me and that it has not been

submitted in any previous application for a higher degree.

I was admitted as a candidate for the degree of PhD in February 2007; the higher study for which

this is a record was carried out in the University of St Andrews between 2007 and 2010.

Date 15/7/2011 signature of candidate

2. Supervisor’s declaration:

I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations

appropriate for the degree of PhD in the University of St Andrews and that the candidate is

qualified to submit this thesis in application for that degree.

Date 15/7/2011 signature of supervisor

3. Permission for electronic publication: (to be signed by both candidate and supervisor)

In submitting this thesis to the University of St Andrews we understand that we are giving

permission for it to be made available for use in accordance with the regulations of the University

Library for the time being in force, subject to any copyright vested in the work not being affected

thereby. We also understand that the title and the abstract will be published, and that a copy of the

work may be made and supplied to any bona fide library or research worker, that my thesis will be

electronically accessible for personal or research use unless exempt by award of an embargo as

requested below, and that the library has the right to migrate my thesis into new electronic forms

as required to ensure continued access to the thesis. We have obtained any third-party copyright

permissions that may be required in order to allow such access and migration, or have requested

the appropriate embargo below.

The following is an agreed request by candidate and supervisor regarding the electronic

publication of this thesis:

(iii) Embargo on all printed copy and electronic copy for the same fixed period of 2 years on the

following ground(s):

Publication would preclude future publication;

Date 15/7/2011 signature of candidate signature of supervisor



iv



Acknowledgements

First of all, I would very much like to thank Prof. Douglas Philp for the opportunity to 

become a part of his work group and to conduct research in the fascinating field of 

Systems Chemistry. It is only thanks to his guidance and constant motivation, that the last 

four years have been so exceptionally successful. With an open ear for problems of all 

kind, he was more than just an academic supervisor.

I also owe thanks to the technical staff of the School of Chemistry: Caroline Horsburgh for 

the performance of all mass spectrometry analyses, Catherine Botting for the performance 

of MALDI spectrometry and, in particular, Melanja Smith and Dr. Tomas Lebl for their 

help with NMR spectroscopy.

Big thanks goes to all members of the Philp group: Evan Wood for his previous work on 

multicycles; Jan Sadownik and his wife Marta for the first months in St Andrews, 

especially the youtube parties; Annick Vidonne for countless lunchtime discussions about 

science and life, for sharing her precious absinth with me and for being very Swiss when it 

came to lab organisation; Vicente Del Amo for his advice on synthetic problems, the time 

spend at the conference in Groningen and seeing him rolling on the floor in celebration of 

a Spanish victory during the Euro; Craig Robertson for his advice on a million and one 

computational and technical problems, for being an excellent personal guide to Scotland 

and, most importantly, for being fortunate to see him become a husband to Jen and a 

proud father to gorgeous Aaron; Izzaty Hassan for her cheerful character, the amazingly 

delicious dinners and the prospect of meeting her again soon in Malaysia; Harry 

MacKenzie for making me feel very, very old with his youthful enthusiasm; Lukasz 

Cieslak for delivering outstanding Polish quality and for being a genuinely nice guy, and 

all project students for the effort they have put into their projects especially Gabrielle 

Robson and Jon Osler.

v



Looking back at four fantastic years in St Andrews, many special thanks go to Gary, 

Nicolas and Paul who kept me grounded not only on a Friday night. A massive ‘thank 

you’ also goes to: Jason, Peter & Marzia, Wouter & Caroline, Nelly, Nikos, Jan, Scott, 

Simon, Gil, Bianca and Dirk.

I am very grateful to Volker for always having been there for me over the last years even 

though we have lived 7000 miles apart (that’s linear distance).

To Ilaria, work colleague, friend and woman I love, you should always know: Mi piace tu, 

mi piace solo tuuu! I am looking forward to the year 2012 and every second thereafter...

Last but not least, I would like to express my gratitude to my parents and my brothers, 

Gernot and Holger. 

vi



vii



Abbreviations

Ac acetyl

B3LYP Becke, 3 parameter, Lee, Yang and Parr

C Cytidine

calc. calculated mass

CI chemical ionisation

d doublet

DCC dynamic covalent chemistry

DCL dynamic combinatorial library

decomp. decomposed

DMF dimethylformamide

DMSO dimethyl sulfoxide

DNA deoxyribonucleic acid

EDTA ethylenediaminetetraacetic acid

EM effective molarity

ES electrospray

Et ethyl

g gram(s)

G Guanosine

h hour(s)

HMTA hexamethylenetetramine

HRMS high resolution mass spectrometry

Ka association constant

Kd dissociation constant

lit. literature

M molar

m multiplet

m.p. melting point

MALDI matrix-assisted laser desorption/ionisation

viii



Me methyl

MHz megahertz

min minute(s)

mL milliliter

mM millimolar

mmol millimol

MS mass spectroscopy

NBS N-bromosuccinimide

NMR nuclear magnetic resonance

o ortho

p para

Ph phenyl

PTSA p-toluenesulphonic acid

r.t. room temperature

RNA ribonucleic acid

s second(s) / singlet

sat. saturated

t time / triplet

TFA trifluoroacetic acid

THF tetrahydrofuran

TMEDA tetramethylethylenediamine

TS transition state

UV ultraviolet

ix



x



Abstract

" Biopolymers with defined recognition pattern were used to generate the first artificial 

replicating systems. Stripping down these systems to their most fundamental properties allowed 

to move away from the biological origins to construct replicators consisting of simple organic 

molecules. These systems have proven highly instructive for the in-depth understanding of the 

main requirements for the targeted development of efficient replicators. With this knowledge at 

hand, it is now possible to combine several replicators for the formation of molecular networks, 

and to use the unique properties of replication to manipulate these networks by external stimuli.

" In the thesis presented, the investigation of a family of self-replicators culminated in the 

successful construction of several examples of a multicyclic system in which four building blocks 

are able to react via two autocatalytic and two reciprocal pathways. Owing to the connectivity in 

this reaction system, it was demonstrated that its outcome can be influenced in a programmable 

manner by the addition of informational template. Some of the responses can be deduced directly 

from the functioning of the individual systems, others however are to be classified as emergent 

properties of the network. Upon elucidation of the multicyclic systems, it became apparent that 

working in closed reaction systems puts intrinsic boundaries on the possibility to bias the outcome 

of the reaction network. This limitation prevented the extinction of the inferior type of replicators  

even under highly unfavourable conditions and instead always led to coexistence for all species.
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1. Introduction

1.1 The biological origins of replication

The elucidation of the DNA structure is widely considered to be one of the major scientific 

discoveries of the 20th century.[1,2] The intriguing beauty and simplicity of its helical 

arrangement has rapidly become an icon for the field of molecular biology and has 

fascinated an audience far beyond the academic community.[3,4]

! DNA is the centrepiece for the phenomena we call Life,[5-8] since its interplay with 

RNA creates the proteins and enzymes that are indispensable for maintaining all essential 

functions in the cell. Not only does DNA act as storage for the information needed to instruct 

the synthesis of such entities, but its ability to copy itself by replication allows Life to 

propagate and evolve.[9-11] In this replicating process, each strand of the double-helix serves 

as a template for the formation of the complementary partner strand.[12] Even though DNA 

replication is conceptually simply, its actual performance in the cell involves the help of a 

plethora of enzymes.[13,14] It is therefore considered highly unlikely that the complex network 

of interactions found today in biological systems has already existed at the dawn of Life, but 

that it gradually evolved from a much simpler construct.

! Since the discovery of catalytically active RNA,[15-20] especially its central function in 

the ribosome,[21] the notion of an ‘RNA world’ has found wide-spread approbation.[22-24] In 

this scenario, RNA not only precedes DNA as the central informational biopolymer for the 

storage and transmission of genetic information, but RNA is also assumed to have conducted 

all enzymatic tasks[25] until it was gradually[26-29] displaced by proteins which possess much 

higher structural flexibility and generate the incomparable substrate specificity found today 

in many enzymes. Even though this concept has attracted a lot of attention and much 

progress has been made regarding the prebiotic synthesis of the nucleotide building blocks,
[30-35] their activation towards oligomerisation with the correct 3’-5’ linkage and their 

templated reaction to form oligonucleotides of sufficient length to conduct catalytic tasks
[36-38] using clay material,[39-42] many fundamental problems such as the susceptibility of RNA 

to hydrolytic cleavage in aqueous solution still poses scientific challenges.

! Despite these limitations, the possibility of using RNA as a rudimental basis to mimic 

Life’s most important feature, replication of genetic information with the potential 

generation of superior mutants to allow the evolution and survival of a species, has intrigued 

many scientists. Since RNA can be both template in the replication process and act as a 

polymerase for the formation of long RNA strands, Szostak et al. have proposed the existence 
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of an RNA replicase.[43] Their idea is based on an RNA duplex structure which can dissociate 

to release two strands, one of which can fold to adopt a secondary structure to function as a 

replicase, whereas the complementary strand acts as a template for a primer extension 

reaction catalysed by the replicase analogous to the functioning of the Taq polymerase in the 

polymerase chain reaction.[44,45] Once the extension of the primer using activated nucleotide 

monomers or short oligomers is completed, the replicase can dissociate and the newly 

formed duplex can re-enter the reaction cycle. In order to ensure self-replication of the initial 

duplex, both strands need to possess the ability to alternatively act as template and replicase.

! No matter how fascinating the idea of such system might be, its realisation in the near 

future seems unlikely. The usage of self-replicating vesicles[46] as reaction containers might 

indeed allow for the compartmentalisation[47,48] of all necessary entities in a defined space 

and the development of a replicase with high fidelity for copying its own sequence has seen 

some impressive progress,[49] however, more fundamental questions such as how to separate 

the RNA duplex or under what conditions the folding of the individual strand into the 

replicase can take place remain unanswered.

! The group of Joyce has set out to explore the feasibility of a scenario that circumvents 

the necessity of a replicase. Their non-enzymatic approach condenses Szostak’s scheme to its 

most essential feature: an RNA duplex that can make copies of itself. Central for this venture 

was the development of an efficient RNA ligase that can bind two oligonucleotide substrates 

and join them together.[50] Building on this ribozyme design, a self-replicating variant was 

developed in which the newly formed RNA strand is identical to the RNA ligase that 

catalyses its formation.[51,52] Efforts to establish a framework based on two cross-

complementary RNA strands[53] recently culminated in a system in which two RNA ligase 

enzymes catalyse each other’s formation from a total of four oligomeric RNA subunits.[54]

! With their work, Joyce et al. are bridging the gap between enzymatic RNA replication 

as envisaged by Szostak and the construction of replicating systems based on simple 

molecules. Using biology as a blueprint, chemists have started to explore molecular self-

replication to establish the minimal requirements for translating the principles into synthetic 

systems and to elucidate whether relatively simple chemical structures are able to mimic the 

ability of nucleic acids to store and transmit information on a molecular level.[55-58] 

Additionally, the concept of making exact copies of a chemical entity in a non-linear fashion 

could have a significant impact on the fabrication of molecular architectures on the 

nanometer scale.[59]

! The last 25 years have seen the development of a considerable amount of non-

enzymatic synthetic replicating systems based on nucleic acids, peptides and small organic 
2



molecules.[60-68] Even though the chemical natures of these structures are intrinsically 

different, when it comes to analysing their replicating properties, the same rules hold for all 

of them. In the following sections, the two fundamental mechanism of replication are 

presented and a concise theoretical analysis is given. Ultimately, a comprehensive overview 

over the history of synthetic self-replicators including most recent developments is provided.

1.2 Models of self-replication

Almost all of the examples of synthetic self-replicators reported during the past 25 years are 

based on the minimal model shown in Figure 1a.[69] This minimal model of self-replication 

contains two distinct recognition-mediated reaction channels. Compounds A and B bear 

complementary recognition sites and so, they can associate with each other to form a binary 

complex, [A·B]. Within this complex, A  and B are preorganised with respect to each other 

and the reaction between them is pseudo-intramolecular. The product of this reaction is a 

closed template Tinactive in which the recognition used to assemble the binary complex lives 

on in the template. Thus, although rate acceleration is achieved by this mechanism, this 

template is inert catalytically.

! Alternatively, the system can exploit an autocatalytic cycle. In this case, A and B bind 

reversibly to the open template TAB to form a catalytic ternary complex [A·B·TAB]. In a 

manner similar to the [A·B] complex, the reaction between A and B is also rendered pseudo-

intramolecular. Bond formation occurs between A and B to give the product duplex 

[TAB·TAB], which then dissociates to return two molecules of TAB to the start of the 

autocatalytic cycle. Thus, assuming the open template TAB presents its recognition sites in the 

correct orientation, it can act as a template for its own formation, transmitting molecular 

information through the formation of identical copies of itself. Self-replication is therefore a 

subset of autocatalytic reactions.[70,71] In an autocatalytic reaction, the product formed in the 

reaction mixture is a catalyst for the same reaction. A system in which self-replication is 

operating can be defined as an autocatalytic reaction capable of transmitting structural 

information. This information can be stored as constitution or configuration. Key design 

elements in this model of replication are a) minimisation of reaction flux through the binary 

complex reaction channel and b) inefficient autocatalysis through product inhibition arising 

from an excessively stable product duplex [TAB·TAB].

! The model of self-replication discussed thus far involves self-complementary 

structures. However, template effects in a replication cycle can also operate in a reciprocal 

sense. In a minimal system, the template is self-complementary, whereas in a reciprocal 
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system a pair of templates are complementary to each other. Therefore, reciprocal replicating 

systems rely on two interlinked crosscatalytic cycles in which the two templates catalyse the 

formation of each other. The processes involved in reciprocal replication are encapsulated 

schematically in Figure 1b.

Figure 1.1 Schematic model for the functioning of a) an autocatalytic system and b) a crosscatalytic 
system.

C
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! In these systems, compounds C and D can react to form the template TCD, and, 

similarly, compounds E and F can react to form template TEF. Since the four reactive partners 

bear appropriate recognition sites and since TCD and TEF are mutually complementary, TCD is 

capable of assembling E and F into the ternary complex [E·F·TCD]. This ternary complex 

intramolecularises the reaction between E and F and, hence, catalyse the formation of TEF. 

Similarly, TEF is capable of assembling C and D into the ternary complex [C·D·TEF] and, 

hence, catalyses the formation of TCD. These two interlinked crosscatalytic cycles represent a 

formal reciprocal replication cycle.[72,73] It is, however, important to note that the complexity 

of this system can increase dramatically depending on the nature of the chemical reaction 

which forms the two templates. In the case where the reaction between C and D and the 

reaction between E and F are orthogonal, only one reciprocal replication cycle is present in 

the system. However, if C can react with E and D with F, three replication cycles are possible: 

two minimal replication cycles – TCE and TDF may self-replicate – and the original reciprocal 

replication cycle TCD ! TEF and TEF ! TCD. Additionally, the minimal replicators TCE and 

TDF may crosscatalyse the formation of each other.

1.3 Kinetic theory of replication

Kinetic simulation of the behaviour of a minimal replicator can provide some insight into the 

various processes which operate these systems. The fitting of experimental data to kinetic 

models allows the determination of important thermodynamic and kinetic parameters 

within the system including rate constants for reactions and equilibrium constants for 

recognition processes. A series of simplified kinetic models to describe the behaviour of 

artificial self-replicating systems were first introduced[69] in a seminal paper by von 

Kiedrowski. The simplest of these models is a purely autocatalytic reaction (Figure 1.2) with 

a variable reaction order for the product – known as the autocatalytic reaction order p. The 

parameter p describes the autocatalytic behaviour of the system and determines the type of 

the autocatalytic growth curve. In real systems, the value of p is expected to lie between 0.5 

and 1. At the two extremes, a value of p = 0.5 denotes a self-replicating system that obeys the 

‘square root law’. In this situation, the dissociation rate of the template duplex [T•T] is 

limiting overall. The concentration vs time profile of such reaction shows parabolic growth 

(Figure 1.2a). However, if dissociation of the product duplex is not rate limiting, the value of 

p will tend to 1. In that case, the dissociation of the product duplex is rapid compared to 

other processes in the system and the concentration vs time profile of the reaction shows 

exponential growth (Figure 1.2b). The calculated concentration vs time profiles shown in 
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Figure 1.2 demonstrate clearly that the change of the autocatalytic reaction order p  produces 

a dramatic effect on the shape of the profiles. It is worth noting that the maximum rate of 

reaction for a self-replicating system, parabolic or exponential, does not occur at t  =  0. 

Instead, it occurs at some later point in the reaction and is associated with a particular 

concentration of T. These parameters can be accessed readily by exploiting a rate vs time 

profile (dashed lines, Figure 1.2), which is simply the first derivative of the concentration vs 

time profile.

Figure 1.2 Computed concentration vs time (solid lines) and rate vs time (dashed lines) profiles for a) 
an autocatalytic system with reaction order p = 0.5 showing parabolic growth and b) an autocatalytic 
system with reaction order p = 1 exhibiting exponential growth.

!! The concentration vs time profiles shown in Figure 1.2 illustrate purely autocatalytic 

systems, which are rarely representative of real experimental systems. Figure 1.3 shows the 

corresponding growth curves when formation of template molecules through the 

bimolecular channel is taken into account. The autocatalytic efficiency !, which is the ratio of 

the template-catalysed rate constant, ka, over the template-independent rate constant, kb, 

measures the relative contribution of the pathway involving T to the observed rate of 

reaction. A sigmoidal shape only becomes apparent in the concentration vs time profile above 

a critical value of !. Indeed, some experimental systems do not display sigmoidal production 

of the template even though an autocatalytic pathway is present within the system.

!! In practice, one of the easiest ways to discern whether a replicator is parabolic or 

exponential is to follow the formation of product T in the presence of three different amounts 

of preformed template at the start of the reaction (normally between 2 and 10 % of the initial 

a) b)
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concentration of the precursors). Typically, the concentration of template added is doubled 

when proceeding to the next experiment. In the parabolic case, the initial rate of formation of 

T scales as 1 : √2 : √4 upon addition of increasing amounts of T. In the exponential case, the 

initial rate of formation of T scales as 1 : 2 : 4.

Figure 1.3 Computed concentration vs time profiles for various values of catalytic efficiencies ! for a) 
an autocatalytic system with reaction order p = 0.5 and b) an autocatalytic system with the reaction 
order p = 1. The sigmoidal shape of the profile is only visible above a certain value for !.

!! Often, the course of a reaction is followed by NMR spectroscopy, and so kinetic data 

for the system is usually based on the monitoring of NMR integrals. However, the changes in 

the observed chemical shifts for the various species present in solution during the course of 

the reaction are not taken into account. By contrast, thermodynamic parameters for the 

supramolecular complexes involved is usually derived from independent NMR titration 

experiments. Von Kiedrowski recently introduced[74] a kinetic method (‘kinetic NMR 

titration’), which combines analysis of integral and chemical shift changes, to harvest kinetic 

and thermodynamic information from the same experiment.

!! Reinhoudt and co-workers advocate[75] the use of complete kinetic modelling. In 

their approach, numerical integration of a complete set of differential rate laws which 

describe all pathways, both reversible and irreversible, within the system is used to obtain 

detailed information about the relative importance of each potential reaction pathway. This 

approach has proven extremely useful in several cases, particularly in our laboratory.

a) b)
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1.4 Artificial replicators based on oligonucleotides

In 1986, von Kiedrowski first demonstrated enzyme-free self-replication using a pair of 

trideoxynucleotides that condense to form a product consisting of six nucleotides (Figure 

1.4).[76] By choosing a palindromic pattern of nucleic acids, this product can act as a template 

for its own formation. Previous work by Inoue et al. demonstrated the feasibility of using a 

C-C-G-C-C template to form the corresponding G-G-C-G-G strand from activated guanosine 

(G) and cytidine (C) building blocks.[77] In order to exploit the favourable association 

between these two nucleic acids, the self-replicating system was designed using motifs of 

these pentameric sequences. Trideoxynucleotide 1 bears the sequence C-C-G with its 5’-

terminus protected as methyl ether. Its reactive partner 2 possesses the structure C-G-G with 

an o-chlorophenyl group as protecting group in 3‘-position. Ligation of both fragments 

through the unprotected end groups leads to the formation of product 3  with its palindromic 

sequence, C-C-G-C-G-G. Water-soluble 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide 

(CDI) was used to activate the 3’-phosphate of 1 to its carbodiimide form and increase its 

reactivity towards nucleophilic attack of the 5’-hydroxy group of 2.

! Once the template has formed in a bimolecular fashion, 3 can act as a template to 

assemble both starting fragments in a ternary complex. The specific pattern of hydrogen 

bonds allows optimal interaction in the complex only when both fragments are orientated 

with their reactive sites towards each other. This specific geometric arrangement promotes 

the condensation reaction in the ternary complex and accelerates the rate of product 

formation. In a consecutive analysis, von Kiedrowski showed that the autocatalytic activity is 

indeed highest for the given set of trideoxynucleotides.[78] Variations of only one position 

from C to G, or vice versa, in 1 led to a significant decrease of catalytic activity. In general, the 

sensitivity of the system for mismatched pairs is more pronounced for nucleic acid residues 

close to the reactive site and mismatches between two guanosine moieties have less 

consequences on the stability of the ternary complex than mismatch pairs of cytidine.

! Addition of preformed hexameric template product at the start of the reaction 

showed an increase in initial rate with increasing amount of dopant. Kinetic analysis of the 

data provided a value of 0.48 for p, which suggests that strong association between the two 

strands in the product duplex limits severely their separation. Since only free template is 

catalytically active, its self-aggregation prevents the system from exponential growth.
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Figure 1.4 The palindromic hexadeoxynucleotide 3 is capable of templating its own formation from a 
nucleophilic trideoxynucleotide 1 and an electrophilic trideoxynucleotide 2. EDCI = 1-ethyl-3-(3’-
dimethylaminopropyl)carbodiimide.

! The results of the investigation of the autocatalytic formation of a tetranucleotide 

triphosphoamidate underlined von Kiedrowski’s empirical law by which in systems with 

strong product inhibition the reaction rate depends on the square root of the total 

concentration of present template.[79] Additionally, relatively fast background reactions in 

both systems prevented the formation of the expected sigmoidal rate profile. It was not until 

the hydroxy group in 2 was replaced with an amine group to form a 3’-5’-phosphoamidate 

bond during ligation, that the rate of the template-dependent formation of product was 

strengthened in respect to the bimolecular background pathway and the sigmoidal rate 

profile expected for autocatalytic processes became visible.[80] Calculating the kinetic 

effective molarity for this very system gave a value of 420. The system based on 

tetranucleotides performed slightly worse (! = 340) but still better than the first system based 

on synthetic organic molecules (! = 80, vide infra).
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! An intriguing example of avoiding product inhibition was presented by Li et al.[81] In 

their protocol, they exploit the pH dependent assembly of complementary DNA strands in 

duplex or triplex structures. At pH 6, two complementary strands entirely consisting of 

either purines or pyrimidines form a double-helix which has the ability to associate two 

complementary DNA fragments and enhance their ligation to form a triplex structure. 

Consecutive dissociation of the newly formed triple-helix can be achieved by increasing the 

pH to 7. Under these conditions, the triplex structure becomes thermodynamically 

unfavourable and splits into a duplex and a single strand. This single strand can then act as a 

template for the ligation of a second set of DNA fragments to generate another DNA duplex 

that can in turn undergo further replicating cycles. Choosing a palindromic structure for both 

purine and pyrimidine strand allowed for the formation of an identical copy of the starting 

DNA duplex in one cycle.

! Another iterative approach to generate an exponential self-replicating system 

combines solid-phase chemistry with chemical replication of oligonucleotides.[82] At the start 

of the reciprocal version of this procedure, two complementary oligonucleotide templates are 

immobilised onto a solid support. Appropriate nucleotide building blocks can then be 

recognised on the templates and reacted to form copies of both strands. Treatment of the 

duplexes with polar solvents leads to their separation and the freed product molecules can 

then be connected onto the solid support to start a second cycle of replication. In principal, 

this protocol also holds for self-complementary oligonucleotide templates. Analysis of a 

reciprocal model system confirmed the exponential mode of amplification for both 

oligonucleotide templates.

! As the ultimate target, non-enzymatic replication of oligonucleotides using single 

nucleotides as building blocks is envisaged. The integration of several interconnected 

replication cycles to form a template from three building blocks can be considered as the first 

step in this direction.[83] In order to achieve this aim, von Kiedrowski’s original 

hexadeoxynucleotide template C-C-G-C-G-G was cut into three segments of different length, 

C-C-G, C-G and G. The two smaller fragments were both equipped with an amine group on 

their 5’-terminus to ensure formation of a 3’-5’-phosphoamidate bond. Protection of the 5’-

terminus of the C-C-G fragment and the 3’-position of the deoxyguanosinephosphate G 

limited the number of possible ligation products. As a consequence of its palindromic 

character, the formation of ‘wrong’ template C-C-G-G from C-C-G and G was favoured in the 

native reaction of all three building blocks. However, once a certain amount of ‘correct’ 

template, C-C-G-C-G-G, had formed, suitable smaller precondensed building blocks such as 

C-C-G-C-G and C-G-G, were employed to autocatalytically generate more final hexameric 
10



product. Doping with preformed template initially stimulated the templated ligation of C-C-

G and C-G and consequent incorporation of G led to an enhanced formation of final product. 

Overall, a catalytic network with a total of six directed interactions could be derived giving 

just a small glimpse at the degree of complexity that can be found in such systems.

Figure 1.5 Reaction network based on the interaction of trideoxynucleotide derivatives Ap, Bp, nA 
and nB to give four possible hexameric 3’-5’-phosphoramidates by combinatorial synthesis via 
autocatalytic (ApnB and BpnA) or crosscatalytic pathway (ApnA and BpnB).

! In this context, an ingenious modification of the original pair of von Kiedrowski’s 

nucleotides led to a network of interdependent auto- and crosscatalytic replicators.[84,85] The 

four building blocks used for this purpose are depicted in Figure 1.5. Fragments Ap and nB 

are identical to the self-replicating system described previously except for the azide 

protecting group in the 5’-terminus of Ap instead of the original methyl ether. Moving the 

protecting groups in both fragments from one end to the other, gives rise to structures nA 

and Bp which can react to form an equally efficient self-replicating system BpnA. Moreover, 

recombination of all four components opened a third reaction pathway. The reaction between 

nA and Ap gave rise to a template nAAp with a sequence complementary to the one found 
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in the product nBBp between nB and Bp. This reciprocal relationship leads to the generation 

of a crosscatalytic cycle in which both templates catalyse the formation of its partner. Since 

all catalytic pathways proceed through ternary complexes of very similar stability, the native 

reaction between all four starting compounds gave rise to all four possible products in nearly 

equal amounts. Doping a fresh solution of reagents with preformed product showed selfish 

amplification in the case of both self-complementary templates whereas adding crosscatalytic 

template led to amplification of the corresponding complementary strand.

1.5 Peptide replicators

Replication processes ensure the transmission of information in biological systems. 

Biopolymers such as RNA or DNA employ a precise pattern of oligonucleotides as their 

means of storing and passing down information from one generation to another. Peptides are 

another class of biopolymers that were explored as a platform for the development of self-

replicating structures.[86,87] Compared with systems based on oligonucleotides, polypeptides 

do not possess the self-complementarity of nucleic acids and are usually not found to adopt a 

helical arrangement. However, since protein structures can avail themselves of a pool of 22 

amino acid building blocks, the structural diversity of the biopolymer is considerably larger 

than for nucleotides.

Figure 1.6 Helical-wheel diagram of the template peptide in the dimeric "-helical coiled-coil 
configuration emphasising the heptad repeat motif.  The interhelical recognition surface consists of 
amino acids allowing for hydrophobic packing interactions (positions a and d) and electrostatic 
interactions (positions e and g).  Amino acids at positions b, c and f lie on the solvent-exposed surface of 
the helical structure and do not participate in the molecular recognition processes. Arrows indicate the 
ligation site between a cysteine and an alanine residue.
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! In 1996, Ghadiri et al. presented[88,89] a platform for the investigation of self-replicating 

peptides based on the coiled-coil domain of the yeast transcription factor GCN4 (Figure 1.6). 

Figure 1.7 Schematic representation of the minimal autocatalytic reaction cycle for the self-replicating 
"-helical peptide. The electrophilic and nucleophilic peptide fragments E and N are recognised by 
template T through interhelical hydrophobic interactions to form catalytic complex [T·E·N]. 
Subsequent chemical ligation produces an identical copy of the template which remains bound in the 
product duplex. Dissociation relies the two templates which can then undergo further catalytic cycles. 
The inset depicts the mechanism of the amide bond formation which includes a transthioesterification 
between the activated C-terminus of electrophile E and the N-terminal cysteine side chain of 
nucleophile N as a first step. Rapid rearrangement of the intermediate thioester gives rise to the final 
amide bond.

! In this motif, an identical pair of parallel "-helical peptides wrap around one another 

with a slightly left-handed superhelical twist. As shown in the helical-wheel diagram, the 

peptide exhibits a seven-residue repeat (abcdefg). Recognition between both strands is 

promoted through non-polar residues at position a and d forming a specific hydrophobic 

interface. Residues at the flanking positions e and g promote a secondary level of recognition 

through electrostatic interactions whereas positions b, c and f are exposed to the solvent and 

of minor importance for the stability of the coiled-coil arrangement. Compared to the 

original structure found in the yeast transcription factor, an optimisation of the binding 

interaction in the hydrophobic recognition domain was achieved by replacing an asparagine 

group in position 16 with valine. The removal of the polar group significantly increased the 

chemical ligation reaction
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stability of the helical structure and allowed the peptide to equilibrate between two and 

three stranded species. During the templated process, ligation of two subunits proceeded by 

reacting the activated C-terminus of the electrophilic peptide fragment E with the cysteine 

side chain at the N-terminal of the nucleophilic peptide fragment N (Figure 1.7). The 

intermediate thiolester was found[90] to rearrange rapidly to form the final ligation 

product.!

! The self-replicating nature of Ghadiri’s initial peptide structure was confirmed by 

doping experiments. Addition of an increasing amount of template at the start of the reaction 

was shown to increase significantly the initial rate of product formation. Control experiments 

were carried out in a solution of guanidinium hydrochloride, a chaotropic reagent which was 

found to cause denaturation of proteins by interrupting the stabilising intramolecular 

interactions. Running experiments of E and N under such conditions with and without 

initially added template clearly established the template-directed nature of the native 

experiment, since both reactions proceeded with significantly slower rates. In order to 

investigate the necessity of binding both subunits onto the template to achieve full catalytic 

activity, two crippled peptide subunits, E* and N*, bearing a glutamic acid residue in the 

recognition interface were designed. Introduction of a hydrophilic group led to severe 

destabilisation of recognition between the peptide fragments. Respective reaction of E with 

N* and E* and N gave rise to two mutant templates which both failed to show any rate 

enhancement for the native reaction between N and E.

! In addition, two further variants, E’ and N’, were synthesised in which residues in the 

hydrophobic core were replaced with alanine. Even though alanine does not bear any 

destabilising side-chains, this highly conservative replacement proved to eliminate all 

autocatalytic activity. Reactions between E’ and N as well as E and N’ did not show any 

template-directed acceleration upon addition of both alanine-modified or native template. 

This remarkably high fidelity towards sequence variations was later explored in 

investigations of more complex systems of interacting replicators.

! Kinetic analysis of the experimental data gave rise to a p value of 0.63 which is sightly 

higher than in oligonucleotide systems. This finding suggests that self-replicators on the 

basis of peptides suffer less from product inhibition than oligonucleotides. Furthermore, 

there might be a significant contribution of catalytically active product duplexes which are 

able to associate two subunits in a quaternary complex. All things considered, the authors 

could convincingly demonstrate the efficiency of their replicating peptide structure and shed 

light on the mechanism which clearly indicated the necessity for both subunits to be bound 

onto the template structure(s) to form a ternary and/or quaternary complex.
14



! Apart from the design of self-replicating systems, the authors were able to 

successfully apply their concept in the construction of a peptide template that was found to 

very efficiently catalyse the ligation of various peptide subunits.[91]

! Contemporaneous, the group of Chmielewski presented some intriguing work on the 

manipulation of the efficiency of self-replicating peptides by external triggers. As a platform 

for their work, they exploited the same coiled-coil arrangement and ligation reaction as 

Ghadiri et al. In their initial contribution, they presented the design of a self-replicating 

peptide (E1 + E2 ! E1E2) whose efficiency could be modulated by variation of pH.[92] 

Recognition between both strands was ensured by creating a hydrophobic core consisting 

entirely of leucine residues. The key structural change was performed on the positions e and 

g which contribute to the stability of the duplex through electrostatic interactions. All such 

residues were replaced with glutamic acid (Glu) units, thus the strength of electrostatic 

repulsion could now be tuned by varying the pH value. Under acidic conditions, protonation 

of the Glu side chain was found to stabilise the coiled-coil formation whereas under 

physiological conditions, the deprotonated acid functionality caused sufficient repulsion to 

prevent the formation of the helical structure. Circular dichroism spectroscopy was applied 

to confirm the helical content of the peptide and was in agreement with the obtained results. 

Accordingly, the efficiency of the self-replicating peptide was found to vary in a pH-

dependent manner. At pH values above 4, no autocatalytic activity was found for the 

formation of the peptide. Only at a pH value of 4 did the system start to behave 

autocatalytically. However, the reactivity of the ligation reaction was also found to decrease 

by lowering the pH value preventing efficient self-replicating activity in pH regimes lower 

than 3.

! Having established the crucial role of the flanking positions on the stability of the 

coiled-coil structure, the authors presented a second system (K1 + K2 ! K1K2) in which all 

glutamic acid residues at the flanking positions were replaced by lysines.[93] Since the amine 

group is protonated at acidic and neutral pH, the formation of the coiled-coil conformation is 

prevented due to electrostatic repulsion. Increasing the pH or working at neutral conditions 

with high concentrations of shielding counterions was expected to minimise the repulsive 

forces and allow formation of the coiled-coil arrangement. Accordingly, addition of 

increasing amounts of NaClO4 at pH 7.5 was shown to enhance the formation of the peptide 

in an autocatalytic fashion. Doping experiments with preformed peptide template showed 

the expected increase in initial rate and kinetic analysis provided an effective molarity of 280 

for the best system.
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! In combining both replicators, Chmielewski et al. created a four-component system in 

which, under certain conditions, auto- and crosscatalysis coexist.[94] At physiological 

conditions, next to the native replicators bearing glutamic acid groups (E1E2) and lysine 

residues (K1K2) in the flanking positions, two recombinant mutants (E1K2 and E2K1) were 

found to be efficient templates for their own formation. Similar to the example based on 

oligonucleotides, this system allowed for the selective amplification of one or more of the 

products by instructing the reaction mixture with preformed template. Both crosscatalytic 

templates (E1E2 and K1K2) and both autocatalysts (E1K2 and E2K1) showed high fidelity 

for their reciprocal and own formation, respectively. Besides these expected interactions, a 

number of crosscatalytic activities between the native peptides and their mutants were 

found. For example, K1K2 was found to catalyse the formation of K1E2. Since mutant 

peptides aggregate in an antiparallel conformation, it is possible to imagine a dimeric K1E2 

template that can bind fragments K1 and K2 onto its negatively charged surface leading to a 

trimeric product complex. Additionally, variations in the environment proved to have a 

major impact on the formation of products. Working at high salt concentration promoted the 

formation of the replicator bearing only lysine groups (K1K2) whereas lowering the pH 

yielded the above-mentioned replicator (E1E2) with acidic side-chains.

! Another focus of research aimed at increasing the efficiency of peptide replicators. 

The efficiency of self-replicating systems can be tuned by increasing the stability of the 

ternary complex and/or destabilising the final product duplex. The latter was achieved by 

shortening the chain length of the native sequence of replicator E1E2.[95] As a consequence, 

the interaction in the hydrophobic core of this new design is reduced leading to a decreased 

stability of the coiled-coil helix preventing strong product inhibition. The catalytic efficiency 

of this shortened version was calculated to be in the range of 1 × 105, a value about two to 

four magnitudes higher than in other self-replicating systems, and a p value of 0.91 was 

found.

! Instead of shortening the peptide sequence, the same authors presented a structure 

Ep in which the incorporation of a proline residue close to the reactive side showed a 

pronounced destabilising effect on the stability of the product template without altering the 

interactions between the subunits and the template (Figure 1.8).[96] The resulting proline-

modified structure was indeed found to possess a destabilising kink and the effective 

molarity in the autocatalytic process as well as the p value were established to be similar to 

the shortened peptide (! = 3.2 x 104 M–1 and p = 0.91).
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Figure 1.8 Introduction of a proline residue (red residue in Ep) alters the geometry of the template 
thereby decreasing the hydrophobic interactions in the product duplex which favours its dissociation 
and promotes highly efficient peptide replication.

! Based on their initial design, Ghadiri et al. presented a network in which two 

replicators were found to autocatalyse their own formation but also crosscatalyse the 

formation of the partner (Figure 1.9).[97] Both replicators employ the same electrophilic 

subunit E but vary in the constitution of the hydrophobic core of the nucleophile. Fragment 

N1 was identical to the initial structure bearing valine and leucine residues giving rise to 

peptide replicator R1 whereas in fragment N2  all valine groups were replaced with 

isoleucine residues. This rather conservative variation was yet expected to affect profoundly 

the stability of the coiled-coil conformation. However, subunits E and N2 were found to 

generate self-replicating peptide R2, even though it proved less efficient than R1. In the 

native reaction between an equimolar amount of E and both nucleophiles N1 and N2, the 

original replicator R1 predictably dominated in the product pool. However, isolated analysis 

of both replicators showed not only pronounced template effects for the doping with the 

native template peptide but stated an even higher crosscatalytic impact upon addition of the 

opposite template. Under these circumstances, both replicators were found to exist in a 

symbiotic relationship in which production of one species promotes the production of the 

other in an even greater extend. Such beneficial relationship is reminiscent of a hypercycle,
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[98-100] in which two autocatalytic species are closely connected through an additional 

crosscatalytic relationship that allows both members to compete more efficiently for existing 

resources than any member on its own.

Figure 1.9 Schematic representation of a hypercyclic system based on two self-replicating peptides.  
Autocatalytic formation of replicator R1 from fragments E and N1 and replicator R2 from E and N2 
proceed via cycles I and III, respectively. Cycles II and IV represent the positive crosscatalytic 
relationship in which R1 catalyses the formation of R2 and vice versa to form the hypercycle in which 
the replicators positively regulate each others’ production.

! Another intriguing example of peptide interaction inspired by phenomena found in 

nature was conducted by combining the original peptide self-replicator T with a set of single 

residue mutant electrophile and nucleophile (Figure 1.10).[101] The subunits were altered by 

replacing valine and leucine with an alanine residue in position 9 and 26 of the electrophile 

(E9A) and nucleophile (N26A), respectively. These conservative replacements were already 

shown to have a dramatic effect on the autocatalytic and crosscatalytic efficiencies of the 

product peptides. No significant template-assisted catalysis upon addition of T, T9A and T26A 

was stated for the reaction of E9A with N and E with N26A. Accordingly, in a reaction mixture 

composed of equimolar amounts of E, E9A, N and N26A, native replicator T was found to 

dominate the product pool.
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Figure 1.10 Schematic representation of a replicating network exhibiting dynamic error-correction 
properties. Template T is formed in an autocatalytic manner from building blocks E and N (cycle I) 
but is also catalysed by mutant templates T9A (orange, cycle II) and T26A (blue, cycle III) which in turn 
do not possess any catalytic ability for their own formation.

! Dissecting the various catalytic relationships in this system showed that the native 

replicator was not only formed through the established autocatalytic cycle but both mutant 

templates were also able to crosscatalyse its formation. This imbalanced relationship could 

be explained by comparing the stability of the ternary pre-ligation complex to the 

corresponding catalyst dimer. In reactions in which unmodified template aims to ligate an 

unmodified fragment with a mutant subunit, destabilisation in the hydrophobic core in the 

ternary complex prevents any catalytic activity. Addition of mutant template to the original 

fragments creates a situation in which destabilisation affects both the ternary complex and 

the catalyst dimer. The resulting increase in dissociated free product was expected to 

compensate for the reduced stability of the catalytic species. In summary, Ghadiri et al. have 

created a network in which an autocatalytic template exploits two mutant templates to 

enhance its own formation through two further crosscatalytic pathways without contributing 

to their formation. This selfish behaviour reminds of biological systems in which errors in the 

replicating process leads to the formation of closely-related mutants. Correction of the 

committed error can only occur if the replicating activity of the mutant species proves 

inferior to the original structure.

! The homochirality in biological systems is believed to be of utmost importance for the 

generation and maintenance of living matter.[102] Its emergence from a pool of prebiotic 

building blocks is thought to have proceeded by non-linear amplification of an infinitesimal 
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imbalance for one of the isomers.[103-105] Replication with its feedback loop potentially 

provides exponential growth and features prominently in the discussion of the origin of 

homochirality.[106,107] In order to maintain and transfer the stereochemical information from 

one generation to the next, the replication process needs to be chiroselective. This means that 

in the autocatalytic process the homochiral template must only instruct the synthesis of a 

species of the same handedness.

! Using a peptide structure very closely related to their original example, Ghadiri et al. 

showed how a replicator can selectively amplify homochiral sequences.[108] For this purpose, 

the electrophilic E and nucleophilic N peptide fragments were synthesised in their 

enantiopure form. EL and NL were composed entirely of natural L-amino acids where ED and 

ND contained only unnatural D-amino acids. In a subsystem of EL with both nucleophilic 

units only the homochiral replicator TLL showed autocatalytic activity, whereas the 

heterochiral species TDL remained catalytically inactive. Unfortunately, the authors provide 

no evidence whether the corresponding homochiral template TDD was found to self-

replicate. They however did establish that replacing one amino acid in the homochiral 

template TLL with its stereochemical partner shuts down all autocatalytic pathways. Hence, 

the investigated single stereochemical mutants proved to be efficient catalysts for the 

formation of the homochiral peptide template. This finding complements the results for the 

dynamic error correction in single alanine mutants on a stereochemical level and was termed 

‘dynamic stereochemical editing’ by the authors.

! Within a surprisingly short time, a deep insight into the basics of peptide replication 

was gained and this knowledge was applied to create a remarkable number of systems with 

several interacting peptide replicating units. With these sophisticated protocols at hand, the 

group of Ghadiri took the concept one step further by designing and investigating a 

molecular network of nine peptide replicators.[109] In this network, every replicator is formed 

through ligation of one of nine possible electrophilic fragments with one nucleophile. 

Variation between alanine, glutamic acid and lysine were allowed in two positions in the 

electrophilic fragments to create the nine variants. Reaction of all nine electrophilic fragments 

with the common nucleophile produced nine peptide templates. Their auto- and 

crosscatalytic abilities were computed based on the stability of the substrate-template 

transition-state and probed experimentally. In the derived network architecture, three kinds 

of directed catalytic interactions could be established. Templates could promote their own 

formation through an autocatalytic pathway, they could serve as a template for the formation 

of a second structure or they could exploit another peptide template for their own formation.
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! A subsystem of this molecular network, namely T1, T3, T4, T5 and T7, showed 

pronounced interaction among its members and was used to generate three examples of a 

molecular logic gate (Figure 1.11).[110] Instructing the network by adding preformed peptide 

template changed the output of an interconnected species. For instance, addition of either T3, 

T4 or both led to a significant increase for the formation of template T7 simulating an OR 

logic operation.

Figure 1.11 Schematic representation of a network of replicating peptides. Each node in the graph 
represents a particular peptide template or product (T1, T3,  T4, T5 and T7) and the arrows indicate the 
relationship between the nodes pointing from the template to the product. Circular nodes represent 
peptide templates with autocatalytic ability (T3, T5 and T7). The templates can be identified according 
to the two amino acid code giving in parenthesis.  Numbers next to the templates or the arrows 
represent theoretical estimation of the relative efficiency of the depicted pathway and were estimated 
on the basis of the calculated difference in the stability of the trimeric product species. 

! Recently, the alignment of peptides consisting of alternating hydrophilic and 

hydrophobic amino acid residues into ordered #-sheet assemblies was used as a platform for 

the design of a novel type of self-replicating peptide structures.[111] It was shown that existing 

#-sheet aggregates of an amphiphilic peptide P can act as a template for the association of 

two smaller peptide fragments, N and E, which react to form a new molecule of P. This copy 

is consecutively incorporated into the #-sheet and the extended aggregate can then undergo 

further catalytic cycles.

1.6 Synthetic replicators[112,113]

In 1990, Rebek et al. presented a self-replicating system made up entirely of synthetic 

building blocks (Figure 1.12).[114] With their expertise in designing receptors for biological 

molecules, they reasoned that connecting both recognition partners by a suitable covalent 
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linker would give rise to a molecular structure that can self-replicate. For this purpose, they 

exploited the association through hydrogen bonding between a maleimide moiety based on 

Kemp’s triacid[115] (in 4) and adenosine (in 5). The formation of an amide between an 

activated pentafluorophenyl ester on maleimide 4 and a primary amine connected to the 

adenine structure 5 was chosen as the chemical reaction to create the covalent bond in the 

self-complementary template 6. In order to avoid recognition-mediated reactions through a 

binary complex, a naphthalene spacer was incorporated into structure 4. Initial problems 

with strong product inhibition were overcome by introducing a sterically demanding ribose 

sugar into 5. This group was shown to induce a slight kink into the structure of product 6 

thereby reducing the stability of its duplex structure.

Figure 1.12 The recognition between the Kemp’s triacid imide in the activated ester 4 and the adenine 
base in 5 drives the formation of template 6 either through the binary complex [4·5] or through the 
corresponding [4·5·6] complex (shown as pathway III in Figure 1.13).

! The amide bond formation of the self-complementary structure 6 was shown to be 

enhanced by addition of preformed product. Control experiments with recognition disabled 

compounds showed significantly lower reactivity. A kinetic analysis by von Kiedrowski 

calculated the kinetic efficient molarity ! to be around 80.[80]

! Rate-enhancements of over 40% were assigned to the generation of a ternary complex 

in which a product molecule acts as a template to assemble both starting compounds to 

facilitate their reaction by bringing the reactive sites, the primary amine and the 

pentafluorophenyl ester, in close proximity (Figure 1.13, pathway III). After bond formation, 

the duplex structure dissociates into two catalytically active template molecules. Next to this 
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autocatalytic mode, two further reaction pathways were assumed to occur (Figure 1.13, 

pathway I and II).[116] Firstly, both compounds can react in a bimolecular fashion without 

making use of their recognition sites. Furthermore, despite the incorporation of a 

naphthalene spacer, the formation of a binary complex between both reactive partners 

deemed possible. In this case, fixation of the adenine in the imide pocket brings both reactive 

sites in close proximity and allows a rate-enhanced pseudo-intramolecular aminolysis to 

form the cis-amide which can subsequently isomerise to the more stable trans-amide product.

Figure 1.13 The five pathways which contribute to the observed kinetics of the Rebek replicator shown 
in Figure 1.12: the background reaction (I),  the AB complex (II), the ternary complex (III), the reaction 
between the activated amine (by the bonded template) with free ester (IV),  and the reaction between 
the activated ester (by the bonded template) with free amine (V).

! Rebek’s results were questioned by Menger who thought to be able to explain the 

observed rate-enhancements by simple amide catalysis.[117-120] He published an alternative 

mechanism (Figure 1.13, pathway V) in which only one recognition event was necessary to 

hold the reactive partners in place for the reaction. By stabilising the tetrahedral intermediate 

through hydrogen bonding, this intermediate step would also explain the observed catalytic 

effect.

! However, it was not until Reinhoudt et al. subjected Rebek’s system to an exhaustive 

kinetic analysis.[75] In the resumé of their investigations, they declared the presence of five 

reaction pathways that all contribute to the formation of product (Figure 1.13). In addition to 
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the three pathways proposed by Rebek, they could verify the existence of Menger’s activated 

bimolecular species as well as the presence of a related bimolecular species, in which the 

ester is preorganised on the template to react with unbound amine (pathway IV).

! Comparison of rates led to the conclusion that the highest contribution comes form 

Menger’s activated bimolecular pathway, however, results proved to be highly dependent on 

the concentration at which the experiments were conducted. As a matter of fact, both parties 

could save their face, but this example shows that a clean kinetic analysis of a potential self-

replicating system and the execution of the right control experiments are absolutely crucial.

! At the time of Reinhoudt’s resolving paper, Rebek had already presented a modified 

version of his initial self-replicating system (Figure 1.14). Using a biphenyl moiety as a pre-

longed spacer instead of the original naphthalene backbone led to the observation of 

sigmoidal growth.[121] By extending the spacer length, reaction through the binary complex is 

suppressed giving way to the self-replicating mode with its characteristic sigmoidal rate 

profile.

Figure 1.14 The longer biphenyl spacer present in activated ester 7, when compared to the naphthyl 
spacer present in 4 (Figure 1.12), ensures that template 8 is formed principally by the reaction through 
the ternary complex [5·7·8] shown.

! In order to optimise the binding event between the adenine moiety and its receptor, 

Rebek et al. created[122,123] a second structure in which the adenine moiety was 

simultaneously recognised through both Watson-Crick and Hoogsteen hydrogen bonding 

(Figure 1.15). A cleft-like structure of two imides attached to a biphenylcarbazole backbone 

was designed and investigated. In this new structure, recognition of the adenine structure 

occurs simultaneously through the two imides by both binding modes. In addition, 

pronounced π-π interactions between the adenine and the biphenylcarbazole further 

optimise the binding event. However, increasing the association constant did not lead to the 
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expected enhanced self-replicating activity of the novel system. Instead, the reactivity was 

hampered by strong association in the product duplex.

Figure 1.15 A combination of Watson–Crick and Hoogsteen hydrogen bonding patterns permit the 
recognition between the adenine and the diimide.

! Having increased the association between the adenine and the diimide cleft structure, 

Rebek et al. were able to establish crosscatalytic protocols in which a presynthesised bis

(diimide) structure was found to be able to catalyse the condensation of two adenine 

molecules through amide bond formation.[124,125] In reverse, this bis(adenine) structure acted 

as a reciprocal template for the formation of the original diimide template, thus completing a 

crosscatalytic replicating cycle. However, strong autocatalytic pathways between the 

recombinant amine and ester variants prevented an investigation of the pure reciprocal 

system.[126]

! Besides optimisation of their efficiency, Rebek aimed at incorporating self-replicating 

systems into more complex scenarios to mimic biological features such as mutation and 

evolution. For instance, manipulation the outcome of a competition reaction between two 

self-replicators by external trigger was demonstrated using two variants of the replicating 

system bearing the biphenyl spacer.[127] In the original system, recognition between the 

adenine moiety and the ester imide can occur by both Watson-Crick and Hoogsten mode. 

When blocking the exocyclic adenine amine with a protecting group such as 

benzyloxycarbonyl, hydrogen bonding through the Watson-Crick mode is severely 

disfavoured and association to the imide ester occurs mainly through Hoogsten binding 

generating a comparably less efficient self-replicating system. Introduction of a structurally 

very similar photolabil o-nitrobenzyloxycarbonyl group has the same impact on the 

efficiency of the system. In fact, combining biphenyl imide ester with both protected species 

showed that the two self-replicators not only catalyse their own formation but they also act 
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as templates for the formation of its partner. A competition experiment was conducted in 

which both protected adenine structures were allowed to react with a limited amount of 

active ester. Both replicators proved nearly equally efficient, however, irradiation of the 

solution removed the photolabil o-nitrobenzyloxycarbonyl protecting group converting it 

into the original adenine structure with free exocyclic amine. By releasing the free amine, the 

original replicator is regenerated and binding of the adenine to the imide moiety can again 

proceed through both modes, leading to a self-replicating system with increased efficiency. 

When more fresh reagent is added to the reaction mixture, the unprotected replicator now 

quickly starts to dominate the product pool. This model experiment shows how an external 

trigger can induce a structural change in an existing replicator to create an even more potent 

mutant species.

Figure 1.16 A self-replicating system between ester 9 and amine 10 to give amide 11 based on a 
diaminotriazine/thymine recognition motif.

! Another self-replicating system was based on the well-defined pattern of hydrogen 

bonds between thymine and diaminotriazine (Figure 1.16).[128,129] The thymine moiety in 9 

was equipped with an activated ester which can react with the amine in 10 to form the amide 

bond in template 11. The xanthene backbone in 10 and 11 assured the appropriate geometry 

for the assembly of both starting fragments on the product template to form the ternary 

complex necessary for self-replicating activity. As demonstrated in other systems, self-

replication was stated through doping experiments. Adding a fixed amount of preformed 

template increased the rate of product formation whereas applying recognition-inhibited 

template molecules did not exhibit any increase in rate. Recently, this recognition motif was 

revisited to design two self-replicating systems in which the newly formed bond consisted of 

a thiourea[130] or imidazolidine[131] moiety. The final template structures were then tested as 

organocatalysts in a Michael addition, hydrogenation and Friedel-Crafts alkylation.
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! A combination of the original adenine replicator with the thymine based replicator 

allowed the performance of crossover experiments.[132] Since both systems rely on amide 

bond formation, a set of all four starting blocks can potentially lead to two additional 

recombinant replicating systems. Adenine amine 5 was found to react with thymine ester 9 

to give rise to an exceptionally efficient self-replicator. This efficiency is owed to the 

appropriate orientation of recognition and reactive sites in the ternary complex. However, a 

combination of both larger fragments, ester 4 and amine 10, generated a template which did 

not possess the right geometry to promote self-replication.

! An intriguing example of a structurally very simple self-replicating system utilises 

amidinium-carboxylate salt bridges to enhance the catalytic condensation of an aniline 

structure with a benzaldehyde derivative (Figure 1.17).[133] Several structures with various 

substituents in para-position to the recognition sites have been investigated. For instance, 

autocatalysis was established in the formation of anil 14 from aniline 12  and aldehyde 13. 

Adding preformed template to the reaction mixture increased the initial rate of product 

formation and the obtained experimental data was in accordance with the square-root 

model.

Figure 1.17 A series of auto- and crosscatalytic templates can be formed by combinations of amines 12 
and 15 with aldehyde 13.

! More interestingly, anil 17 was found to crosscatalyse the condensation of amine 15 

and aldehyde 13 to form 16  with a first-order relationship, hence addition of preformed 

template of 17 led to a proportional increase in formation of 16. Crucial for such behaviour 

are different stabilities of the ternary and the product duplex. In case of a stable duplex, 
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strong association leads to a square-root dependence of rate with respect to the total template 

concentration. However, if the product duplex proves less stable than the ternary complex of 

building blocks and template, the system can reach its full catalytic potential.

Figure 1.18 Diels–Alder cycloadduct 20 can assemble the chiral diene 18 and maleimide 19 in a 
catalytically active ternary complex.  This complex is the dominant reactive species in the formation of 
20 in CD2Cl2 at 25 °C (open squares in graph). The addition of 5 mol-% of 20 to the reaction mixture 
(filled squares in graph) removes the lag period from the concentration vs time profile demonstrating 
that 20 is a catalyst for its own formation. Data taken from ref. [134].

! A replicating system of simple organic molecules with surprisingly high p value was 

presented by Wang and Sutherland in 1997 (Figure 1.18).[134] In their design, they exploit the 

directed recognition through hydrogen bonding between an amido napthyridine 18 and an 

amido pyridone moiety 19. As chemical reaction to join both fragments together, the authors 

chose the Diels-Alder reaction between a maleimide and a cyclohexadiene. Reacting both 

recognition-enabled compounds showed a sigmoidal rate profile for the formation of 

product 20. Doping a mixture of reactants with presynthesised template 20 confirmed the 

autocatalytic mechanism of the reaction by overcoming the initial lag period with maximum 

rate at the beginning of the reaction. Experiments with recognition-enabled reagents showed 
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significantly lower conversions by solely forming the products via bimolecular pathways. 

Fitting of the obtained results provided a value of 0.8 for p as best approximation. This value 

is somewhat higher than for other systems based on oligonucleotides or simple organic 

molecules. Steric repulsion between the methyl group on the naphthyridine 18 with the alkyl 

group of the pyridone side-chain in 19 caused some inhibition of the binding event leading 

to a relatively low association constant. This rejection was also expected to exist in the 

product reducing the stability of the duplex. With the equilibrium shifting away from the 

catalytically inert duplex structure, more free template becomes available thereby increasing 

the autocatalytic efficiency. Furthermore, this replicating system can potentially form four 

possible diastereoisomers, but it was not until recent, that the stereochemical features of a 

slightly modified variant was thoroughly analysed by von Kiedrowski et al.[135]

Figure 1.19 Reaction of nitrone 21 with maleimide 22 in CDCl3 at 10 °C gives rise to two 
diastereoisomeric cycloadducts – cis-23 and trans-23. While cis-23 does not exhibit appreciable 
recognition-mediated reactivity (filled triangles in graph), the formation of trans-23 (filled squares in 
graph) exhibits a sigmoidal concentration vs time profile and further experiments confirm the 
operation of the autocatalytic cycle mediated by the ternary complex [21·22·trans-23] in this system.
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! Self-replicating processes based on simple organic molecules may allow the transfer 

of chemical information to be passed on through the regio- and stereoselectivity of the 

template catalysed bond formation. A self-replicating system in which stereochemical 

information was transmitted faithfully to the formed template within the reactive ternary 

duplex was demonstrated using the 1,3-dipolar cycloaddition between nitrone 21 and 

maleimide 22 (Figure 1.19).[136] This reaction generally proceeds slow and with low 

selectivity for the formation of the two possible diastereoisomers of 23. Both isomers can be 

distinguished by the relative orientation of the three protons attached to the bicyclic ring 

system. In the case of cis-23, all protons point to the same side in respect to the bicycle 

whereas in cycloadduct trans-23 the proton on the isoxazolidine ring is orientated away from 

the protons at the ring junction. In a simple bimolecular reaction, the trans-isomer is usually 

formed in a ratio of about 3:1 over the cis-isomer. In order to allow recognition events to take 

place, 21 and 22 were equipped with an amidopyridine and a complementary acid 

functionality, respectively. The reaction of both compounds gave rise to two 

diastereoisomeric products trans-23 and cis-23  in a ratio of 7:1. As comparison, the reaction-

inhibited reaction between 24, the methyl ester of 22, and 21 proceeded at much slower rate 

giving rise to a diastereoisomeric mixture of the isoxazolidines with a ratio of only 4:1 for the 

trans-isomer after the same time (Figure 1.20).

Figure 1.20 Reaction between nitrone 21 and methyl maleimide 24 gives rise to a diastereoisomeric 
mixture of cycloadducts, trans-25 and cis-25 which vary upon introduction of recognition with 
maleimide 22 towards self-replication isomer trans-23 as highlighted in Figure 1.19. The ratio of 
diastereoisomers is indicated by the numbers next to the templates.
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! The deviation in selectivity for the trans-isomer of 23 can be assigned to the inherently 

different geometries of both diastereoisomers. Owing to the relative orientation of the 

substituents on the bicycle, the cis-isomer of 23 possesses a folded geometry in which both 

recognition units are facing each other making the association of starting reagents sterically 

unlikely. On the other hand, the trans-isomer adopts an open conformation in which both 

starting materials can be recognised in a ternary complex as shown in Figure 1.19. In this 

geometric arrangement, the reactive sites of 21 and 22  are being put in close proximity and 

their reaction proceeds with higher rate. Moreover, the diastereoisomeric template truthfully 

passes on its stereochemical information onto its offspring rendering the formation of the 

trans-isomer autocatalytic. In order to proof the autocatalytic activity of the trans-template, 

presynthesised catalyst was added at the start of the reaction. The rate profile therefore 

showed the loss of the initial lag period and led to an enhanced formation of the trans-

isomer, pushing the product ratio to 9:1 after the same time. In the presence of four 

equivalents of benzoic acid, the rate profile showed a significant decrease for both the rate of 

the reaction and its selectivity. Benzoic acid acts as a competitive inhibitor that binds to the 

amidopicoline unit of the nitrone compound, thereby confirming that the formation of 

trans-23 from nitrone 21 and maleimide 22 is indeed recognition-mediated. Fitting of the 

experimental data afforded values for p and ! of 0.9 and 5000, respectively.

Figure 1.21 Diels-Alder reaction of maleimide 28 with furan 26 gives rise to two diastereoisomeric 
products, exo- and endo-30, which are both capable of accelerating their own formation in an 
autocatalytic manner. The two cycloadducts do not have any measurable catalytic effect on the 
formation of their partner diastereoisomer. Maleimide 27 was used as a control compound to give 
products exo- and endo-29 which highlight the importance of hydrogen bonding since the N-methyl 
anilide is incapable of binding the carboxylic acid recognition site in 26.

! Our group reported on another system in which the Diels-Alder reaction between 

maleimide 28  and furan 26 generated two diastereoisomeric products of 30 (endo and exo) 

which are both capable of catalysing their own formation but show no crosscatalytic effect on 

the rate of formation of their diastereoisomeric partner (Figure 1.21).[137] Reacting the 

recognition-disabled derivative 27  with 26 established the background rate for the formation 
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of the two cycloadducts. The reaction proceeded slow and the endo:exo ratio was found to be 

1.6:1. Repeating the reaction with recognition-enabled 28 showed a significant increase in the 

initial rates of formation for both diastereoisomers of 30 and a change in diastereoselectivity 

to a ratio of 1.1:1 in favour of the endo-isomer. 

Figure 1.22 Maleimides 32 and 33 together with nitrone 31 and furan 34 form a multicyclic system 
consisting of two autocatalytic and two reciprocal relationships. Trans-35 was found to be the template 
for the autocatalytic reaction of 31 and 33 whereas both isomers of 38 are self-replicating products 
from the reaction between maleimide 32 and furan 34.  Template trans-36 can assemble maleimide 33 
and furan 34 into a crosscatalytic ternary complex [33·34·trans-36] in which the Diels–Alder reaction 
between 33 and 34, forming template exo-37,  is accelerated. Similarly, template exo-37 can assemble 
nitrone 31 and maleimide 32 into a crosscatalytic ternary complex [31·32·exo-37] in which the 1,3-
dipolar cycloaddition reaction between 32 and 43,  forming template trans-36 is accelerated, 
completing a formal reciprocal replicating cycle. Upon mixing all four components in CDCl3 at 25 °C, 
template trans-35 was the dominant product.

! Selective doping at the start of the reaction with 10 mol-% of preformed 

diastereoisomer established selfish autocatalytic enhancement as the only catalytic pathway 

for both species. Crosscatalysis from one diastereoisomer to the other was not observed. This 
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finding was rationalised by molecular modelling of both product templates. It could be 

illustrated that both homodimeric species adopt optimal conformations to align their 

recognition units and act as a catalyst for the formation of their own isomer whereas the 

formation of a heterodimer could be ruled out as a consequence of geometric constraints.

! Another example of diastereoisomeric heredity in a replicating system using simple 

organic molecules was demonstrated within a multicyclic set-up for a crosscatalytic system 

in which two complementary templates were found to stereospecifically catalyse the 

formation of each other (Figure 1.22).[138] Combining the chemistry based on the Diels-Alder 

reaction between furan and maleimide, and the 1,3-dipolar cycloaddition between a nitrone 

and a maleimide, a set of four compounds, 31, 32, 33 and 34, were reacted to give rise to four 

pairs of diastereoisomeric templates. In the absence of complementary recognition units, the 

native Diels-Alder reaction and the 1,3-dipolar cycloaddition was shown to proceed with 

poor diastereoselectivity giving an endo:exo ratio of only 1:1.3 and a trans/cis ratio of 3:1, 

respectively.

! However, the formed templates now contain two identical recognition sites making 

them potential reciprocal templates. Computational analysis of the template structures 

suggested an optimal fit for the heterodimer of trans-36 and exo-37. Accordingly, the 

addition of substochiometric amounts of presynthesised bisamido template trans-36 

significantly increased the rate of formation for exo-37 which in turn was shown to possess 

crosscatalytic activity for the formation of trans-36. Kiedrowski et al. have demonstrated in 

their multicyclic system of nucleotide replicators (Figure 1.5),[84] that coexistence between 

autocatalytic and crosscatalytic species can occur as long as the efficiencies of both catalytic 

pathways are similar. However, in the present system of reciprocal replicator using simple 

organic molecules (Figure 1.22), this precondition is violated by the use of two different 

chemical reaction types which differ significantly in rate, with the 1,3-dipolar cycloaddition 

being the faster one. Moreover, a recombination of starting materials gives rise to two 

autocatalytic systems. Reacting furan 34 with maleimide 32  leads to a modestly efficient, 

non-stereoselective replicating system 38, whereas maleimide 31 and nitrone 33 were found 

to form trans-35 in an extraordinarily efficient autocatalytic process. This imbalance in 

reactivity renders the system immune towards instructions by template inputs, an 

exhaustive kinetic analysis of its features yet provided important insight into the 

requirements needed for the construction of instructable networks based on simple organic 

molecules.[139]

! The high autocatalytic efficiency of trans-35 can be attributed to the optimised 

geometry of the template (Figure 1.23).[140] The rigid, open-folded structure of trans-35 shows 
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a high degree of self-complementarity and the geometry of the reagents in the ternary 

complex is similar to the one calculated for the bimolecular reaction. In contrast to this, the 

cis-isomer remained catalytically inert with its recognition sites placed in proximity to each 

other. Reacting nitrone 31  with recognition-disabled methyl ester of 33 established the 

bimolecular rate for the reaction (only 9% conversion at -10 ºC) and the native selectivity of 

3:1 in favour of the trans-isomer. When recognition is introduced by using maleimide 33  with 

the free acid functionality, the formation of the trans-product is enhanced 13-fold. 

Competitive inhibition experiments with two equivalents of benzoic acid established the 

pivotal role of hydrogen bonding, whereas adding substochiometric amounts of preformed 

trans-TBC to the reaction mixture caused a loss of the initial lag period and demonstrated that 

the trans-isomer is indeed a catalyst for its own formation.

Figure 1.23 Reaction of nitrone 31 with maleimide 33 in CDCl3 at –10 °C can potentially give rise to 
two diastereoisomeric cycloadducts – cis-35 and trans-35. However, the efficient operation of the 
autocatalytic cycle mediated by the ternary complex [31·33·trans-35] in this system ensures that 
trans-35 is formed almost exclusively (solid line in graph, trans-35:cis-35 100:1, cis-35 not shown). The 
rate vs time profile for the reaction at –10 °C in CDCl3 (filled circles in graph) reveals the classical bell 
shape characteristic of an autocatalytic process and the rate of reaction is far higher than that observed 
in the absence of recognition (open circles in graph). Data taken from ref. [113].
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! The design of the latter minimal self-replicating system marks the culmination of a 

development in which computational methods were applied to gain a deeper understanding 

of the requirements to design systematically and optimise efficient self-replicating systems.
[141-143] Calculations of the template structure were conducted to avoid the formation of the 

undesired binary AB complex, but more importantly, to stabilise the transition state of the 

bond forming reaction within the ternary complex. In case of the 1,3-dipolar cycloaddition, 

the transition state is assumed to be late, hence its optimisation automatically led to a 

fortification of interaction in the product duplex. In replicating systems based on 

oligonucleotides or peptides, strong association among the template molecules leads to 

product inhibition hampering the catalytic activity. Dissociation of the duplex becomes rate-

limiting leading to sub-exponential growth of the product. Several ways to overcome the 

issue were presented above. However, in the system depicted in Figure 1.23, the 1,3-dipolar 

cycloaddition was found to be the rate-limiting step. Hence, the key for the development of 

powerful new replicating systems based on simple organic molecules lies in the optimisation 

of the transition state to increase the effective molarity of the bond forming reaction.

1.7 Systems Chemistry

With a fundamental understanding of replicating processes at hand, the way is paved for the 

incorporation of self-replicating systems into more complex scenarios. The last years saw the 

emergence of the field of Systems Chemistry, a discipline that deals with the elucidation and 

understanding of the behaviour of complex chemical mixtures.[144-149] Similar to Systems 

Biology, research is driven by the desire to understand networks of interacting members as 

an entity. This holistic approach distinguishes Systems Chemistry from other chemical 

disciplines in which the main focus lies on dissecting or avoiding mixtures of molecules in 

order to obtain pure reaction products. The general aspect of this dogma allows for a broad 

range of research to be combined under the term of Systems Chemistry and besides the focus 

on autocatalytic phenomena,[150,151] the development and investigation of molecular logic 

gates,[152-155] oscillating reactions,[156-158] and self-assembly[159-162] is included.

! Dynamic combinatorial chemistry (DCC) has proven extremely useful in creating 

complex mixtures of interchanging compounds termed dynamic combinatorial libraries 

(DCL).[163-165] Key to the formation of such DCLs is a reversible chemical process that allows 

the library members to interconvert. The formation of imines from aldehydes and amines is a 

prominent example for the creation of a DCL.[166] Since the overall distribution of compounds 

is under thermodynamic control, external stimuli can be used to bias the DCL towards a 
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specific member of the library. This approach has been exploited successfully in the search of 

potent receptors for molecules of pharmacological interest,[167-171] the creation of 

supramolecular assemblies[172-175] and ligands for biomacromolecules.[176-178]

! The work group of Nitschke has exploited reversible imine formation to generate 

libraries that combine multiple, orthogonal exchange processes in one single system. Their 

original system starts of with four simple building blocks, two aldehydes 39 and 40 and two 

amines 41 and 42, which can condense to give rise to a library of imines (Figure 1.24).[179] 

Upon addition of Fe2+ and Cu+ salts, complexes 43 and 44 become the thermodynamically 

most stable species and the exchange process is directed at the formation of more such 

complexes in a self-sorting fashion.

Figure 1.24 Self-sorting of an imine-based DCL upon addition of Fe2+ and Cu+ salts.

! In a further example, subcomponent self-assembly of aldehyde 39 with a benzidine 

derivate in the presence of Fe2+ salt and base led to the exclusive formation of a metal-

organic cage complex of tetrahedral symmetry which showed the right properties to 

encapsulate a variety of hydrophobic guests such as cyclohexane or cyclopentane in aqueous 

solution.[180] Treatment of this tetrahedral complex with chelating trisamine 42 shifted the 

equilibrium towards the formation of 43 and resulted in the destruction of the cage under 

release of the previously incorporated organic molecules. Interestingly, the dimension of the 

tetrahedral capsule was also found ideal for the binding of white phosphorus and even 

allowed its storage under air and water since the oxidation process would generate species 

too large for the capsule.[181]
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! Moreover, it has shown possible to manipulate a DCL by equipping some of the 

library members with complementary recognition units that lead to the formation of a 

thermodynamically stable duplex structure. Under this aspect, a modification of Rebek’s 

original self-replicating system has been re-investigated on a dynamic platform.[182] In the 

original structure, the reaction to form the template proceeds through the irreversible 

coupling of an activated ester with an amine (Figure 1.12). By changing the ester function to 

an aldehyde, the coupling process between both fragments becomes reversible. Combining 

both recognition-enabled molecules with two structurally similar but recognition-disabled 

aldehydes and one recognition-inhibited amine structure created an imine DCL. In this 

library, the self-complementary structure was indeed found to amplify its own formation 

under kinetic as well as under thermodynamic control. The recognition-mediated formation 

of the reactive ternary complex was shown to provide a kinetic advantage whereas strong 

associations in the final duplex stabilised the product thermodynamically. However, since 

both interactions in this system, the association by hydrogen bonding and imine formation, 

are fully reversible, its behaviour will always be governed by the boundaries of 

thermodynamics.

! In order to manipulate such systems beyond their thermodynamic limits, an 

irreversible chemical reaction can be coupled to the DCL to selectively extract one of the 

library members.[183]According to Le Chatelier’s principle, withdrawing a member from the 

DCL through an irreversible process will force the system to constantly readjust its 

equilibrium position and generate more of the reactive species on the expense of other 

library members. Ramström et. al. exploited crystallisation as secondary selection process to 

amplify one product from a dynamic nitroaldol library.[184]

! A simple yet instructive example for such behaviour employs amine 45 and aldehyde 

46  to generate a self-replicating imine structure 47 (Figure 1.25).[185] The rate profile exhibits 

the typical sigmoidal shape, control reactions with recognition-disabled species gave much 

lower conversions and experiments with a competitive inhibitor showed a significant 

decrease in the rate of reaction. Addition of preformed template at the start of the reaction 

resulted in disappearance of the lag period and the maximum rate was reached at the 

beginning of the reaction. However, even though adding template did indeed increase the 

rate of the recognition-mediated formation of imine 47, it also decreased the amount of 

newly formed product. Since the condensation reaction between amine and aldehyde is 

reversible, adding product to the reaction mixture shifts the equilibrium towards the starting 

material. Again, the rules of thermodynamic hold in this self-replicating system. In order to 

breach the limit by the fully dynamic nature of the system, an irreversible reaction is needed 
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that extracts imine 47 from the equilibrium mixture without influencing the reagents. Using 

Hantzsch ester to selectively hydrogenate the double bond of the imine 47 to form amine 

template 48 has proven useful for this purpose.[186]

Figure 1.25 Imine 47 can assemble amine 45 and aldehyde 46 in CDCl3 at 25 °C and accelerate the 
reaction between them through the autocatalytic cycle mediated by the ternary complex [45·46·47]. 
Reduction of imine 47 affords amine 48 which is also capable of crosscatalytic acceleration of imine 18 
through the crosscatalytic cycle mediated by the ternary complex [45·46·48].

! Nitrones are structurally very similar to imines. Recently, a protocol to combine both 

motifs in a DCL has been presented by us.[187] Reversible hydrolytic cleavage of the double 

bonds of the initial imines and nitrones leads to the formation of free aldehyde, 

hydroxylamine and amine, respectively. These building blocks can then either recombine to 

the original condensation products or reshuffle under exchange of substituents. Over time, 

an equilibrium point for the concentration of all possible members of the DCL is reached. 

Having established this principle, our group set out to show how coupling an irreversible 

self-replication process to a DCL can bias its constituent and selectively extract one of its 

members. Starting from imine 49 and nitrone 50, the dynamic exchange process allows for 

the recombination of substituents forming imine 55 and nitrone 56 (Figure 1.26).[188] 
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Figure 1.26 A pool of compounds containing imines 49 and 56 and nitrones 50 and 55 can exchange 
freely in CD2Cl2 saturated with p-toluenesulfonic acid monohydrate at 273 K via simple building 
blocks. Material can be transferred irreversibly to a pool of products, present in the same solution, that 
cannot be interconverted or returned to the exchange pool, through reaction of nitrones 50 or 55 with 
an appropriate maleimide (57 or 33). When maleimide 33 is used as the dipolarophile, replicator 
trans-59b is formed in the product pool and this species can act as a catalyst for its own formation.

! At equilibrium, all four compounds are present in the exchange pool with some slight 

selectivity for the two nitrones. Addition of any maleimide species irreversibly transferred 

the nitrone structures from the DCL into the product pool by forming the isoxazolidine 

cycloadduct. In the case of the recognition-disabled methyl ester 57, reaction with the nitrone 

species was slow and unselective. Both nitrones were converted in the same extend and the 

selectivity between trans/cis products was close to 3:1. When using the recognition-enabled 

free acid maleimide 33, one of the products, namely trans-59b, becomes autocatalytic and 

selectively amplifies its own formation. Since nitrone 55 is the appropriate partner for this 

self-replicator, it is being used up more rapidly than 50. This irreversible drain of 55 into the 

autocatalytic process causes the equilibrium to constantly readjust, forming more 55  on the 

expense of 50.
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2. Design Principles and Objectives

The main objective of the research described in this thesis is the exploration of replicating 

systems of increased complexity using three and more building blocks that can be influenced 

by external stimuli. Ultimately, the design of a multicyclic system consisting of an 

interconnected network of two minimal and two reciprocal pathways is envisaged. In order 

to provide the reader a coherent entry into the field, the basic features of the self-replicators 

used in this thesis are presented and all preceding progress in the creation of a multicyclic 

system are summed up.

! Over the last 10 years, our group has gained expertise in the design and evaluation of 

highly efficient artificial self-replicating systems. In the course of these investigations, three 

crucial design criteria have emerged, namely choice of the recognition event, optimisation of 

the template structure and the chemical reaction employed to form template T from building 

blocks A and B. In the following sections, these features are explained on the model for 

minimal replication (Figure 1.1a), but also hold for the case of a reciprocal replicator (Figure 

1.1b).

2.1 The recognition event

The recognition between the two building blocks A  and B has to be strong enough to allow 

association of the catalytically active ternary duplex [A·B·T] and at the same time be weak 

enough to enable dissociation of the final product duplex [T·T] to prevent product inhibition. 

Previous work in our group has demonstrated that the recognition between an 

amidopyridine and a carboxylic acid can be incorporated into minimal and reciprocal self-

replicating systems (Scheme 2.1). Association between both moieties takes place through 

hydrogen bonding of the carboxylic acid hydrogen to the pyridine nitrogen and between the 

amide proton with the carbonyl group of the acid.

Scheme 2.1 Recognition between amidopyridine and carboxylic acid through hydrogen bonding.
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! This recognition motif was first described[189-191] by Hamilton and co-workers in their 

attempt to develop receptors for biscarboxylic acids. Analysis of the complexed structures by 

x-ray crystallography showed that the association does not involve proton transfer from the 

carboxylic acid to the pyridine. Furthermore, the 6-methyl substituent was attached to avoid 

self-association between the amidopyridine moieties.

! Since our group has successfully incorporated this recognition motif into a wide 

range of replicating structures, no structural variants were synthesised and probed. Only 

recently, work on the development of self-replicating rotaxane structures led to the 

replacement of the original 6-methyl substituent with a 4,6-dimethyl moiety for steric 

reasons.[192] Preliminary results showed a positive effect of the additional methyl group on 

the solubility of the investigated compounds. Moreover, controlling the electron density on 

the pyridine ring by varying the substituent pattern should allow a fine-tuning of the 

strength of the recognition event. An exhaustive investigation of such variation on the 

efficiency of self-replicating and AB systems can be found in chapter 4 of this thesis.

! The choice of solvent is closely connected with the employed recognition unit. Polar 

solvents which act as good hydrogen bond donor/acceptor favour the solvation of the 

recognition sites and disrupt the binding. For this reason, non-polar solvents that do not 

participate in hydrogen bonding, such as chloroform or dichloromethane, must be chosen. 

2.2 Template geometry restraints

Template molecule T has to possess the appropriate geometry to align A and B in a fashion 

which brings their reactive sites into close proximity. Ideally, template molecules are of rigid 

and linear structures with their recognition units easily accessible to A and B. In the case of 

too much structural flexibility, the peril of forming a catalytically inert [A·B] complex is 

increased. However, since rigid structures, e.g. highly conjugated aromatic systems, tend to 

be less soluble than compounds with more conformational freedom, e.g. alkyl chains, it is 

often not straightforward to strike a balance between both requirements. Detailed 

investigations of how small changes in geometry can affect drastically the efficiency of self-

replicating systems or how minor changes can turn a self-replicating system into an AB 

system can be found in chapter 3 of this thesis.

2.3 The chemical reaction suitable for self-replication

The reaction between A and B to from template T must have certain properties in order to 

follow conveniently its progression by standard spectroscopic methods such as 1H NMR 
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spectroscopy. Ideally, the reaction should not require the addition of a catalyst or working 

under inert conditions. The formation of the product should furthermore be irreversible to 

facilitate kinetic analysis. Systems based on a reversible Diels-Alder reaction[141,193] and the 

reversible formation of an imine[185] have been investigated and the increasing complexity 

arising through the reversibility of the process was verified. Additionally, the chosen reaction 

should proceed with high (regio-)selectivity without producing any side-products. Moreover, 

the reactive sites should be fully orthogonal to the chosen recognition sites. The rate of 

reaction should allow its observation over the course of several hours without having to 

work at extreme temperatures. Synthetic access to the reagents should be straightforward 

and for the analysis of the reaction kinetics by 1H NMR spectroscopy, starting materials and 

product should produce a defined set of peaks which can be integrated over time.

! The 1,3-dipolar cycloaddition between a maleimide and a nitrone was found to be a 

suitable candidate for incorporation in self-replicating structures. The formation of the 

isoxazolidine product proceeds through a concerted mechanism in which the bonds between 

the diene and the dienophile are created simultaneously. The rate of the reaction has been 

found to be virtually insensitive towards addition of acid or base catalysts. As a consequence 

of the asymmetric geometry of the nitrone structure, two racemic diastereoisomeric products 

can be formed which are distinguished by the relative position of protons on the bicyclic ring 

system. In case of the cis-isomer, all protons are on the same side with respect to the 

isoxazolidine ring, whereas for the trans-isomer, the two hydrogens on the ring junction are 

opposed to the remaining third proton. In the 1H NMR spectra, each diastereoisomer 

therefore shows a characteristic pattern for these protons.

! In the absence of any recognition effects, the cycloaddition between an N-aryl nitrone 

and a maleimide proceeds through a simple bimolecular pathway with low selectivity, 

usually leading to a trans/cis ratio between 1.4:1 and 3.9:1 depending on the electronic nature 

of the substituents on the two reagents. This indifference towards electronic modification 

was also found in a screening of the reaction between an acylic N-phenyl nitrone and a set of 

N-aryl maleimides bearing various electronic substituents.[194] The analysis of the final 

stereochemistry resulted in modest trans/cis ratios in the narrow range of 1.6:1 (for strongly 

electron donating substituents) to 1:1.8 (for strongly electron withdrawing substituents). 

Compared to the selectivity found in other [4+2] cycloadditions such as the Diels-Alder 

reaction, these trans/cis ratio are considerably low. This stems from the fact that the frontier 

orbital orientation of the two reagent does not allow for efficient secondary interactions, thus 

leaving steric and/or aromatic stacking interactions (ᴨ-ᴨ interactions) of the substituents as 

major influences on the stereochemistry.[195] Energetically, the 1,3 dipolar addition between a 
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nitrone and a maleimide can be steered by both HOMO-LUMO interactions since the frontier 

molecule orbital (FMO) energies are similar. In this balanced situation, the influence of 

electron-donating or electron-withdrawing substituents on the reagents can alter the relative 

FMO energies and tip the scales in favour of one reaction type.

Scheme 2.2 1,3-dipolar cycloaddition reaction between nitrone 61 and maleimide 62 proceeding 
through the endo-transition state (TS) to give isoxazolidine trans-63 and through the exo-transition 
state to give isoxazolidine cis-63. Complementary recognition sites are displayed as green and light-
blue cartoon images. Favourable internal recognition between the two recognition sites in the AB 
complex of cis-63 is highlighted by the arrow.

! However, attaching recognition units to the starting materials brings about the 

possibility of recognition-mediated pathways causing a significant change in reactivity and 

selectivity of the 1,3 dipolar cycloaddition. Scheme 2.2 depicts how the orientation of the 

recognition sites in the transition state governs the stereochemistry of the reaction and 

consequently the geometry of the product. When the cycloaddition between nitrone 61 and 

maleimide 62 proceeds through the transition state with the recognition units pointing away 

from each other, the trans-diastereoisomer of 63 is formed adopting an open geometry. If the 

orientation of the maleimide is reversed, attack of the 1,3-dipole occurs via the exo-side and 

leads to the generation of cis-63 which possesses a closed geometry with respect to the 

recognition units. Scheme 2.2 also explains why for this given set of reagents rigid trans-

isomer is expected to function as a template in a self-replicating reaction whereas the cis-

isomer is the product of an AB system.

! However, it should be pointed out that changing the position of the recognition unit 

on the nitrone to the aryl directly connected to the nitrogen reverses the stereochemistry of 
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the reaction. Scheme 2.3 shows the reaction between nitrone 64 and maleimide 62. Nitrone 

64 now bears the recognition site on the hydroxylamine part compared to nitrone 61 in 

Scheme 2.2. Maleimide 62  remains unchanged and their reaction leads to the formation of 

two diastereoisomeric cycloadducts 65. The trans-isomer is formed through the endo-

transition state in which both recognition sites are in close proximity. Their interaction results 

in the closed AB complex geometry of the final trans-product. On the other hand, the cis-

isomer is formed through the open exo-transition state. In the resulting cis-product, both 

recognition sites are now positioned on the ends of the newly formed rigid molecule and can 

thereby act as templates for the self-replicating cycle. Overall, altering the position of the 

recognition site on the nitrone compound indeed reversed the stereochemistry of the 

reaction.

Scheme 2.3 1,3-dipolar cycloaddition reaction between maleimide 62 and nitrone 64 which now bears 
the recognition site on the hydroxylamine part compared to nitrone 61 in Scheme 2.2. The reaction 
proceeds through the endo-transition state (TS) to give isoxazolidine trans-65 and through the exo-
transition state to give isoxazolidine cis-65. Complementary recognition sites are displayed as green 
and light blue cartoon images. Favourable internal recognition between the two recognition sites in 
the AB complex of trans-65 is highlighted by the arrow.

2.4 Kinetic investigations of replicating systems

In order to elucidate the nature of the effects that cause a change in reactivity and selectivity 

of the native cycloaddition between a nitrone and a maleimide, kinetic analysis of the 

reaction is performed. Deconvolution of the obtain spectroscopic data provides a profile in 

which the increase of the product concentration is monitored over time. Typical 

+

N

O

O

endo-TS

H

N
O

N
O

H

N
O

O

N
O

H

NO O
HH

N
O

H

N

O

OH
H

trans-65

exo-TS

N
O

H

N
O

O

cis-65

N
O

H

N
O

O
H

H

O
N

N OO
H H

H

64

62

44



concentration vs time profiles for the formation of the major isomer in a self-replicating 

reaction, a crosscatalytic system and an AB system are shown in Figure 2.1.

Figure 2.1 Exemplary concentration vs time profiles for the comparison of the native and doped 1,3-
dipolar cycloaddition reaction of a minimal replicator, reciprocal replicator and an AB system.

! The curves for the three native reactions and the doping experiments are intrinsically 

different. The self-replicating system shows its characteristic sigmoidal shape consisting of a 

lag phase in the early period of the reaction, since the catalytically active template molecules 

need to be generated through the slow bimolecular process. As soon as a critical template 

concentration is reached, the self-replicating cycle can start to operate and the reaction 

reaches its maximum rate vcat before the concentration of the starting materials becomes too 

low for further recognition-mediated processes. Doping a fresh batch of reagents with a 

small amount of presynthesised template verifies the autocatalytic nature of the reaction. The 
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initial induction period is overcome and the maximum rate of the reaction vcat now occurs at 

the start of the reaction.

! For reciprocal replicating systems, the situation is very different. The native reaction 

between maleimide and nitrone proceeds with a rate vuncat identical to the one found for the 

bimolecular reaction, since both building blocks bear identical recognition units and are 

therefore unable to associate with each other. Only addition of presynthesised template with 

two complementary recognition units allows reciprocal replication to take place. As a 

consequence, maximum rate vcat is found at the start of the reaction and proved to be 

dependent on the amount of added template. In the case of strong duplex association, turn-

over of the catalyst is hampered by product inhibition and the curve shows a defined bend at 

the initial catalyst concentration and the rate of the reaction drops to the one found in the 

bimolecular experiment, vuncat.

! In the case of an AB system, the reaction proceeds via a binary complex of the starting 

compounds. Since the rate of the reaction is directly proportional to the concentration of this 

binary complex, its maximum rate vcat can be found at the start of the reaction. The resulting 

template does not possess any catalytic activity. In its closed structure, the recognition sites 

are associated through intramolecular hydrogen bonds and are therefore not available for 

binding reagents. Hence, adding presynthesised AB template at the start of the reaction has 

no effect on the shape of the curve.

2.5 The design of a multicyclic replicating system

A multicyclic replicating system can be described as a network of at least two interconnected 

replicating entities in which the connectivity of all building blocks leads to emergent 

properties. These emergent features are not a property of any single component of the 

system and cannot be predicted or deduced readily from behaviour of the individual simple 

components. Key to the development of emergent properties is the number and the type of 

the interconnections between the simple components of the system. Although the number of 

interconnections in a system increases combinatorially with the number of components, 

simply having a large number of interconnections is not enough to guarantee emergent 

behaviour. The topology of the interconnections is also critical. Therefore, chemical networks 

that exhibit significant degrees of mutually catalytic relationships between their components 

and thereby increase the level of feedback within the system, are more likely to develop 

system-level properties than a large collection of weakly interacting compounds. Replication 

exhibits a high level of feedback and instructed manipulation of a system of replicating 
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entities should cause the system to act and respond as a whole. In order to demonstrate such 

behaviour, Figure 2.2 provides examples of hypothetical reaction networks consisting of 

three and four building blocks.

! In these examples, the entities are linked together forming arrangements of increasing 

connectivity. The nature of the linkage between the components is arbitrary; one can imagine 

a bimolecular reaction between the two connected species A and B to form product AB with 

a certain rate constant kAB. In the first example, compound B reacts with A and C to form 

products AB and BC with rate constants kAB and kBC, respectively (Figure 2.2a). As long as 

both rates remain equal, a reaction between all three entities at 50 mM starting material 

concentration will form 25 mM of both possible products. If the rate of formation for AB is 

enhanced selectively by a factor of ten, the final product distribution is then in favour of AB 

and the formation of BC is consequently down-regulated (Figure 2.2b). Final product 

concentrations were determined by simulating the depicted reaction scenarios using the 

ISOSIM mode of the SimFit package (chapter 10). Absolute enhancements were calculated as

with [XY]enhanced rate being the concentration of a given product after 16 h in the case of a ten-

fold increase in rate for kAB and [XY]equal rate being the concentration of the same product after 

16 h for the reaction with equal rate constants.

! This trivial situation can be extended by adding a fourth component to form the 

square arrangement depicted in Figure 2.2b. In this case, the four reagents A to D can react 

to form a set of four products AB, AC, BD and CD with respective rate constants kAB, kAC, kBD 

and kCD. If all rate constants are set equal and the starting concentrations for the reagents are 

the same, all four products are formed in the same extent. Increasing rate constant kAB 

selectively by a factor of ten enhances the formation of product AB and correspondingly 

decreases the production of the two other products that rely on A and B, AC and BD. Since 

A and B are now being used up more rapidly, building blocks C and D gradually accumulate 

in the reaction mixture favouring the formation of product CD in the same extent as reflected 

by the enhancement factors.

Enhancement% = ([XY ]enhanced rate ! [XY ]equal rate ) "100%
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Figure 2.2 Representation of hypothetical reaction networks in which two chemical entities react to 
form a product molecule. Starting concentrations for all reagents were set to 50 mM. All rate constants 
were fixed to 1 × 10–3 M–1 s–1 except for kAB which was increased by a factor of 10 to 1 × 10–2 M–1 s–1 in 
b), c) and d) as indicated by the light blue arrow. The calculation of the enhancements is laid out in the 
text.
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! However, it should clearly be pointed out that the rate for the formation of CD, kCD, 

remains unchanged in both simulations and that the increase in concentration for CD is 

therefore not directly connected to the enhancement of kAB, but it is solely a result of the 

interconnectedness of the individual components and can be regarded as an emergent 

property of the system.

! In a second scenario, the four entities are combined to form a tetrahedral arrangement 

in which every entity can react with the three others to give rise to six products. Again, in the 

initial simulation with identical rate constants and equal starting material concentrations, all 

six reaction products are formed in the same extent. Increasing the rate of reaction between 

A and B by a factor of ten again increases the formation of AB, down-regulates all species 

that need A  or B and consequently up-regulates the formation of CD. However, as a result of 

the increased interconnectivity in this tetrahedra, the enhancements in product formation are 

now higher than in the example of the square arrangement. The rate acceleration for CD is 

again not directly encoded in the instruction to the system, but it is a consequence of the 

interlinkage of the components into a system of higher order in which the alteration of one 

relationship affects all others.

Figure 2.3 Schematic representation of a multicyclic system based on four building blocks, A-D, 
forming two minimal replicators, TAC and TBD, and two reciprocal replicator, TAB and TCD.
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! The main target of this thesis is to generate a complex chemical system using 

structurally simple organic replicators that show collective behaviour on a molecular level. 

The blueprint for the envisaged multicyclic system which is expected to show such 

behaviour is given in Figure 2.3. It consists of four building blocks, A-D, that can react via 

four different pathways to form four template structures, TAB, TAC, TBD and TCD. Building 

blocks A and C are designed to form template TAC in an autocatalytic fashion and 

compounds B and D are components of a second replicating system leading to template TBD. 

However, if the two replicating templates are formed through reactions of identical chemical 

nature, the building blocks bearing identical recognition units can react to generate two 

reciprocal templates, TAB and TCD, which can potentially enhance each other’s formation in a 

crosscatalytic manner. In total, each of the four building blocks can be part of two replicating 

systems. Addition of instructional preformed template is expected to allow for selective rate 

enhancements for one of the replicating reaction and the high degree of interconnectedness 

between the components will force the system to respond to such external stimuli as a whole.

Figure 2.4 Multicyclic system based on the 1,3-dipolar cycloaddition between nitrone and maleimide 
modified from ref. [193]. Two replicating templates, cis-67 and trans-59b, are coupled to generate a 
crosscatalytic relationship between the two reciprocal templates, cis-68 and trans-69.
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! Examples of such multicyclic systems in the literature are scarce. On the basis of 

artificial replicating structures, only one system using oligonucleotides was successfully 

created and investigated (Figure 1.5). The authors state that in order to develop such type of 

network, the efficiencies of all four replicators should be comparable. In case of our system 

(Figure 1.22), problems arose through the application of two types of chemical reactions with 

intrinsically different rates, the 1,3-dipolar cycloaddition between a nitrone and a maleimide, 

and the much slower Diels-Alder reaction between a furan and a maleimide.[139] Thus, 

replicator trans-35 based on nitrone structure 31  proved to be exceptionally fast thereby 

generating a dramatic imbalance in template efficiency. In addition, different responses to 

added template exhibited by minimal and reciprocal templates prevented us to instruct the 

system away from the preferential formation of the nitrone based self-replicator.

! Taking this initial design as a starting point, recent research has yielded a number of 

improved systems, the most promising one depicted in Figure 2.4.[193] The weak point of 

using two different reaction types was eliminated by employing the established replicating 

system between nitrone 55  and maleimide 33 as an anchor, and basing the design of the 

second replicator on the same chemistry. In order to provide the correct reactivity, the 

recognition units on the building blocks of this second replicating structure had to be 

inverted with respect to the existing one. Therefore, the amidopyridine moiety must be 

incorporated into the maleimide and the acid functionality must be connected with the 

nitrone structure. Compounds 65 and 66  fulfil these criteria and their reaction was found to 

exhibit features typical for a self-replicating system. It is important to state that, since the 

recognition unit and the nitrogen of the nitrone functionality are now connected to the same 

aryl group, the diastereoselectivity for the template structure 67 is reversed and the cis-

isomer becomes self-replicating (Scheme 2.3). Separate analysis of the reciprocal replicating 

system was successful. Doping a mixture of nitrone 55 and maleimide 66  with increasing 

amounts of presynthesised template cis-68 clearly established the crosscatalytic activity 

between the two reciprocal templates cis-68 and trans-69.

! However, when comparing the efficiencies of the two self-replicators, an imbalance 

can be seen (Figure 2.5). After 16 h at 0 ºC and 10 mM concentration of starting compounds, 

the reaction of maleimide 33 and nitrone 55  occurred with 85% conversion and a 50:1 ratio in 

favour of self-replicating product trans-59b. On the other hand, the reaction between nitrone 

65  and maleimide 66  under the same conditions reached only 42% conversion and the ratio 

of isomers was a mere 2.2:1 for self-replicating template cis-67. In addition to this imbalance 

in efficiency, the limited solubility of nitrone 65 in chloroform severely hampered the 

investigation of this system and required a fundamental redesign.
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Figure 2.5 Concentration vs time profiles for the reactions of a) maleimide 33 and nitrone 55 to form 
trans-59b (•) and cis-59b (◆) and b) maleimide 66 and nitrone 65 to form trans-67 (•) and cis-67 (◆). 
All reactions were conducted at 0 ºC and with 10 mM starting reagent concentration in CDCl3.
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3. Structure-dependent reactivity in a family of self-replicators

3.1 Design of a library of nitrones and maleimides

Valuable contributions towards the understanding of multicyclic systems based on the 

interactions of four building blocks by two auto- and two crosscatalytic pathways have been 

made recently.[139] These investigations have shown that to generate a fully functional 

network, the participating replicating entities of the system must possess similar catalytic 

efficiencies. Fair competition between the replicating species will then lead to an almost 

equal distribution of all four possible product templates in the native reaction. It is only for 

this scenario that the addition of preformed template is expected to alter significantly the 

outcome of the competition scenario between the self-replicators and the reciprocal 

replicators.

! Previous experimental investigations failed to create a fully functional multicyclic 

network. An imbalance in reactivity for the participating self-replicators hampered the 

performance of the multicyclic system. In the scenario depicted in Figure 2.4, self-replicator 

trans-59b was found to be significantly more potent than its self-replicating partner cis-67 

and the resulting crosscatalytic system between cis-68  and trans-69. As a result, this 

replicator dominated the product pool suppressing the formation of any crosscatalytic 

species and addition of preformed template at the start of the reaction had very little effect 

on the final product distribution. At this stage, two possible approaches are imaginable. 

Lowering the efficiency of self-replicator trans-59b to match the one of replicator cis-67 

would eliminate the imbalance. However, reducing the efficiency would also lower the 

catalytic feedback on the interconnection between the replicators making it more difficult to 

influence the outcome of the system. Besides, a reduction in reactivity would decrease the 

selectivity for the replicating diastereoisomers producing a larger amount of unwanted 

cycloadducts. It is therefore more advantageous to use the efficient replicator trans-59b as a 

benchmark and to focus on the improvement of the efficiency of the partner replicator. 

Previous attempts yielded structure cis-67  which can be used as a starting point for further 

optimisation. It is clear that the novel replicating system must consist of a maleimide 

compound bearing an amidopyridine recognition site and a matching nitrone compound 

with an acid functionality. In order to find replicating systems with matching efficiencies, an 

elaborate approach of adept molecular modeling combined with major synthetic effort is 

crucial. However, even if a self-replicating system with matching efficiency is found, it 
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cannot be taken for granted that the combination of all four building blocks will lead to the 

formation of a reciprocal system with comparable efficiencies.

! In this chapter, the synthesis of a set of structurally related self-replicators that meet 

the criteria mentioned above is reported and the relationship between their structure and 

replicating activity is established. From this pool of replicators, suitable candidates are 

chosen and incorporated gradually into systems of higher order to establish some general 

principles. The most efficient replicators are then coupled with the established replicator 

trans-59b to culminate in the successful construction of fully functional multicyclic systems.

Figure 3.1 Overview over 32 screened templates based on the cycloaddition of maleimide with furan 
taken from ref. [143]. The kinetic behaviour of each diastereoisomer is labelled as follows: – = no 
recognition-mediated reactivity observed. AB = Reaction occurs predominantly through a binary 
reactive complex. SR = Reaction occurs predominantly through an autocatalytic cycle.

! Previous screenings for self-replicating activity was performed on the basis of the 

cycloaddition between maleimide and furan structures (Figure 3.1).[143] Probing a total 

number of 32 potential candidates with different spacer units on either the maleimide or 

furan component suggested that there is only a narrow structural window in which 

replication is observed. The screening yielded only six self-replicating systems with the best 

one achieving an effective molarity in the range of 2. This low yield was summarised in the 

clinical statement that ‘our chances of creating an efficient replicating system successfully 
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even from a rationally designed starting point is only around 1 in 5.’ However, the authors 

observe that the most efficient self-replicating systems are clustered in a certain region in 

which the right balance between flexibility and rigidity seems to be found.

! On the basis of these results, a set of building blocks was designed (Figure 3.2). Using 

cis-selective replicator cis-67 from Figure 2.4 as starting point, several modifications led to 

nitrone structure 70. Attaching a long alkyne chain to the compound showed to have a 

positive effect on its solubility. Moreover, moving the nitrone functionality away from the 

carboxy acid significantly facilitated the synthesis since the controlled generation of 

hydroxylamines bearing acid functionalities proved troublesome. In order to further expand 

the solubility range of the nitrone and to generate structural diversity, a second nitrone was 

prepared. The methylene group in 71 breaks the conjugation between the benzene ring and 

the acid, adds more conformational freedom and renders the structure less rigid.

Figure 3.2 Pool of synthesised nitrone and maleimide building blocks used in the screening for 
efficient self-replicating activity. 

! Three maleimide structures were designed as reactive partners for the two nitrone 

structures. The three compounds 72-74 are structurally similar with an amidopicoline 

recognition unit and a maleimide functionality. Progressive introduction of flexible alkyl 

chains was avoided and variation of spacer length was introduced by extension of the 

aromatic backbone thereby maintaining a certain degree of rigidity in the molecules. The 

compounds differ in their spacer unit in which the original benzene ring (in structure 72) was 

replaced with a benzofuran (in structure 73) and naphthalene ring (in structure 74). Problems 
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caused by the limited solubility of the naphthalene and benzofuran backbone were overcome 

by changing the original structure of the amidopyridine recognition unit with 6-methyl 

substitution to the shown 4,6-dimethylamido pyridine moiety. In order to form a coherent set 

of compounds with identical recognition units, also original maleimide 66 was modified to 

give 72.

3.2 Synthesis of nitrones 70 and 71

Key compound for the synthesis of nitrones 1 and 2  was hydroxylamine 77 bearing the 

alkyne group for improved solubility (Scheme 3.1). Sonogashira reaction on 4-

iodonitrobenzene 75 furnished 76  in good yield. Partial reduction of the nitro group using 

rhodium on carbon with hydrazine as hydrogen source yielded the desired hydroxylamine 

77, which was directly reacted with commercially available 3-carboxybenzaldehyde to give 

acid nitrone 70.

Scheme 3.1 Synthesis of nitrone 70. Conditions: a) CuI, PPh3, PdCl2(PPh3)2, 1-nonyne, Et3N, rt,  86%; b) 
Rh/C, NH2NH2, THF, rt; c) 3-carboxybenzaldehyde, EtOH, rt, 52% over two steps.

! In order to synthesis nitrone 71, aldehyde 46 was prepared in a two step sequence 

starting from 4-tolylphenylacetic acid 78 (Scheme 3.2). Radical bromination gave compound 

79  which was treated with HMTA to furnish the desired aldehyde 46. Condensation of 46 

with hydroxylamine 77 gave final nitrone structure 71.

Scheme 3.2 Synthesis of nitrone 71. Conditions: a) Br2, chlorobenzene, 60 W irradiation, rt, 62%; b) 
HMTA, EtOH/H2O, 80 ºC, 88%; c) 77, EtOH, -18 ºC, 70%.
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! Two control nitrones without recognition units were synthesised starting from 4-

chloronitrobenzene which was converted to the hydroxylamine using rhodium on carbon 

and hydrazine (Scheme 3.3). In order to mimic the electronic environment found in the 

original carboxy nitrone structures, 3-fluorobenzaldehyde was chosen as the condensation 

partner for the hydroxylamine of nitro compound 80 to furnish control nitrone 81. 

Correspondingly, reaction of the same hydroxylamine with p-tolylaldehyde yielded control 

nitrone 82 with electronic properties similar to phenylacetic acid nitrone 71.

Scheme 3.3 Synthesis of nitrones 81 and 82. Conditions: a) Rh/C, NH2NH2, THF, rt; then 3-
fluorobenzaldehyde, EtOH, 63%; b) Rh/C, NH2NH2, THF, rt; then 4-methylbenzaldehyde, EtOH, 62%.

3.3 Synthesis of maleimides 72, 73 and 74

The first step for the formation of maleimide structure 72 was the amide coupling between 

commercially available acid chloride 83  and 4,6-dimethyl-2-amino pyridine to furnish 84 

(Scheme 3.4). Nitrobenzene derivative 84  was then hydrogenated using palladium on carbon 

and hydrogen gas. The obtained aniline was directly reacted with maleic anhydride to 

furnish compound 85 and further treatment with ZnBr2 and HMDS gave rise to the desired 

maleimide structure 72.

! Synthesis of maleimide 73 started with the construction of the benzofuran moiety by 

reacting 2-hydroxy-5-nitrobenzaldehyde 86 with methyl bromoacetate in the presence of 

K2CO3 (Scheme 3.5). Resulting methyl ester 87 was deprotected using KOH and free acid 88 

was hydrogenated using hydrogen gas and palladium as catalyst. The obtained aniline was 

consequently reacted with maleic anhydride to give compound 89. Refluxing in acetic 

anhydride in the presence of NaOAc furnished acid maleimide 90 which was activated as 

acid chloride using SOCl2 and coupled with 4,6-dimethyl-2-amino pyridine to furnish 

maleimide 73.
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Scheme 3.4 Synthesis of maleimide 72.  Conditions: a) 4,6-dimethyl-2-amino pyridine, DCM, 0 ºC, 93%; 
b) Pd/C, H2, MeOH/DCM, rt; c) maleic anhydride,  AcOH, rt, 93% over two steps. d) ZnBr2, HMDS, 
MeCN, 90 ºC, 79%.

Scheme 3.5 Synthesis of maleimide 73. Conditions: a) methyl 2-bromoacetate, K2CO3, MeCN, 90 ºC, 
43%; b) KOH, EtOH/H2O, 85 ºC, 94%; c) Pd/C, H2,  THF, rt, then maleic anhydride, AcOH, 92% over 
two steps; d) NaOAc, Ac2O, 100 ºC, 80%; e) SOCl2, toluene, 90 ºC; f) 4,6-dimethyl-2-amino pyridine, 
DCM, 0 ºC, 61% over two steps.

! Naphthalene maleimide 74 was synthesised in four steps starting from commercially 

available 6-amino-2-naphthoic acid (Scheme 3.6). After treatment with maleic anhydride in 

acetic acid, amide structure 92 was converted to maleimide 93 in the presence of ZnBr2 and 

HMDS. The last reaction step included the activation of 93 with SOCl2 and consequent 

coupling of the acid chloride with 4,6-dimethyl-2-amino pyridine furnished the desired 

maleimide 74.
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Scheme 3.6 Synthesis of maleimide 74. Conditions: a) maleic anhydride, THF, rt, 97%; b) ZnBr2, 
HMDS, MeCN, 90 ºC, 78%; c) SOCl2, toluene,  90 ºC; d) 4,6-dimethyl-2-amino pyridine, DCM, 0 ºC, 63% 
over two steps.

3.4 Kinetic analysis

Having established the synthesis of all compounds in the library, the reactivity of each pair of 

nitrone and maleimide was investigated next. As every nitrone can react with one of the 

three maleimides to form a pair of diastereoisomeric products, a total of six possible 

combinations were screened for their potential self-replicating activity. In order to warrant a 

complete and reliable analysis, a set of four experiments was conducted for each of the six 

combinations.

! First, the native reaction between nitrone and maleimide was performed and a 

concentration vs time profile recorded (see section 10.2.1). A sigmoidal shape for the 

formation of one of the diastereoisomeric products suggests the presence of self-replicating 

activity, however, only doping experiments can establish the self-replicating nature of the 

template. Usually, a fixed amount of presynthesised template was added at the start of the 

reaction and a concentration vs time profile was recorded. If the template is indeed a catalyst 

for its own formation, the lag period found in the native experiment disappeared and the 

system had its maximum rate at the start of the reaction. 

! Repeating the native reaction in the presence of an excess of a competitive inhibitor 

such as 4-bromobenzoic acid reduced both the conversion and the selectivity of the reaction, 

thereby verifying the importance of the recognition event in the process. At last, using the 

appropriate recognition-disabled control nitrone provided a baseline for the rates of both 

diastereoisomers and selectivities for the simple bimolecular reaction. Significant deviation 

in the native reaction from these baseline values provided further proof for the self-

replicating nature of the reaction.
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Figure 3.3 Kinetic model used to fit a theoretical curve to experimental data. M and N 
represent the maleimide and the nitrone, respectively. Their bimolecular reaction leads to 
products trans and cis with the corresponding rate constants kbi1 and kbi2. Single recognition 
events between the building blocks are governed by the association constant Kind. Rate-
enhanced reaction in the ternary complex is expressed by kcat with a resulting duplex 
association Kduplex.
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! In the following section, the results for the reaction of each of the three maleimides 

with both nitrones are presented. Fitting of the experimental data to the kinetic model shown 

in Figure 3.3  using the SimFit program provided valuable kinetic parameters which allowed 

to quantify the observed rate-enhancement and the stability of the catalytically active duplex.

! The effective molarity, ! or in more recent publications abbreviated as EM, provides a 

quantitative measure for the acceleration of the reaction in the ternary complex. In the 

equation

Equation 3.1

kcat is the rate constant for the reaction proceeding through the catalytically active ternary 

complex. The value for kcat cannot be determined experimentally but is given as a result of 

the fitting procedure. In the case of self-replicating systems, the EM value can further be 

understood as the hypothetical concentration at which the intermolecular reaction, that is the 

bimolecular reactions between the two reagents, proceeds at the same rate as the 

intramolecular reaction within the ternary complex.

! Another key parameter is the free energy of connection, $Gs, which gives a direct 

measure for the quality of the product duplex association. In every self-replicating template 

duplex binding occurs through two identical recognition motifs. In the case of an optimal fit 

between both templates, the initial binding event facilitates the second one and the free 

energy of binding in the complex is more negative than the sum of the free energies for the 

two individual binding events. This process is called positive cooperativity. On the other 

hand, a mismatch in template geometry will hamper the second binding event and result in 

negative cooperativity which implies that the free energy of binding in the complex is more 

positive than the sum of the free energies for each individual binding interaction. No 

cooperativity occurs when the free energy of binding equals the sum of the individual 

binding interactions.

! The binding energy of a molecule with two different recognition sites, A-B, to a host 

consists of three parts, the individual free energies of binding A or B to the host ($GiA and 

$GiB) and the free energy of connection ($Gs) which quantifies the cooperativity of the 

system.

EM k
k
cat

bi

=
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Equation 3.2

In the special case of the template duplex of a self-replicator, both binding events are 

identical and the equation can be simplified to

Equation 3.3

with $G0SR now being the free energy of binding and $Gind the free energy of the individual 

binding event. Subsequent replacement of the terms for the free energies with

Equation 3.4

and

Equation 3.5 

leads to an equation which allows to calculate the cooperativity in a template duplex based 

on the association constants of the individual binding event, Kind, and in the duplex, Kduplex.

!Gs = RT ln
Kduplex

Kind
2

"
#$

%
&'

 

Equation 3.6

! The association constant Kind can be determined experimentally whereas values for 

the association in the duplex can be extracted from the experimental data by the fitting 

procedure. Positive values for !Gs  represent a favourable positive cooperativity, whereas 

!GAB
0 = !GA

i + !GB
i " !Gs

!GSR
0 = 2!Gind " !Gs

!GSR
0 = "RT lnKduplex

!Gind = "RT lnKind
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negative values indicate negative cooperativity.[196] In the following sections, the kinetic 

analysis for the four crucial experiments are discussed in detailed for all possible six systems 

and, ultimately, a hierarchy of reactivity for the investigated structures is established on the 

basis of the extracted kinetic parameters.

3.4.1 Reaction of maleimide 72 with nitrone 70

Kinetic analysis of the reaction between benzene maleimide 72 and nitrone 70 giving rise to 

template 94 was conducted in CDCl3 at 0 ºC for 16 h with 10 mM concentration of starting 

materials.
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Figure 3.4 Concentration vs time profiles for the reaction between a) maleimide 72 and nitrone 70,  b) 
maleimide 72 and nitrone 70 in the presence of 10 mol-% trans-94, c) maleimide 72 and nitrone 70 in 
the presence of 40 mM 3-bromobenzoic acid and d) maleimide 72 and control nitrone 81.  The 
formation of trans-products is shown as red filled circles and the formation of cis-products as blue 
filled diamonds. All reactions were performed at 0 ºC in CDCl3 at 10 mM reagent concentration.
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! Figure 3.4 shows the concentration vs time profiles for the four essential reactions. 

The native reaction between 70  and 72 shows a sigmoidal shape for the formation of trans-94 

hinting at a possible self-replicating nature for the reaction (Figure 3.4a). The selectivity was 

found to be 35:1 in favour of the trans-isomer and 90% of the starting material was converted 

after 16 h. Doping a fresh batch of reagents with 10 mol-% of trans-species overcomes the lag 

period and increased slightly both the selectivity for the trans-isomer to 38:1 and the 

conversion after 16  h to 92  % (Figure 3.4b). Further evidence for the presence of a self-

replicator is provided by the reaction of 72 and 70  with 4 equivalents of 3-bromobenzoic acid 

as competitive inhibitor (Figure 3.4c). The selectivity for trans-94 now drops to a mere 5:1 

and the conversion plunges to 34% establishing the importance of recognition processes in 

the native reaction. The reaction between maleimide 72 and recognition-disabled control 

nitrone 81 proceeded slowly. After 16 h, only 12% of the starting materials was converted to 

products with a ratio of 2.7:1 in favour of the trans-isomer (Figure 3.4d).

Figure 3.5 Molecular models of the trans-94 duplex (left) and the cis-94 monomer (right).  Carbon 
atoms are shown in dark grey, hydrogen atoms in light grey, nitrogen atoms in blue and oxygen atoms 
in red. Hydrogen bonds are indicated by dotted lines. Most other hydrogens were omitted for clarity.

! Overall, the trans-product of the reaction between maleimide 72 and nitrone 70 was 

found to be an efficient self-replicator, whereas the cis-isomer showed no recognition-

mediated behaviour. This finding is corroborated by molecular modeling of the template 

duplex of trans-94 and the structure of cis-94 (Figure 3.5). The open geometry of trans-94 

allows for the formation of a self-complementary duplex in which hydrogen bonding 

between the recognition units at both ends of the template molecule can occur without 

distorting its structure. On the other hand, the cis-isomer possesses a folded geometry in 

which access to the recognition sites is limited. As a consequence of the length mismatch 
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between the carboxy acid and the benzene spacer, formation of a productive binary complex 

between nitrone and maleimide to form cis-94 by AB pathway can be ruled out. Recognition 

between the acid and the amidopyridine moiety in the AB complex positions the reactive 

sites too far away from each other.

! Quantitative measures for the efficiency of the self-replicator were extracted from the 

kinetic data of the native reaction using the SimFit package (Figure 3.6). The quality of the fit 

is reflected by the solid line deriving from the kinetic model compared with the experimental 

data points. It can clearly be seen that fitting of the experimental data proceeded smoothly.

Figure 3.6 Concentration vs time profile for the reaction between maleimide 72 and nitrone 70 to give 
template 94. The formation of trans-product is shown as red filled circles and the formation of cis-
product as blue filled diamonds. Solid lines represent the results for the fitting of the trans-(–) and cis-
(–) product. The reaction was performed at 0 ºC in CDCl3 at 10 mM reagent concentration.

! The results of the fit are listed in Table 3.1. Bimolecular rates were extracted from the 

control experiments and used in the fitting protocol. The association constant Ka for the 

individual interaction between a carboxylic acid and amidopyridine at 10 mM concentration 

and 0 ºC was determined to be 4030 M-1 (see chapter 4, Table 4.1). Calculation of the effective 

molarity and the free energy of connection was conducted as described earlier.

Table 3.1 Kinetic parameters extracted for the self-replicating reaction of maleimide 72 and nitrone 70 
at 0 ºC in CDCl3 at 10 mM reagent concentration using SimFit. The obtained R-value was 1.6%.

trans-94 cis-94

bimolecular rate constant / M–1 s–1 2.23 × 10–4 1.14 × 10–4

recognition-mediated rate constant / s–1 1.56 × 10–2 -

effective molarity / M 69.8 -

!Gs / kJ mol–1 11.9 -
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! The calculated values suggest that trans-94 is indeed a highly efficient self-replicator 

with a high effective molarity and strong duplex association. An in-depth discussion about 

its properties and comparison with the structurally related systems can be found at the end 

of this chapter.

3.4.2 Reaction of maleimide 72 with nitrone 71

The same set of experiments was conducted using phenylacetic acid nitrone 71 as reactive 

partner for maleimide 72 to form template 95. All four crucial experiments were recorded by 
1H NMR spectroscopy in CDCl3 for 16 h at 0 ºC and 10 mM concentration of the starting 

materials. The native reaction between both compounds gave rise to the concentration vs 

time profile in Figure 3.7a. It is instantly evident that the situation is fundamentally different 

to the one found for the reaction with carboxy nitrone 70. After 16 h, cis-95  was found to be 

the dominant species over the trans-isomer with a ratio of 2.2:1. Conversion of starting 

material was 85% indicating the presence of a recognition-mediated process. The doping 

experiment using a mixture of 6.5 mol-% of cis-95 and 3.5 mol-% of trans-95 showed that the 

trans-isomer benefited from the added template, whereas the activity of the cis-isomer has 

decreased (Figure 3.7b). However, also in this reaction, the cis-isomer remains the most 

abundant species with the ratio of isomers fallen to 1.5:1 and conversion slightly increased to 

88% after 16 h. Adding an excess of 4-bromophenylacetic acid as competitive inhibitor brings 

down the overall conversion to 59%, but shows to have a much higher impact on the 

formation of the trans-species whereas little inhibition occurs for the cis-isomer pushing the 

ratio of isomers to 11:1 for cis-95 (Figure 3.7c). Last, the control reaction with recognition-

disabled nitrone 82 established the bimolecular background formation of both isomers with a 

ratio of 1.9:1 in favour of the trans-isomer and yielding a mere 15% conversion of the starting 

materials after 16 h (Figure 3.7d).

! Altogether, these findings can be rationalised by considering a situation in which 

trans-95 acts as a self-replicator, whereas cis-95 shows rate-enhancement by formation 

through an AB complex. Strong evidence for the autocatalytic formation of trans-95 and the 

AB nature of cis-95 are found in the doping experiment. The addition of 3.5 mol-% trans-

template to the reaction indeed strengthened the autocatalytic formation of trans-95 

regarding the cis-isomer, which in turn did not show any enhancement even though 6.5 mol-

% of its template was added simultaneously to the reaction mixture.
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Figure 3.7 Concentration vs time profile for the reaction between a) maleimide 72 and nitrone 71, b) 
maleimide 72 and nitrone 71 in the presence of 6.5 mol-% cis-95 and 3.5 mol-% trans-95, c) maleimide 
72 and nitrone 71 in the presence of 40 mM 4-bromophenylacetic acid and d) maleimide 72 and control 
nitrone 82. The formation of trans-product is shown as red filled circles and the formation of cis-
product as blue filled diamonds. All reactions were performed at 0 ºC in CDCl3 at 10 mM reagent 
concentration.

! The final reaction mixture of this doping experiment was used as a source of 

templates to dope a fresh batch of reagents and to establish the limiting point of the 

competition between both isomers for available reagents. Since only the self-replicating trans-

isomer responds to the addition of its template, taking the end point of a reaction as doping 

material for a new reaction should gradually accumulate the autocatalytic template on the 

expense of catalytically inactive cis-95. This effect already reduced the cis/trans ratio from 

2.2:1 in the native reaction to 1.5:1 for the first doping experiment. Accordingly, 10 mol-% of 

the outcome of this first cycle consisting of 6.0 mol-% of the cis-isomer and 4.0 mol-% of 

trans-95 was added to a fresh batch of reagents. Interestingly, this second cycle did not 
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change the rate for the formation of both isomers, and the selectivity remained at a ratio of 

1.5:1 for the cis-isomer. Thus, the limit of enhancement for the trans-isomer with respect to 

cis-95 is already reached after the first doping experiment.

! Further evidence for the simultaneous presence of a self-replicator and AB system 

was provided by the reaction of maleimide 72 and nitrone 71 with 4 equivalents of 4-

bromophenylacetic acid as competitive inhibitor (Figure 3.7c). Since the formation of the cis-

isomer proceeded through a binary complex, the effect of the inhibitor was felt less strongly 

than in the case of the self-replicating reaction which involved the formation of a ternary 

complex. Accordingly, the curve for cis-95 showed only a small reduction of maximum rate 

at the start of the reaction while trans-95 suffered severely from the presence of the inhibitor. 

As a result, the ratio increased to 11:1 for the cis-isomer.

Figure 3.8 Molecular models of the trans-95 duplex (left) and the cis-95 monomer (right).  Carbon 
atoms are shown in dark grey, hydrogen atoms in light grey, nitrogen atoms in blue and oxygen atoms 
in red. Hydrogen bonds are indicated by dotted lines. Most other hydrogens were omitted for clarity.

! Molecular modeling was performed on both templates and the calculated structures 

are presented in Figure 3.8. Changing from the previous carboxy nitrone 70 to nitrone 71 had 

some important impact on the structures of the reaction products. Insertion of the methylene 

group forced the trans-templates in the duplex to slightly wrap around each other in order to 

position the recognition units correctly. However, the self-complementary of the duplex 

structure is clearly visible and self-replicating activity of trans-95 can be assumed. The 

change in spacer length affected significantly the geometry of cis-95. By extending the spacer 

group of the acid building block, both recognition sites are now in close proximity and 

internal hydrogen bonding becomes possible without distortion of the geometry. This 
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arrangement confirms that the rate-enhanced reaction between nitrone 71 and maleimide 72 

to form cis-95 proceeds through the AB pathway.

! In order to obtain quantitative measures for the rates of the self-replicator and AB 

system, the kinetic data of the reactions were analysed using SimFit. The quality of fit for the 

native reaction can be seen in Figure 3.9. Broadening peaks in the deconvolution process 

caused slight scattering in the area around 15000 to 25000 seconds. However, fitting of the 

experimental data proceeded smoothly and provided sensible kinetic values which are listed 

in Table 3.2. The bimolecular rates used in the fitting protocol were obtained from the control 

experiment with nitrone 82. The association constant for the individual interaction between a 

phenylacetic acid and amidopyridine at 10 mM concentration and 0 ºC was found to be 

1800 M-1 (see chapter 4, Table 4.1). The effective molarity and the free energy of connection 

were calculated as described previously. The calculated values underpin the finding that 

both trans- and cis-95 engage in recognition-mediated processes.

Figure 3.9 Concentration vs time profile for the reaction between maleimide 72 and nitrone 71 to give 
template 95. The formation of trans-product is shown as red filled circles and the formation of cis-
product as blue filled diamonds. Solid lines represent the results for the fitting of the trans-(–) and cis-
(–) product. The reaction was performed at 0 ºC in CDCl3 at 10 mM reagent concentration.

Table 3.2 Kinetic parameters extracted for the reaction of maleimide 72 and nitrone 71 to give self-
replicator trans-95 and AB system cis-95 at 0 ºC in CDCl3 at 10 mM reagent concentration using 
SimFit. The obtained R-value was 4.6%.

trans-95 cis-95

bimolecular rate constant / M–1 s–1 1.84 × 10–4 1.03 × 10–4

recognition-mediated rate constant / s–1 4.87 × 10–3 7.03 × 10–5

effective molarity / M 26.5 0.683

!Gs / kJ mol–1 4.88 -
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3.4.3 Reaction of maleimide 73 with nitrone 70

Kinetic data for the reaction between maleimide 73 with carboxy nitrone 70 to give 

cycloadduct 96 was recorded for 16 h at 10 ºC in CDCl3 with a starting material concentration 

of 10 mM. Deconvolution of the obtained 1H NMR spectra allowed for the construction of the 

concentration vs time profiles depicted in Figure 3.10.

Figure 3.10 Concentration vs time profile for the reaction between a) maleimide 73 and nitrone 70,  b) 
maleimide 73 and nitrone 70 in the presence of 9 mol-% trans-96, c) maleimide 73 and nitrone 70 in the 
presence of 40 mM 3-bromobenzoic acid and d) maleimide 73 and control nitrone 81. The formation of 
trans-product is shown as red filled circles and the formation of cis-product as blue filled diamonds. 
All reactions were performed at 10 ºC in CDCl3 at 10 mM reagent concentration.
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! The curve for the native reaction (Figure 3.10a) exhibits a gentle sigmoidal shape for 

the formation of trans-96  which was lost in the doping experiment using 9 mol-% of trans-

template (Figure 3.10b). In the native reaction, trans-96 was formed in a ratio of 20:1 over 

cis-96  which increased to 23:1 in the doping reaction. Contemporaneously, the conversion 

increased slightly from 80% to 81%. Addition of 4 equivalents of 3-bromobenzoic acid 

reduced both the selectivity for the trans-isomer and the conversion to 9:1 and 52%, 

respectively (Figure 3.10c). The control reaction between maleimide 73  and control nitrone 81 

proceeded with only 27% conversion after 16 h and a ratio of 3.8:1 for trans-96 (Figure 

3.10d). Altogether, kinetic analysis of this reaction provided strong evidence for the self-

replicating nature of trans-96 and suggested that cis-96  is solely formed through the 

bimolecular reaction.

Figure 3.11 Molecular models of the trans-96 duplex (left) and the cis-96 monomer (right). Carbon 
atoms are shown in dark grey, hydrogen atoms in light grey, nitrogen atoms in blue and oxygen atoms 
in red. Hydrogen bonds are indicated by dotted lines. Most other hydrogens were omitted for clarity.

! This finding is corroborated by molecular modeling of the template duplex of 

trans-96 (Figure 3.11). The open structure of the self-complementary template allowed for 

the formation of a duplex structure in which the recognition units at both ends can form 

hydrogen bonding without causing deformation of the backbone. Generation of a 

catalytically active ternary complex seems plausible. On the other hand, rate-enhanced 

formation of the cis-template through a binary complex can be ruled out as a consequence of 

the length mismatch between the extended benzofuran spacer of the maleimide and the 

short carboxy unit.

! Fitting of the experimental data with SimFit provided quantitative measures for the 

efficiency of the self-replicator. The quality of the kinetic model can be seen in the overlay 
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with the data obtained experimentally in Figure 3.12. The results of the fitting are presented 

in Table 3.3. The association between a carboxylic acid and amidopyridine at 10 mM 

concentration and 10 ºC was determined to be 3500 M-1 (see Table 4.1) and used for the 

calculation of the free energy of connection . Bimolecular rates were obtained from the 

control experiment of maleimide 73 with nitrone 81 and used to calculate the kinetic effective 

molarity. Altogether, the results suggest the presence of a moderately efficient self-replicator.

Figure 3.12 Concentration vs time profile for the reaction of maleimide 73 and nitrone 70 to give 
template 96. The formation of trans-product is shown as red filled circles and the formation of cis-
product as blue filled diamonds. Solid lines represent the results for the fitting of the trans-(–) and cis-
(–) product. The reaction was performed at 10 ºC in CDCl3 at 10 mM reagent concentration.

Table 3.3 Kinetic parameters extracted for the self-replicating reaction of maleimide 73 and nitrone 70 
at 10 ºC in CDCl3 at 10 mM reagent concentration using SimFit. The obtained R-value was 3.9%.

trans-96 cis-96

bimolecular rate constant / M–1 s–1 9.03 × 10–4 4.51 × 10–4

recognition-mediated rate constant / s–1 4.81 × 10–3 -

effective molarity / M 5.26 -

!Gs / kJ mol–1 8.08 -

3.4.4 Reaction of maleimide 73 with nitrone 71

The reaction between maleimide 73 and nitrone 71 in CDCl3 at 10 mM concentration and 

10 ºC was followed for 16 h. The kinetic data for the four essential experiments are presented 

in Figure 3.13. The native reaction to give template 97 proceeded with 68% conversion and a 

selectivity of 8:1 for the trans-isomer (Figure 3.13a).
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Figure 3.13 Concentration vs time profile for the reaction between a) maleimide 73 and nitrone 71,  b) 
maleimide 73 and nitrone 71 in the presence of 10 mol-% trans-97, c) maleimide 73 and nitrone 71 in 
the presence of 40 mM 4-bromophenylacetic acid and d) maleimide 73 and control nitrone 82. The 
formation of trans-products is shown as red filled circles and the formation of cis-products as blue 
filled diamonds. All reactions were performed at 10 ºC in CDCl3 at 10 mM reagent concentration.

! The gentle sigmoidal shape of the formation of trans-97 in the native curve 

disappeared upon addition of 9 mol-% of presynthesised trans-template and the ratio 

increased to 11:1 yielding 71% of products (Figure 3.13b). Addition of 4 equivalents of 4-

bromophenylacetic acid at the start of the reaction severely hampered the formation of 

trans-97 leading to a ratio of only 4:1 in favour of the trans-isomer with 42% conversion of 

starting material (Figure 3.13c). The reaction between maleimide 73 and recognition-disabled 

control nitrone 82 proceeded slowly (Figure 3.13d). After 16 h, only 28% of the starting 

materials was converted to products with a ratio of solely 2.3:1 in favour of the trans-isomer.
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! The kinetic data presented here clearly indicates that trans-96 acts as a template for its 

own formation whereas cis-96 exhibits no recognition-mediated activity. This finding is 

corroborated by molecular modeling of the template duplex of trans-97 (Figure 3.14). It can 

clearly be seen that the rigid backbone separates the recognition units in the template 

allowing the formation of a stable duplex structure and explaining the self-replicating nature 

of trans-97. The closed shape of cis-97 shows a mismatch in length between the phenylacetic 

acid and the benzofuran spacer that prevents the formation of internal hydrogen bonds. The 

presence of this mismatch suggests that rate-enhanced reaction through the AB pathway to 

give cis-97 is unlikely and that this isomer is only formed through the bimolecular reaction.

Figure 3.14 Molecular models of the trans-97 duplex (left) and the cis-97 monomer (right). Carbon 
atoms are shown in dark grey, hydrogen atoms in light grey, nitrogen atoms in blue and oxygen atoms 
in red. Hydrogen bonds are indicated by dotted lines. Most other hydrogens were omitted for clarity.
!

! Fitting of the kinetic data for the native reaction using SimFit proceeded smoothly 

and produced the solid lines seen in Figure 3.15. The corresponding extracted kinetic values 

are presented in Table 3.4. Bimolecular rates were obtained from the control experiment of 

maleimide 73 with nitrone 82 and used to calculate the effective molarity. Calculation of the 

free energy of connection was performed with an association constant of 1600 M-1 for the 

interaction between phenylacetic acid and amidopyridine at 10 mM concentration and 10 ºC. 

Altogether, the results suggest the presence of a moderately efficient self-replicator for the 

trans-isomer and no recognition-mediated activity for the cis-species. A discussion of the 

property of this replicator and a comparison with the structurally related systems can be 

found at the end of this chapter.
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Figure 3.15 Concentration vs time profile for the reaction of maleimide 73 and nitrone 71 to give 
template 97. The formation of trans-product is shown as red filled circles and the formation of cis-
product as blue filled diamonds. Solid lines represent the results for the fitting of the trans-(–) and cis-
(–) product. The reaction was performed at 10 ºC in CDCl3 at 10 mM reagent concentration.

Table 3.4 Kinetic parameters extracted for the self-replicating reaction of maleimide 73 and nitrone 71 
at 10 ºC in CDCl3 at 10 mM reagent concentration using SimFit. The obtained R-value was 3.8%.

trans-97 cis-97

bimolecular rate constant / M–1 s–1 7.29 × 10–4 3.57 × 10–4

recognition-mediated rate constant / s–1 2.89 × 10–3 -

effective molarity / M 3.96 -

!Gs / kJ mol–1 7.43 -

3.4.5 Reaction of maleimide 74 with nitrone 70

The reaction of maleimide 74 with carboxy nitrone 70 to give template 98 was recorded for 

16  h at 10 ºC in CDCl3 and 10 mM starting concentration. The native reaction exhibits a 

sigmoidal shape for the formation of trans-98 indicating the presence of a self-replicator 

(Figure 3.16). After 16 h, 78% of the starting material was converted and the trans/cis ratio 

was found to be 11:1 (Figure 3.16a). Doping a fresh batch of reagents with 9 mol-% of 

trans-98 eliminated the initial lag period and the maximum rate was shifted to the start of 

the reaction (Figure 3.16b). Consequently, the ratio increased to 18:1 for the trans-isomer and 

the conversion reached 80%. Repeating the reaction in the presence of 4 equivalents of 3-

bromobenzoic acid reduced the selectivity to solely 7:1 for the trans-isomer and only 41% of 

the starting material had reacted after 16 h (Figure 3.16c). Using nitrone 81 as control 

compound yielded 26% of product and established the selectivity for the simple bimolecular 

reaction to be 4.2:1 in favour of the trans-isomer (Figure 3.16d).
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Figure 3.16 Concentration vs time profile for the reaction between a) maleimide 74 and nitrone 70,  b) 
maleimide 74 and nitrone 70 in the presence of 9 mol-% trans-98, c) maleimide 74 and nitrone 70 in the 
presence of 40 mM 3-bromobenzoic acid and d) maleimide 74 and control nitrone 81. The formation of 
trans-product is shown as red filled circles and the formation of cis-product as blue filled diamonds. 
All reactions were performed at 10 ºC in CDCl3 at 10 mM reagent concentration.

! The sigmoidal shape of the native reaction and the behaviour of the system in the 

doping experiment provide clear evidence for the self-replicating nature of the reaction 

between maleimide 74 and nitrone 70. This finding is corroborated by molecular modeling of 

the template duplex of trans-98 (Figure 3.17). Its rigid structure allows for the formation of a 

duplex structure in which the recognition sites on both ends of the template possess the right 

orientation to associate through hydrogen bonding. As a consequence, template-directed 

synthesis of trans-98 through a ternary complex with both reagents seems feasible. 

Accordingly, the cis-isomer shows a folded structure in which the length of the naphthalene 

spacer prevents the recognition units to come into close proximity rendering a possible 

reaction through an AB complex highly unlikely.
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Figure 3.17 Molecular models of the trans-98 duplex (left) and the cis-98 monomer (right). Carbon 
atoms are shown in dark grey, hydrogen atoms in light grey, nitrogen atoms in blue and oxygen atoms 
in red. Hydrogen bonds are indicated by dotted lines. Most other hydrogens were omitted for clarity.

! Careful analysis of the obtained data shows two specifics. First, the 4.2:1 ratio for the 

trans-isomer in the native reaction is unusually high. Moreover, careful analysis of the 

doping experiment shows a rather abnormal behaviour. Adding an increasing amount of 

template at the start of the reaction gradually enhances its maximum rate (Figure 3.18). This 

phenomena has so far not been observed for artificial self-replicators based on the reaction 

between nitrones and maleimides. In-depth analysis of the kinetics of previous efficient 

replicating systems has established that not the duplex dissociation but the cycloaddition 

reaction is generally the rate-limiting step for the autocatalytic cycle.[140] Hence, adding more 

template indeed increases the amount of available free template, but has no influence on the 

maximum rate of the reaction. In order to identify the reason behind this exceptional 

behaviour and to extract kinetic parameters, the recorded data was fitted using SimFit.

Figure 3.18 Concentration vs time profile for the reaction of maleimide 74 with nitrone 70 to give 
template trans-98 in the presence of 0 (●),  9 (▪), 18 (▴), 36 (○) and 50 (□) mol-% of trans-98. All reactions 
were performed at 10 ºC in CDCl3 at 10 mM reagent concentration. Cis-products were omitted for 
clarity.
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! Simultaneous fitting of the native reaction and the five doping experiments 

established the results presented in Figure 3.19. Overlay of the kinetic model with the 

experimental data for the native reaction demonstrates the quality of the fit. The individual 

association constant between carboxylic acid and amidopyridine at 10 mM concentration and 

10 ºC was determined to be 3500 M-1 (see Table 4.1). In case of fitting multiple curves, 

bimolecular rates were optimised in the fitting process which provided values close to the 

ones obtained from the control experiment. Calculation of the free energy of connection and 

the effective molarity gave rise to the values depicted in Table 3.5. Altogether, the results 

suggest the presence of a moderately efficient self-replicator for the trans-isomer and no 

recognition-mediated activity for the cis-species. Compared with the systems investigated 

previously, template trans-98  has a relatively low free energy of connection. This suggests 

that the stability of the template duplex is lower leading to a higher concentration of free 

monomer. This shift in equilibrium might be the reason for its specific doping behaviour.

Figure 3.19 Concentration vs time profile for the reaction of maleimide 74 and nitrone 70 to give 
template 98. The formation of trans-product is shown as red filled circles and the formation of cis-
product as blue filled diamonds. Solid lines represent the results for the fitting of the trans-(–) and cis-
(–) product. The reaction was performed at 10 ºC in CDCl3 at 10 mM reagent concentration.

Table 3.5 Kinetic parameters extracted for the self-replicating reaction of maleimide 74 and nitrone 70 
at 10 ºC in CDCl3 at 10 mM reagent concentration using SimFit. The obtained R-value was 2.4%.

trans-98 cis-98

bimolecular rate constants / M–1 s–1 9.72 × 10–4 3.34 × 10–4

recognition-mediated rate constants / s–1 1.26 × 10–3 -

effective molarity / M 1.30 -

!Gs / kJ mol–1 2.67 -
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3.4.6 Reaction of maleimide 74 with nitrone 71 

The last combination to examine is the reaction between naphthalene maleimide 74 and 

phenylacetic acid nitrone 71 forming cycloadduct 99. Kinetic data for all four crucial 

experiments were recorded for 16 h in CDCl3 at 0 ºC and 10 mM concentration of the two 

reagents (Figure 3.20). 
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Figure 3.20 Concentration vs time profile for the reaction between a) maleimide 74 and nitrone 71,  b) 
maleimide 74 and nitrone 71 in the presence of 10 mol-% trans-99, c) maleimide 74 and nitrone 71 in 
the presence of 40 mM 3-bromobenzoic acid and d) maleimide 74 and control nitrone 82.  The 
formation of trans-products is shown as red filled circles and the formation of cis-products as blue 
filled diamonds. All reactions were performed at 0 ºC in CDCl3 at 10 mM reagent concentration.

! The native reaction again exhibits the sigmoidal shape typical for a self-replicating 

system with the trans-isomer being formed in a ratio of 43:1 over its isomeric partner and 

88% overall conversion (Figure 3.20a). Doping experiments using 10 mol-% of 

presynthesised trans-99 abolished the initial lag period and pushed the ratio of trans- to cis-
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diastereoisomers to 62:1 with 93% of reagents converted to products (Figure 3.20b). Addition 

of 4 equivalents of 4-bromophenylacetic acid significantly reduced the conversion to 60% 

and the selectivity dropped to 19:1 with trans-99 still being the most abundant species 

(Figure 3.20c). The reaction of maleimide 74 with control nitrone 82 provided a measure for 

the efficiency and selectivity for the recognition-disabled process. After 16 h, only 16% of the 

reagents were converted and the rate for both isomers was found to be a mere 2.2:1 in favour 

of the trans-species (Figure 3.20d).

! All data presented clearly suggests that the enhanced formation of trans-99 is a result 

of a highly efficient self-replicating process. The feasibility of the product duplex of trans-99 

is highlighted in the calculated structure, in which the flexibility of the phenylacetic acid 

causes the templates to slightly wrap around each other (Figure 3.21). However, the self-

complementary of the duplex structure is clearly visible. On the other hand, the cis-isomer 

possesses a folded geometry in which access to the recognition sites is limited. Because of the 

length mismatch between the phenylacetic acid and the naphthalene spacer, formation of a 

productive binary complex between nitrone and maleimide to form cis-99  by AB pathway 

can be ruled out. Recognition between the acid and the amidopyridine moiety would require 

a drastic deformation of the isoxazolidine core and is therefore disfavoured energetically.

Figure 3.21 Molecular models of the trans-99 duplex (left) and the cis-99 monomer (right). Carbon 
atoms are shown in dark grey, hydrogen atoms in light grey, nitrogen atoms in blue and oxygen atoms 
in red. Hydrogen bonds are indicated by dotted lines. Most other hydrogens were omitted for clarity.

! Again, the SimFit program was consulted to fit the obtained results and extract 

valuable kinetic parameters. The results of the investigation are depicted in Table 3.6 and the 

quality of the applied kinetic model can be seen in comparison with the experimental data 

(Figure 3.22). Slight deviation of the theoretical curve from the experimental data for high 

template concentrations can be explained with incipient precipitation of trans-99 from the 

solution. The association between phenylacetic acid and amidopyridine at 10 mM 

concentration and 0 ºC was determined to be 1800 M–1 (see Table 4.1) and used in the 
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calculation of the free energy of connection as described earlier. Bimolecular rates were 

obtained from the control experiment with nitrone 82 and used to calculate the effective 

molarity. Altogether, the results underline the presence of a very efficient self-replicator for 

the trans-isomer and no recognition-mediated activity for the cis-species.

Figure 3.22 Concentration vs time profile for the reaction of maleimide 74 and nitrone 71 to give 
template 99. The formation of trans-product is shown as red filled circles and the formation of cis-
product as blue filled diamonds. Solid lines represent the results for the fitting of the trans-(–) and cis-
(–) product. The reaction was performed at 0 ºC in CDCl3 at 10 mM reagent concentration.

Table 3.6 Kinetic parameters extracted for the self-replicating reaction of maleimide 74 and nitrone 71 
at 0 ºC in CDCl3 at 10 mM reagent concentration using SimFit. The obtained R-value was 5.8%.

trans-99 cis-99

bimolecular rate constant / M–1 s–1 6.99 x 10–4 3.06 x 10–4

recognition-mediated rate constant / s–1 1.65 x 10–2 -

effective molarity / M 23.6 -

!Gs / kJ mol–1 9.43 -

3.5 Comparison of the analysed systems

In the previous sections, thorough analysis of the six possible reactions between nitrone 70 

and 71 with each of the three maleimides was conducted. For all combinations, self-

replicating activity was found for the trans-isomers of each pair of diastereoisomeric 

products. Additionally, the reaction of nitrone 71 with maleimide 72 gave rise to an AB 

system for the cis-isomer. In order to compare all six systems at the same temperature, the 

native reactions for the formation of trans-96, trans-97 and trans-98 were repeated at 0 ºC. 

Concentration vs time profiles for the systems using either carboxy nitrone 70 or phenylacetic 

acid nitrone 71  were created (Figure 3.23a and Figure 3.23c) and the corresponding rate vs 
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time profiles were deduced (Figure 3.23b and Figure 3.23d) by calculating the first derivative 

of a polynomial fit to the experimental data.

Figure 3.23 a) Arrayed concentration vs time profiles for the reaction of maleimide 72, 73 and 74 with  
carboxylic acid nitrone 70 at 0 ºC to give trans-94 (●),  trans-96 (●) and trans-98 (●). b) Calculated 
arrayed rate vs time profiles for the reactions described under a) giving trans-94 (––), trans-96 (––) and 
trans-98 (––). c) Arrayed concentration vs time profiles for the reaction of maleimide 72, 73 and 74 with 
phenylacetic acid nitrone 71 at 0 ºC to give trans-95 (●),  trans-97 (●) and trans-99 (●). d) Calculated 
arrayed rate vs time profiles for the reactions described under c) giving trans-94 (––), trans-96 (––) and 
trans-98 (––). e) Concentration vs time profile for the reaction of maleimide 72 with phenylacetic acid 
nitrone 71 at 0 ºC to give trans-94 (●) and cis-94 (◆).  f) Calculated arrayed rate vs time profiles for the 
reaction described under c) giving trans-94 (––) and cis-94 (···).  All reactions were performed in CDCl3 
and at 10 mM reagent concentration. The formation of all cis-isomers except cis-94 was omitted for 
clarity.
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! In both cases, a distinct hierarchy in reactivity for the formation of the trans-products 

is clearly visible. For the reaction of the maleimides with carboxy nitrone 70, the efficiency 

decreases with the spacer length of the maleimide backbone. The reaction of 1  with benzene 

maleimide 72 leads to the most efficient replicating template trans-94. Replicators trans-96 

and trans-98 possess similar efficiencies with the system based on benzofuran maleimide 

being slightly stronger than the naphthalene analogue (Figure 3.23a). The same conclusion 

can be drawn from the rate vs time profile (Figure 3.23b). With 0.25 µM s–1, the maximum 

rate for the formation of trans-94 is roughly twice and four times higher than for trans-96 

(0.12 µM s–1) and trans-98 (0.08 µM s–1), respectively. The difference in catalytic efficiency is 

also reflected in the shape of the curves. As a consequence of the sigmoidal concentration vs 

time profile for trans-94, the rate profile reveals the classical bell shape characteristic of an 

efficient autocatalytic process. In the case of trans-96 and trans-98, the rate vs time profiles 

are broad with a less pronounced maximum indicating autocatalytic processes of minor 

efficiencies.

! A different trend in reactivity is found for the reaction of nitrone 71 with the three 

available maleimides (Figure 3.23c and 3.23d). It is now the combination of 71 with the 

naphthalene spacer that provides the strongest system trans-99. Its dominance can be seen in 

both plots. The distinct sigmoidal shape of the concentration vs time profile translates into 

the characteristic bell shaped rate vs time profile with a maximum rate of 0.39 µM s–1 after 

8000 seconds. This replicator therefore exhibits the highest rate found for all investigated 

systems. Shortening the spacer to benzofuran maintains the self-replicating nature for the 

trans-isomer of 97 but with significantly reduced efficiency. The rate vs time profile is much 

broader than in the case of trans-99 and the maximum rate of 0.11 µM s–1 is found after 30000 

seconds. Using the even shorter benzene spacer in the maleimide component eventually 

creates a situation in which the trans-isomer possesses the right geometry to function as a 

self-replicator, but the dominance of AB system cis-95 severely limits its activity.

! Separate analysis demonstrates the competition scenario between both 

diastereoisomers of 95 (Figure 3.23e  and 3.23f). A maximum in rate for the formation of 

trans-95 can be found at the early stage of the reaction (0.11 µM s–1 after 8000 seconds) but is 

superimposed by the formation of cis-95. Since cis-95  is formed through the AB pathway, the 

maximum rate of 0.45   µM s–1 is found at the beginning of the reaction when the 

concentration of starting material is highest. With this rate profile, cis-95 has a clear 

advantage over its partner isomer and quickly incorporates a significant amount of available 

building blocks before trans-95 can unleash its autocatalytic potential. The pronounced bell 
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shape of the rate vs time profile and the early occurrence of the maximum suggest that 

without its AB partner, trans-95 would outperform replicator trans-97.

! Computational analysis of the systems were performed by fitting appropriate 

reaction models to the experimentally obtained data. The concentration vs time profiles of 

the individual self-replicating systems provided a clear hierarchy but to further elucidate the 

origins for the observed trends, the extracted kinetic values for the bimolecular rates, the 

effective molarities and the free energy of connection need to be dissected.

3.5.1 Comparison of the bimolecular rates

The values of the rate constants for the bimolecular formation of the trans-isomers from 

maleimides 72, 73 and 74 with control nitrones 81  and 82  at 0 ºC are depicted in Figure 3.24. 

Control nitrones 81 and 82  were designed to mimic the electronic environment of carboxy 

nitrone 70 and phenylacetic acid nitrone 71, respectively. The results for their bimolecular 

reaction with the three maleimides show two major trends. Bimolecular rate constants 

increase with the size of the spacer unit in the maleimide and are in general slightly higher 

for their reaction with control nitrone 81  than with 82. The exception to the second 

observation is the rate constant for the reaction of naphthalene maleimide 74 with 82 which 

is significantly higher than for the reaction of 74 with 81. 

Figure 3.24 Arrayed plot of the bimolecular rate constants k for the formation of the six trans-templates 
between maleimides 72,  73 and 74 with control nitrones 81 and 82 at 0 ºC and 10 mM reagent 
concentration. Replacing X with either nitrone 81 or 82 identifies the appropriate template.

! This finding explains the short lag period observed for the formation of trans-99. 

With the rate constant for the formation of the self-replicating trans-template being 

exceptionally high, the autocatalytic cycle can start to operate much earlier than for low rate 

constants. On the other hand, the reaction with control nitrone 81  shows that template 
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trans-94 exhibits a fairly low bimolecular rate suggesting that the source of its autocatalytic 

efficiency must lay somewhere else. On the basis of the bimolecular control experiments, the 

lowest rate constant can be found for the formation of trans-95 with the values for both 

benzofuran components and trans-98 midway.

3.5.2 Comparison of the free energies of connection

A comparison of the free energies of connection for all investigated systems is given in 

Figure 3.25. A clear trend for the cooperativity in duplex formation can be seen for the 

reactions of the maleimides with both nitrones. In the case of nitrone 70, the strongest 

stabilisation occurs in the template trans-94 and decreases with increasing spacer length 

from benzofuran to naphthalene. A low absolute value indicates lower cooperativity and a 

less favourable fit for the product duplex. In the case of nitrone 70, the strongest stabilisation 

occurs in the template trans-94 with 11.9 kJ mol–1 and decreases with increasing spacer 

length to 8.08 kJ mol–1 for benzofuran and only 2.67 kJ mol–1 for trans-98.

Figure 3.25 Arrayed plot for the free energies of connection $Gs for the formation of the trans-isomers 
as extracted from the fitting of the individual experiments between maleimides 72, 73 and 74 and 
either nitrone 70 or 71 at 0 ºC and 10 mM reagent concentration. Replacing X with nitrone 70 or 71 
identifies the appropriate template as 72 + 70 = trans-94,  72 + 71 = trans-95, 73 + 70 = trans-96, 73 + 71 
= trans-97, 74 + 70 = trans-98 and 74 + 71 = trans-99.

! For trans-98, this finding may explain the unusual doping behaviour. Adding 

increasing amounts of preformed trans-98 to a fresh batch of reagents showed to increase 

gradually the maximum rate of the reaction. Since the value for the free energy of connection 

suggests the presence of a relatively weak product duplex, the equilibrium is shifted towards 

free template molecules which are able to form the catalytically active complex 

[70·74·trans-98]. Hence, external addition of template molecules at the start of the reaction 

allows for the formation of a significant amount of such ternary complexes. Increasing the 
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amount of seeded template further elevates their number and thereby enhances the rate of 

the reaction. 

! When looking at the values for nitrone 71, the opposite trend can be seen. The highest 

stabilisation is now found for template trans-99 with 9.43 kJ mol–1 suggesting an optimal fit 

for the product duplex. The values for trans-97 (7.43 kJ mol-1) and trans-95 (4.88 kJ mol–1) 

indicate that the stability of the template duplex decreases with decreasing size of the spacer 

unit. This hierarchy is in accordance with the obtained concentration vs time profiles and can 

be directly connected to the different geometries of the templates.

3.5.3 Comparison of the effective molarities

Ultimately, comparison of the effective molarities rounds off the analysis of the six 

investigated systems (Figure 3.26). Again, a clear order can be seen for the reaction of the 

three maleimides with nitrone 70 depending on the nature of the spacer. By far the highest 

value was calculated for trans-94  (69.8  M) compared with trans-96 (5.26 M) and trans-98 

(1.30 M). This impressive value is a consequence of the low bimolecular rate and the strong 

duplex association, and reflects the high self-replicating efficiency of trans-94. For the 

templates based on nitrone 71, the high value of trans-95 contradicts the expected trend after 

which template trans-99 should possess the highest enhancement. One reason for this 

finding are the differences in bimolecular rate which is exceptionally low for trans-95. 

Accordingly, the value for trans-97 is lower than the one for trans-99 which corresponds 

with the previous observations.

Figure 3.26 Arrayed plot for the effective molarities for the formation of the trans-isomers between 
maleimides 72, 73 and 74 and either nitrone 70 or 71 at 0 ºC and 10 mM reagent concentration. 
Replacing X with nitrone 70 or 71 identifies the appropriate template as 72 + 70 = trans-94, 72 + 71 = 
trans-95, 73 + 70 = trans-96, 73 + 71 = trans-97, 74 + 70 = trans-98 and 74 + 71 = trans-99.
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3.6 Summary

In summary, the six investigated systems can be graded according to their efficiencies which 

are directly connected to their structural properties:

1) Templates trans-94 and trans-99 are very efficient systems with high EM values and 

strong duplex associations. The combination of the shorter nitrone structure 70 with the 

short benzene spacer allows for ideal association in the duplex. This matching situation 

becomes less favourable upon changing one of the components, but when the extended 

phenylacetic acid nitrone 71 is combined with maleimide 74 bearing the naphthalene 

spacer, the right geometric constellation for the formation of a strong duplex is restored. 

However, detailed analysis revealed that the functioning of both replicators is slightly 

different. The source of efficiency for trans-94 is the pronounced positive cooperativity for 

the duplex formation which also reflects in the high EM value. Also template trans-99 

exhibits a fairly high duplex association, but it additionally benefits from a very high 

bimolecular rate constant for the trans-isomer, which provides the system with a valuable 

advantage at the early stage of the reaction by shortening the lag period.

2) Both replicators based on the benzofuran maleimide, trans-96  and trans-97, have 

strikingly similar properties. This corresponds with the fact that they are structurally 

midway between the two extreme cases of the benzene and naphthalene spacer. It appears 

that by introducing the benzofuran backbone, the induced geometric change places the 

molecule midway between the optimal geometry for the reaction with nitrone 70 or 

nitrone 71. As a result, the formation of the trans-templates are clearly self-replicating but 

with reduced efficiency.

3) The reaction between short carboxy nitrone 70 and extended naphthalene maleimide 74 

produces template trans-98 which is bound to have the strongest mismatch in duplex. 

Accordingly, the free energy of connection for the duplex is by far the lowest of all six 

systems and the rate-acceleration is reduced. The interplay of these features and the 

relatively high bimolecular rate helps to explain the unusual doping behaviour. It appears 

that in the experiments using increasing amounts of dopant, the template benefits from the 

low duplex association by creating an increasing amount of catalytic ternary complex 

[70·74·trans-98] which allows to gradually shift the maximum rate of the reaction to higher 

values.

4) The combination of phenylacetic acid nitrone 71  with benzene bearing maleimide 72 to 

give templates 95 favours the formation of an AB system over the replicator. It is now the 
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combination of the extended length of the nitrone with the short benzene spacer which 

allows for the formation of a catalytic binary complex to form cis-95 and hinders the 

performance of the self-replicating trans-95 template. However, the extracted kinetic 

values for trans-95 suggest that duplex is indeed destabilised with respect to most other 

systems.
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4.Fine-tuning the activity by changing the strength of recognition

4.1 Choice of recognition sites

In the previous chapter, a set of structurally similar replicators was investigated and a direct 

connection was established between the geometry of the template backbone and the 

efficiency of the autocatalytic cycle. In order to avoid problems regarding the limited 

solubility of some of the compounds, the original 6-methyl amidopyridine recognition site 

was replaced with its 4,6-dimethyl analogue. The additional methyl group did indeed 

increase the solubility of the investigated maleimide starting materials and allowed for a 

thorough investigation of the replicating systems. Besides having an effect on the solubility 

of the compounds, the additional methyl group is expected to change the electronic 

environment on the pyridine ring and to influence the strength of the recognition event with 

the corresponding acid moiety.

! In this chapter, the investigation focuses on the effect that a variation of the 

association constant has on the performance of self-replicating and AB systems, and whether 

it is possible to fine-tune their activity by choosing the appropriate substituent pattern on the 

amidopyridine recognition site. Four substitution motifs were chosen to allow for specific 

steric and electronic variation of the recognition process (Figure 4.1). In addition to the 6-

methyl and 4,6-dimethyl moieties discussed previously, an amidopyridine fragment without 

methyl group (‘no-methyl’) and one with a methyl substituent in 4-position (‘4-methyl’) were 

selected. All four motifs were incorporated into a set of maleimide and nitrone compounds 

and screened in two self-replicating and two AB reactions. The nature of these test reactions, 

the synthesis of all necessary compounds and the results of the screening experiments are 

presented in the following sections.

Figure 4.1 Variation of the substituent pattern in the recognition site is expected to alter the reactivity 
of recognition-mediated processes.
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4.2 Choice of test reactions

The test reactions based on the cycloaddition of a nitrone with maleimide were chosen 

according to the following criteria. The reaction between the two components should give 

rise to an established AB system or self-replicator and reagents should be easily accessible to 

minimise the synthetic effort when varying the recognition sites. Ideally, systems are chosen 

that allow such variation on both the maleimide and the nitrone. These sets of reagents can 

then be combined with building blocks bearing complementary reactive and recognition sites 

to produce a set of kinetic data. In order to allow for the screening of a wide range of 

association strength, application of more than one kind of acid functionality was envisaged.

4.2.1 Variable substitution pattern on the maleimide building block

The two recognition-mediated processes based on maleimide 72 and nitrones 70 and 71 were 

chosen as test reactions.

Figure 4.2 Reaction of a set of maleimides with different substituent pattern with nitrones 70 and 71 
giving rise to self-replicators 94, 102, 103 and 104 and hybrid AB/SR systems 95,  105, 106 and 107, 
respectively.
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! As explained earlier, reaction of maleimide 72 with nitrone 70  gives rise to an efficient 

self-replicating system trans-94, whereas using nitrone 71 leads to an AB system for cis-95 

with minor self-replicating contribution from the trans-diastereoisomer. Variation of the 

substituent pattern on the recognition site of maleimide 72 generated the set of four 

maleimide structures which are investigated in this screening (Figure 4.2).!

! Synthesis of 4,6-dimethyl compound 72 was achieved as presented previously. Initial 

attempts to synthesise the three other maleimide structures through coupling of acid 

maleimide 109 with the corresponding pyridines failed (Scheme 4.1). 

Scheme 4.1 Attempted direct synthesis of the set of maleimides.

! However, the three compounds were easily accessible via the routes depicted in 

Schemes 4.2-4.4. The second component of the set, maleimide 66, was synthesised starting 

from commercially available 4-nitrobenzoyl chloride 83 and 6-methyl-2-aminopyridine to 

give amide structure 110 in very good yield. Hydrogenation using palladium as catalyst gave 

rise to the amine derivative 45 which was refluxed with maleic anhydride in acetic acid to 

furnish the desired maleimide 66 in good yield.

Scheme 4.2 Synthesis of maleimide 66. Conditions: a) 3 eq.  6-methylpyridin-2-amine,  DCM, 0 ºC, 97%; 
b) Pd/C, H2, THF, rt, 99%; c) maleic anhydride, AcOH, 110 ºC, 72%.
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! For the synthesis of the ‘4-methyl’ species 100, 4-nitrobenzoyl chloride 83  was reacted 

with 4-methyl-2-aminopyridine (Scheme 4.3). Dibenzamide 111 was cleaved using sodium 

hydroxide to yield amide 112. Reduction of the nitro group using palladium on carbon and 

hydrogen gas gave the amine derivative which was directly converted to 113. Subsequent 

cyclisation with ZnBr2 and HMDS furnished desired maleimide 100.

Scheme 4.3 Synthesis of maleimide 100. Conditions: a) 2.5 eq. 4-methylpyridin-2-amine,  DCM, 0 ºC, 
90%; b) NaOH, MeOH/dioxane, rt, 96%; c) Pd/C, H2, THF, rt; d) maleic anhydride, AcOH, 90% over 
two steps; e) ZnBr2, HMDS, MeCN, 90 ºC, 81%.

Scheme 4.4 Synthesis of maleimides 101. Conditions: a) 3 eq. 2-aminopyridine, DCM, 0 ºC, 74%; b) 
Pd/C, H2, THF, rt; c) maleic anhydride, AcOH, 45% over two steps; d) ZnBr2, HMDS, MeCN, 90 ºC, 
83%.
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! For maleimide 101, commercially available 4-nitrobenzoyl chloride 83 was reacted 

with 2-aminopyridine to yield amide structure 114 in good yield (Scheme 4.4). 

Hydrogenation using palladium as catalyst gave rise to the amine derivative which was 

directly reacted with maleic anhydride. Treatment of 115 with ZnBr2 and HMDS in MeCN 

eventually furnished the desired maleimide compound 101.

! It is important to state that the solubility of the four synthesised maleimides in non-

polar solvents like chloroform varied significantly with the methyl substitution pattern on 

the amidopyridine site. Maleimides 101  and 100 showed very limited solubility whereas 66 

and 72 proved to be soluble in chloroform at a concentration of 10 mM. The consequences on 

the performance of the kinetic experiments will be explained later.

4.2.2 Variable substitution pattern on the nitrone building block

In the previous test reactions, variation of recognition site took place on the maleimide 

building block. In order to screen reactions of reversed reactivity, nitrones 116, 117, 118 and 

119  were proposed as building blocks for two further test reactions (Figure 4.3). Work in the 

group established that the reaction between a structurally very similar nitrone 55 with 

maleimide 33 gives rise to a highly efficient self-replicating system trans-59b,[140] whereas 

using meta-isomer 120 is known to form a strong AB system.[197] A long alkyne chain was 

attached to the original nitrone structure in order to avoid problems with the limited 

solubility of the nitrone reagents or the resulting templates.

! All four nitrone building blocks and both maleimides were easily accessible. The set 

of nitrones were synthesised in a convergent manner (Scheme 4.5). Starting from 4-iodo 

nitrobenzene 129, Sonogashira reaction with 1-octyne attached the solubilising group and the 

nitro group in 130 was subsequently reduced to the hydroxylamine using rhodium on carbon 

and hydrazine. The aldehyde components 132-135 were formed by activation of acid 

aldehyde 131 using thionyl chloride and subsequent reaction of the acid chloride with 

commercially available amino pyridine bearing the correct substituent pattern. Condensation 

of the hydroxylamine with each of the aldehydes provided the set of four nitrones.
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Figure 4.3 Reaction of a set of nitrones 116-119 with different substituent pattern with maleimides 33 
and 120 giving rise to self-replicators 120-124 and AB systems 125-128.
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! Synthesis of maleimides 33 and 120 was achieved by refluxing the corresponding acid 

aniline in acetic acid together with maleic anhydride (Scheme 4.6 and 4.7). A small amount 

of maleimide 33 was methylated to form recognition-disabled control compound 57.

Scheme 4.6 Synthesis of maleimides 33 and 57. Conditions: a) maleic anhydride, AcOH, 110 ºC, 70%. 
b) MeI, Cs2CO3, DMF, rt, 56 %.

Scheme 4.7 Synthesis of maleimide 120. Conditions: a) maleic anhydride, AcOH, 110 ºC, 46%.

4.3 Determination of association constants

Having established the synthesis of the building blocks, the association constants Ka between 

the recognition sites were estimated using recognition aldehydes 132-135 and two model 

acids, 4-bromophenylacetic acid and 3-bromobenzoic acid, which mimic the electronic 

environment in the applied acid nitrone reagents. The experimental values were determined 

by the NMR titration method using 499.9 MHz 1H NMR spectroscopy at 273 and 283 K in 

CDCl3. Further details regarding this method can be found in chapter 10 and selected 

examples are presented in the appendix.

! The results of the titration experiments are listed in Table 4.1 and exhibit some 

significant trends. As expected for an exothermic process, the association constants measured 

at 0 ºC are in all cases larger than the values for the same interaction at 10 ºC. Furthermore, 

all interactions of the aldehydes with 3-bromobenzoic acid 138  give rise to higher association 

constants than their interaction with 4-bromophenylacetic 139 acid. This finding is in 

accordance with the pKa values found in the literature[198] for 138 (pKa = 3.78) and 139  (pKa = 

4.31). For both acid compounds, the effects of the increasing number of methyl groups can be 

seen. Alkyl groups have a positive inductive effect on the electron density on the aromatic 
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ring and are therefore expected to increase the association between the two recognition sites. 

This accounts for the differences in binding strength for both sets of interactions, with the 

values for 132 being highest, followed by 133 and 134, and the values for 135 being the 

lowest. However, the relative impact of increasing the number of methyl groups are different 

for both acids. For 139, addition of one methyl group has hardly any effect on the values for 

the association and it is only the addition of the second methyl group which causes a 

considerable increase in binding strength. However, in case of 138, the biggest change is seen 

for the introduction of the methyl group in 6-position.

Table 4.1 Determination of the association constants between aldehydes 135, 134, 133 and 132 at 10 
mM concentration and carboxy acid 138 and phenylacetic acid 139 at 273 and 283 K in CDCl3.
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Br
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Aldehyde Ka (0 ºC / M–1) Ka (10 ºC / M–1) Ka (0 ºC / M–1) Ka (10 ºC / M–1)
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N N
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N N

O

H

O

H

132

4030 3470 1770 1620

4.4 Screening the set of maleimides 72, 66, 100 and 101

4.4.1 Reaction of the set of maleimides with nitrone 70

Each maleimide of the set bearing a different substituent pattern was reacted individually 

with carboxy nitrone 70 and the progression of the reaction was followed by 1H NMR 

spectroscopy. All kinetic measurements performed in this thesis were conducted by mixing 

identical volumes of the stock solutions of each reagent at 20 mM concentration in CDCl3 to 
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obtain a reaction mixture at 10 mM concentration (see section 10.2.1). As mentioned earlier, 

the solubility of maleimides 101 and 100 did not allow for the generation of stock solutions at 

such concentrations. In order to overcome this problem, the set-up of the kinetic experiment 

was altered. A stock solution of nitrone 70 at 10 mM concentration in CDCl3 was prepared 

and used to dissolve an appropriate amount of neat maleimide to give an equimolar mixture 

of both reagents. Bringing the maleimides in contact with the nitrone bearing 

complementary recognition site increased their solubility significantly and a clear solution 

was obtained after sonication for three minutes. The solution was then transferred into an 

NMR tube and the kinetic measurements were conducted. In order to obtain comparable 

values for the four maleimide compounds, this procedure was applied to all four reactions. 

The progression of the reaction was followed by 1H NMR spectroscopy over 16 h at 0 ºC and 

deconvolution of the obtained spectra gave rise to the arrayed concentration vs time profiles 

depicted in Figure 4.4a.

Figure 4.4 a) Arrayed concentration vs time profiles for the individual reaction of 72, 66, 100 and 101 
with nitrone 70 at 10 mM reagent concentration in CDCl3 at 0 ºC giving rise to autocatalytic templates 
trans-94 (•), trans-102 (◆), trans-103 (■) and trans-104 (▴). All cis-products were omitted for clarity. b) 
Rate vs time profiles calculated from the profiles in a) with identical colour coding for the reaction 
products.
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! As expected, all four reactions proceeded through an autocatalytic pathway for the 

trans-diastereoisomers resulting in the typical sigmoidal shape for the rate profiles. It can 

also be seen that the differences in activity for the replicators bearing different recognition 

groups are only marginal. After 16 h, the conversion of starting material was calculated by 
1H NMR spectroscopy to be 80% for 101, 78% for 100  and 82% for both 66 and 72  with the 

trans/cis ratio to be highest for 104 (24:1) followed by 103  and 94 (both 21:1) and lowest for 

102 (19:1).

! The effect of altering the set-up of the experiments can be seen for the reaction 

between 72 and nitrone 70. Compared to the results presented in chapter 3, a drop in 

conversion is accompanied by a decrease of the trans/cis ratio from a previous 35:1 to 21:1. 

This finding can be explained with the fact that the concentration of maleimide is less than 

10 mM at the start of the reaction reducing the impact of recognition-mediated processes on 

the expense of the bimolecular reaction which resulted in an increased formation of the cis-

diastereoisomer.

! Fitting a polynomial to the data obtained for the concentration vs time profiles and 

taking the first derivative thereof constructed the corresponding rate vs time profiles for the 

four reactions (Figure 4.4b). Again, only a minimal difference can be seen for the set of 

replicators. The maxima for all four systems can be found after about 15000 seconds and the 

absolute values vary between 0.191 µM s–1 for the system based on 101 and 0.210 µM s–1 for 

72 with the ones for 100 and 66 calculated as 0.204 and 0.196 µM s–1, respectively.

! Altogether, it can be stated that the experimental data does not reflect any major 

trends for the reactivity of the four components. The subtle differences in reactivity seen for 

the set of replicators are well within the error range of the experiments conducted and it is 

appropriate to conclude that the variation of the association constant in the range of 1570 - 

4030 M–1 has no measurable impact on the performance of this type of replicator. In order to 

establish the source of this indifference, we turned to computational fitting of the 

experimental results.

4.4.2 Fitting and analysis

The SimFit package was used to fit the experimental data to the kinetic model used in 

chapter 3 for self-replicating systems. The reaction between control nitrone 81 and maleimide 

72  was used to extract a common bimolecular rate constant of 2.23 × 10–4 M–1 s–1 and the 

appropriate association constants were taken from Table 4.1. Fitting of the four individual 

reactions proceeded with modest R values and provided values for the recognition-mediated 
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rate constant and the stability of the duplex which allowed for the calculation of the effective 

molarity and the free energy of connection (Table 4.2). When comparing the kinetic 

parameters for the individual reactions, no apparent correlation can be seen between the 

association constants and the efficiency of the replicator. All values for the effective 

molarities were calculated to be in the range of 12.5 to 25.7 M–1 with 103 showing the highest 

acceleration followed by 104, 94 and 102. Also the duplex stabilities seem to form an 

arbitrary order with 103 (10.9 kJ mol–1) > 102  (10.5 kJ mol–1) > 94 (10.0 kJ mol–1) > 104 (9.8 

kJ mol–1).

Table 4.2 Kinetic parameters extracted for the self-replicating reactions of maleimides 72, 66, 100 and 
101 with nitrone 70 at 0 ºC in CDCl3 at 10 mM reagent concentration as depicted in Figure 4.4 using 
SimFit.

trans-94 trans-102 trans-103 trans-104

bimolecular rate 
constant ‡ / M–1 s–1 2.23 × 10–4 2.23 × 10–4 2.23 × 10–4 2.23 × 10–4

recognition-mediated 
rate constant / s–1 4.14 × 10–3 2.79 × 10–3 5.74 × 10–3 4.97 × 10–3

effective molarity / M 18.6
69.8 (cf. 3.4.1) 12.5 25.7 22.3

!Gs / kJ mol–1 10.0
11.9 (cf. 3.4.1) 10.5 10.9 9.8

R-value / % 6.11 4.04 6.12 3.59

‡ bimolecular rates estimated from the reaction of 72 with 81

4.4.3 Reaction of the set of maleimides with nitrone 71

Next, the reactions between the same set of maleimides with phenylacetic acid nitrone 71 

were performed following the mixing procedure outlined in section 4.4.1. Initial experiments 

were conducted at a reagent concentration of 10 mM in CDCl3 and 0 ºC (Figure 4.5a). 

However, broadening of the signals in the 1H NMR spectra significantly worsened the 

quality of the deconvolution at that temperature. Therefore, all four experiments were 

repeated at 10 ºC to produce the array of concentration vs time profiles depicted in Figure 

4.5b.
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Figure 4.5 Arrayed concentration vs time profiles for the individual reaction of 72, 66, 100 or 101 with 
nitrone 71 at 10 mM reagent concentration in CDCl3 at a) 0 ºC and b) 10 ºC giving rise to AB systems 
cis-95 (◦), cis-105 (◇), cis-106 (□) and cis-107 (Δ) as well as autocatalytic templates trans-95 (•), 
trans-105 (◆), trans-106 (■) and trans-107 (▴). Rate vs time profiles calculated from the profiles 
presented in b) for c) the cis-isomers of the AB systems and d) the autocatalytic trans-isomers with 
identical colour coding for all reaction products. 

! Compared to the corresponding reaction between maleimide 72 and nitrone 71 at 0ºC 

as analysed in chapter 3, a very similar progression for the formation of both trans- and cis-

diastereoisomers can be seen. We established that the formation of the cis-product proceeded 

via an AB complex whereas the trans-product was formed in an autocatalytic manner. The 

same reactivity is also found for the set of maleimides bearing variable substituent pattern. 

In all four cases, the cis-isomer is the main product and its formation shows the rate profile 
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typical for an AB system. On the other hand, the rate profiles for the four trans-products do 

not show the usual sigmoidal shape since they are competing against dominant AB systems. 

Their autocatalytic nature was however established by doping experiments and addition of a 

competitive inhibitor (see section 3.4.2). The conversion of starting material after 16 h was 

calculated by 1H NMR spectroscopy and was found to be highest for 72 (89%) followed by 66 

and 101 (both 87%) and 100 (81%). Interestingly, a clear splitting of the rate profiles into two 

groups can be seen which is reflected by the cis/trans ratio of the four diastereoisomeric 

products. Templates 105 and 95 show a high tendency for the formation of the cis-isomer 

resulting in a ratio of 3.7:1 and 3.6:1, respectively, whereas templates 106 and 107 produced 

slightly more trans-isomers yielding a ratio of 2.0:1 for both.

! Additionally, the first derivatives of the concentration vs time profiles were 

determined in order to obtain the corresponding rate vs time profiles. The results of the 

calculations are presented separately for the cis-isomers (Figure 4.5c) and the trans-isomers 

(Figure 4.5d). The order of the initial rates for the formation of the cis-isomers was found to 

be 95 (0.761  µM  s–1) > 105 (0.708  µM s–1) > 106 (0.604 µM s–1) > 107 (0.525 µM s–1) which 

corresponds well with the values for the single point association of the recognition event. No 

such clear trend was seen for the autocatalytic trans-templates with 95 having the highest 

initial rate of 0.212 µM s–1 followed by 106  (0.197 µM s–1), 105 (0.158 µM s–1) and 107  (0.147 

µM s–1).

! Overall, it can be stated that despite the complexity caused by the presence of two 

different recognition-mediated processes, the experimental data suggests a direct 

relationship between the strength in recognition and the initial rate of formation for the cis-

products via the AB pathway. However, the small differences in initial rate seen for the set of 

replicators does not provide the basis for drawing similar conclusions. Most importantly, the 

experimental data provided no explanation for the splitting of the rate profiles into two 

groups and we therefore once more turned to computational analysis.

4.4.4 Fitting and analysis

The SimFit package was used to fit the experimental data to the kinetic model used in section 

3.4.2 for the hybrid system with concomitant formation of an AB system and a self-replicator. 

The reaction between control nitrone 82 and maleimide 72 was used to extract a bimolecular 

rate constant of 3.68 × 10–4 M–1 s–1 for the trans-isomer and 2.06 × 10–4 M–1 s–1 for the cis-

isomer. The appropriate association constants were taken from Table 4.1. In case of the self-

replicators, the recognition-mediated rate constants and the stability of the duplexes were 
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determined which allowed for the calculation of the effective molarities and the free energies 

of connection (Table 4.3). Fitting of the data proceeded smoothly for 95, 105 and 107 with R 

values around 2%, whereas the reaction of 106 gave a significantly higher error of 7.87%. As 

seen for the self-replicating systems, it is not possible to correlate the calculated results with 

the change in association constant. Also the splitting of the rate profiles is not reflected in the 

data since the differences for both the effective molarities and the duplex stabilisation are 

similar for all four reactions. Values for both the effective molarities and the free energy of 

connection are highest for 105 followed by 95, 106  and 107. For the set of AB systems giving 

rise to the cis-species, the fitting procedure provided values for the rate-enhancement which 

allowed for the calculation of the effective molarities (Table 4.4). Other than in the case of the 

trans-isomers, a grouping of the results can be seen. 95 and 105 show significantly higher 

values, 0.733 and 0.694 M, than 106 and 107 with 0.452 and 0.472 M.

Table 4.3 Kinetic parameters extracted for the self-replicating reactions of maleimides 95, 105, 106 and 
107 with nitrone 71 at 10 ºC in CDCl3 at 10 mM concentration as depicted in Figure 4.5 using SimFit.

trans-95 trans-105 trans-106 trans-107

bimolecular rate 
constant ‡ / M–1 s–1 3.68 × 10–4 3.68 × 10–4 3.68 × 10–4 3.68 × 10–4

recognition-mediated 
rate constant / s–1 7.04 × 10–3 8.24 × 10–3 6.17 × 10–3 5.18 × 10–3

effective molarity / M 19.1 22.4 16.8 14.1

!Gs / kJ mol–1 5.20 6.37 4.69 4.15

R-value / % 2.64 2.86 7.87 2.08

‡ bimolecular rates estimated from the reaction of 72 with 82

Table 4.4 Kinetic parameters extracted for the AB products between maleimides 72, 66, 100 and 101 
with nitrone 71 at 10 ºC in CDCl3 at 10 mM concentration as depicted in Figure 4.5 using SimFit.

cis-95 cis-105 cis-106 cis-107

bimolecular rate 
constant ‡ / M–1 s–1 2.06 × 10–4 2.06 × 10–4 2.06 × 10–4 2.06 × 10–4

recognition-mediated 
rate constant / s–1 15.1 × 10–5 14.3 × 10–5 9.32 × 10–5 9.74 × 10–5

effective molarity / M 0.733 0.694 0.452 0.472

‡ bimolecular rates estimated from the reaction of 71 with 82
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4.5 Screening the set of nitrones 116, 117, 118 and 119

4.5.1 Reaction of the set of nitrones with maleimide 33

Having obtained data for two sets of experiments in which the recognition site was altered 

on the maleimide reagent, we set out to further probe the effect of the same variation on the 

nitrone building block. The set of four nitrones 116, 117, 118 and 119  was reacted with 

maleimide 33 to give rise to four diastereoisomeric products 121, 122, 123 and 124, 

respectively. Work published by our group established that the reaction between a derivative 

of nitrone 117 bearing a methyl group instead of the solubilising octyne group formed a 

highly efficient self-replicating system with 33.[140]

Figure 4.6 a) Arrayed concentration vs time profiles for the individual reaction of 116, 117,  118 or 119 
with phenylacetic acid 33 at 10 mM reagent concentration in CDCl3 at 0 ºC giving rise to autocatalytic 
templates trans-121 (•), trans-122 (◆), trans-123 (■) and trans-124 (▴), respectively. All cis-products 
were omitted for clarity. b) Rate vs time profile calculated from the profiles in a) with identical colour 
coding for all reaction products.
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! In order to establish the efficiency of the four test reactions, the reagents were mixed 

at a concentration of 10 mM in CDCl3 and the solution was incubated at 0 ºC. The 

progression of the reaction was followed by 1H NMR spectroscopy over 16 h and 

deconvolution of the obtained spectra gave rise to the arrayed concentration vs time profiles 

depicted in Figure 4.6a. As expected, all four reactions proceeded via an autocatalytic 

pathway with the trans-diastereoisomers showing the typical sigmoidal shape. It can be seen 

that the activity for trans-116 is slightly higher than for the other three autocatalytic 

templates. After 16 h, the conversion of starting material was calculated by 1H NMR 

spectroscopy to be 90% for 121 and 88% for the other three templates 122, 123 and 124 with 

the trans/cis ratio highest for 121 (220:1) followed by 122 (100:1) and 123  (94:1) and lowest for 

124 (62:1).

! Fitting a polynomial to the obtained concentration vs time profiles and taking the first 

derivative thereof constructed the corresponding rate vs time profiles (Figure 4.6b). 

Compared to the analysis of the self-replicating systems based on 72 and 70, a clear 

difference can now be seen for the point in time and the magnitude of the maximum rates for 

the four individual reactions. The maximum rate of 0.318 µM s–1 for trans-121 was found 

after around 10000 seconds whereas the maximum rates for trans-122 (0.277 µM s–1), 

trans-123 (0.282 µM s–1) and trans-124 (0.262 µM s–1) occurred after 12000 seconds.

! In general, the observed trends are in agreement with the change in association 

constants as depicted in Table 4.1. The interaction between 4-bromophenylacetic acid and the 

set of four amidopyridine recognition sites showed the highest value for the 4,6-dimethyl 

substitution (1770  M–1) with the other three substituent pattern giving significantly lower 

values in the range of 850 - 1020 M–1. The exceptional position of the 4,6-dimethyl substituent 

is reflected in the concentration vs time profile as well as the derived data. The reaction of 116 

and 33 had the highest conversion of starting material and resulted in the highest selectivity 

for the trans-product. The maximum rate occurred earlier than for the other three templates 

and the value was highest. This correlation between Ka value and the autocatalytic activity 

suggests that strengthening the recognition event has a positive impact on the performance 

of the replicator. However, the relative differences in association constant for the other three 

templates seem to be too little to have a pronounced effect on their replicating efficiency. In 

order to further investigate the obtained trends, we again turned to computational fitting of 

the experimental results.
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4.5.2 Fitting and analysis

Fitting of the obtained data was conducted with SimFit using the kinetic model shown in the 

appendix. The bimolecular rate constant was obtained from the control reaction of 116 with 

methyl ester 57 as 1.12 × 10–4 M–1 s–1 for all four reactions and the association constants were 

taken from Table 4.1. In the fitting procedure, the rate constant for the recognition-mediated 

reaction and the duplex stabilisation were determined and used to calculate the effective 

molarities and the free energies of connection (Table 4.5). Fitting proceeded smoothly with 

low R-values.

! Again, no obvious trends that can be assigned to the increase in association constants 

can be seen in the data. The order for the effective molarities was found to be 121 > 123 > 122 

> 124 with the values for the free energy of connection decreasing in the same order. 

Interestingly, a splitting for the recognition sites with and without 4-methyl substituent can 

be seen. The values for the formation of 121 and 123 are similar and significantly higher than 

the parameters for the formation of 122  and 124. However, this splitting is not directly visible 

in the obtained rate profiles suggesting that the increase in effective molarity is neutralised 

by the increase in free energy of connection.

Table 4.5 Kinetic parameters extracted for the self-replicating reactions of maleimides 116, 117, 118 and 
119 with phenylacetic acid 33 at 0 ºC in CDCl3 at 10 mM reagent concentration as depicted in Figure 
4.6 using SimFit.

trans-121 trans-122 trans-123 trans-124

bimolecular rate 
constant ‡ / M–1 s–1 1.12 × 10–4 1.12 × 10–4 1.12 × 10–4 1.12 × 10–4

recognition-mediated 
rate constant / s–1 7.33 × 10–3 4.64 × 10–3 7.21 × 10–3 3.98 × 10–3

effective molarity / M 27.5 17.4 27.1 15.0

$Gs/ kJ mol–1 7.0 5.1 6.6 4.7

R-value / % 3.86 2.46 2.51 1.97

‡ bimolecular rates estimated from the reaction of 116 with 57

! This irregularity in the performance becomes even more evident when the results for 

the kinetic parameters for the effective molarity and the free energy of connection for the two 

self-replicating sets are combined in one graph (Figure 4.7). The appropriate values were 

taken from Table 4.2 and Table 4.5, respectively. In both cases, the distribution of the values 
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seems arbitrary without any direct connection to the association constants obtained 

experimentally. In order to gain a clearer insight into the dependence of the performance of a 

self-replicator on variables such as the effective molarity, the free energy of connection and 

the association constant, a set of simulations was performed.

Figure 4.7 Arrayed graph of the calculated values for a) the effective molarity and b) the absolute 
value of the free energy of connection for the reaction of the set of maleimides with carboxy nitrone 70 
(System I, Figure 4.2) and the set of nitrones 116-119 with maleimide 33 (System II, Figure 4.3) taken 
from Table 4.2 and Table 4.5, respectively. The substituent pattern of the reactant is indicated by the y-
axis.
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4.5.3 General calculations for a self-replicating system

The kinetic model used for the fitting of the experimental data was converted into a 

simulation script which allowed for the variation of the key kinetic parameters using the 

ISOSIM mode of the SimFit package. In order to mimic the two regimes of the kinetic 

parameters obtained by fitting of the experimental data, an effective molarity of 15 M was 

combined with a free energy of connection of 3.7 kJ mol–1 (Figure 4.8a) and an effective 

molarity of 30 M was used in combination with a free energy of connection of 6.8 kJ mol–1 

(Figure 4.8b). For both scenarios, values of 500 and 2000 M–1 were chosen for the association 

constants to allow for a realistic representation of the experimental data. All simulations 

were performed for 10 mM starting material concentration.

Figure 4.8 Simulated rate profiles on the basis of self-replicating systems 121,  122,  123 and 124 at 
10 mM starting material concentration. a) The kinetic parameter were set to simulate the situation for 
the self-replicating formation of 122 and 124 with EM = 15 M and $Gs = 3.7 kJ mol–1 with association 
constants of 500 M–1 (––) and 2000 M–1 (––). b) The kinetic parameter were set to simulate the situation 
for the self-replicating formation of 121 and 123 with EM = 30 M and $Gs = 6.8 kJ  mol–1 with 
association constants of 500 M–1 (––) and 2000 M–1 (––).

! All four curves exhibit the rate profile of a highly efficient self-replicating system 

showing the typical sigmoidal shape with a maximum rate after the initial lag period. In both 

scenarios, the reaction with the higher association constant proceeds with higher efficiency 

even though the differences between the graphs are rather small. This finding can be 

explained with the fact that higher binding creates a larger amount of catalytically active 

ternary complex. With the effective molarity and the stabilisation of the product duplex at a 

constant level, this increase in concentration leads to the up-regulation of product formation.
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! Furthermore, a comparison between the rate profiles for the two scenarios implies 

that, at constant binding strength, the combination of low EM with low $Gs gives very 

similar efficiencies than a combination of high EM and high $Gs. This fact can be understood 

when considering the mechanism of self-replication and the dependences of the reaction rate 

r on the concentration of the ternary complex [A·B·T] between template T and building 

blocks A and B as

Equation 4.1

A low free energy of stabilisation leads to a larger amount of free product template T which 

is necessary to form the catalytically active ternary complex [A·B·T], however, a low EM 

means that the reaction within the complex is less enhanced. On the other hand, strong 

duplex association lowers the amount of available free template but a high EM ensures that 

once the ternary complex is formed, the reaction proceeds with high rate.

! This reasoning again highlights that the concentration of the ternary complex [A·B·T] 

has a major impact on the performance of the self-replicator. It appears however, that a 

change in association constant from 500 to 2000 M–1 has only very little effect on the overall 

concentration of the ternary complex since nearly all available product templates are 

saturated with building blocks. It would therefore be feasible to expand the range of 

association constants investigated and consider using recognition sites with lower Ka values. 

Another possibility to weaken the formation of the ternary complex is to work at lower 

starting material concentration. Reducing the concentration limits the contribution of the 

recognition-mediated process by weakening the binding event between the recognition sites. 

The dissociation constant Kd reflects the concentration at which only half of the molecules are 

bound and can be calculated by taking the inverse of the association constant Ka

Equation 4.2

 r ! kcat[A·B·T ]+ kbi[A][B] = kbi (EM ! [A·B·T ]+ [A][B])

Kd =
1
Ka
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For an association constant of 500 M–1, the Kd is 2 mM and for 2000 M–1 the value drops to 

0.5  mM. Working at concentrations significantly higher than the Kd ensures that the 

recognition complex is the dominant species. This is the case for the reactions shown in 

Figure 4.8 which were performed at a starting material concentration of 10 mM. As a matter 

of fact, when the exact same simulations are repeated at a reagent concentration close to the 

Kd, in this case 1 mM, the rate profiles are of very different shape (Figure 4.9).

Figure 4.9 Simulated rate profiles on the basis of self-replicating systems 121, 122, 123 and 124 at 1 mM 
starting material concentration. a) The kinetic parameters were set to simulate the situation for the 
self-replicating formation of 122 and 124 with EM = 15 M and $Gs = 3.7 kJ mol–1 with association 
constants of 500 M–1 (––) and 2000 M–1 (––). b) The kinetic parameters were set to simulate the 
situation for the self-replicating formation of 121 and 123 with EM = 30 M and $Gs = 6.8 kJ mol–1 with 
association constants of 500 M–1 (––) and 2000 M–1 (––).

! It can clearly be seen that the efficiencies of the replicating systems are much lower 

than for the reactions at 10 mM. The change of association constant is now apparent for both 

sets of chosen EM and $Gs values with the reaction at 2000 M–1 being significantly faster 

than the reaction at 500 M–1. However, when comparing the reactions between both sets at a 

fixed association constant of either 500  M–1 or 2000 M–1, the differences are still small 

suggesting that the counterbalancing effect between the effective molarity and the free 

energy of connection is still valid. It should however be pointed out that working at low 

starting material concentration close to the Kd results in a relatively high concentration of free 

building block which can then react in a bimolecular fashion thereby reducing the selectivity 

of the reaction. This effect was already visible in the trans/cis selectivities obtained for the 

reactions between the set of nitrones 116-119 and maleimide 33. Further problems might arise 

with the analysis of reactions run at such low concentrations using 1H or 19F NMR 

spectroscopy.
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! In summary, the theoretical analysis of this type of replicating system has shown that 

the effect of recognition strength variation is best seen when the reactions are carried out at a 

concentration close to the value of the dissociation constant of the corresponding binding 

event. At this point, saturation of the catalytically active ternary complex is avoided without 

shutting down recognition completely, and changes in the association constants have a 

higher impact on the performance of the replicator. This finding also explains the failure to 

detect any change in activity for the self-replicating reaction of the set of maleimides 72, 66, 

100 and 101 with nitrone 70 since the association constants between carboxylic acid and the 

amidopyridine moiety were determined to be higher than 2000 M–1. In our simulations based 

on the set of replicating structures depicted in Figure 4.6, lowering the reagent concentration 

from 10 mM to 1 mM had a major impact on the dependence of the reaction on the 

association constant. On the other hand, it is also possible to increase the value of the 

dissociation constant by reducing the association constant of the binding event. This would 

then allow the test reactions to be performed at higher concentrations, but it would also 

require a complete re-design of the replicating systems and their recognition sites.

4.5.4 Reaction of the set of nitrones with maleimide 120

The second test reaction of the set of nitrones 116, 117, 118 and 119 was performed with 

maleimide 120. Each of the nitrones was reacted with the maleimide at a concentration of 10 

mM in CDCl3. The two reagents were incubated at 0 ºC and the progression of the reaction 

was followed for 16 h by 1H NMR spectroscopy. Deconvolution of the obtained data allowed 

for the construction of the concentration vs time profiles depicted in Figure 4.10a. As 

established previously, the reaction of a structurally nearly identical nitrone derivative with 

120 gave rise to a rate-enhanced formation for the cis-product via AB pathway.[197] The same 

reactivity is also found for the set of nitrones bearing variable substituent pattern.

! In all four reactions, the cis-isomer is the major product and its formation shows the 

rate profile typical for an AB system. A splitting for the profiles can be seen with cis-125 

showing the most pronounced curvature followed by cis-126, cis-127 and cis-128. After 16 h, 

the conversion of starting material was calculated by 1H NMR spectroscopy to be in the 

range of 93-96% for all four reactions with a final cis/trans ratio of 74:1 for 116, 53:1 for 117 

and 33:1 for both 119 and 118.
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Figure 4.10 a) Arrayed concentration vs time profiles for the individual reaction of 116, 117, 118 or 119 
with phenylacetic acid 120 at 10 mM reagent concentration in CDCl3 at 0 ºC giving rise to AB systems 
cis-125 (◦), cis-126 (◇), cis-127 (□) and cis-128 (Δ), respectively. All trans-products were omitted for 
clarity. b) Rate vs time profile calculated from the profiles in a) with identical colour coding for all 
reaction products.

! Taking the derivative of the polynomial fitted to the obtained concentration vs time 

profiles resulted in the corresponding rate vs time profiles (Figure 4.10b). A clear trend can be 

seen for the differences in maximum rate for the four reactions all of which were found at the 

start of the reaction. The highest rate was calculated for cis-125 (1.30 µM s–1) followed by 

cis-126 (1.13 µM s–1), cis-127 (0.95 µM s–1) and cis-128 (0.82 µM s–1).

! Overall, analysis of the experimental data suggests that the efficiencies of the 

screened AB systems correspond with the values for the single point association of the 

recognition event. Strong association results in a high initial rate for the formation of the cis-

isomers. In order to rationalise this trend, we once more turned to calculations to extract 

kinetic parameters for the set of four experiments.
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4.5.5 Fitting and analysis

A kinetic model was developed for all plausible interactions between the building blocks 

within the AB system (see appendix). For the fitting procedure, this script was used to extract 

values for the recognition-mediated rate constant which allowed for the calculation of the 

effective molarities. The corresponding association constants were taken from Table 4.1  and 

the same bimolecular rates as in 4.5.2 were employed for all four compounds. Fitting of the 

experimental data proceeded smoothly with good to modest R values (Table 4.6). 

Satisfyingly, the trend observed for the rate profiles is reflected in the results of the 

calculation. The highest rate-acceleration of 1.97 × 10–4 s–1 was found for the reaction of 116 

followed by 117 (1.58 × 10–4 s–1), 118 (1.44 × 10–4 s–1) and 119 (1.14 × 10–4 s–1). The calculations 

of the effective molarities are based on the assumption that a variation of the substituent 

pattern on the amidopyridine site has no influence on the bimolecular rate constants of the 

reactions between the maleimide and the four nitrones. Using the same rate constants for all 

four reactions maintains the same order for the effective molarities with the highest value of 

1.76 M–1 for 125 followed by 1.42 M–1 for 126, 1.29 M–1 for 4EA and 1.02 M–1 for NoEA.

Table 4.6 Kinetic parameters extracted for the AB products of the reaction between maleimides 116, 
117, 118 and 119 with maleimide 120 at 0 ºC in CDCl3 at 10 mM reagent concentration using SimFit.

cis-125 cis-126 cis-127 cis-128

bimolecular rate 
constant ‡ / M–1 s–1 1.12 × 10–4 1.12 × 10–4 1.12 × 10–4 1.12 × 10–4

recognition-mediated 
rate constant / s–1 1.97 × 10–4 1.58 × 10–4 1.44 × 10–4 1.14 × 10–4

effective molarity / M 1.76 1.42 1.29 1.02

R-value / % 4.60 5.12 1.18 2.21

‡ bimolecular rates estimated from the reaction of 116 with 57

! It is evident from the calculated data that the effective molarities increase with the 

association constant. Stronger binding between the two reactive partners favours their 

reaction via the AB pathway. In order to interpret these results, some basic principles of the 

AB system are highlighted in the energy profile depicted in Figure 4.11.
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Figure 4.11 Energy profile for the reaction between A and B via bimolecular (red) and AB (blue) 
pathway.

! Depending on wether association can take place between both starting materials, two 

different energy profiles can be created. In the absence of recognition, two hypothetical 

reagents A and B react to give a product via transition state [A+B]‡ with the corresponding 

free energy of activation $Gbi‡. If recognition takes place, the ground state between A and B 

is stabilised by the free energy $GAB and the reaction proceeds via transition state [A·B]‡ 

which differs from the previous transition state by $($G‡). Overall, the difference $($G‡) 

between the activation free energies $Gbi‡ and $Gcat‡  can be derived as

Equation 4.3

! Furthermore, the Eyring equation allows for the calculation of reaction constant k 

from the free energy of activation $G‡

Equation 4.4

with kB as the Boltzmann constant, h  the Planck constant, R the gas constant and T the 

temperature. Combining this equation with the definition for the effective molarity EM 

provides a direct relationship between the activation free energies for the bimolecular 
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reaction $Gbi‡ and the recognition-mediated reaction $Gcat‡ , and the rate acceleration in the 

binary complex

Equation 4.5

In the last transformation, the relationship from Equation 4.3 was employed, providing a 

clear picture of the dependences of the effective molarity. High EM values are achieved when 

the absolute value of the transition state stabilisation $($G‡) is large compared to the 

absolute value of the ground state stabilisation $GAB. With the value for $GAB

Equation 4.6

Equation 4.5 can be altered to give

Equation 4.7

! For an effective molarity of 1 M, the equation simplifies to

Equation 4.8

in which the ground state stabilisation caused by the recognition event is identical to the 

transition state stabilisation $($G‡). Even though the rate constants are the same for the 

bimolecular reaction and the recognition-mediated reaction, the recognition process creates a 

larger concentration of reactive complex and the reaction therefore proceeds with higher rate. 

The rate of the reaction can be estimated as

EM =
kcat
kbi

= e
1
RT

!Gbi
‡ "!Gcat

‡( ) = e
1
RT

!(!G‡ )"!GAB( )

!GAB = RT lnKa

RT ln(EM ! Ka ) = "("G‡ )

RT lnKa = !(!G‡ ) = !GAB
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Equation 4.9

! For reactions at starting material concentrations significantly larger than the 

dissociation constant Kd, nearly all of the reagents are bound as binary complex and the 

contribution of the bimolecular reaction can be neglected to give

Equation 4.10

which, unlike for self-replicating system, points at a direct relationship between the rate of 

the reaction, the effective molarity and the concentration of the binary complex.

! Using the obtained values for the association constants Ka and the EM allowed for the 

calculation of the absolute values for both the free energy of the transition state $($G‡) and 

the ground state stabilisation $GAB (Table 4.7). It is evident that the stabilisation of the 

ground state $GAB increases with increasing association constant. This trend is compensated 

by $($G‡) which is in all four cases larger than $GAB. However, the absolute difference 

between both free energies diminishes with decreasing association constants from 1.3 kJ mol–

1 for 125 to only 0.1 kJ mol–1 for 128.

Table 4.7 Calculation of absolute values of the free energies $GAB and $($G‡) for the AB products of 
the reaction between maleimides 116, 117, 118 and 119 with maleimide 120 at 0 ºC in CDCl3 at 10 mM 
reagent concentration as depicted in Figure 4.11 using Equations 4.5 and 4.6.

cis-125 cis-126 cis-127 cis-128

$GAB / kJ mol–1 17.0 15.7 15.4 15.3

EM / M 1.76 1.42 1.29 1.02

$($G‡) / kJ mol–1 18.3 16.5 16.0 15.4

$($G‡) – $GAB / kJ mol–1 1.3 0.8 0.6 0.1

! These calculations verify that stabilisation of the transition state occurs for all four 

systems and, in addition, that a direct relationship between the recognition strength and the 

absolute value of $($G‡) is evident. This fact suggests that stronger binding between the two 

r ! kcat " [A # B]+ kbi " [A]" [B] = kbi (EM " [A # B]+ [A]" [B])

r ! kbi " EM " [A # B]
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building blocks lowers the transition state by positioning the two reactive partner in a more 

favourable orientation.

! With these results at hand, we next envisaged to simulate scenarios on the basis of 

this set of AB systems to gain deeper insight into the principles of this type of recognition-

mediated reaction.

4.5.6 General calculations for an AB system

Initially, we simulated the AB systems by converting the kinetic model used by SimFit in the 

fitting procedure to the corresponding ISOSIM file. Values for the bimolecular rates remained 

unaltered, but the effective molarities were varied to 0.6, 1.2, 1.8 and 2.4 M to give rise to four 

sets of simulations (Figure 4.12). For each set, five different association constants ranging 

from 1 × 102 M–1 to 1 × 106 M–1 were employed.
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Figure 4.12 Simulation of the concentration vs time profiles for an AB system on the basis of the 
reaction of maleimide 116 and nitrone 120 with bimolecular rate constants of 2.66 × 10–4 M–1 s–1 and 
1.12 × 10–4 M–1 s–1 for the formation of the trans- and cis-isomers, respectively. The unimolecular rate 
constants were set to give effective molarities of a) 0.6 M , b) 1.2 M , c) 1.8 M and d) 2.4 M. The value of 
the association constant in M–1 is indicated by the legend below the graphs.
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! In all four sets of simulation, some fundamental principles can be seen. The efficiency 

of the AB system increases with increasing association constant at a given effective molarity. 

Effective molarities lower than 1 M suggest ground state stabilisation with $GAB > $($G‡) 

whereas effective molarities larger than 1 M indicate some stabilisation of the transition state 

and $($G‡) > $GAB. In this case, the observed enhancement for a constant effective molarity 

is solely a consequence of the increase in concentration of the reactive binary complex since a 

fixed EM value results in a constant value for the difference between $($G‡) and $GAB 

according to Equation 4.5. This finding explains the saturation seen for high association 

constants at which an increase has only very little effect on the concentration of the 

catalytically active binary complex. When working at 10 mM starting material concentration, 

an increase in Ka from 1 × 102 M–1 to 1 × 103 M–1 implies a change in concentration for the 

binary complex from 9.69 mM to 9.90 mM while a further increase to 1 × 104 M–1 contributes 

only another 0.07 mM to 9.97 mM.

! An up-regulation of the EM value leads to an increased stabilisation of the transition 

state resulting in a greater value for $($G‡) and can be seen in the shape of the rate profiles 

which show higher initial rates and a stronger curvature. However, the relative change in 

efficiency again remains equal for all five association constants.

! The most realistic situation reflecting the experimental data can be seen in Figure 

4.12b with an association constant of 1 × 103 M–1. It becomes evident that the system acts 

close to saturation and that further strengthening of the association constant or an increase in 

effective molarity has little impact on the efficiency of the AB system.

! In order to elucidate the boundaries of this type of system, we performed additional 

calculations using the Gepasi program (version 3.30)[199] which allowed for the simultaneous 

variation of two parameters and the construction of the response surfaces depicted in Figure 

4.13. Four sets of simulations were conducted with increasing starting material concentration 

ranging from 1 mM to 20 mM. Variation of the effective molarity EM was performed in the 

range of 0.1 to 10 M and assigned to the x-axis on a logarithmic scale. The y-axis constitutes 

the variation of the association constant Ka from 0 to 2000 M–1 which encompasses the range 

of the experimental data. The initial rate was identified as an appropriate measure for the 

efficiency of the AB system and was set as z-axis in the graphs. In order to allow for facile 

interpretation of the graphs, the surface was furthermore coloured using a code in which 

dark blue tones indicate low initial rates while high initial rates are shown in light colours. 

For better comparison of the four scenarios, all graphs are shown on the same scale for the 

initial rate. It should be noted that also the simulation for the concentration of 1 mM shows a 

profile identical to the other three graphs only less pronounced.
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Figure 4.13 Simulated response surfaces for the AB reaction between A and B on the basis of the set of 
reactions listed in Table 4.6 using Gepasi. The bimolecular rate was set to 1.12 × 10–4 M–1 s–1. The 
surface shows the change of initial rate upon variation of the association constant and the effective 
molarity. The initial concentration of starting material is indicated as header. The shading of the 
response surface reflects the initial rate according to the legend below the graphs and is meant for 
visual guidance.

! For all four concentrations, clear trends are visible. The general Equation 4.10 can be 

modified to provide an expression for the initial rate of the reaction rinitial
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with [A·B]initial as concentration of the binary complex at the start of the reaction. From this 

modified equation, the shape of the response surfaces can be explained. The initial rates are 

proportional to the magnitude of the effective molarity and the concentration of the binary 

complex which again is a direct function of the association constant and the reagent 

concentration. The equation further explains the linear relationship between the effective 

molarity and the initial rate of the reaction at constant Ka. It also highlights why the increase 

of association constant at a given effective molarity leads to a saturation of the response 

curve. As mentioned earlier, increasing the association constant beyond a certain value has 

only little impact on the concentration of the binary complex. For an association constant of 

1000 M-1, the Kd is 1 mM and when working at that concentration, only half of the molecules 

are bound and the contribution of the recognition-mediated reaction is limited. When 

working at a concentration greater than the Kd, nearly all starting material is bound in the 

[A·B] complex.

Figure 4.14 Cross sections of the response surfaces from Figure 4.13 at 850 M–1 (––) and 1770 M–1 (––) 
at 1, 5, 10 and 20 mM starting material concentration.

experimental
 data

1 mM 5 mM

10 mM 20 mM
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! This indifference towards variation of the association constant can be seen in the cross 

sections for the lowest and highest association constant used in the experiment, 850 M–1 and 

1770 M–1, respectively (Figure 4.14). Again, four different concentrations ranging from 1 mM 

to 20 mM were analysed. It can clearly be seen that the differences for the two curves are 

minimal in all four cases. The situation which is closest to the experimental data recorded at 

10 mM concentration is indicated by an arrow and also at that particular point, very little 

difference can be seen for the initial rates of the two association constants.

4.6 Summary and conclusion

In this chapter, the effect of varying the recognition strength on the performance of self-

replicating and AB systems was investigated. Four different amidopyridine recognition 

moieties were combined with two kinds of acids to give rise to a set of association constants 

in the range of 620 and 4030 M–1. Experimental data for the autocatalytic and AB systems 

were obtained and the results were further analysed by computational methods. It was 

evident that both recognition-mediated processes have a different mode of functioning 

which reflected on their differing dependences on the association constant.

! For both investigated self-replicating systems, no distinct relationship between the 

increase in association constant and the autocatalytic efficiency was determined within the 

investigated range of Ka. As a matter of fact, the efficiency of a self-replicating system relies 

on the interplay of many interconnected parameters. As shown in Equation 4.1, the rate of 

the reaction increases with the effective molarity and the concentration of the ternary 

complex [A·B·T], which itself depends on the strength of the single point association 

between the recognition sites and the concentration of free template T. In turn, the 

concentration of T is a function of the free energy of connection and furthermore related to 

the association constant of the template duplex. Strong positive cooperativity in the product 

duplex therefore limits the amount of free template and reduces the concentration of the 

ternary complex. An ideal fit of the template duplex was shown to increase the rate 

enhancement leading to a high effective molarity.

! This situation of counteracting forces is most pronounced when working at relatively 

high concentrations causing near saturation of all available product template with reagents. 

As mentioned earlier, one possibility to circumvent this rigid scenario is to reduce the 

concentration of the starting material. This would induce larger changes for the 

concentration of the ternary complex upon variation of the strength of recognition. On the 
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other hand, limiting the importance of the recognition-mediated process will increase the 

impact of the bimolecular reaction and reduce the selectivity of the reaction.

! For the AB system between the set of nitrones 116-119 and maleimide 120, a 

relationship between the increase in association constant and efficiency of the reaction was 

seen. According to Equation 4.10, the rate of the reaction is a direct function of the effective 

molarity and the concentration of the binary complex [A·B]. The calculations have proven 

that an increase in Ka indeed generated higher values for the effective molarity and increased 

the concentration of [A·B]. However, when working at 10 mM starting materials 

concentration, association constants in the range of 1000 to 2000 M–1 induce only small 

changes in the concentration of the binary complex. Accordingly, the simulations have 

shown that the biggest impact on the initial rate of the AB system upon variation of the 

association constant is seen for high effective molarities and when working with low 

association constants.

! It would therefore be insightful to repeat the reactions at concentrations close to the 

value of the Kd or to consider a complete re-design of the test reaction. A variation of the 

association constant using substituents other than methyl groups offers the possibility to 

weaken the recognition event below the value of the ‘no-methyl’ substituted amidopyridine. 

Electronegative functional groups like nitrile, nitro or acetylene are suitable candidates.
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5. Controlling replicating activity with a reversible proton switch

5.1 Using changes in pH to reversibly block recognition

In the previous two chapters, it was shown how changes in the geometry of the spacer unit 

can have a significant impact on the efficiency of a self-replicating process and how these 

differences can further be fine-tuned by variation of the strength of the association between 

the recognition units.

! In order to execute full control over the self-replicating process, it would be highly 

advantageous to design a protocol in which the recognition event can be reversibly 

influenced by external stimuli. Ideally, finding a way to selectively block and activate one or 

both of the recognition moieties without influencing the reactive sites would provide a 

remote control for switching the replicating process on and off. Previous attempts in this 

group to construct such kind of switch have focused on an AB system mediated by a binary 

complex between a maleimide bearing an acid functionality and a nitrone with a 

complementary urea recognition site (Scheme 5.1).[200] Addition of triethylamine was found 

to deprotonate the acid group on the maleimide, thereby strengthening significantly the 

recognition event between both compounds and enhancing their reaction through the AB 

pathway under preferential formation of one of two possible diastereoisomers. Addition of 

trifluoroacetic acid shut down all recognition by protonating the acid and reducing both the 

rate and selectivity of the reaction.

Scheme 5.1 Reversible proton switch based on the recognition between an urea and a phenylacetic 
acid in acetone modified from ref.  [200]. Under neutral conditions,  association between the two entities 
is limited to one hydrogen bond in resulting in a low Ka value (right side). Deprotonation allows for 
the formation of a binary complex through a two hydrogen bonding pattern (left side).

! With regard to the development of a switchable self-replicating reaction, it is 

important to note that the stability of both reagents was unaffected by the addition of the 

base and acid, and that the cycloaddition reaction proceeded smoothly independent of the 
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pH. Scheme 5.2  shows how the acid-base chemistry from the original urea recognition site 

can be translated to the recognition motif between a carboxylic acid and an amidopyridine 

which was used extensively in the preceding chapters for the design of a set of self-

replicating systems.

Scheme 5.2 Reversible proton switch using the recognition between an amidopyridine and a 
carboxylic acid in CDCl3. Under neutral conditions, strong association between the two entities occurs 
through the hydrogen bond pattern (right side).  Protonation of the recognition site limits the 
association by blocking the pyridine nitrogen and lowers the Ka value (left side).

! Association of a protonated pyridine species with a carboxylic acid was expected to 

occur with a very low association value whereas removal of the proton with a base should 

release the strong recognition between amidopyridine and acid to allow for association. As a 

consequence of the reversibility of all involved steps, it was deemed possible to enter this pH 

dependent equilibrium from both sides, by deprotonating the protonated pyridine species or 

protonating the unprotonated amidopyridine. In order to assure complete analysis of the 

operational mode of such system, the synthesis of the protonated amidopyridine analogue of 

maleimide 72 was first envisaged.

5.2 Synthesis of maleimide H-72

The final step for the formation of maleimide 72 is the closure of the maleic acid amide 85. 

Refluxing 85 in acetonitrile in the presence of 1 equivalent of ZnBr2 and an excess of HMDS 

gave rise to the desired maleimide in good yield and excellent purity. During the work-up, 

treatment of the reaction mixture with 1M HCl was followed by consecutive base wash of the 

organic fraction. Without the final basic wash, the hydrochloride salt H-72 of the native 

compound 72 could be isolated (Scheme 5.3).
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Scheme 5.3 Synthesis of maleimide H-72 as intermediate on the route to recognition maleimide 72. 
Conditions: a) ZnBr2, HMDS, MeCN, 80 ºC, 65%, then 1M aq. HCl; b) 1M aq. EDTA, DCM, rt, 97%.

Figure 5.1 Partial 500.1 MHz 1H NMR spectra of 72 (top) and its protonated derivative H-72 (below).

! Compared to 72, most noticeable in the 1H NMR spectrum of H-72 (Figure 5.1) is a 

drastic downfield shift of more than 2 ppm for the resonance arising from the amide proton 

as a consequence of the protonated pyridine ring (signal e). Simultaneously, other resonances 

from protons close to the positive charge were equally shifted although to a much lower 

degree. The signals for pyridine ring protons b and d  show a change in ppm value of 0.31 and 

0.11 ppm, respectively, and the signals for methyl groups a and c are being moved by 0.17 

and 0.10 ppm, respectively. Changes in resonance arising from the aryl protons on the 

benzene ring decreased from 0.23 ppm for f to 0.04 ppm for g with increasing distance to the 

pyridine ring. Farthest from the charged ring, signals for the maleimide protons are least 

affected and only vary by less than 0.005 ppm. Addition of one equivalent of benzoic acid to 

a 10 mM solution H-72 in CDCl3 did not have a measurable influence on the amide proton 

resonance suggesting that the single-point interaction between the protonated pyridine ring 

and the acid functionality is much lower than for the neutral pyridine derivative 72.
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5.2.1 Reactivity of maleimide H-72

The structure of recognition-disabled maleimide H-72  was further proven by reacting it with 

carboxy nitrone 70. The reaction between maleimide 72  and carboxy nitrone 70 was found to 

be a highly efficient self-replicating system for the trans-isomer (see chapter 3). However, 

blocking the recognition site in the maleimide by protonation prevents a strong hydrogen 

bonding pattern between both moieties and is expected to shut down all recognition-

mediated processes. Kinetic data was recorded in CDCl3 at 0 ºC with 10 mM reagent 

concentration for H-72 and 70 and the concentration vs time profile for the reaction is 

depicted in Figure 5.2. After 16 h, only 12% of starting materials were converted to 

cycloadducts with a selectivity of 1.3:1 in favour of cis-H-94. The low conversion suggests 

that the protonated recognition site in the hydrochloride compound is unable to promote 

recognition-mediated processes like the autocatalytic formation of trans-H-94 and both 

diastereoisomers are being formed through simple bimolecular reactions only.

Figure 5.2 Concentration vs time profile for the reaction between maleimide H-72 and carboxy nitrone 
70 to give cycloadduct H-94. The reaction was performed at 0 ºC in CDCl3 at 10 mM reagent 
concentration. The formation of trans-product is shown as red filled circles and the formation of cis-
product as blue filled diamonds.

! However, in all previous bimolecular reactions, e.g. between a maleimide and control 

nitrone 81  or 82, the final ratio of diastereoisomers was roughly 3:1 in favour of the trans-

isomer. In order to investigate the cause for the slight preference of cis-H-94 in the reaction 
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between maleimide H-72 and nitrone 70, a reaction between maleimide H-72 and control 

nitrone 81 was conducted for comparison. A 10 mM solution of each reagent was incubated 

at 0 ºC for 16 h and the progression of the reaction was followed by 1H NMR spectroscopy. 

From the obtained data, the concentration vs time profile in Figure 5.3  could be constructed. 

At the end of the measurement, 11% of starting materials were converted to a 

diastereoisomeric mixture of products H-140 with a trans/cis ratio of 3.1:1 suggesting the 

bimolecular pathway to be the only contribution.

Figure 5.3 Concentration vs time profile for the reaction between maleimide H-72 and control nitrone 
81 to give cycloadduct H-140. The reaction was performed at 0 ºC in CDCl3 at 10 mM reagent 
concentration. The formation of trans-product is shown as red filled circles and the formation of cis-
product as blue filled diamonds.

! When comparing the reactions of maleimide H-72  with acid nitrone 70 and control 

nitrone 81, a difference in selectivity becomes apparent. In the latter case, the obtained ratio 

of 3:1 in favour of the trans-diastereoisomer corresponds with the selectivity usually found 

for the bimolecular cycloaddition of a nitrone with a maleimide. The low conversion of 11% 

after 16 h further indicates the absence of any recognition-mediated reaction pathways. 

When using acid nitrone 70  as reactive partner, the ratio changes to 1.3:1 in favour of the cis-

isomer with the conversion remaining low at 12%. This low conversion again suggests that 

the reaction proceeds predominantly through the bimolecular pathway. As mentioned 

before, the association constant between the protonated amidopyridine recognition site and 
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the carboxylic acid was found to be too low to be determined by standard methods. 

However, the change in selectivity indicates the presence of some kind of minor interaction 

between the acid functionality and the protonated amidopyridine site. Since the cis-isomer is 

being up-regulated in the process, its rate-enhanced formation through the binary AB shown 

in Scheme 5.2 seems plausible. Hydrogen bonds between the carbonyl of the acid and the 

protons of the amidopyridinium moiety ensure some degree of association between the two 

components. In this complex, the reactive sites are being brought into close proximity, 

thereby increasing the rate of the reaction that leads to the formation of the cis-isomer. 

However, this enhancement in reactivity is rather small suggesting that the positioning of the 

reactive sites in the anticipated transition state is not optimal. Additionally, the existence of a 

binary complex between maleimide H-72 and acid nitrone 70 implies that less unbound 

building blocks are available in the solution which reduces the bimolecular rate of the 

formation of trans-H-94 and maintains the overall conversion at a level similar to the one 

found for a simple bimolecular reaction. Altogether, the presence of an AB type complex 

between maleimide H-72 and acid nitrone 70 inverts the selectivity of the two possible 

diastereoisomers by enhancing the formation of the cis-isomer while simultaneously 

decreasing the bimolecular rate for the formation of trans-H-94. It should be pointed out that 

the presence of weak single point interactions between H-72 and 70 corresponds with the 

absence of an effective autocatalytic pathway for the formation of trans-H-94. Key for the 

performance of a self-replicator is the formation of the active ternary complex between the 

template and the building blocks through two recognition events. With the individual 

association between the amidopyridinium and the acid moiety already being weak, the total 

concentration of this ternary complex is too low to promote any self-replicating activity.

! Overall, it was successfully demonstrated that the presence of the proton in 

maleimide H-72 inhibits its autocatalytic performance with carboxy nitrone 70 by reducing 

significantly the association between the two recognition sites. With the self-replicating 

pathway being shut down, the presence of a binary AB type complex between the two 

reagents leading to a minor enhancement of the cis-isomer was revealed.

5.3 Kinetic analysis of a pH triggered self-replicating system 

Deprotonation of maleimide H-72 was probed under conditions compatible with the 

performance of kinetic experiments. Treatment of a 10 mM solution of H-72 in CDCl3 with 

1 equivalent of NEt3 at 0 ºC was followed by 1H NMR spectroscopy and was found to give 

rise smoothly to 72 in a period of about one hour without generating any side-products. 

Initial broadening of the signals in the 1H NMR spectra visualised the proceeding 
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deprotonation. Ultimately, the base completely converted the protonated species into the 

neutral pyridine compound and the affected peaks sharpen to give rise to a spectra that 

entirely matches the one of maleimide 72.

! Next, the in-situ deprotonation of H-72 to 72 in the presence of carboxy nitrone 70 as 

reactive partner was probed. An equimolar mixture of both reagents and NEt3 at 10 mM 

concentration was dissolved in CDCl3 and incubated at 0 ºC for 16 h. The progression of the 

reaction was followed by 1H NMR spectroscopy and a concentration vs time profile could be 

constructed from the obtained data (Figure 5.4a). It can be seen that the presence of the base 

has a dramatic effect on the shape of the concentration vs rate profile as it now exhibits the 

characteristic sigmoidal shape. Mixing both reagents with NEt3 at the start of the reaction 

seems to instantly activate the recognition unit releasing the original self-replicating process 

for the formation of trans-94. The ratio of diastereoisomers for 94 after 16 h was determined 

to be 29:1 in favour of the trans-species and the conversion increased to 87%. Both values are 

only slightly lower than the ones found for the original system presented in chapter 3 (trans/

cis ratio of 38:1 and 92% total conversion) underlining the efficiency of the deprotonation.

Figure 5.4 Concentration vs time profile for the reaction between maleimide H-72 and carboxy nitrone 
70 to give template 94 in the presence of 1.0 equivalent of NEt3 added at a) t = 0 s and b) t = 14400 s. 
The formation of trans-product is shown as red filled circles and the formation of cis-product as blue 
filled diamonds. All reactions were performed at 0 ºC in CDCl3 at 10 mM reagent concentration. The 
horizontal bar above the graph indicates the presence (‘on’ with green background) and absence (‘off’ 
with red background) of NEt3.
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! On the basis of this first result, another experiment was conducted to probe whether 

release of the recognition site can be done at any stage of the reaction. In this case, one 

equivalent of NEt3 was injected to the native reaction mixture of maleimide H-72 and nitrone 

70  after 4 h (Figure 5.4b). The concentration vs time profile clearly shows that the self-

replicating mode kicks in instantly after addition of the base. The characteristic sigmoidal 

rate profile can be seen and after 16 h, the ratio of isomers was clearly in favour of trans-94 

(24:1). It is important to state at this point that working with a two-fold excess of NEt3 

significantly hampered the performance of the self-replicator mainly because of 

deprotonation of carboxy nitrone 70.

Figure 5.5 Concentration vs time profile for the reaction between maleimide H-72 and carboxy nitrone 
70 to give template 94 in the presence of 1.0 equivalent of NEt3 and 10 mol-% trans-94 added a) at the 
start of the reaction and b) at t = 14400 s.  The formation of trans-product is shown as red filled circles 
and the formation of cis-product as blue filled diamonds.  All reactions were performed at 0 ºC in 
CDCl3 at 10 mM reagent concentration. The horizontal bar above the graph indicates the presence 
(‘on’ with green background) and absence (‘off’ with red background) of NEt3.

! In order to ascertain the presence of a self-replicating pathway, doping experiments 

were conducted in which one equivalent of NEt3 was added to the reaction mixture together 

with 10 mol-% of presynthesised trans-94 template (Figure 5.5). The additives were injected 

to a reaction mixture containing a 10 mM solution of maleimide H-72  and carboxy nitrone 70 

in CDCl3 at 0 ºC at two different stages of the reaction. Both experiments demonstrated 
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successfully the interplay between the base and the template independent of whether the 

addition occurs at the start of the reaction (Figure 5.5a) or at a later stage (Figure 5.5b). 

Activating the recognition site with the base released the active maleimide compound 72 

which instantly underwent template directed synthesis to form self-replicating template 

trans-94. The presence of preformed template removes the initial lag period of the released 

self-replicator and shifts the maximum rate of the process to the start of the reaction.

! In order to rule out base catalysis for the enhancement in this system, protonated 

maleimide H-72 was reacted with recognition disabled control nitrone 81 in the presence of 

1 equivalent of NEt3 (Figure 5.6). Both reagents and base were incubated in CDCl3 for 16 h at 

0 ºC and 10 mM reagent concentration. The corresponding concentration vs time profile is 

depicted in Figure 5.6. Compared with the base free reaction (Figure 5.3), addition of the 

base did not alter the shape of the curve and resulted in comparable values for the selectivity 

(trans/cis 3.1:1) and conversion (11 % after 16 h) for both reactions.

Figure 5.6 Concentration vs time profile for the reaction between maleimide H-72 and control nitrone 
81 to give product 140 in the presence of 1.0 equivalent of NEt3.  The formation of trans-product is 
shown as red filled circles and the formation of cis-product as blue filled diamonds. The reactions was 
performed at 0 ºC in CDCl3 at 10 mM reagent concentration. The horizontal bar above the graph 
indicates the presence of NEt3 (‘on’ with green background).
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5.4 Controlling a self-replicating reaction with a reversible pH switch

In the previous section, the pH controlled release of an efficient self-replicating system by 

activating the recognition-unit was successfully demonstrated. As the next step, the 

reversibility of the activating process was investigated in order to generate a switch protocol 

in which the reactivity of the self-replicator can be manipulated reversibly. Trifluoroacetic 

acid (TFA) was chosen to disrupt the hydrogen bonding between the recognition units by 

protonating the amidopyridine moiety. The low pKa value, its solubility in chloroform and 

the absence of any interfering signal peaks in the 1H NMR spectra make TFA a suitable 

proton source.

Figure 5.7 a) Concentration vs time profile for the reaction between maleimide H-72 and carboxy 
nitrone 70 to give template H-94 in the presence of 1 equivalent of NEt3 with addition of 1 equivalent 
of TFA at t = 16400 s The formation of trans-product is shown as red filled circles and the formation of 
cis-product as blue filled diamonds. b) Computed rate profile for the progression of the trans-product 
(–) of the reaction depicted in a). All reactions were performed at 0 ºC in CDCl3 at 10 mM reagent 
concentration. The horizontal bar above the graph indicates the state of the recognition.

! To test the usability of TFA in combination with the established activating protocol, 

the following experiment was conducted. Blocked maleimide H-72  and nitrone 70 were 

reacted in the presence of one equivalent NEt3 for 16400 seconds after which one equivalent 

TFA was injected. The progression of product formation was followed by 1H NMR 

spectroscopy and is depicted in Figure 5.7a. The effect of TFA on the shape of the curve is 
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instantly visible. In the early phase of the experiment, the activated maleimide starts to 

produce trans-94 template via the autocatalytic pathway until addition of the acid abruptly 

shuts down recognition. This effect is also seen clearly in the rate vs time profile in Figure  

5.7b. Protonation of the amidopyridine site prevents the formation of hydrogen bonds with 

the carboxylic acid, abolishes any further self-replicating activity and reduces the rate to the 

one found in the bimolecular control reaction. Analysis by 1H NMR spectroscopy proceeded 

smoothly showing the absence of any side-products or decomposition. This result suggests 

that the interplay of NEt3 and TFA can indeed be exploited to reversibly tune self-replicating 

processes.

! In order to explore the robustness of this reversible protocol, an experiment was 

conducted in which five alternating injections of NEt3 and TFA generated the step-like 

concentration vs time profile shown in Figure 5.8a. Starting with a mixture of maleimide 

H-72 and nitrone 70 at 10 mM concentration in CDCl3 at 10 ºC, the presence of the blocked 

maleimide compound generated the low gradient at the very start of the reaction until NEt3 

was added after 7200 seconds inducing the first self-replicating phase. Addition of TFA after 

14400 seconds shut down all recognition-mediated processes and a first plateau was reached. 

From there, further injection of NEt3 and TFA at 21600 and 28800 seconds completed a 

second cycle until the reaction was finally allowed to phase out after final addition of NEt3 at 

36000 seconds.
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Figure 5.8 a) Concentration vs time profile for the reaction between maleimide H-72 and carboxy 
nitrone 70 with consecutive addition of 1 equivalent NEt3 at t = 7200, 21600 and 36000 s and 1 
equivalent of TFA at t = 14400 and 28800 s at 10 ºC. The formation of trans-product is shown as red 
filled circles and the formation of cis-product as blue filled diamonds. b) Computed rate profile for the 
progression of the trans-product (–) of the reaction depicted in a). The reaction was performed at 10 ºC 
in CDCl3 at 10 mM reagent concentration. The horizontal bar above the graph indicates the state of the 
recognition.
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! Calculating the first derivative of the fits to the individual reaction segments gives 

rise to the rate vs time profile depicted in Figure 5.8b. A linear fit was applied for all data 

points taken in the recognition-disabled region whereas all self-replicating phases were fitted 

by a polynomial curve. The effect of pH variation on the efficiency of the self-replicating 

process can clearly be seen. Initially, the replicating process is switched off and the reaction 

proceeds at a constant rate in the order of magnitude typical for a bimolecular reaction 

(0.05 µM s–1). Addition of NEt3 releases the native self-replicating system and a maximum in 

rate can be observed. Two cycles of consequent addition of TFA first deactivates the 

replicating process with the rate dropping to a bimolecular level until injection of another 

equivalent of NEt3 generates a second and third maximum. The magnitude and shape of the 

maxima is affected by the concentration of starting material and available trans-isomer acting 

as dopant. The first activation was done at an early stage of the reaction at which a large 

amount of reagent but a small amount of preformed trans-product was present in the 

solution. The second activation occurred at a point at which less starting material but more 

trans-template molecules were available. In this case, both effects seem to counterbalance 

each other and the resulting rate profiles are of similar shapes with similar values for the 

maximum rates (0.38 and 0.40 µM s–1 for the first and second maximum, respectively). It is 

only at the third addition of NEt3 that the reduction in available starting material cannot be 

compensated by the presence of the template and the amplitude of the maximum rate 

(0.25 µM s–1) is significantly lowered.

! With these results at hand, fully reversible control over the activity of a self-replicator 

by means of a pH trigger process has convincingly been demonstrated. The effect of the 

proton switch on the performance of an AB system in competition with a self-replicator will 

be investigated in the next chapter.

5.5 pH controlled competition between an AB and a self-replicating system

In the previous section, reversible activation of a replicating process was demonstrated for 

the reaction of maleimide H-72 and nitrone 70 in the presence of proton donors and 

acceptors. Working at low pH was expected to eliminate all recognition processes between 

the amidopyridine and the carboxylic acid. However, analysis of the native reaction between 

maleimide H-72 and carboxy nitrone 70 revealed the presence of subtle interactions between 

the two components leading to a minor increase in concentration of cis-template via the AB 

pathway. If the postulated transition state with association between the carbonyl group of 

the acid and the protons of the amidopyridinium moiety proved feasible, it should be 
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possible to improve the efficiency of this AB system by replacing carboxy nitrone 70 with 

phenylacetic acid nitrone 71. In chapter 3, the screening of maleimide 72 with both nitrones 

70  and 71  indeed revealed a significant difference in reactivity depending on their structural 

properties. The reaction of maleimide 72 with carboxy nitrone 70 gave rise to an efficient self-

replicating system for trans-94  whereas the presence of the longer phenylacetic acid group in 

nitrone 71 allowed for the enhanced formation of cis-95  via AB complex with reduced self-

replicating activity of the trans-template.

Figure 5.9 a) Concentration vs time profile for the reaction between maleimide H-72 and phenylacetic 
acid nitrone 71 to give H-95 in the absence of any additives.  The formation of trans-product is shown 
as red hollow circles and the formation of cis-product as blue hollow diamonds. b) Computed rate 
profile for the progression of the trans-(–) and cis-(–)product of the reaction depicted in a). The reaction 
was performed at 0 ºC in CDCl3 at 10 mM reagent concentration. The horizontal bar above the graph 
indicates the absence of NEt3 (‘off’ with red background).

! In order to probe whether this change in reactivity can be translated into the current 

proton switch scenario, a 10 mM solution of maleimide H-72 in CDCl3 was reacted with 

nitrone 71 at 0 ºC for 16 h and followed by 1H NMR spectroscopy (Figure 5.9). Deconvolution 

of the obtained kinetic data gives rise to the concentration vs time profile depicted in Figure 

5.9a. It can clearly be seen that even in the absence of NEt3, maleimide H-72 engages in a 

recognition-mediated reaction. The dominance of the cis-isomer suggests the presence of the 

anticipated binary complex between the two building blocks which enhances eventually the 

N
O

C7H15

CO2H

+

N

O

NN O

O

HCl H

N

O

NN O

O

H

N
O
H

H

C7H15

HO2C

HCl

CDCl3

0 20000 40000 60000
0

2

4

6

8

10

Time / s

C
on

ce
nt

ra
tio

n 
/ m

M

off

0 10000 20000 30000
0.0

0.1

0.2

0.3

0.4

0.5

Time / s

R
at

e 
/ µ

M
 s

–1

off

a) b)

71 H-72 H-95

134



reaction in an AB fashion. Unlike in the reaction of nitrone 71 and maleimide 72 as presented 

in chapter 3, autocatalytic formation of the trans-template of 95 is now completely 

suppressed. Calculation of the rate vs time profile underlines this observation (Figure 5.9b). 

The characteristic curve for the AB system exhibits its highest rate of 0.41 µM s–1 at the start 

of the reaction whereas the shape of the linear curve for the trans-isomer suggests the 

absence of any contribution other than through the bimolecular pathway. It is to be pointed 

out that the maximum rate for cis-H-95 is only marginally lower than the one found for the 

reaction of nitrone 71 with activated maleimide 72 (0.45 µM s–1, see chapter 3), even though 

the association between the protonated amidopyridine and the carboxylic acid was 

determined to be much lower than for the original interaction. This impediment seems to be 

counterbalanced by the absence of any competing self-replicating activity for the formation 

of trans-H-95. With the trans-isomer only being formed in a bimolecular fashion, a larger 

amount of building blocks remains in solution thereby increasing the concentration of AB 

complex.

Figure 5.10 a) Concentration vs time for the reaction between maleimide H-72 and phenylacetic acid 
nitrone 71 to give 95 in the presence of 1 equivalent NEt3. The formation of trans-product is shown as 
red hollow circles and the formation of cis-product as blue hollow diamonds. b) Computed rate profile 
for the progression of the trans-(–) and cis-(–)product of the reaction depicted in a). The reaction was 
performed at 0 ºC in CDCl3 at 10 mM reagent concentration. The horizontal bar above the graph 
indicates the presence of NEt3 (‘on’ with green background).
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! In summary, replacing carboxy nitrone 70 with nitrone 71 bearing the more flexible 

phenylacetic acid spacer led to a significant up-regulation of the cis-product. Even though 

association between the blocked recognition site and the acid remains weak, the additional 

methylene group now allows for better positioning of the reactive sites in the AB complex 

and significantly enhances the rate of recognition-enhanced formation of cis-H-95.

! Next, the reaction between maleimide H-72 with nitrone 71 was repeated in the 

presence of 1 equivalent of NEt3 (Figure 5.10). The base is expected to deprotonate H-72 to 

set free maleimide 72 which reacts with the nitrone to give rise to a diastereoisomeric 

mixture of AB product cis-95 and self-replicator trans-95. In order to verify the predicted 

reactivity, a 10 mM solution of maleimide H-72 in CDCl3 was reacted with nitrone 71 at 0 ºC 

for 16 h together with 1 equivalent NEt3 and followed by 1H NMR spectroscopy. Subsequent 

deconvolution of the obtained kinetic data gives rise to the concentration vs time profile 

depicted in Figure 5.10a. It can clearly be seen that both isomers now exhibit rate-enhanced 

formation. Addition of the base to the reaction mixture restores the situation known from the 

original experiment in which formation of the cis-isomer proceeds via AB pathway whereas 

the trans-partner acts as autocatalyst. The final ratio of isomers is 3.9:1 in favour of cis-95 

compared to 2.1:1 for the reaction of maleimide 72 with nitrone 71 under the same 

conditions. This difference can be explained with the concentrations of reactive building 

blocks available at the start of the two reactions. In the original reaction, both reagents are 

readily available at the start of the reaction and can directly be incorporated into both AB 

system and replicator. When using maleimide H-72, addition of base is necessary to convert 

the maleimide into its reactive form. Even though deprotonation is quick, it still takes a 

certain amount of time to completely activate all present maleimide. This delay may only 

have a minor impact on the performance of an individual replicator, but when in competition 

with an AB system, this short delay can have important implications on the initial rates of the 

reaction. It was shown previously that self-replicating systems are more sensitive to the 

blocking of recognition sites than AB systems, a reduction of the amount of active starting 

material would therefore explain the enhanced formation of cis-95. This reasoning is 

underlined by the rate vs time profile depicted in Figure 5.10b. The maximum rate for the AB 

system is higher than in the original reaction (0.69 µM s–1 compared to 0.45 µM s–1) with the 

rate for the self-replicator nearly staying the same (0.13 µM s–1 compared to 0.11 µM s–1).

! In summary, we have demonstrated that blocking the recognition site has a lesser 

impact on the performance of the AB system than on the self-replicator. In the competition 

scenario between the two diastereoisomers of 95, the ratio of final products can, to a certain 

degree, be tuned by addition of base to the start of reaction.
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5.6 pH controlled temporal separation of a SR from a coexisting AB system

A concise summary of the pH controlled reactions between maleimide H-72 and nitrones 70 

and 71 is given in Scheme 5.4. The reversible protonation of the maleimide building block 

with NEt3/TFA is highlighted in the centre of the diagram. In the upper section, the reactions 

of blocked maleimide H-72 with the two nitrones is depicted. The performance of the 

potentially self-replicating reaction with carboxy nitrone 70 was found to be suppressed 

giving a mixture of diastereoisomers in a slow and unselective manner (Figure 5.2). On the 

other hand, the reaction with phenylacetic acid nitrone 71 was found to be highly selective 

for AB system cis-H-95 (Figure 5.9a). After deprotonation of maleimide H-72 to 72, the 

selectivities for the two reactions change; the activated maleimide can now engage in a very 

efficient self-replicating system with carboxy nitrone 70  giving rise to autocatalyst trans-94 

(Figure 5.4a). At the same time, the AB system loses some of its supremacy in the reaction 

with phenylacetic acid nitrone 71 (Figure 5.10a).

Scheme 5.4 Schematic summary of the possible reactions between maleimide 72 (yellow building 
block) and nitrones 70 (red) and 71 (orange) to give templates 94 (light grey) and 95 (dark grey) as 
presented in the previous sections. Selectivities lower than 5:1 are represented by both 
diastereoisomers, selectivities greater than 5:1 by the dominant cycloadduct species only. 

! Altogether, two combinations give rise to high selectivity for one of the two  

diastereoisomers, reaction of blocked maleimide H-72 with phenylacetic acid nitrone 71 in 

favour of the cis-product and activated maleimide 72 with carboxy nitrone 70 leading to 

trans:cis 1:1.3

trans:cis 28:1

trans:cis 1:22

trans:cis 1:3.9

= (C2H5)3N = (C2H5)3NH+ = CF3COOHCF3COO-== H+
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trans-94. In order to create a scenario in which the reactivity of these two systems are played 

off against each other, a pair of experiments were constructed. First, one equivalent of each 

nitrone 70 and 71 at 10 mM concentration in CDCl3 was reacted with two equivalents NEt3 

and two equivalents of maleimide H-72. The reaction was kept at 0 ºC for 16 h and was 

followed by 1H NMR spectroscopy. Deconvolution of the obtained kinetic data shows the 

concomitant formation of both major isomers, cis-95 and trans-94 (Figure 5.11a). 

Figure 5.11 Concentration vs time profile for the reaction of maleimide H-72 with carboxy nitrone 70 
and phenylacetic acid nitrone 71 to concomitantly form templates trans-94 (•), cis-94 (o), trans-95 (◆) 
and cis-95 (◇) in the presence of 2.0 equivalent of NEt3 added a) at the start of the reaction and b) at t = 
36000 s. All reactions were performed at 0 ºC in CDCl3 at 20 mM reagent concentration for H-72 and 10 
mM reagent concentration for 70 and 71.
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! In the early stage of the reaction, the product of the AB pathway is the most abundant 

species, however, the superior selectivity of the self-replicating process renders trans-94 to be 

in slight excess at the end of the reaction. Since the reagent pool contains a balanced ratio of 

maleimide to nitrones, the reactivity of the system can be seen as a superimposition of the 

isolated processes shown in the lower section of Scheme 5.4. However, changing the timing 

of the NEt3 addition significantly alters the shape of the concentration vs time profiles for all 

present species. Figure 5.11b depicts the scenario in which two equivalents of NEt3 were only 

added after 10 h (36000 seconds) to a mixture containing two equivalents of maleimide H-72 

and one equivalent of each nitrone 70  and 71. Analysis of the kinetic data provides instantly 

a clear picture of the process. Before addition of NEt3, a major amount of cis-95 was formed 

via the binary AB complex whereas all self-replicating pathways were considerably 

suppressed. Since the maleimide was not consumed in the self-replicating process, the 

probability of forming a catalytically active AB complex is higher than in the previous 

experiment. The maximum rate of the AB reaction is therefore increased even though the 

recognition site on the maleimide is blocked. Addition of NEt3 restores the recognition site 

necessary for the self-replicating reactions. In case of replicator trans-94, the AB species has 

already consumed most of the necessary nitrone and no efficient autocatalytic production 

can take place. However, a sigmoidal shape for the formation of trans-94 can be observed 

right after injection of the base. At this stage of the reaction, a considerable amount of 

maleimide has already been used up for the formation of both isomers of 94 as well as cis-95 

which could accumulate undisturbed by the self-replicator. For this reason, self-replicating 

template trans-94  does not exceed the concentration of cis-95 as in the previous experiments, 

but easily outperforms its diastereoisomeric partner.

! Altogether, the experiments presented here show how the switch protocol can be 

used to temporally delay the appearance of the self-replicator with respect to a coexisting AB 

system. The timing of the NEt3 addition allows to control the ratio of products for the pair of 

reactions. Early addition favours the trans-species of 95 and 94 on the expense of their 

isomeric partners, whereas addition at a later stage reduces the amounts of final trans-

products.

5.7 Interpretation of the pH switch reactions as NAND logic gate

In the last years, a large number of examples have appeared in the literature in which 

chemical entities perform binary logic operations.[201-203] Most commonly, the synthetic 

targets are molecular switches which translate input stimuli into output signals. This 
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behaviour mimics the Boolean operations of traditional logic gates used in electronics which 

can be described in the binary code by using zeros and ones. A zero is used to indicate no 

input or no change in output of the system, a one describes a certain input and change of 

output of the system. Assembling the zeros and ones into a truth table specifies every 

Boolean function.

! Our group has recently developed two examples of small synthetic networks of 

synthetic replicators that are capable of performing the logical OR operation.[155,197] They 

respond to instructional input such that its output is an excess of one of the replicator 

whenever the input contains either or both of the minimal replicators. Presynthesised 

template was applied as input and selective response of the network was stimulated by 

intrinsically different geometric properties of the autocatalytic and crosscatalytic ternary 

complexes.

! Blocked maleimide H-72 and phenylacetic acid 71 can be taken as the centerpiece of a 

reaction network that can be interpreted on the basis of molecular logic. Using carboxy 

nitrone 70 and NEt3 as input to the system allows for the construction of a NAND logic gate 

(Scheme 5.5).

Scheme 5.5 Design of a NAND logic gate with the AB reaction between maleimide H-72 (yellow) and 
nitrone 71 (orange) as core interaction. NEt3 (grey symbol) and carboxy nitrone 70 (red) function as 
input that generate a certain responds of the system stated as output.

! For all four possible input combinations - none, both or one of the two inputs - the 

output of the system is monitored. In the case of this logic gate, the output is screened for 

whether AB systems cis-95 or cis-H-95 are the dominant species in the reaction mixture after 

35000 seconds. Dominance D of the AB system in the product pool is therefore defined as

Is AB system cis-95 or
cis-H-95 dominant species?

INPUT
OUTPUT

 
DominanceD =

[AB]
([AB]+ [Y ])

!100%
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with [AB] as concentration of the AB product between maleimide H-72 and nitrone 71 and 

[Y] as concentration of the second most abundant species. Only outputs for dominance D 

larger than 50% are taken as true ‘one’ values of the system. The individual experiments 

crucial for this logic gate are summarised in Figure 5.12.
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Figure 5.12 Individual analyses of the components of the NAND logic gate depicted in Scheme 5.5. 
Core reaction between maleimide H-72 and phenylacetic acid nitrone 71 a) without addition of any 
inputs (cf. Figure 5.9a), b) addition of NEt3 as input I1 (cf. Figure 5.10a), c) addition of carboxy nitrone 
70 as input I2 (cf.  Figure 5.11b) and d) addition of both NEt3 and carboxy nitrone 70 (cf. Figure 5.11a). 
Dashed arrows indicate the concentration difference of the two most abundant species used for the 
read-out of the system. The tables reflect the corresponding rows for the final truth table depicted in 
Figure 5.13.

! The graph in Figure 5.12a shows the first 35000 seconds of the reaction between 

maleimide H-72 and phenylacetic acid 71 in the absence of any inputs (I1=I2=0). Since cis-

H-95 is indeed the major product, a ‘1’ is assigned to the output column. The addition of 

NEt3 to the system (I1=1, I2=0) does not change the outcome of the reaction with cis-95 still 

being the most abundant species (Figure 5.12b). Also the addition of nitrone 70 (I1=0, I2=1) at 

the start of the reaction does not prevent cis-H-95 to be the dominant product (Figure 5.12c). 

However, when both inputs, carboxy nitrone 70 and NEt3, are present (I1=1, I2=1), the 
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dominance of cis-95 in the product pool is overcome by trans-94 and the output is marked as 

‘0’ (Figure 5.12d). It should be pointed out that for all experiments two equivalents of 

maleimide H-72 should be used with respect to all other components. This is not the case for 

the reactions depicted in the upper row of Figure 5.12, but it is obvious that doubling the 

amount of maleimide will not prevent cis-A to be the most abundant species.

! The exact values for dominance D were calculated and combined to form the 

response diagram in Figure 5.13. The threshold value for D of 50% indicated by the dashed 

line is only under-run when both inputs are present. Furthermore, a truth table could be 

constructed from the individual experiments and confirmed that this set of building blocks is 

capable of acting in concert to perform the logical NAND operation in which the dominance 

of the AB system, cis-95 or cis-H-95, is only denied in the presence of both inputs.

Figure 5.13 Overview of the individual reactions of the logical NAND operation. Dominance D is only 
above the threshold when both inputs I1 and I2 are present (lane D) otherwise the AB system is 
dominant (lanes A-C). The states of lanes A-D are indicated in the truth table. I1 stands for input NEt3 
and I2 stands for input nitrone 70.

! This novel system is a further step to the development of more complex recognition-

mediated reaction networks since it does not simply rely on the template-directed 

manipulation of a set of structurally similar self-replicators but incorporates a complex 

competition scenario between an AB system and a replicating system whose outcome proved 

highly susceptible to variation in the environmental pH. A combination of both approaches 

can potentially create and express even more complex programmed responses to various 

chemical inputs.
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6.Replicating networks of three and more building blocks

6.1 Designing systems of increased complexity

In the last chapters, a set of structurally similar self-replicators were characterised and the 

effects of geometric changes in their backbone structure on their efficiency was established. 

Overall, five self-replicating systems of various strength have been analysed whereas one 

system was found to produce both, an AB system and a self-replicator. The target of this 

chapter is to develop situations in which two of these systems compete for a limited amount 

of common building blocks. Analysis of such experiments provides insight into how far a 

replicator’s ability to compete with another system can be deduced directly from their 

efficiency in isolation or whether the interaction between both systems gives rise to 

unforeseen behaviour. Furthermore, the possibility of influencing the product distribution by 

adding informational template at the start of the reaction will be probed. Addition of 

preformed template to a reaction mixture of several components should enhance selectively 

the autocatalytic formation of more original template. This implies that the generation of 

other templates that rely on the same building blocks will be suppressed on the expense of 

the instructed template. In order to rationalise the obtained results, computational fitting of 

the experimental data will be conducted and the resulting kinetic model will be used to 

explore situations beyond practical feasibility.

6.2 Analytical requirements

All systems so far have been analysed using 1H NMR spectroscopy. With increasing 

complexity of the mixtures, this proved to be insufficient as many of the system components 

have similar structural motifs. Spectra of such mixtures showed significant overlap for the 

characteristic 1H NMR signals, especially in the region of the peaks for the three 

isoxazolidine protons between 4.1-6.3 ppm that was exploited extensively in the two 

component systems to follow the formation of product (section 10.2.1). In order to reduce the 

analytical effort, both original nitrone compounds 70 and 71 were equipped with a fluorine 

tag. With a wider ppm range and a higher resolution, 19F NMR spectroscopy allows for the 

clear monitoring of the evolution of the product molecules not only in the case of the 

competition experiments but also with respect to the envisaged design of a multicyclic 

system.
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Scheme 6.1 Synthesis of fluorine-tagged nitrones 141 and 142. Conditions: a) 1-nonyne, Pd(PPh3)2Cl2, 
CuI, PPh3, 85 ºC, 94%; b) Rh/C, NH2NH2, THF; c) 3-carboxybenzaldehyde, EtOH, –18 ºC, 44% over 
two steps; d) 46, EtOH, –18 ºC, 48% over two steps.

! Scheme 6.1 shows the synthesis of the new fluorine-tagged nitrones 141 and 142. 

Starting from commercially available 1-bromo-2-fluoro-4-nitrobenzene 143, Sonogashira 

reaction led to coupling product 144. Partial reduction of 144 using rhodium as catalyst and 

hydrazine as hydrogen source yielded hydroxylamine 145 which was directly reacted with 

the appropriate aldehydes to form nitrones 141 and 142.

! Several other substituent pattern have been investigated, but the present design has 

proven to be a good compromise between minimising the electronic effect of the fluorine, 

maintaining the necessary degree of solubility and improving the analytical accuracy of the 

measurement. Putting the fluorine tag in meta-position to the nitrone functionality reduced 

its impact on the reactivity of the cycloaddition while keeping the acetylene group in para-

position was found to prevent unfavourable steric interaction. For example, reversing both 

substituents created a situation in which the long chain of the acetylene group in meta-

position caused some steric hindrance with respect to the reactive site and significantly 

reduced the efficiency of the self-replicators, whereas simply replacing the alkyl chain in the 

original nitrones 70 and 71 with a fluorine molecule caused severe problems with template 

solubility.

6.3 The reagent pool

Having eliminated eventual problems with the analysis of multicomponent replicating 

systems, the scope of the investigation was limited to a selected set of reagents. As laid out in 

chapter 3, combination of the two nitrones with three maleimides gave rise to the formation 

of six systems with recognition-mediated activity. Excluding benzofuran maleimide 73 for its 

central position in reactivity, a pool of two maleimides (72 and 74) and two nitrones (141 and 

142) was defined as the source for the envisaged competition scenarios (Figure 6.1). Within 
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this pool, two highly efficient self-replicators (trans-146  and trans-149), one significantly 

weaker replicating system (trans-147) and an AB system (cis-148) with minor self-replicating 

contribution from its trans-isomer can be found allowing for a number of interesting 

competition combinations.

Figure 6.1 Reagent pool for the development of competition scenarios between recognition-mediated 
systems. From the set of four components (72, 74,  141 and 142) a set of five products can be generated 
by four replicating (trans-146, trans-147,  trans-148 and trans-149) and one AB pathway (cis-148). In 
the cartoon structures, recognition sites are blue (acid) and green (amidopyridine). Cycloadducts 
deriving from maleimide 72 are depicted as light grey whereas products of maleimide 74 are depicted 
dark grey.

! Alternatively leaving out one of the components from the pool leads to four sets of 

three component systems. Using an equimolar amount of the three remaining building 

blocks generates a two-fold excess for either the nitrones or the maleimides, and renders the 

other species as the limiting building block. For example, leaving out maleimide 74  creates a 

scenario in which both nitrones compete for a limited amount of benzene maleimide 72. In 

order to allow for a comparable analysis of all four systems, a common procedure was 
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established. First, the outcome of the native competition experiment is monitored to establish 

a base value for the final product distribution. Addition of presynthesised template is then 

conducted to favour the formation of the instructed template. Comparison of the outcome of 

the instructed reactions with the native values should establish whether template addition 

has the expected impact on the efficiencies of the participating systems.

6.4 Individual analysis of the replicators with fluorine tags

Computational fitting of the experimental data presented in chapter 3 allowed to extract 

valuable kinetic parameters for each system and helped to establish a clear hierarchy in 

replicating efficiency. Since the insertion of the fluorine into 141 and 142 changed the 

electronic nature of the nitrone compounds, their native reactions with both maleimides was 

repeated and the experimental data was fitted using SimFit.

6.4.1 Reaction of maleimide 72 with nitrone 141

Maleimide 72 and nitrone 141 giving self-replicating template trans-146 were reacted for 16 h 

at 0 ºC with a starting concentration of 10 mM (Scheme 6.2). Deconvolution of the recorded 
1H NMR spectra allowed for the construction of the concentration vs time profile depicted in 

Figure 6.2.

Scheme 6.2 Reaction of maleimide 72 with nitrone 141 to give self-replicator trans-146.

! The obtained data was fitted using SimFit (solid line in Figure 6.2) and the extracted 

kinetic values are presented in Table 6.1. It can clearly be seen that introduction of the 

fluorine tag has only very little effect on the efficiency of the replicator. The effective molarity 

decreased slightly to 58.8 M from 69.8 M for non-fluorinated trans-94 and the free energy of 

connection increased from a previous 11.9 kJ mol–1 by 1.4 kJ mol–1 to 13.3 kJ mol–1 indicating a 

slightly more stable product duplex.
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Figure 6.2 Concentration vs time profile for the reaction of maleimide 72 and nitrone 141 to give 
template 146.  The formation of trans-product is shown as red filled circles and the formation of cis-
product as blue filled diamonds. Straight lines represent the results for the fitting of the trans-(–) and 
cis-(–) product. The reaction was performed at 0 ºC in CDCl3 at 10 mM reagent concentration.

Table 6.1 Kinetic parameters extracted for the self-replicating reaction of maleimide 72 and nitrone 141 
at 0 ºC in CDCl3 at 10 mM reagent concentration using SimFit. The obtained R-value was 2.7%.

trans-146 cis-146

bimolecular rate constant / M–1 s–1 2.45 x 10–4 1.25 x 10–4

recognition-mediated rate constant / s–1 1.44 x 10–2 -

effective molarity / M 58.8 
(cf. 69.8 for trans-94) -

!Gs / kJ mol–1 13.3 
(cf. 11.9 for trans-94) -

6.4.2 Reaction of maleimide 72 with nitrone 142

Consequently, the reaction between maleimide 72 and nitrone 142 was investigated at 0 ºC 

and 10 mM concentration of starting material (Scheme 6.3). The progress of the reaction was 

followed for 16 h and the recorded 19F NMR spectra was deconvoluted to construct the 

concentration vs time profile shown in Figure 6.3. Comparing this rate profile with the one 

for template 95  from Figure 3.7 shows that introduction of the fluorine alters the outcome of 

the reaction. In the previous experiment, 2.77 mM trans-95 and 5.69 mM cis-95 were formed 

after 16 h giving a cis/trans ratio of 2.1:1. Using fluorine tagged nitrone 142 yielded 2.16 mM 

trans-148 and 6.25 cis-148 increasing the ratio to 2.9:1 after the same time. For both reactions 

the conversion was 84%.
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Scheme 6.3 Reaction of maleimide 72 with nitrone 142 to give self-replicating template trans-148 and 
AB system cis-148.

Figure 6.3 Concentration vs time profile for the reaction of maleimide 72 and nitrone 142 to give 
template 148.  The formation of trans-product is shown as red filled circles and the formation of cis-
product as blue filled diamonds. Straight lines represent the results for the fitting of the trans-(–) and 
cis-(–) product. The reaction was performed at 0 ºC in CDCl3 at 10 mM reagent concentration.

! The solid lines in Figure 6.3 reflect the best fit to the experimental data using SimFit. 

The corresponding kinetic values are listed in Table 6.2.

Table 6.2 Kinetic parameters extracted for the self-replicating reaction of maleimide 72 and nitrone 142 
at 0 ºC in CDCl3 at 10 mM reagent concentration using SimFit. The obtained R-value was 2.1%.

trans-148 cis-148

bimolecular rate constant / M–1 s–1 1.84 x 10–4 1.03 x 10–4

recognition-mediated rate constant / s–1 4.27 x 10–4 7.65 x 10–5

effective molarity / M 2.32 
(cf. 26.5 for trans-95)

0.743 
(cf. 0.683 for cis-95)

!Gs / kJ mol–1 –8.99 
(cf. 4.88 for trans-95) -
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! Introduction of the fluorine group induces only minor changes in the efficiency of the 

AB system. The effective molarity has increased slightly to 0.743 M from 0.683 M for cis-95 

(Table 3.2). On the other hand, values for the self-replicating template trans-148 are 

dramatically different than for trans-95. The effective molarity has dropped from 26.5 M for 

non-fluorinated trans-95 to 2.32 M and the free energy of connection has decreased by almost 

14 kJ mol–1 to a negative value of –8.99  kJ mol–1 indicating negative cooperativity for the 

product duplex. 

! It should be pointed out that the effective molarity of the AB system is indeed lower 

than for the self-replicator even though its enhancement is higher. This counterintuitive 

observation can be explained by the relative differences in reactive complex that leads to the 

products. The concentration of the binary AB complex is naturally higher than for the ternary 

complex necessary for the formation of the autocatalyst. With the rate of the reaction being 

proportional to the rate constant and the concentration of the reactive complex, the high 

concentrations of binary complex counterbalance the low effective molarity and renders the 

AB system the dominant species over its self-replicating partner.

6.4.3 Reaction of maleimide 74 with nitrone 141

Next, the reaction between maleimide 74 and nitrone 141 at 10 mM concentration was 

monitored for 40 h at 0 ºC (Scheme 6.4). Deconvolution of the recorded 19F NMR spectra 

gave rise to the concentration vs time profile shown in Figure 6.4. The longer reaction time is 

a result of the low reactivity of self-replicator trans-147.

Scheme 6.4 Reaction of maleimide 74 with nitrone 141 to give self-replicating template trans-147.

! The solid lines in Figure 6.4 reflect the best fit to the experimental data using SimFit. 

Table 6.3 gives the extracted kinetic values for the formation of 147. The value for the 

effective molarity has slightly dropped to 0.25 M from a previous 1.30 M for non-fluorinated 

trans-98 (Table 3.5). The negative value of –1.36 kJ mol–1 for the free energy of connection 
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now suggests a somewhat negative cooperativity for the template duplex. These findings 

indicate that the addition of the fluorine slightly reduces the self-replicating activity of 

trans-147 with respect to non-tagged template trans-98.

Figure 6.4 Concentration vs time profile for the reaction of maleimide 74 and nitrone 141 to give 
template 147.  The formation of trans-product is shown as red filled circles and the formation of cis-
product as blue filled diamonds. Straight lines represent the results for the fitting of the trans-(–) and 
cis-(–) product. The reaction was performed at 0 ºC in CDCl3 at 10 mM reagent concentration.

Table 6.3 Kinetic parameters extracted for the self-replicating reaction of maleimide 74 and nitrone 141 
at 0 ºC in CDCl3 at 10 mM reagent concentration using SimFit. The obtained R-value was 1.9%.

trans-147 cis-147

bimolecular rate constant / M–1 s–1 3.47 x 10–4 1.19 x 10–4

recognition-mediated rate constant / s–1 8.68 x 10–5 -

effective molarity / M 0.25 
(cf. 1.30 for trans-98) -

!Gs / kJ mol–1 –1.36
(cf. 2.67 for trans-98) -

6.4.4. Reaction of maleimide 74 with nitrone 142

The last combination from the pool of four compounds is self-replicating system trans-149 

based on the cycloaddition between maleimide 74 and nitrone 142 (Scheme 6.5). Their 

reaction at 10 mM reagent concentration was followed by 19F NMR spectroscopy for 16 h at 0 

ºC. Deconvolution of the obtained spectra resulted in the concentration vs time profile 

depicted in Figure 6.5.
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Scheme 6.5 Reaction of maleimide 74 with nitrone 142 to give self-replicating template trans-149.

Figure 6.5 Concentration vs time profile for the reaction of maleimide 74 and nitrone 142 to give 
template 149.  The formation of trans-product is shown as red filled circles and the formation of cis-
product as blue filled diamonds. Straight lines represent the results for the fitting of the trans-(–) and 
cis-(–) product. The reaction was performed at 0 ºC in CDCl3 at 10 mM reagent concentration.

Table 6.4 Kinetic parameters extracted for the self-replicating reaction of maleimide 74 and nitrone 142 
at 0 ºC in CDCl3 at 10 mM reagent concentration using SimFit. The obtained R-value was 5.2%.

trans-149 cis-149

bimolecular rate constant / M–1 s–1 6.99 x 10–4 3.06 x 10–4

recognition-mediated rate constant / s–1 1.57 x 10–2 -

effective molarity / M 22.5
(cf. 23.6 for trans-99) -

!Gs / kJ mol–1 9.46
(cf. 9.43 for trans-99) -

! The obtained data was fitted using SimFit (solid line in Figure 6.5) and the extracted 

kinetic values are presented in Table 6.4. The poor fit towards the end of the measurement is 

a consequence of beginning precipitation of the template. !It can however be seen that 

N N
H

O

N F

C6H13

O N

O

O

N
O

C6H13F

H

H
+

N

O

H
N

N

O

O

CO2H

HO2C
74 142 trans-149

0 20000 40000 60000
0

2

4

6

8

10

Time / s

C
on

ce
nt

ra
tio

n 
/ m

M

151



introduction of the fluorine tag has only very little effect on the efficiency of the replicator. 

The effective molarity of the reaction and the value of the free energy of connection remain 

nearly the same when compared with the formation of trans-99 (Figure 3.20 and Table 3.6).

6.4.5 Comparison of the fluorinated systems and influence of the tag

Analysis of the individual systems shows a certain pattern for the influence of the fluorine 

tag on the efficiencies of the recognition-mediated processes. The impact on the strong 

replicators trans-146 and trans-149 was relatively small whereas the kinetic values for 

trans-147 were altered to some extent. The biggest differences occurred for the hybrid system 

of 148 giving rise to a mixture of both diastereoisomers. 

! Overall, it can be seen that the matching combinations between ‘short’ benzene 

maleimide 72 with carboxy nitrone 141 and ‘long’ naphthalene maleimide 74  with 

phenylacetic acid nitrone 142 that give rise to very efficient replicating systems are least 

effected by the introduction of the fluorine tag. The ‘mismatch’ situation between maleimide 

74  and nitrone 141  leading to replicator trans-147 responds more strongly to the electronic 

shift induced by the tag than the other two self-replicators. The biggest differences are found 

for the internal competition between replicator trans-148  and AB system cis-148. It was 

shown before that the efficiencies of the two competing systems are more sensitive to 

variations than in systems that show recognition-mediated activity for only one of the 

isomers. Since the formations of both isomers are directly connected, a change in reactivity 

for the AB system also has an impact on the performance of the self-replicator and vice versa.

6.5 Competition scenarios

Choosing three out of the four reagents from the pool shown in Figure 6.1  opens up the 

possibility to generate situations in which two building blocks compete for a limited amount 

of a third species. In the following sections, a systematic investigation of all four possible 

systems was performed to elucidate the major principles of such competition scenarios and 

the possibility to influence the outcome with instructional template.

6.5.1 System I: benzene maleimide 72 with nitrones 141 and 142

Excluding maleimide 74 leads to the system depicted in Figure 6.6. Maleimide 72 is the 

common building block for the formation of AB system cis-148 with nitrone 142 and self-

replicating system trans-146 using nitrone 141.
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Figure 6.6 Competition scenario with maleimide 72 as limiting building block. Its reaction with 
phenylacetic acid 142 and carboxy nitrone 141 gives rise to AB system cis-148 and self-replicator 
trans-146,  respectively. Self-replicating isomer cis-148 which is usually formed in minor extent was 
omitted for clarity.

! The reaction between an equimolar amount of all three components provides an 

excess of nitrones and renders the maleimide to be the limiting building block. Having 

established the differences in behaviour for an AB system and a self-replicator, dominance of 

cis-148 in the product pool was expected. The maximum rate for the formation of cis-148 via 

the binary AB complex is at the start of the reaction. On the other hand, the self-replicator 

reaches its maximum rate only after a lag period and is therefore disadvantaged in the quest 

for resources. The same holds for trans-148 that acts as a weak self-replicator and is expected 

to be formed to minor degree as third product. 

! Kinetics of the native reaction were recorded at 0 ºC for 12 hours in CDCl3 with 

10 mM concentration for all three reagents and deconvoluted using 19F NMR spectroscopy 

(Figure 6.7a). At the end of the measurement, 80% of maleimide was converted into 

products. The progression of each of the three major products exhibits the characteristic 

curve. Cis-148  was found to be the most abundant species and its formation showed a line 

shape typical for an AB system. The rate of formation was highest at the start of the reaction 

when the concentrations of both required building blocks was highest. As soon as maleimide 

72  became less available, the concentrations of reactive binary complex decreased and the 

curve flattened significantly.
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Figure 6.7 a) Concentration vs time profile for the reaction between maleimide 72 with nitrone 141 and 
142 to give cis-148 (◆), trans-146 (●) and trans-148 (■) monitored by 19F NMR spectroscopy. The 
reaction was performed in CDCl3 at 0 ºC and with 10 mM reagent concentration. b) Detection of the 
final product distribution after full conversion of maleimide 72.

! The differences in progression for self-replicating template trans-146 are apparent. At 

the early stage of the reaction, the characteristic lag period is visible and it is only after 

sufficient amount of template has been formed in the bimolecular reaction that the self-

replicating mechanism starts to drive the reaction. In the meantime, the AB system has 

availed itself of maleimide 72 which hampered significantly the growth of the self-replicator.

! Self-replicator trans-148 was identified as the third product in this competition 

experiment. As expected, it shows to be inferior to its two rivals and was only formed in 

minor amount since it has to compete for both of its building blocks. Despite the low 

concentration, a sigmoidal shape for the formation of trans-148 is visible. Altogether, a clear 

ranking in reactivity can be seen for the three competing systems with the AB system being 

the strongest. Monitoring the product distribution after full conversion of maleimide using 
19F NMR spectroscopy established the product distribution as 5.49  mM cis-148, 3.61 mM 

trans-146 and 0.90 mM trans-148 (Figure 6.7b). Compared with the reaction of maleimide 72 

and phenylacetic acid 142 in isolation that yields the AB system in 2.9-fold excess, the ratio of 

isomers for 148 is now 4:1 in favour for the cis-species since the self-replicator has not only to 

compete for the maleimide building block but also for the nitrone.

! As established in chapter 2, it should be possible to influence the product distribution 

by adding preformed self-replicating template at the start of the reaction which shifts the 

maximum rate of the doped species, eliminates the unprofitable lag period and strengthens 

the performance of the seeded template. In order to verify the possibility of giving the self-

replicator a head start, a set of additional experiments were conducted. An equimolar 

amount of maleimide 72 with both nitrones at 10 mM concentration were incubated in 

800 µL CDCl3 at 0 ºC together with 9, 18 and 36 mol-% of preformed trans-146 and kept until 
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full conversion of the maleimide (Figure 6.8). Analysis of the 19F NMR spectra established 

the product ratio which was compared with the one of the native experiment (Figure 6.7b). 

In this case, 1H NMR spectroscopy could additionally be used to calculate the final 

concentrations and satisfyingly provided nearly identical values.

Figure 6.8 Product distributions for the reaction between maleimide 72 with nitrone 141 and 142 to 
give cis-148, trans-146 and trans-148 in the presence of 9 mol-%, 18 mol-% and 36 mol-% trans-146 
template monitored by 19F NMR spectroscopy. In a) the final product concentration after full 
conversion of maleimide 72 is depicted. Section b) shows the enhancements with respect to the native 
reaction from Figure 6.7.  All reactions were performed at 0   ºC in CDCl3 at 10 mM reagent 
concentration.
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! In order to highlight the effect of the doping process, values for the enhancement E 

were calculated as 

with cdoping and cnative being the final concentration of one of the three products in the doping 

and native experiment, respectively.!

! From the diagrams in Figure 6.8, it can instantly be seen that addition of preformed 

template indeed changed the product distribution towards self-replicator trans-146. With 9 

mol-% template at the start of the reaction, the final ratio of cis-148 to trans-146 had nearly 

equalled. When adding more template, trans-146 eventually became the dominant species. 

This finding is further clarified in the graphs showing the relative enhancement for each 

template. Addition of 9 mol-% significantly decreased the formation of cis-148 and elevated 

the proportion for both self-replicators. The increase in concentration of trans-148 is a direct 

consequence of the suppression of cis-148. With the AB system being less strong, more 

nitrone building block is available to the self-replicator. As a consequence of the logarithmic 

term for the calculation of the enhancement factor and since it is formed only in minor 

amounts in the native reaction, the small increase in concentration for trans-148 in the 

doping experiments caused a relatively high value for the enhancement.

! In the presence of more trans-146 template, the initial trends are even more 

pronounced. However, increasing the amount of template from 18 to 36 mol-% had a 

somewhat smaller impact on the product distribution indicating the presence of a saturation 

point at which addition of more template does not alter the outcome of the reaction. It is 

nevertheless important to note that in this multicomponent system, adding template at the 

start of the reaction did indeed increase the formation of the self-replicating species. In the 

isolated experiment, only small amounts of template were necessary to overcome the lag 

period and move the maximum rate of the reaction to its start. Addition of an increasing 

amount of template generally had no effect on the position and absolute value of the 

maximum rate (an exception is discussed in 3.4.5). This finding can be rationalised by 

considering the concentrations of all productive ternary complexes in the reaction mixture 

for the native two component replicators. In the absence of any competing third component, 

the maximum rate for a self-replicator corresponds with the maximum in concentration for 

the catalytically active ternary complex which is directly proportional to the amount of free 

E = log10
cdoping
cnative

!
"#

$
%&
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template. Addition of template thus shifts this maximum to the start of the reaction by 

instantly creating a high concentration of the ternary complex. However, increasing the 

amount of dopant does indeed increase the amount of reactive complex, but it is now the 

cycloaddition reaction that becomes rate-limiting. In the presence of a third recognition-

enabled component, an equilibrium between all possible ternary complexes is established. In 

this scenario, the added template does not only favour the formation of the instructed 

ternary complex but it also decreases the concentration of undesired or unproductive 

complexes. Increasing continuously the amount of dopant shifts the equilibrium towards the 

desired ternary complex, thereby favouring the formation of the intended template.

6.5.2 Fitting and simulation

The experimental results presented in Figure 6.8 clearly prove that the competition reaction 

between AB system cis-148 and the two self-replicators, trans-148 and trans-146, can be 

influenced by the addition of instructional template. Seeding the reaction mixture with 

increasing amounts of preformed trans-146 stimulated the autocatalytic formation of more 

template on the expense of the other systems. With these experimental results at hand, 

turning to simulation should provide an insight into how far the behaviour of the system can 

be predicted from the behaviour of the simple individual components. 

! Fitting of the individual systems provided the kinetic parameters necessary for the 

simulation of the scenario using the ISOSIM mode of the SimFit package. The scripts used 

for the fitting of the experimental data for replicator trans-146  and AB/SR hybrid system 148 

were combined under consideration of all combinatorial interactions between the three 

building blocks and their template products (see appendix). Using this script, the native 

competition reaction between maleimide 72 and nitrones 141 and 142 and four situations 

with added trans-146 (9, 18, 36 and 100 mol-%) were simulated.

! The results of the calculation are depicted in Figure 6.9  together with the 

experimental data. In addition to the three products observed in the reaction, the calculations 

provided values for the cis-diastereoisomer of 146 which was formed to minor extent 

(around 0.2 mM). It can be seen that the calculation matches quite well the experimental 

results for the reaction without template addition (0 mol-% trans-146). The concentrations for 

both diastereoisomers of 148  diverge less than 0.1 mM from their experimental values 

whereas the calculated concentration for trans-146  was 0.46 mM short of the one found in the 

experiment. This difference can be explained partially by the fact, that the contribution of 

cis-146 is neglected in the experiment. Altogether, the developed script allows for a reliable 
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simulation of the native competition scenario reproducing the correct ranking order of 

products. However, the features of the doping experiments using increasing amounts of 

trans-146 are only captured to some extent by the simulation. Data was simulated with 9, 18, 

36 and 100 mol-% of added trans-146 to generate the solid lines in Figure 6.9. In the 

competition scenario, addition of trans-146 resulted in an autocatalytic increase of the seeded 

template whereas the concentration of the main competitor, cis-148, was gradually reduced. 

Even though the progression for trans-146 and cis-148 is reflected correctly in the simulation, 

the gradients for the curves clearly underestimate the influence of the template on the 

outcome of the competition scenario. In the simulation, the crossing point at which the 

concentrations of trans-146 and cis-148  are equal occurs for the addition of around 50 mol-% 

trans-146 whereas the same point is reached in the experiment for the addition of less than 

18 mol-% trans-146  template. This shortcoming can largely be attributed to the low gradient 

for the progression of trans-146 and the systematic error for the values of self-replicator 

trans-146 for the simulation.

! Moreover, the simulated formation for trans-148  does not correspond with the 

experimental data. With the concentration of cis-148  gradually decreasing in the competition 

reactions, more phenylacetic acid nitrone 142 becomes available and the formation of 

trans-148 should be slightly up-regulated. In the simulation, the final concentration of 

trans-148 decreases with increasing amounts of added template.

Figure 6.9 Simulation of the competition scenario between maleimide 72 and nitrones 141 and 142 to 
give templates trans-146 (–), cis-146 (–), trans-148 (–) and cis-148 (–) with increasing amounts of 
trans-146 template added at the start of the reaction. Experimental values for trans-146 (●), trans-148 
(■) and cis-148 (◆) as in Figure 6.8.
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! Altogether, simulation of the competition scenario could reproduce the experimental 

results to some extent. The gross behaviour of the two major products, trans-146 and cis-148, 

was interpreted correctly even though the absolute concentration values diverge from the 

experiment, whereas the progression of trans-148 is not reproduced correctly in the 

simulation. The reason for these shortcomings can be found in the kinetic model which is 

based on the assumption that all reaction constants k and association constants K are equal to 

the ones found for the individual interactions. If the topology of the novel reaction network 

was a mere superimposition of the individual systems, this approach would be successful. 

Best results are indeed obtained for the native competition scenario in which the reaction 

was performed without addition of template and conditions seem to be coherent with the 

individual systems. However, in the presence of preformed template, unpredictable system-

level behaviour gives rise to more complex interconnections between the components. As a 

consequence of this emergence, the reaction network appears to be more susceptible to the 

addition of preformed template producing larger amounts of trans-146.

! The results presented here imply that even relatively simple systems with only three 

components become increasingly difficult to comprehend if the interconnections between the 

entities give rise to behaviour that cannot be deduced readily from the behaviour of the 

individual simple components. Even though all kinetic parameters for the individual 

systems were at hand, it was not possible to foresee the implication of the emergent 

properties and to include this knowledge into the development of a kinetic model that 

allowed for the successful simulation of the experimental results. 

! Since the kinetic model applied in the simulation of the experimental results reflected 

the gross behaviour of the system, it can be used as a basis to explore scenarios that are not 

directly accessible in the laboratory. Reacting maleimide 72 with nitrone 142 gave rise to a 

diastereoisomeric mixture of 148. Since the isomers could not be separated by column 

chromatography to furnish a clean sample of trans-148, it was not possible to investigate 

experimentally the influence of this autocatalytic template on the outcome of the competition 

reaction. Turning to simulation furnished the graph depicted in Figure 6.10 in which the 

response of the system to increasing amounts of trans-148 is highlighted. It can clearly be 

seen that the autocatalytic enhancement of trans-148 is very pronounced. Addition of 5 mol-

% preformed template nearly tripled the concentration for trans-148 from a previous 0.8 mM 

in the native reaction to 2.1 mM. At dopant concentrations larger than 40 mol-%, trans-148 

becomes the most abundant species reaching a total concentration of around 4.8 mM for the 

addition of 100 mol-% template. Concomitantly, after addition of one equivalent of template, 

the concentrations for cis-148 and trans-146  were reduced by 2.6 mM and 1.3 mM, 
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respectively. Bearing in mind that the influence of the seeded template was underestimated 

in the simulations of the scenario discussed above, the response of the real system might be 

even higher. 

Figure 6.10 Simulation of the competition scenario between maleimide 72 and nitrones 141 and 142 to 
give templates trans-146 (–), cis-146 (–), trans-148 (–) and cis-148 (–) with increasing amounts of 
trans-148 template added at the start of the reaction.

! An explanation for this strong enhancement can be found in the negative 

cooperativity of the product duplex for trans-148  ($Gs = –8.99 kJ mol–1). With the formation 

of the duplex severely disfavoured, the addition of preformed template generates a larger 

amount of free template in solution than for templates with strong positive cooperativity. 

Every free template can then bind the appropriate building blocks to form the catalytically 

active ternary complex that leads to the autocatalytic production of another template 

molecule. The same phenomena was observed in the unusual doping behaviour of trans-98 

in chapter 3 in which addition of increasing amounts of dopant shifted the maximum rate 

and the overall concentration of the self-replicating isomer to higher values.

6.5.3 Coupling the competition scenario to a DCL

In the previous section, the possibility of influencing the outcome of the competition reaction 

between an AB system and a self-replicator by addition of autocatalytic template at the start 

of the reaction was verified. Even though there was a clear trend for the increased formation 

of the self-replicator, the enhancements were rather modest and the system quickly reached a 

point of saturation at which addition of more template had hardly any effect on the product 
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distribution. This rather rigid behaviour is observed because the competition process is 

solely governed by the kinetics of the two individual systems. Since all three building blocks 

are present at the start of the reaction at maximum concentration, the rates of the AB system 

as well as the bimolecular reactions to form the self-replicating templates were also highest at 

that point. This means that addition of substochiometric amounts of template to this reaction 

mixture had only limited possibility to bridle the efficiency of the AB system.

! Higher enhancements can be expected by mimicking nature‘s dynamic approach in 

which necessary reagents are created only when they are really needed. If it were possible to 

device a process in which one or all of the building blocks are slowly generated from a 

precursor during the course of the reaction, the initial concentrations of the building blocks 

would be low and the rates of the reactions would be severely limited. Addition of the same 

amount of template would now have a higher impact on the product distribution than in the 

rigid, kinetically controlled competition scenario and greater enhancements for the formation 

of self-replicator trans-146 can be expected. 

Figure 6.11 Dynamic combinatorial library of nitrone and imine compounds.

! Figure 6.11 shows the dynamic exchange protocol that was used to generate the two 

reactive acid nitrones 141 and 142 from a pool of two acid imines 151 and 152 bearing a 
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fluorine tag and solubilising alkoxy group, and a feed nitrone 150 bearing two fluorine tags 

but no recognition site. An exchange protocol exploiting the reversible hydrolysis of nitrones 

and imines was already investigated successfully in the group and presented previously.[188] 

In order to maintain the right stochiometry in this newly devised exchange process, two 

equivalents of feed nitrone 150  were dissolved in dry CDCl3 together with one equivalent of 

each of the acid imines 151 and 152 to form the dynamic library. Traces of water cause partial 

hydrolysis of the three initial reagents leading to a mixture of aldehydes 153, 154  and 46, 

hydroxylamine 145 and amine 155. Since this hydrolytic step is fully reversible, the smaller 

building blocks can recondensate to form the original three starting reagents. However, 

recombination of the aldehydes with the hydroxylamine and amine leads to the formation of 

imine 156 and the two acid nitrones 141 and 142, the necessary reagents for the reaction with 

maleimide 72 in the competition scenario. It should be pointed out that also feed nitrone 150 

can react with maleimide 72, but since 150 does not possess any recognition sites, its reaction 

is expected to be slow and unselective for both of its two possible diastereoisomers.

! Synthesis of the three starting building blocks was straightforward. Feed nitrone 150 

was available through partial reduction of nitro compound 144 to hydroxylamine 145 and 

further condensation with commercially available 4-fluorobenzaldehyde (Scheme 6.6).

Scheme 6.6 Synthesis of nitrone 150. Conditions: a) Rh/C, NH2NH2, THF, rt; b) 4-fluorobenzaldehyde, 
EtOH, –18 ºC, 61% over two steps.

! Both imines were synthesised on the basis of amine structure 155 which was formed 

by alkylation of the free phenol group in 157 using K2CO3 and bromooctane in acetone and 

subsequent hydrogenation of the nitro functionality of 158  in ethanol with palladium on 

carbon as catalyst and hydrogen gas (Scheme 6.7).
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Scheme 6.7 Synthesis of imines 151 and 152. Conditions: a) K2CO3, bromooctane, acetone, 60 ºC, 82%; 
b) Pd/C, H2, EtOH; c) 46, EtOH, rt, 53% over two steps; d) 3-carboxy benzaldehyde, EtOH, rt, 61% 
over two steps.

! Once all necessary components were synthesised, the exchange process was followed 

in isolation using 19F NMR spectroscopy. A solution mixture of 20 mM 150, 10 mM 151  and 10 

mM 152 in 800 µL CDCl3 was incubated at 0 ºC and the progression was monitored for 8 

hours. Deconvolution of the obtained spectra allowed for the construction of the 

concentration vs time profile in Figure 6.12a. It can clearly be seen that the equilibrium point 

of the DCL is on the side of the condensed compounds with an equal distribution between 

them (Figure 6.12b).
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Figure 6.12 a) Exchange dynamics over 8 hours and b) final equilibrium concentration after 8 hours of 
the DCL at 0 ºC in CDCl3 starting from nitrone 150 (●),  imine 151 (◆) and imine 152 (■) to follow the 
formation of imine 156 (○), nitrone 141 (◇) and nitrone 142 (□).  Starting concentrations were 10 mM for 
imines 151 and 152, and 20 mM for feed nitrone 150. The exchange process was monitored by 19F NMR 
spectroscopy.

! Having established the efficiency of the exchange process, the competition scenario 

including the three doping experiments were repeated within this dynamic framework. In 

order to establish the native reactivity, a 10 mM solution of maleimide 72 in 800  µL was 

incubated at 0 ºC together with two equivalents of feed nitrone 150 and one equivalent of 
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each imine 151 and 152 in the absence of any added self-replicating template. After complete 

conversion of the maleimide, the final product distribution was analysed by 1H NMR 

spectroscopy which happened to show clean resolution for the characteristic singlet signals 

for all three trans-cycloadducts and the doublet for the cis-cycloadduct. This procedure was 

repeated under addition of 9, 18 and 36 mol-% of trans-146. The results of these four 

experiments are summarised in Figure 6.13a.
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Figure 6.13 a) Product distribution for the reaction between maleimide 72 with the DCL of nitrone 150 
(2.0 equiv.), imine 151 and 152 as starting material in the presence of 9, 18 and 36 mol-% trans-146 
template to give products trans-146 (●), trans-148 (■),  cis-148 (◆) and trans-159 (□). b) Product 
distribution for the reaction between maleimide 72 and nitrones 141 and 142 to give products 
trans-146 (●), trans-148 (■) and cis-148 (◆). All reactions were performed at 0 ºC in CDCl3 at 10 mM 
reagent concentration and analysed by 1H NMR spectroscopy.

! The effect of working in a dynamic environment can already be seen in the product 

distribution of the native reaction. The final concentration of the product of the AB system, 

cis-148, was determined to be 5.0 mM. Second most abundant species was trans-146 with a 

concentration of around 3.3 mM followed by the trans-isomer of the AB system with 0.9 mM. 

As expected, the major isomer of the reaction between feed nitrone 150  and maleimide 72, 

trans-159, was detected as fourth product from the reaction of maleimide 72  with feed 

nitrone 150 with a concentration of 0.8 mM. The amount of corresponding cis-isomer proved 

too little for detection by NMR and was neglected in the calculations. The concentration can 

however be estimated to be around 0.2 mM since the ratio of trans- to cis-isomer is roughly 

3:1 for non-recognition mediated bimolecular reactions. With this fourth reaction product 

present in the solution, the amounts of AB product and self-replicating templates were 

slightly reduced. However, the ratio for the three recognition-mediated products was very 

similar to the one found in the previous native experiment even though the concentration of 

available reactive nitrone compounds during the reaction was coupled to the dynamic 

exchange process.
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! With the initial position for the competition between trans-146 and cis-148 nearly the 

same as in the kinetic variant, the drastic effect of instructing the system with preformed 

trans-146 template can clearly be seen. Addition of 9 mol-% of trans-146 template enhanced 

its autocatalytic formation and rendered the very self-replicating template to be the most 

abundant species in the product pool. This trend was further amplified upon addition of 18 

and 36 mol-% of trans-146  which resulted in a final difference in concentration between both 

competing systems of more than 2 mM in favour of the self-replicator. But also in this case, 

the system seemed to reach a point of saturation at which addition of increasing amounts of 

trans-146 had only very little effect on the final product distribution. Consequently, small 

changes in concentration for trans-148 and trans-159 were detected. The formation of 

trans-148 was slightly up-regulated with increasing amounts of seeded trans-146. Since the 

partner AB system struggled to compete for essential maleimide, more nitrone 142 was 

available for the formation of trans-148. On the other hand, less trans-159 was produced in 

the presence of increasing amounts of added trans-146  template. This finding suggests that 

the amount of added template had a direct influence on the exchange process which created 

the reactive nitrone compounds. With increasing amounts of trans-146, nitrone 150  was more 

rapidly incorporated into the final template product causing the equilibrium between all 

components of the dynamic library to readjust more quickly in favour of nitrones 141 and 

142 than in the native experiment. As a consequence, feed nitrone 150  was converted into the 

two reactive species at higher rate thereby reducing its concentration and availability to react 

with maleimide 72 to form trans-159. 

Figure 6.14 Interpretation of the dynamic competition scenario as feedback loop.
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! With this knowledge at hand, the autocatalytic effect of template trans-146 on the 

product distribution of the competition scenario can be interpreted as a feedback loop similar 

to the ones known from biological systems (Figure 6.14). In the exchange process that 

generates the dynamic combinatorial library, recognition-disabled feed nitrone 150 possesses 

only low reactivity towards maleimide 72 before it is reversibly converted into nitrones 141 

and 142. This process can be regarded as the activation of a precursor of limited reactivity to 

form a species of higher reactivity. Both nitrones can then react with maleimide via their 

recognition-mediated pathways to form AB template cis-148 and self-replicating template 

trans-146. Template cis-148 was shown to be inert catalytically and can be seen as an 

undesired waste product. On the other hand, template trans-146  does possess the ability to 

catalyse its own formation. So working in an environment rich in trans-146  creates a 

situation in which the template not only supports its own formation but also influences the 

activation step that generates the necessary nitrone building block in a feedback loop 

manner.

! Overall, the outcome of the competition reaction between maleimide 72 and nitrones 

141 and 142 was manipulated successfully by addition of instructional templates. Seeding 

the reaction mixture with trans-146 ensured enhanced autocatalytic production of more self-

replicating template and reduced the efficiency of the AB system. However, in case of the 

purely kinetic scenario, the stimulated changes in product distribution were only modest. 

Better enhancements were achieved by coupling the irreversible competition reactions to a 

dynamic library. Starting from a feed nitrone without recognition site and two acid imine 

structures, reversible condensation reactions created a library which contained the two 

reactive nitrone structures in equilibrium with its precursors. Addition of presynthesised 

trans-146 template at the start of the reaction of maleimide 72  with an interchanging mixture 

of components 150, 151 and 152, caused much higher changes on the final product 

distribution of the competition reaction than in the kinetic scenario. Since the reactive 

nitrones were only generated through the exchange process, their concentration especially at 

the start of the reaction was significantly lower than in the kinetic variant of the experiment 

and the impact of the autocatalytic template to direct the selfish production of increasing 

amounts of trans-146 was much more pronounced. In both cases, autocatalytic enhancement 

of trans-146  reached a point of saturation after which increasing the amount of added 

template has only very little impact on the outcome of the competition reaction.
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6.5.4 Scenario II: Maleimides 72 and 74 with nitrone 142

In the last section, the possibility of strengthening a self-replicating system in its quest for a 

building block shared with an AB system was elucidated. It was shown that addition of 

presynthesised template enhanced the autocatalytic pathway generating an increased 

amount of self-replicating product. In order to establish whether this is a general finding, a 

second competition scenario was developed. Phenylacetic acid nitrone 142 was shown to 

react with maleimide 74 to form highly efficient self-replicator trans-149, whereas the 

reaction with maleimide 72 leads to cis-148, the product of the well established AB system.

Figure 6.15 Competition scenario with phenylacetic acid nitrone 142 as limiting building block. Its 
reaction with naphthalene maleimide 74 and benzene maleimide 72 gives rise to self-replicator 
trans-149 and AB system cis-148, respectively. Self-replicating isomer cis-148 which is usually formed 
in minor extent was omitted for clarity.

! Using nitrone 142  as the limiting building block creates a competition experiment 

between a strong self-replicator and an AB system (Figure 6.15). The isolated analysis of the 

set of self-replicating structures suggested that template trans-149 is an exceptionally 

efficient self-replicator. Its maximum rate was higher than for trans-146 and as a 

consequence of its high bimolecular rate, this maximum appeared at an earlier stage of the 

reaction hinting at the possibility that this replicator can better hold its ground against the 

AB system in the struggle for limited building block.

! Unfortunately, working at 0 ºC caused the product peaks in the 19F NMR spectra to 

broaden and resulted in their overlap making it impossible to construct a concentration vs 
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time profile for the native reaction of this system. However, the product distribution after full 

conversion of nitrone 142 using 19F NMR spectroscopy established the exact values for the 

native three component reaction (Figure 6.16). It can clearly be seen that self-replicating 

system trans-149 is competing successfully with the AB system for the limiting nitrone 

compound. At the end of the reaction, trans-149 was found to be the most abundant species 

with a concentration of roughly 5.4 mM followed by cis-148 with 3.2 mM. Also the 

autocatalytic trans-isomer of the AB system can be detected in the reaction mixture reaching 

a concentration of 1.4 mM. 

Figure 6.16 Product distribution for the native reaction between maleimide 72 and maleimide 74 with 
nitrone 142 to give templates trans-149, trans-148 and cis-148. The reaction was performed in CDCl3 at 
0 ºC with 10 mM reagent concentration and analysed by 19F NMR spectroscopy.

! This trend is in complete agreement with the performances of the individual systems. 

Self-replicating template trans-149 was expected to compete more successfully with cis-148 

than self-replicator trans-146. Since the performance of the AB system was limited by the 

strong self-replicating system, its partner trans-148 was taking advantage of the slight 

increase in available maleimide and is marginally up-regulated.

! Next, a series of doping experiments were conducted to establish the possibility of 

further pushing the autocatalytic formation of trans-149  by adding presynthesised self-

replicating template at the start of the reaction. The results are listed in Figure 6.17 with the 

graph on top showing the absolute concentration of all three reaction products for the 

doping reaction with 10, 20 and 40 mol-% trans-149, respectively. Underneath, the 

corresponding enhancements with respect to the native reaction are presented. Altogether, 

the diagrams clearly show the effect of template addition. Increasing the amount of dopant 

shifted the product distribution towards the self-replicating species thereby suppressing the 
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formation of AB product cis-148. Since trans-149 is already the dominant species in the 

native reaction, the relative enhancement is smaller than in the case of trans-146, however, 

the negative trend for cis-148 is well reflected. Just as in the case of the first scenario, the self-

replicating by-product of the AB system, trans-148, is slightly up-regulated, a direct 

consequence of the suppression of cis-148.

Figure 6.17 Product distributions for the reaction between maleimide 72 and maleimide 74 with 
nitrone 142 to give trans-149,  cis-148 and trans-148 in the presence of 10 mol-%, 20 mol-% and 40 mol-
% trans-149 template. In a) the final product concentration after full conversion of maleimide 72 is 
depicted. Section b) shows the enhancements with respect to the native reaction from Figure 6.16.  All 
reactions were performed at 0 ºC in CDCl3 at 10 mM reagent concentration and analysed by 19F NMR 
spectroscopy.
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! Also the second competition scenario between an AB system and a self-replicator 

proved to be prone to the addition of instructional template. In the native experiment, 

autocatalytic template trans-149 was detected to be the most abundant species and this 

dominance was further enhanced by seeding fresh batches of reagents with increasing 

amounts of preformed self-replicating template. Since trans-149 was already present at high 

concentrations in the native experiment, the effect of template addition is less pronounced 

than in the system presented in Figure 6.8.

6.5.5 Scenario III: maleimide 74 with nitrones 141 and 142

Having established the possibility of strengthening the performance of a self-replicator in its 

quest for a limited building block shared with an AB system by addition of instructional 

template in two different cases, the next envisaged scenario was constructed to create a 

competition between two self-replicating systems. Removing maleimide 72 from the pool of 

reagents leaves maleimide 74 as common building block to react with nitrones 141  and 142 to 

form the two self-replicating systems trans-147 and trans-149, respectively (Figure 6.18). 

Template trans-149 was already shown to be an extraordinarily efficient self-replicator both 

in isolation and in a competition situation with the AB system cis-148 as presented in the 

previous section.
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Figure 6.18 Competition scenario with naphthalene maleimide 74 as limiting building block. Its 
reaction with phenylacetic acid nitrone 142 and carboxy acid nitrone 141 gives rise to replicators 
trans-149 and trans-147, respectively.

! On the other hand, the reaction between maleimide 74 and carboxy nitrone 141 gave 

rise a self-replicating system of moderate efficiency. The formation of trans-147 was found to 
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be the least efficient of all investigated replicating systems. With the knowledge about the 

performance of the isolated systems at hand, trans-149 was expected to outcompete 

trans-147 in the quest for a limited amount of maleimide building blocks. Once the native 

distribution of products was established, the possibility of influencing the outcome of the 

competition reaction by addition of autocatalytic templates was probed. It seemed plausible 

that the presence of one of the two self-replicating templates at the start of the reaction 

influences the final product distribution by autocatalytic enhancement of the doped species.

! In order to test this hypothesis, a native experiment and two sets of template doped 

reactions were performed. For the native experiment, a 10 mM solution of an equimolar 

mixture of maleimide 74  with both nitrones 141 and 142 in 800 µL CDCl3 were incubated at 

0   ºC and the progression of the reaction was followed by 19F NMR spectroscopy. 

Deconvolution of the obtained spectra allowed for the construction of the concentration vs 

time profile shown in Figure 6.19. Working at low temperature caused broadening of the 19F 

NMR signals for both templates trans-149 and trans-147, and resulted in significant 

overlapping which reduced the quality of the deconvolution. However, the formation of both 

templates can be seen with trans-149 being the main product.
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Figure 6.19 Concentration vs time profile for the reaction between maleimide 74 with nitrone 141 and 
142 to give trans-149 (●) and trans-147 (●). The reaction was performed in CDCl3 at 0 ºC with 10 mM 
reagent concentration and analysed by 19F NMR spectroscopy.

! At the end of the kinetic measurement, the solution mixture was kept at 0 ºC until full 

conversion of maleimide was stated and the final product distribution was extracted by 19F 

NMR spectroscopy. In addition, the same set-up was repeated with three different amounts 

of one of the two self-replicating templates present at the start of the reaction and the final 

product distributions were subsequently determined.

! In the case of using trans-147 as dopant, 8, 16 and 32 mol-% of template were added 

at the start of the reaction. The effect of the dopant on the outcome of the competition 
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reaction can be seen in Figure 6.20a. Addition of the autocatalytic template was indeed found 

to enhance selfishly the formation of trans-147 while the formation of trans-149 was 

consequently down-regulated. However, the overall influence of the instructional template 

on the product distribution is only marginal and merely improves the final concentration of 

trans-147 from 2.7 mM in the native experiment to 3.2 mM in the experiment with 32 mol-% 

dopant. Once more, the system exhibits a saturation limit at which addition of increasing 

amounts of trans-147 has no further impact on the final product distribution. 
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Figure 6.20 Product distribution for the reaction between maleimide 74 with nitrones 141 and 142 a) in 
the presence of 8, 16 and 32 mol-% trans-147 and b) in the presence of 10, 20 and 40 mol-% trans-149 
to give trans-149 (●) and trans-147 (●). All reactions were performed at 0 ºC in CDCl3 at 10  mM 
reagent concentration and analysed by 19F NMR spectroscopy.
!
! Correspondingly, doping experiments with 10, 20 and 40 mol-% of trans-149 was 

performed using the same procedure as described previously. Starting from the same 

product distribution for the native reaction, the analysis of the doping experiments by 19F 

NMR spectroscopy gave rise to Figure 6.20b. It can clearly be seen that addition of increasing 

amounts of trans-149 indeed showed an increase in autocatalytic formation of this very 

template with respect to the competing species. However, the level of enhancements were 

again modest and the system exhibits a saturation limit at which addition of increasing 

amounts of trans-149 has no further impact on the final product distribution.

! Overall, the experiments have shown that the outcome of the competition reaction 

between two self-replicators can be manipulated by addition of preformed replicating 

template. Each template proved to possess the ability to selectively enhance its own 

formation and shifted the product distribution in its own favour. The level of enhancements 

for both of the templates were however rather small, even for relatively large amounts of 

added template.
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6.5.6 Scenario IV: maleimides 72 and 74 with nitrone 141

The last competition scenario unfolds when phenylacetic acid nitrone 142  is excluded from 

the reagent pool. The three remaining components create a scenario in which the two self-

replicators trans-146  and trans-147 compete for a limited amount of carboxy nitrone 141 

(Figure 6.21). Self-replicating template trans-147 is formed by reacting the nitrone with 

maleimide 74 and trans-146 is the product of the reaction between nitrone 141 and 

maleimide 72. In isolation, trans-146  has shown to be the more efficient replicating system, 

however, it does not quite match the strength of replicator trans-149 which was the 

competitor of trans-147 in the previous section.
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Figure 6.21 Competition scenario with carboxy nitrone 141 as limiting building block. Its reaction with 
naphthalene maleimide 74 and benzene maleimide 72 gives rise to replicators trans-147 and trans-146, 
respectively.

! Once more, the possibility of influencing the outcome of this competition reaction by 

adding preformed template was probed. First, the kinetics of the native experiment were 

recorded. A 10 mM solution of an equimolar mixture of carboxy nitrone 141 and both 

maleimides 72 and 74 in 800 µL CDCl3 were incubated at 0 ºC and the progression of the 

reaction was followed by 19F NMR spectroscopy. Working at low temperature caused 

broadening of the 19F NMR signals for both templates trans-147 and trans-146  and resulted 

in significant overlapping which reduced the quality of the deconvolution. However, the 

formation of both templates can be seen with trans-146 being the main product (Figure 6.22).
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Figure 6.22 Concentration vs time profile for the reaction between carboxy nitrone 141 with 
maleimides 72 and 74 to give trans-147 (●) and trans-146 (●). The reaction was performed in CDCl3 at 
0 ºC and with 10 mM reagent concentration and analysed by 19F NMR spectroscopy.

! At the end of the kinetic measurement, the solution mixture was kept at 0 ºC until full 

conversion of nitrone 141 was stated and the final product distribution was extracted by 19F 

NMR spectroscopy. In addition, the same set-up was repeated with three different amounts 

of one of the two self-replicating templates present at the start of the reaction and the final 

product distributions were subsequently determined (Figure 6.23).

     a)" " " " " "      b)

       
0 10 20 30

0.0

2.0

4.0

6.0

Dopant trans-147 / mol-%

C
on

ce
nt

ra
tio

n 
/ m

M

    
0 10 20 30 40

0.0

2.0

4.0

6.0

Dopant trans-146 / mol-%

C
on

ce
nt

ra
tio

n 
/ m

M

Figure 6.23 Product distribution for the reaction between carboxy nitrone 141 with maleimides 72 and 
74 a) in the presence of 8, 16 and 32 mol-% trans-147 and b) in the presence of 9, 18 and 36 mol-% 
trans-146 to give trans-147 (●) and trans-146 (●). All reactions were performed at 0 ºC in CDCl3 at 
10 mM reagent concentration and analysed by 19F NMR spectroscopy.

! When using trans-147 as dopant, 8, 16 and 32 mol-% of replicating template were 

added at the start of the reaction. The effect of the dopant on the outcome of the competition 

reaction can be seen in Figure 6.23a. Addition of the autocatalytic template was indeed found 

to selfishly enhance the formation of trans-147 whereas the formation of trans-146 was 

consequently down-regulated. Just like in the example shown in the previous section, the 

overall influence of the instructional template on the product distribution was only marginal 

and merely improved the final concentration of trans-147  from 4.1 mM in the native 

experiment to 4.4 mM in the experiment with 32 mol-% dopant. Also in this case, the system 
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exhibits a saturation limit at which addition of increasing amounts of trans-147 has no 

further impact on the final product distribution.

! Correspondingly, doping experiments with 9, 18 and 36 mol-% of template trans-146 

was performed using the same procedure as described previously. Analysis of the doped 

experiments by 19F NMR spectroscopy gave rise to Figure 6.23b which clearly shows that 

addition of increasing amounts of trans-146 did indeed increase the autocatalytic formation 

of this very template with respect to the competing species. However, the level of 

enhancements were again modest and the system exhibits a saturation limit at which 

addition of increasing amounts of trans-146 has no further impact on the final product 

distribution.

6.5.7 A four component network

Having established the relationships between the competing systems in the three-component 

experiments, the combination of the two maleimides 72 and 74, and nitrones 141 and 142 

ultimately creates a scenario in which the four reagents can give rise to a mixture of eight 

diastereoisomeric products of which four exploit recognition to enhance their own formation 

in a self-replicating fashion. Additionally, the formation of AB system cis-148 needs to be 

taken into account. An overview of the five major products is given in Figure 6.24.

! A reaction between all four building blocks will yield the native mixture of products. 

It was shown previously that the behaviour of the components in the competition scenario 

can be deduced to some extent from their individual performance. For example, the result of 

the outcome of the competition between two replicating systems could be deduced from the 

performances of the individual systems. In both cases, the more efficient replicator 

dominated its weaker rival. If this four component system was to follow the same principle, 

a clear hierarchy in reactivity could be expected for the reaction of an equimolar mixture of 

all four building blocks. Replicators trans-149 and trans-146  have proven to be exceptionally 

efficient and are bound to be the major products in this experiment. Moreover, their 

formation can proceed independently since both replicators do not have to compete for any 

common building blocks. On the other hand, based on their individual performances, the 

chances for trans-147 and hybrid system 148 to enforce themselves against the stronger 

systems seems to be small. Each of the three diastereoisomers has to compete against at least 

two other more efficient systems. Trans-147 is expected to struggle with trans-149 for its 

maleimide building block and with trans-146 for nitrone reagent. In addition to the rivalry 

with trans-149 and trans-146, the two diastereoisomers for 148 rely on the same building 
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blocks which will further reduce their chance of prosperity. Overall, the reaction between 

two maleimides and two nitrones as depicted in Figure 6.24 is expected to give rise to two 

dominant self-replicators, trans-146 and trans-149, and three less efficient systems, trans-147, 

cis-148 and trans-148.

Figure 6.24 Four-component reaction of building blocks nitrone 141 and 142,  and maleimide 72 and 74 
leading to the formation of four self-replicating products trans-146,  trans-148, trans-149 and trans-147 
as well as AB system cis-148. The reaction was carried out at 0 ºC in CDCl3 with 10  mM starting 
material concentration. All cis-isomers formed only through bimolecular pathways were omitted.

! In order to verify this assumption, the native experiment using a 10 mM 

concentration of maleimides 72  and 74, and nitrones 141 and 142 in CDCl3 was conducted. 

The solution mixture was incubated at 0 ºC until all reagents were converted after 72 h. 

Addition of a fixed amount of d6-DMSO resulted in separation of the signals for the five 

products and allowed for their deconvolution by 19F NMR spectroscopy. The final product 

concentration for this native reaction can be seen in Figure 6.25a. Despite all rational 

expectations, trans-147 was found to the most abundant species with a concentration of 6.4 

mM followed by cis-148  (3.7 mM), trans-146 (3.6 mM), trans-149 (3.4 mM) and trans-148 (2.8 
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mM). This rather unexpected result demonstrates once more that the behaviour of a complex 

network based on mutually catalytic relationships between their components can not easily 

be deduced from the properties of the individual components.

Figure 6.25 a) Product distribution for the four component experiment of maleimide 72 and 74 with 
nitrones 141 and 142 to give templates trans-147 (NC), trans-146 (BC), trans-149 (NP), trans-148 (tBP) 
and cis-148 (cBP). Enhancements for the addition of b) 35 mol-% trans-147,  c) 50 mol-% trans-149 and 
d) 45 mol-% trans-146 at the start of the reaction. All reactions were performed at 0 ºC in CDCl3 at 10 
mM reagent concentration.

! In the present discussion, it is the unusual dominance of trans-147  accompanied by 

the suppression of trans-146 and trans-149 which demands a closer look at the emergent 

features of this system. The individual analysis of non-fluorinated trans-98 revealed an 

uncommon behaviour for the doping experiments in which the maximum rate increased 

with the amount of added template. It was reasoned that the negative cooperativity of the 

template duplex leads to a larger amount of free template and increases correspondingly the 

number of catalytically active ternary complexes. The same principle seems to be responsible 

for the astounding performance of trans-147 in this competition scenario. A negative value 
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for the free energy (–1.36 kJ mol–1) indicates negative cooperativity. With the duplex 

formation disfavoured energetically, more free template will be available in solution and can 

recognise the building blocks to form the ternary complex via two independent recognition 

events. In the two and three component scenarios, the actual cycloaddition reaction remains 

the rate-limiting step, but with more interacting components present in solution, the the 

concentration of catalytic complexes becomes more crucial. In this ‘crowded’ four component 

system, it looks as trans-147 has a clear advantage over the other systems simply by not 

having most of its template molecules locked up in the duplex.

! According to this logic, trans-148 should also perform much better than anticipated 

since it possesses the lowest value for the free energy of connection (–8.99 kJ mol–1). In fact, 

the isomer is being formed to nearly the same extent as the two replicators that were 

expected to be strongest, trans-146 and trans-149. It also performs much better in the 

competition with its rivalling AB system, cis-148, with the final cis/trans ratio of 

diastereoisomers dropping to 1.4:1 from a previous 2.9:1. Overall, a total of 6.5 mM for both 

diastereoisomers of 148  were formed, a value nearly identical to the amount of trans-147. 

This symmetry in product formation stems from the connectivity of the four components. 

Every maleimide can react with one of the two nitrones, and vice versa. If one of the reactions 

is strengthened, the two building blocks become more scarce and all reactions depending on 

them are being down-regulated. Correspondingly, the reaction that does not rely on any of 

the two building blocks is enhanced even though its general reactivity remains unaffected. 

This beneficial relationship stimulates the concomitant formation of trans-147  and both 

diastereoisomers of 148. With trans-147  and trans-148 having the advantage of a low duplex 

stability and cis-148 working as an AB system, all four building blocks are being depleted 

more rapidly. As a result, the formation of trans-146 and trans-149 is down-regulated. It is 

however not certain which of the two favoured autocatalytic systems in the network exerts 

the strongest pull, but their interconnectivity assures that any enhancement for one of the 

systems affects the other. If trans-147 is indeed the most efficient system, maleimide 74  and 

nitrone 141 are being used up more rapidly and are missing for the formation of trans-146 

and trans-149. This in turn leaves a larger amount of maleimide 72 and nitrone 142 to react to 

148. The same logic applies when trans-148 is seen as the dominant species.

! Having established the main principles of this competition scenario, three doping 

experiments were performed. First, 35 mol-% of preformed trans-147 template was added to 

the four reagents at the start of the reaction. The reaction was incubated at 0 ºC and the 

product distribution was determined after complete conversion of all starting material. An 

increase in formation for trans-147 can be seen from the calculation of the enhancements  
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and this up-regulation can be reasoned with the autocatalytic ability of the template (Figure 

6.25b). Strengthening the formation of trans-147 corresponds with an increase in 

concentration for trans- and cis-148 in which the self-replicator was found to be more up-

regulated than the AB system. The ratio between cis and trans has further dropped to 1.1:1 

indicating that a surplus in building blocks favours the formation of the self-replicator. Since 

addition of trans-147 template enhances the autocatalytic formation of more template under 

depletion of maleimide 72 and carboxy nitrone 141, the reactions for trans-146 and trans-149 

are being down-regulated.

! Next, the same experiment was repeated for the addition of 50 mol-% trans-149 and 

the enhancements for the five products relative to the native reaction were calculated (Figure 

6.25c). It can clearly be seen that the presence of the template enhances the autocatalytic 

formation of more trans-149. With building blocks maleimide 74 and nitrone 142  being less 

available, the formation of trans-147 and both diastereoisomers of 148 is down-regulated. As 

a result of the interconnectivity of the system, more maleimide 72 and nitrone 141 becomes 

available and the concentration of trans-146 is increased to nearly the same extent as for 

trans-147.

! The same principle holds for the addition of 45 mol-% trans-146 (Figure 6.25d). 

Autocatalytic enhancement of the added template is accompanied by an increase for self-

replicator trans-149 with which it does not share any of the building blocks. Simultaneously, 

the concentrations for all competing species, trans-147 and 148, is lowered. The results 

presented in the last sections prove that even though the topology of the reaction network 

now exhibits emergent features, it can still be addressed with instructional template to alter 

the outcome of the competition scenario.

6.6 General conclusions

Using the results for the screening performed in chapter 3, four simple building blocks were 

combined successively in this chapter to form four three-component and one four-

component set in which recognition-mediated templates are generated while engaging in 

competition for a limited amount of resources. The concerted introduction of fluorine tags 

into the building blocks allowed for direct and facile analysis of the progression and the 

outcome of the competition scenarios. The initial rivalry between AB system cis-148 and self-

replicator trans-146 highlighted some fundamental principles. Having established the 

performance of the individual systems, the outcome of the competition reaction can be 

rationalised qualitatively, and the kinetic observation of the reaction progress corresponds 

179



with what is expected: the AB system dominates the early phase of the reaction and depletes 

the common building block thereby suppressing the formation of trans-146. However, as a 

consequence of the self-replicating nature of trans-146, addition of increasing amounts of 

presynthesised replicating template fabricated more trans-146 on the expense of the AB 

system. Unfortunately, the relative impact of this manipulation decreases with increasing 

amount of added template, thus the system tends towards a saturation point at which the 

addition of more template does not alter the reaction outcome. This effect is a direct 

consequence of the fact that the template associates in solution to form a duplex structure. 

With a high association constant, the relative amount of free template decreases with 

template concentration. Hence, even when a significantly large amount of template is added 

to the reaction mixture, most of the template is trapped as duplex. The same response was 

seen for the second AB vs SR competition and the two scenarios between two replicators. 

Also in these cases, the outcome of the native reaction corresponded well with the 

performance of the individual systems and all three systems reacted rather rigidly to the 

manipulation with presynthesised template showing the presence of such saturation point.

! For the initial competition between an AB system and a replicator, we were indeed 

able to rationalise qualitatively our findings and the behaviour of the system upon template 

addition, but we have failed to generate a reliable kinetic protocol that simulates the outcome 

of the competition and the formation of the major products quantitatively (Figure 6.8). Even 

though we have collected all necessary data for the individual reactions, merging the 

parameters into one script resulted in small but noticeable deviations. The prediction for the 

native reaction is rather satisfactory, but the simulation underestimates the effect of the 

doping experiments giving rise to lower amounts of replicator trans-146 than found in the 

experiment. Also the increase for side-product trans-148 is interpreted wrongly by the 

simulation. With these findings at hand, we can conclude that even for a relatively 

straightforward situation like the competition of an AB system with a self-replicator, a mere 

superimposition of the two individual reactions does not reflect the native situation and the 

directed manipulation with instructive template.

! Using the established exchange procedure to generate the reactive nitrone from an 

imine and a feed nitrone limited the kinetic regime of the reaction network and resulted in 

greater enhancements upon addition of instructive template. With one of the building blocks 

formed only during the reactions, the relative concentration of the added template and its 

impact on the final product distribution is higher. It can be expected that this effect would 

also be seen for all other systems.
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! A rather unexpected result - when considering the performance of the individual 

systems - was found for the four component reaction. In this reaction network of increased 

complexity, the priority for a successful system shifted away from the catalytic prowess of 

the reaction in the ternary complex in favour of templates that possess the ability to generate 

a high concentration of free template. This finding again highlights that networks of higher 

order do not necessarily perform as a simple superimposition of their individual parts would 

suggest, but that their ability to interact and the connectedness of all entities result in 

emergent properties of the system. It is therefore to conclude that an analysis of single 

replicating systems and the extraction of kinetic data provides us with a qualitative 

understanding and allows for a comparison of reactivity, but in the context of networks with 

increasing complexity, the importance of these features has to be reclassified.
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7.Multicyclic replicating systems

In the last chapter, several competition scenarios based on a set of four interacting 

compounds, two maleimides and two nitrones, were created and investigated. We showed 

that the equilibrium concentrations in the three component systems depended merely on the 

ratio of the catalytic efficiencies of the competing species. For the four component system, 

autocatalysts with low duplex association and high concentration of catalytic ternary 

complex were found to dominate the product pool. This change in mode of operation can be 

regarded as system-level behaviour caused by the increased interconnectedness of the 

individual entities. Despite this more complex behaviour, the system remained instructable 

by informational templates.

! The four building blocks used for this complex network form two sets of reagents 

bearing the same reactive and recognition sites, amidopyridine maleimides and acid 

nitrones, giving rise to autocatalytic and AB products (Figure 1.1a). In order to further 

increase the interconnectedness of the building blocks in the network, we wish to incorporate 

reciprocal replication into our design. A reciprocal template bears two identical recognition 

sites and is dependent on a second template with complementary recognition units (Figure 

1.1b). The formation of such templates therefore requires the presence of compounds that 

possess orthogonal reactive and recognition sites. In Figure 2.3, the design of a multicyclic 

system was presented in which two minimal replicators are interlinked to form two 

additional reciprocal catalytic cycles by pairwise combination of four starting reagents. 

Given the failure of designing such instructable multicyclic system in the laboratory, kinetic 

simulations were conducted to elucidate the network features essential for the generation of 

such complex system and the possibility to instruct them with informational template.

7.1 Computational analysis of a multicyclic system[139]

A simple kinetic model (Figure 7.1) was constructed with the intention of creating a balanced 

situation between two self-replicators, R1 and R2, which are formed by reacting building 

block A with B and C with D, respectively, and two reciprocal species, T1 and T2, which are 

the products of the reaction of building block A with D and B with C, respectively. The rate 

constants for the bimolecular formation of all four templates were therefore set to a common 

value (k1 = 5 × 10–5 M–1s–1) and the rate constants for the formation of products through the 

template directed pathways were adjusted to give the same effective molarity for all 

replicators (kA = kC = 1 × 10–4 s–1). The association for the individual recognition was set to Ka 

= 1000 M–1 with the association for the auto- and crosscatalytic duplex both being 1 × 106 M–1.
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Figure 7.1 Replicator network constructed from two minimal replicators, R1 and R2, and two 
reciprocal replicators, T1 and T2. The network contains two autocatalytic cycles, mediated by the 
complexes [R1·R1] and [R2·R2],  and two linked crosscatalytic cycles, mediated by the complex 
[T1·T2]. The four templates are formed by pairwise combinations of the four starting reagents,  A 
through D.

! Accordingly, simulations were performed in which the initial concentrations of R1, 

R2, T1 and T2 were all set to zero and the initial concentrations of the reagents were set to 

25  mM (Figure 7.2). In this situation, the two minimal replicators and two reciprocal 

replicators were indeed found to co-exist and after 16 h their concentrations were almost 

equal (lane marked Native in Figure 7.2). Taking this scenario as the initial starting point, the 

possibility of influencing the outcome of the multicyclic system by addition of preformed 

template at the start of the reaction was probed. For example, addition of template R1 is 

expected to instruct the system to autocatalytically enhance the formation of more R1. 

However, as a consequence of the interconnected nature of the reaction network, an up-

regulation of both self-replicating templates was observed on the addition of only one 

template or the other. Initial addition of 50 mol-% of minimal replicator R1 resulted in an 

increase of the amount of R1 from around 12 mM to around 18 mM (lane marked +R1 in 

Figure 7.2). Concomitantly, there was also an enhancement for the formation of R2 (to 
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around 17 mM) and a decrease in the amounts of the reciprocal templates T1  and T2 (to 

around 7 mM from 12 mM). Thus, the introduction of a substochiometric amount of minimal 

template R1 resulted in the output of the network being biased towards the formation of 

both R1 and R2. The addition of the R2 minimal replicator at the start of the reaction resulted 

in the same pattern of outputs (lane marked +R2 in Figure 7.2). The amount of newly formed 

R2 increased to around 18 mM, the amount of R1 to around 17 mM and a decrease in the 

formation of T1 and T2 to around 7 mM was stated.

Figure 7.2 Simulation of a multicyclic system as depicted schematically in Figure 7.1 with R1 and R2 
as self-replicating templates, and T1 and T2 as reciprocal templates taken from ref. [139]. Bimolecular 
rate constants, effective molarities, association constants for the individual recognition and for the 
product duplex were chosen to be equal for all four replicating species. The concentration of reagents 
A-D was adjusted to 25 mM. In all lanes, the bars indicate the concentration of each template after 16 h 
and the bars are shaded to identify the individual templates according to the legend. The lane marked 
Native reflects the selectivity of the system without added template. In the other lanes, the identity of 
the added template is indicated by the label at the bottom of the lane.

! The observed output pattern can be explained easily. The addition of preformed 

autocatalytic template R1  at the start of the reaction ensures that the formation of this species 

is enhanced and building blocks A and B are being used up rapidly. Since both reciprocal 

templates T1 and T2 require either building block A or B, these two templates have a 

competitive disadvantage compared with R1 and are being formed in lesser extent. On the 
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other hand, replicator R2 does not share any building blocks with R1 and, thus, it is free to 

exploit an increasing amount of building blocks C and D for its own construction.

! The reaction outcome is reversed upon addition of 50 mol-% of template T1 at the 

start of the reaction (lane marked +T1 in Figure 7.2). It is now the crosscatalytic partner T2 

which benefits the most with an enhancement from around 12 mM to around 20 mM after 

16 h. Concomitantly, there is also an increase in the amount of T1 to around 17 mM and a 

decrease in the amounts of the minimal template R1 and R2 to a mere 4 mM. The addition of 

50 mol-% of the corresponding reciprocal replicator T2 stimulates a very similar outcome 

(lane marked +T2 in Figure 7.2). The same logic outlined for the addition of minimal 

template can be applied to explain the behaviour induced by addition of reciprocal template. 

Initial addition of T1 crosscatalyses the formation of T2. Since T2 needs building blocks B 

and C for its formation, a component required for the formation of each of the minimal 

replicators is removed rapidly from the reagent pool. With the enhanced formation of T2, it 

can then start to act as a catalyst for the formation of T1 and this process begins to consume 

building blocks B and C which further limits the generation of both minimal replicators R1 

and R2. Since the crosscatalytic relationship connects both reciprocal templates T1  and T2, 

their joint operation consumes all four building blocks creating a positive feedback loop 

which results in higher selectivities than in the case of the independently proceeding 

autocatalysts R1 and R2. Addition of one of the self-replicating templates instructs the 

directed removal of only two of the available building blocks from the system whereas the 

enhancement of the other minimal template is an indirect and non-instructed feature of the 

process and an example of emergent system-level behaviour.

! These theoretical results confirm that it is possible to construct a multicyclic network 

on the basis of a pair of reciprocal and two minimal replicators, and to influence the outcome 

of the system by addition of instructional template. However, the calculations discussed 

above assumed that the efficiencies of all four recognition-mediated processes were identical. 

It is highly unlikely that such an ideal situation can be reproduced in practice, but a scenario 

in which all efficiencies are of similar magnitude should suffice to verify the theoretical 

results.

7.2 Using trans-59b as preset replicator in the design of a multicyclic system

Each multicyclic system consists of four recognition-mediated interactions, two autocatalytic 

and two reciprocal (Figure 7.1). In the previous chapters, the reaction of two recognition-

enabled maleimides with two acid nitrones leading to three self-replicating templates and 
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one hybrid system was investigated. Each of these systems can potentially be used as a 

fragment to build a multicyclic system, but they cannot be combined to form reciprocal 

templates, since the second self-replicating system must consist of two building blocks with 

reversed recognition and reactive sites in order to generate templates with two identical 

recognition sites. The reaction between amidopyridine nitrone 55 and acid maleimide 33 

leads to the well-established replicator trans-59b and fulfills the criteria of orthogonal 

reactive and recognition sites (Scheme 7.1).[140,188] 

Scheme 7.1 Formation of template 59b from nitrone 55 and maleimide 33 shows strong self-replicating 
activity for trans-59b and is used as a benchmark reaction for the design of a multicyclic system.

! Both components of this self-replicating system were easily accessible from 

commercially available compounds. Nitrone 55 was synthesised in good yield from nitro 

compound 160 through partial reduction using bismuth trichloride and potassium 

borohydride as hydrogen source, and consequent condensation of the obtained 

hydroxylamine with aldehyde 134  presented previously (Scheme 7.2). The presence of the 

fluorine allows for the analysis of the autocatalytic and reciprocal products by 19F NMR 

spectroscopy. 

Scheme 7.2 Synthesis of nitrone 55. Conditions: a) BiCl3, KBH4, EtOH/H2O, then 134, EtOH, 46%.
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! Synthesis of maleimide 33 was achieved in acceptable yield by heating commercially 

available 4-amino-phenylacetic acid 136 in the presence of maleic anhydride in acetic acid. A 

small portion of the obtained acid maleimide 33  was further converted with methyl iodide 

and cesium carbonate in DMF to methyl ester 57 which was used as a recognition-disabled 

control compound (Scheme 7.3).

N

O

O
CO2H

H2N
CO2H

a) b)
N

O

O
CO2Me

136 33 57

Scheme 7.3 Synthesis of maleimide 33 and control compound 57.  Conditions: a) maleic anhydride, 
AcOH, 80 ºC, 70%; b) MeI, Cs2CO3, DMF, rt, 56%.
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Figure 7.3 Concentration vs time profile for the reaction between a) maleimide 33 and nitrone 55 with 
straight lines representing the result for the fitting of the trans-(–) and cis-(–) product using SimFit, b) 
maleimide 33 and nitrone 55 in the presence of 10 mol-% trans-59b, c) maleimide 33 and nitrone 55 
and d) maleimide 33 and nitrone 55 in the presence of 9 mol-% trans-146.  The formation of trans-
product is shown as red filled circles and the formation of cis-product as blue filled diamonds. All 
reactions were performed at 0 ºC in CDCl3 at 10 mM reagent concentration.
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! Following the reaction of 55 and 33 for 16 h in CDCl3 at 0 ºC with 10 mM 

concentration of starting materials clearly showed the characteristic sigmoidal shape for the 

formation of trans-59b (Figure 7.3a). Addition of 10 mol-% presynthesised trans-template 

verified the autocatalytic nature by overcoming the initial lag period (Figure 7.3b), whereas 

reaction of nitrone 55 with control maleimide 57 established the bimolecular rate of the 

reaction (Figure 7.3c). With respect to its application in the multicyclic system, it was crucial 

to demonstrate that there is no crosscatalytic relationship between this self-replicator and 

any of the other systems introduced in chapter 6. Hence, 9 mol-% of trans-146  was added at 

the start of the reaction between nitrone 55 and maleimide 33. It is obvious from the 

concentration vs time profile that the presence of the other template failed to catalyse the 

formation of trans-59b (Figure 7.3d). Identical profiles were obtained upon addition of 

trans-149 (10 mol-%), trans-147 (8 mol-%) and a mixture of cis- and trans-148 (6.5 and 3.5 

mol-%, respectively). Fitting of the native experiment with SimFit went smoothly (Figure 

7.3a) and provided the kinetic parameter listed in Table 7.1 suggesting that trans-59b is a 

fairly strong self-replicating system.

Table 7.1 Kinetic parameters extracted for the self-replicating reaction of maleimide 33 and nitrone 55 
at 0 ºC in CDCl3 at 10 mM reagent concentration using SimFit.

trans-59b cis-59b

bimolecular rate constant / M–1 s–1 2.66 x 10–4 1.12 x 10–4

recognition-mediated rate constant / s–1 1.32 x 10–3 -

effective molarity / M 4.96 -

!Gs / kJ mol–1 12.5 -

7.3 Using trans-161 as replicator in the design of a multicyclic system

Having established the efficiency of replicator trans-59b, this autocatalyst can now be 

combined with any of the four replicating systems discussed in the previous chapters. We 

chose trans-161 to be the first candidate. In order to facilitate later computational analysis of 

the envisaged multicyclic system, maleimide 72  bearing the 4,6-dimethyl pyridine 

recognition unit was replaced by maleimide 66 (Scheme 7.4). Separate kinetic analysis of this 

novel system allowed for the fitting of the experimental data (Figure 7.4 and Table 7.2).
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Scheme 7.4 Formation of template 161 from maleimide 66 and nitrone 141 shows strong self-
replicating activity for trans-161.

Figure 7.4 Concentration vs time profile for the reaction between maleimide 66 and nitrone 141 to give 
template 161.  The formation of trans-product is shown as red filled circles and the formation of cis-
product as blue filled diamonds.  Straight lines represent the results for the fitting of the trans-(–) and 
cis-(–) product. The reaction was performed at 0 ºC in CDCl3 at 10 mM reagent concentration.

! It can be seen that the removal of the second methyl group has very little effect on the 

performance of the self-replicator. Compared with the original replicator trans-146  (in 6.4.1), 

the effective molarity is increased slightly and the duplex association remains the same. Even 

though trans-161 has a significantly higher EM than trans-59b, the construction of a fully 

functional multicycle is first attempted by coupling these two self-replicators.

Table 7.2 Kinetic parameters extracted for the self-replicating reaction of maleimide 66 and nitrone 141 
at 0 ºC in CDCl3 at 10 mM reagent concentration using SimFit.

trans-161 cis-161

bimolecular rate constant / M–1 s–1 2.23 x 10–4 1.14 x 10–4

recognition-mediated rate constant / s–1 1.59 x 10–2 -

effective molarity / M 71.3
(cf. 58.8 for trans-146) -

!Gs / kJ mol–1 13.4
(cf. 13.3 for trans-146) -
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! However, not only the efficiencies of the two self-replicating systems play a crucial 

role, but in order to allow for clean analysis of the final four component systems, the 

crosscatalytic activities between the reciprocal templates were tested before the original set of 

four compounds was ultimately combined to form the multicyclic system. Once the 

functioning of a multicyclic system has been established, the instruction of the reaction by 

addition of preformed template was probed.

7.4 A Multicyclic system based on trans-59b and trans-161

The envisaged network of maleimides 66 and 33 and nitrones 141 and 55 is depicted in 

Figure 7.5. In this scenario, maleimide building block 33 can perform as a self-replicator with 

nitrone 55  to give rise to template trans-59b, but it can also react with nitrone 141 to form 

template 162. The second replicating system is established by reacting maleimide 66 with 

nitrone 55, whereas combining maleimide 66 with nitrone 55 leads to bisamido template 69.

Figure 7.5 Multicyclic network combining the self-replicating systems trans-161 (from maleimide 66 
and nitrone 141) and trans-59b (from maleimide 33 and nitrone 55) to form two additional reciprocal 
templates trans-162 and trans-69.

141 33

66 55

trans-161 trans-59b

trans-69

trans-162
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! Besides the well-established self-replicating nature of the building blocks, the 

functionality of this system relies heavily on the presence of a crosscatalytic relationship 

between the reciprocal templates. Computational modeling of the template structures 

suggests that the main reciprocal interaction is bound to occur between the trans-isomers of 

the diacid and the bisamido template (Figure 7.6), since they possess a linear structure in 

which the recognition sites are available for association. The length of the templates appears 

to be suitable for formation of the product duplex [trans-69·trans-162]. Template trans-162 

bears two acid moieties that recognise amido pyridine with different single-point association 

constants. However, application of 6-methyl maleimide 66 instead of 4,6-dimethyl maleimide 

72  rendered the bisamido template symmetrical in terms of recognition and it is difficult to 

rationalise the precise respective orientation of the two reciprocal templates. It can be 

speculated whether the carboxylic acid or phenylacetic acid has any preference for one side 

of the bisamido template or whether geometric factors favour one orientation over the other.

Figure 7.6 Molecular model of the reciprocal duplex of trans-162 and trans-69. Carbon atoms are 
shown in dark grey, hydrogen atoms in light grey, nitrogen atoms in blue and oxygen atoms in red. 
Hydrogen bonds are indicated by the dotted lines. Most other hydrogens were omitted for clarity.

! In order to probe the efficiency of the reciprocal interaction, bisamido template 

trans-69 was synthesised by reacting nitrone 55 and maleimide 66 in chloroform at room 

temperature and separating the diastereoisomers by column chromatography (Scheme 7.5).
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Scheme 7.5 Synthesis of template trans-69. Conditions: a) CHCl3, rt, 50%.

! Next, purified template trans-69 was used as reciprocal catalyst for the reaction of 

maleimide 33 and nitrone 141 (Scheme 7.6). In absence of any added template, the reaction 

between both acids was found to be slow and unselective. Kinetic analysis at 0 ºC for 16 h at 

10 mM concentration showed a ratio of 1.7:1 for the trans-isomer of 162 with only 12% of the 

starting material converted (Figure 7.7a). Addition of various amounts of presynthesised 

trans-69 at the start of the reaction confirmed instantly the crosscatalytic relationship 

between both trans-templates (Figure 7.7b). Injecting 16 mol-% trans-69 to a fresh batch of 

reagents increased the selectivity to 18:1 in favour of the trans-product with 31% of the 

starting material converted. After the same time, doping the mixture with 55 mol-% trans-69 

further pushed the ratio to 110:1 with 63% conversion of starting material. Addition of a 

stochiometric amount of template (98 mol-% trans-69) gave almost complete conversion of 

all starting material and only the trans-product was detected by 1H NMR spectroscopy.

Scheme 7.6 Formation of trans-162 in the absence or presence of reciprocal template trans-69. Kinetics 
for the native reaction and doping experiments using various amounts of trans-69 are depicted in 
Figure 7.7.
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Figure 7.7 Concentration vs time profiles for the reaction of nitrone 141 and maleimide 33 to give 
trans-(●) and cis-(◆) 162 a) in the absence of any added template b) in the presence of 0 (●), 16 (■), 55 
(◆) and 98 (▴) mol-% added trans-69. In b) straight lines (–) represent the results for the fitting of the 
trans-product with all cis-isomers omitted for clarity.

! In all cases, the initial increase in rate for the formation of trans-162 was found to be 

proportional to the amount of added reciprocal template trans-69. However, once the 

concentration of the product matched the amount of added template, the rate of the reaction 

decreased significantly suggesting strong product inhibition between the reciprocal 

templates and therefore limiting the catalytic turnover. When all trans-69 template added 

initially is saturated with product molecules, the main contribution for formation of further 

product stems only from the bimolecular reaction.

! In order to establish the effectiveness of the corresponding diacid template trans-162, 

attempts were made to synthesis, purify and separate the catalytically active trans-template 

from starting materials 141 and 33. However, in the presence of an excess of acid, nitrone 141 

showed only limited stability and decomposed over the course of the reaction, thereby 

diminishing significantly the yield of the reaction and making the purification by column 

chromatography very difficult. Crystallisation from acetone provided a clean sample of a 

mixture of both isomers, but all attempts to redissolve the diastereoisomeric template 

mixture in CDCl3 to study its catalytic property failed, most probably as a consequence of the 

presence of the two acid functionalities. Despite the limited solubility of purified 162 

template, no precipitate was observed for the reciprocal experiments depicted in Figure 7.7b 

or during the investigation of the multicyclic system owing to the hydrogen bonds between 

the acid moieties and the amidopyridine units.

! In order to extract kinetic parameters for this reciprocal system, the experimental data 

from Figure 7.7 were fitted to a kinetic model using SimFit (see appendix). The bimolecular 

rates for the formation of both diastereoisomers of 162 were extracted from the native 

experiment. Mutual fitting of the experimental results for the doping with 16 and 55 mol-% 
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trans-69 proceeded smoothly and provided the results listed in Table 7.3. The free energy of 

connection was calculated using

with gas constant R and temperature T. The single-point associations Kind,1 and Kind,2 between 

6-methyl amido pyridine and both acids were taken from Table 4.1 (Kind,1 = 1020 M–1 for 

phenylacetic acid and Kind,1 = 3750 M–1 for carboxylic acid). The value for Kduplex was provided 

by the fitting procedure.

Table 7.3 Kinetic parameters for the reaction of maleimide 33 and nitrone 141 to give cycloadduct 162 
at 0   ºC in CDCl3 at 10 mM reagent concentration. The kinetic parameters for the crosscatalytic 
relationship between trans-162 and trans-69 were determined by fitting the experimental data 
depicted in Figure 7.7b using SimFit. Values for replicators trans-161 and trans-59b are listed for 
comparison.

trans-162 cis-162 trans-161 trans-59b

bimolecular rate constant / M–1 s–1 1.51 x 10–4 9.39 x 10–5 2.23 x 10–4 2.66 x 10–4

recognition-mediated rate constant / s–1 1.53 x 10–3 - 1.59 x 10–2 1.32 x 10–3

effective molarity / M 10.1 - 71.3 4.96

!Gs / kJ mol–1 10.6 - 13.4 12.5

! Computational analysis confirmed the experimental findings that trans-69 is a 

selective catalyst for the enhanced formation of trans-162 and that both trans-templates can 

associate to form a well-matched duplex. When bound to the bisamido catalyst, the rate 

constant for the cycloaddition of building blocks 141 and 33 is ten times higher than in the 

bimolecular reaction (EM = 10.1 M) and the emerging product duplex shows major positive 

cooperativity. The values are similar to the ones found for the analysis of the reciprocal 

system in the multicyclic design depicted in Figure 1.22 (EM = 27.0 M and $G = 5.2 kJ mol–1).
[138] But more importantly, the EM and the duplex stabilisation are in the same magnitude as 

for the two self-replicators trans-59b and trans-161  with which they will compete in the final 

multicycle. Comparison of the kinetic parameters obtained for all participating systems in 

isolation reveals that trans-161 possesses by far the highest effective molarity and might be 

expected to be the dominant species in the multicyclic network.

!Gs = RT ln
Kduplex

Kind ,1 " Kind ,2

#

$%
&

'(
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7.5 Analysis of the multicyclic system based on trans-59b and trans-161

Having established the efficiencies of the autocatalysts as well as the reciprocal relationships 

between templates trans-69 and trans-162, the functionality of the multicycle as a whole 

could now be investigated. All four compounds, 33, 55, 141 and 66 were mixed in CDCl3 at 

10 mM starting concentration and the progression of the reaction was followed by 19F NMR 

spectroscopy. Initially, kinetic data was recorded at 0 ºC, but overlap of the broadening 

product peaks from template trans-162 and template trans-161 at higher concentrations 

hampered the deconvolution of the obtained spectra. Increasing the temperature to 10 ºC 

gave a better resolution of the particular peaks and facilitated the analysis of the recorded 

data. The resulting concentration vs rate profiles for both temperatures are presented in 

Figure 7.8. The shapes of the curves for the formation of the four possible template products 

are very similar in both experiments. The only major difference between both profiles is the 

increase in rate and shortening of the time frame of observation. In both experiments, no 

noticeable formation of cis-products was detected.

! Overall, both reciprocal templates trans-69 and trans-162 are formed in greater 

abundance than the two self-replicating templates trans-161  and trans-59b. More 

intriguingly, their formation shows a sigmoidal rate profile with almost identical gradient for 

both templates. This simultaneous progression is a result of the crosscatalytic nature which 

links inseparably both reciprocal templates and forces them to work in a symbiotic manner. 

At the start of the reaction, all templates need to be formed through the slow and unselective 

bimolecular reaction. As soon as a reciprocal template is formed, it can start to crosscatalyse 

its partner template which in turn can catalyse the reaction to form another molecule of the 

initial template. It is interesting to state that in the multicyclic system, the performance of the 

reciprocal pathway is not hampered by product inhibition. Efficient catalytic turnover of the 

formed cycloadduct templates leads to the formation of the sigmoidal curve usually found 

for self-replicating systems.

! With the reciprocal system being the dominant species in this network, both self-

replicators are only formed to smaller amounts. Despite their independent catalytic cycles, 

both replicators are also being formed isochronously. As a consequence, a clear splitting can 

be seen in the rate profile for both types of replication with the reciprocal version being the 

more efficient one. A different pattern can be seen when combining the formation of products 

deriving from the same nitrone, trans-162 with trans-161 and trans-69 with trans-59b 

(Figure 7.8c). Both nitrones are being incorporated into the product templates at nearly 

identical rate with the profiles showing the characteristic sigmoidal shape.
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Figure 7.8 Concentration vs time profiles of the multicyclic system depicted in Figure 7.5 at a) 0 ºC and 
b) 10 ºC followed by 19F NMR spectroscopy. The reaction of maleimides 33 and 66 with nitrones 141 
and 55 gives rise to self-replicating templates trans-161 (●) and trans-59b (●) and reciprocal templates 
trans-162 (▪) and trans-69 (▪).  c) Overlay of all template products deriving from nitrone 141 (▪) and 55 
(●) are depicted for the reaction at 10 ºC. d) Product distribution for the templates after 12 h at 10 ºC.

! After 12 h at 10 ºC, the conversions of nitrones 141 and 55 were determined to be 84% 

and 83%, respectively, with similar concentrations for trans-162 (5.28 mM) and trans-69 (5.62 

mM). The concentration of self-replicator trans-161 (3.16 mM) was slightly higher than 
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trans-59b (2.61 mM). The reaction solution was further monitored until complete conversion 

of all starting material was detected. The final ratio of reciprocal replicators to self-replicators 

was calculated to be 2.1 which reflects an absolute concentration of 6.87 mM trans-162 and 

trans-69, and only 3.13 mM self-replicators trans-161 and trans-59b.

Figure 7.9 Concentration vs time profile of the control reaction of the multicyclic system between 
nitrones 81 and 55, and maleimides 57 and 66 at 10 ºC and 10 mM starting material concentration 
followed by 19F NMR spectroscopy to form four sets of diastereoisomeric templates with a) trans-
templates shown as filled circles and squares, and cis-templates as hollow circles and squares. b) 
Product distribution for the reaction at 10 ºC after 12 h.

! In order to rule out any non-recognition mediated processes as source of the reactivity 

found in the multicycle, a control reaction was conducted in which acid maleimide 33  was 

replaced with its methyl ester 57 and acid nitrone 141 was substituted with its control 

compound 81. In this system, the lack of productive hydrogen bonding prevented the rate-

enhanced formation for any of the possible diastereoisomers (Figure 7.9). Accordingly, the 

reaction between the building blocks proceeded with low selectivity giving rise to a mixture 

of four sets of diastereoisomeric products, none of which was formed to more than 1.2 mM 

after 12 h.
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7.6 Instructing the multicyclic system

As shown in the previous section, a fully functional multicyclic network was established in 

which two self-replicating systems were coupled to give rise to an additional reciprocal 

relationship. Next, we set out to probe whether the interconnectedness of the system can be 

exploited to generate responses to external stimuli. In the theoretical discussion presented 

previously (Figure 7.1 and 7.2), addition of preformed template at the start of the reaction 

was shown to alter the network topology by strengthening selectively one of the catalytic 

relationships. In chapter 6, this instruction method was used to manipulate the outcome of 

various competition scenarios in favour of the added autocatalyst. Replicator systems with 

up to four building blocks were investigated and all proved to be instructable. Up to this 

point, no experimental work has dealt with the directed instruction of a network of increased 

complexity such as the multicycle presented in the previous section. In Figure 2.2, we 

presented simple calculations on hypothetical reaction networks which suggested that the 

response of the network to the addition of instructional template is proportional to the 

degree of interconnection among the building blocks. In the multicycle, each starting 

compound can react via two catalytic modes, two independent autocatalytic cycles and one 

crosscatalytic relationship. It is especially for the presence of the reciprocal replicators that 

the entities in this reaction network are tightly linked, rendering the network susceptible to 

manipulation with instructional template.

! Taken the results of the theoretical discussion as a lead, we can speculate about the 

behaviour of this multicycle upon addition of instructional template. The presence of 

reciprocal template in the reaction mixture is expected to shift the product distribution 

towards the crosscatalytic products whereas addition of self-replicating template should 

influence the outcome in a selfish manner by up-regulating the formation of more 

autocatalyst. In order to elucidate this hypothesis, a set of experiments were conducted in 

which a fixed amount of bisamido template trans-69 or one of the autocatalytic templates 

trans-161 or trans-59b was added to the four components of the multicycle at the start of the 

reaction.

7.6.1 Addition of 20 mol-% reciprocal template trans-69

The first experiment was conducted by adding 20 mol-% trans-69 to an equimolar mixture of 

compounds 141, 33, 66  and 55 at 10 mM concentration in CDCl3. The reaction mixture was 

incubated at 10 ºC and its progression was followed by 19F NMR spectroscopy. 

Deconvolution of the obtained spectra gave rise to the rate profile depicted in Figure 7.10.
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Figure 7.10 Concentration vs time profile of the multicyclic system depicted in Figure 7.5. a) The 
reaction of maleimides 33 and 66 with nitrones 141 and 55 in the presence of 20 mol-% trans-69 gives 
rise to self-replicating templates trans-161 (●) and trans-59b (●) and reciprocal templates trans-162 (▪) 
and trans-69 (▪). The reaction was performed at 10 ºC in CDCl3 at 10 mM reagent concentration and 
followed by 19F NMR spectroscopy. b) Product distribution for the templates after 12 h.

! Satisfyingly, the expected response of the multicyclic system to the addition of 

preformed reciprocal template can clearly be seen. Both reciprocal templates were formed in 

larger extent than in the initial experiment and, accordingly, the formation of the self-

replicating templates trans-161 and trans-59b was down-regulated. Right from the start, 

diacid template trans-162 is the most abundant species in the reaction mixture owing to the 

direct catalytic relationship with seeded template trans-69 whose overall concentration was 
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corrected by subtracting the amount of added template to only account for the newly formed 

molecules. This correction is reflected in the difference of concentration between both 

reciprocal replicators which is roughly 1 mM throughout the reaction. Since the trans-69 

template added initially was readily available at the start of the reaction, formation of 

corresponding trans-162  template did not show any lag period but a relatively steep incline 

similar to the case of isolated reciprocal doping experiments. At the start of the reaction, a 

significant amount of trans-162 was present which in turn catalysed the formation of more 

trans-69 template thereby completing the crosscatalytic relationship between both templates. 

As a consequence of the rapid initial formation of diacid template, the lag period for the 

formation of trans-69 is less pronounced than in the native experiment. After 12 h, trans-162 

was found to be the dominant species with a concentration of 7.34 mM followed by trans-69 

with 6.63 mM.

! Both self-replicating systems perform significantly weaker than in the native 

experiment because all four necessary building blocks are used up more rapidly by the 

crosscatalytic system. With a smaller concentration of reagents present at the early stage of 

the reaction, the bimolecular reaction to form the autocatalytic templates was suppressed 

and once a certain amount was produced, most of the reagents have already been 

incorporated into one of the reciprocal templates. As a consequence, the curves for both self-

replicating templates do not show a pronounced sigmoidal shape. Since the amplified 

reciprocal system is using all four of the available building blocks, both self-replicating 

templates are being down-regulated in the same extent. After 12 h, their concentration was 

established to be 1.96 mM for trans-161 and 1.34 mM for trans-59b. The conversion of 

nitrone 141 into products increased from 84% in the native reaction to 93% as a result of the 

induced rate-enhancements.

! In order to compare the results of the doping reaction with the native multicycle, the 

reaction was kept at 10 ºC until all starting material was converted into products. As a 

consequence of the symmetry of the closed network, equal concentrations for the two self-

replicating and the two reciprocal species were obtained. In the native experiment, the final 

ratio between the reciprocal and the autocatalytic replicators was found to be roughly 2.1 

with a final concentration of 3.13 mM for both self-replicators and 6.87 mM for the reciprocal 

templates. In the doping experiment, the final RR/SR ratio for the two replicator species 

increased to 3.6 with the final concentration for both self-replicating species dropping to 

2.16 mM and increasing to 7.84 mM for the reciprocal templates (Figure 7.11a). The change in 

product formation with respect to the native reaction is highlighted as enhancement E 

according to
200



Equation 7.1

with cdopant and cnative as concentration of a particular species in the doped and native 

experiment, respectively. A clear enhancement for the formation of reciprocal replicators can 

be seen (Figure 7.11b). Since they were already the dominant species in the native 

experiment, the relative enhancement is smaller than the decrease for the self-replicators. The 

change in template concentration is reflected in the pie chart depicted in Figure 7.11c.

Figure 7.11 a) Concentration for each reciprocal (RR) and self-replicator (SR) product in the reaction of 
maleimides 33 and 66 with nitrones 141 and 55 in the presence of 20 mol-% trans-69 after full 
conversion of starting materials determined by 19F NMR spectroscopy. b) Enhancements in product 
formation with respect to the native reaction calculated according to Equation 7.1. c) Pie chart 
reflecting the product distribution of reciprocal replicators (RR) and self-replicators (SR).

! In summary, this experiment demonstrates that the multicyclic system can be 

instructed by the addition of reciprocal template. Injection of a substochiometric amount of 

trans-69 at the start of the reaction resulted in strengthening its crosscatalytic relationship 

with trans-162. Unfortunately, trans-162 could not be employed as a dopant for reasons 

described above, but we can assume that a very similar results would be obtained.

7.6.2 Addition of 20 mol-% autocatalytic template trans-161

Having established how the multicyclic system responds to addition of reciprocal template, 

the next task was to elucidate the impact of seeding preformed autocatalytic template to the 

reaction mixture. The first investigated template was trans-161 of which 20  mol-% was 
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added at the start of the reaction between equimolar amounts of reagents 141, 33, 66 and 55 

at 10 mM concentration. The reaction mixture was incubated at 10 ºC and its progression was 

followed by 19F NMR spectroscopy. Deconvolution of the recorded spectra gave rise to the 

concentration vs time profile depicted in Figure 7.12.

Figure 7.12 Concentration vs time profile of the multicyclic system depicted in Figure 7.5 a) The 
reaction of maleimides 33 and 66 with nitrones 141 and 55 in the presence of 20 mol-% trans-161 gives 
rise to self-replicating templates trans-161 (●) and trans-59b (●) and reciprocal templates trans-162 (▪) 
and trans-69 (▪). The reaction was performed at 10 ºC in CDCl3 at 10 mM reagent concentration and 
followed by 19F NMR spectroscopy. b) Product distribution for the templates at after 12 h.
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! It can be seen that the distribution between both types of replication has changed at 

the expense of the reciprocal templates. Since there is no concomitant formation for the self-

replicating templates, the previous splitting pattern between the two groups of products is 

lost. The initial lag period for trans-161  has disappeared and the maximum rate for the 

formation of trans-161 can now be found at the start of the reaction. Since the self-replicator 

did not have to rely on template to be formed via the bimolecular reaction, it was instantly 

able to perform at the start of the reaction when a high concentration of building blocks was 

present in solution. By rapid incorporation of the necessary reagents 141 and 66 into the self-

replicating template trans-161, the reciprocal systems trans-69  and trans-162 severely felt the 

shortage of the two building blocks and were not able to perform as well as they did in the 

native reaction. Although the formation of the reciprocal templates was suppressed, its main 

feature, the concomitant formation of both templates through the crosscatalytic cycle can still 

be seen and both profiles exhibit a nearly identical, characteristic sigmoidal shape. 

! With the activity of the reciprocal replicating system down-regulated, the second self-

replicator trans-59b also benefited from the increased rate of the instructed self-replicator. 

Since the solution contained an equimolar mixture of all four reagents, the formation of 

every template molecule trans-161 using maleimide 141 and nitrone 66 implies that there is 

one molecule of maleimide 33 and nitrone 55  left which can react to form a molecule of 

trans-59b. However, unlike in the scenario discussed above during which a fixed amount of 

reciprocal template stimulated the concomitant formation of an increasing amount of the 

seeded template and its partner, doping the system with self-replicating template trans-161 

does only instruct the system to enhance autocatalytically the formation of more trans-161. 

The resulting increase in partner template trans-59b can be regarded as an emergent 

property of the multicyclic network and is a direct consequence of the fact that the 

experiments are performed in a closed system. This independent relationship between the 

two self-replicators can be seen in the rate profile in which the formation of trans-59b is 

significantly slower than for trans-161. After 12 h, trans-59b was the least abundant species 

with a concentration of 3.46 mM, whereas the two reciprocal replicators, trans-162 (4.49 mM) 

and trans-69  (4.62 mM), and trans-161 (4.52 mM) were formed to nearly equal amounts. The 

conversion of nitrone 141 into products increased from 84% in the native reaction to 90% as a 

result of the induced rate-enhancements.
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Figure 7.13 a) Concentration for each reciprocal (RR) and self-replicator (SR) product in the reaction of 
maleimides 33 and 66 with nitrones 141 and 55 in the presence of 20 mol-% trans-161 after full 
conversion of starting materials determined by 19F NMR spectroscopy. b) Enhancements in product 
formation with respect to the native reaction calculated according to Equation 7.1. c) Pie chart 
reflecting the product distribution of reciprocal replicators (RR) and self-replicators (SR).

! After full conversion of starting material, the concentration for each reciprocal 

template was 5.04 mM and 4.96 mM for the self-replicators (Figure 7.13a). The final RR/SR 

ratio was therefore calculated as 1.1 compared to the value of 2.1 found in the native reaction. 

The change in concentration is also highlighted in the calculation of the relative 

enhancements E (Figure 7.13b) and the pie chart (Figure 7.13c).

7.6.3 Addition of 20 mol-% autocatalytic template trans-59b

Having established the influence of trans-161  on the outcome of the experiment, another 

experiment was performed in which 20 mol-% of template trans-59b was added at the start 

of the reaction. The experiment was conducted under the same conditions as the native and 

both previous doping experiments. The reaction mixture containing equimolar amounts of 

reagents 141, 33, 66 and 55 at 10 mM concentration including the dopant was incubated at 10 

ºC and its progression was followed by 19F NMR spectroscopy. Deconvolution of the 

recorded spectra allowed for the generation of the concentration vs time profile as shown in 

Figure 7.14.

! Satisfyingly, also this system responded to the addition of trans-59b template in the 

expected manner. The formation of both self-replicating templates was enhanced whereas 

the amount of final reciprocal templates was decreased. Addition of preformed trans-59b 

had the expected autocatalytic effect by abolishing the lag period for the formation of this 

template and moving the maximum rate of formation at the start of the reaction.
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Figure 7.14 Concentration vs time profile of the multicyclic system depicted in Figure 7.5 a) The 
reaction of maleimides 33 and 66 with nitrones 141 and 55 in the presence of 20 mol-% trans-59b gives 
rise to self-replicating templates trans-161 (●) and trans-59b (●) and reciprocal templates trans-162 (▪) 
and trans-69 (▪). The reaction was performed at 10 ºC in CDCl3 at 10 mM reagent concentration and 
followed by 19F NMR spectroscopy. b) Product distribution for the templates after 12 h.

! As a result of this increased reactivity, nitrone 55 and maleimide 33  were consumed 

rapidly and incorporated into trans-59b, depriving the crosscatalytic system of necessary 

reagents. This reagent pull caused by trans-59b left a relatively large amount of nitrone 141 

and maleimide 66 available for the formation of the second self-replicating template 

trans-161. As a consequence, also the synthesis of trans-161  was up-regulated even though 
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there is no direct connection between both self-replicators. When comparing the formation of 

the self-replicator other than the dopant, that is trans-161 in the present and trans-59b in the 

previous experiment, a fundamental difference can be seen. When using 20 mol-% trans-161 

as dopant, the progression of trans-59b lags behind the formation of the instructed 

autocatalyst (Figure 7.12a). In the case of 20  mol-% trans-59b, however, the difference in 

shape for the rate profiles of the self-replicators is less pronounced (Figure 7.14a). This 

finding corresponds with the respective effective molarities of the two replicators. Self-

replicator trans-161 was established to be the stronger system, hence, it is more capable of 

taking advantage of the excess of its building blocks in the presence of doped trans-59b. In 

the reversed scenario, trans-59b does not possess the prowess to keep up with the enhanced 

partner. This difference also reflects in the change in final concentration. The increase for the 

self-replicators was calculated as 1.83 mM for doping with trans-161 and slightly less, only 

1.71 mM, for doping with trans-59b (Figure 7.14c).

Figure 7.15 a) Concentration for each reciprocal (RR) and self-replicator (SR) product in the reaction of 
maleimides 33 and 66 with nitrones 141 and 55 in the presence of 20 mol-% trans-59b after full 
conversion of starting materials determined by 19F NMR spectroscopy. b) Enhancements in product 
formation with respect to the native reaction calculated according to Equation 7.1. c) Pie chart 
reflecting the product distribution of reciprocal replicators (RR) and self-replicators (SR).

! The absolute concentration for both self-replicators and reciprocal replicators were 

determined to be 4.84 mM and 5.16 mM, respectively, leading to a final RR/SR ratio of 1.2 

(Figure 7.15a). A clear increase for self-replicating templates is also reflected in the 

calculation of the relative enhancements E for both types of replication (Figure 7.15b) and in 

the presentation as pie chart (Figure 7.15c).
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7.6.4 Summary of the doping experiments

The results of the previous sections are summarised to highlight the behaviour of the 

multicyclic system upon addition of instructional template. The concentrations of the 

reciprocal and self-replicators after 12 h at 10 ºC for the native experiment are depicted next 

to the three doping scenarios (Figure 7.16). Overall, it can be seen that the behaviour of the 

system matches the theoretical predictions from Figure 7.2 and that it is indeed possible to 

instruct this multicyclic network in a programmable manner using informational template.

Figure 7.16 Summary of the responses of the multicyclic system of maleimides 33 and 66 with nitrones 
141 and 55 in the presence of 20 mol-% added template at 10 ºC in CDCl3. In all lanes, the four bars 
indicate the concentration of the respective replicator after 12 h and the bars are shaded to identify the 
individual templates according to the legend. The lane marked Native depicts the selectivity of the 
system without added template. In other lanes, the identity of the added template is indicated by the 
label at the bottom of the lane.

! The initial four component reaction established the ratio of the four products in the 

absence of any added template (lane +Native). Both reciprocal replicators were formed in 

greater extent than their autocatalytic competitors with the concentration for bisamido 

template trans-69 marginally higher than for its partner template trans-162. In isolation, the 

kinetic parameters for the reciprocal system did not suggest such a clear dominance since the 

effective molarity was much smaller than for trans-161 (10.1 M compared to 71.3 M) and 

only slightly higher than for trans-59b (4.96 M). Once more, the explanation for this 

behaviour may be attributed to the differences in duplex stability. Of all three product 

duplexes, the reciprocal complex [trans-BAT·trans-162] shows the lowest stabilisation (10.6 
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kJ mol–1) with regard to trans-161 (13.4 kJ mol–1) or trans-59b (12.5 kJ mol–1). In the set-up of 

the multicycle, this difference in association may provide an important advantage since a 

decrease in duplex concentration results in an increase in concentration of ternary catalytic 

complex. The difference in efficiency between trans-161 (EM = 71.3 M) and trans-59b (EM = 

4.96 M) reflects in a concentration difference of 0.55 M after 12 h in favour of trans-161. It can 

be speculated that this difference would be higher if the efficiencies of the reciprocal 

replicators was down-regulated. An example of such situation will be presented shortly.

! Addition of 20 mol-% trans-69 to the reaction altered the outcome of the competition 

in favour of the crosscatalytic templates (lane + trans-69). Both templates are now being 

formed in greater extent than in the native experiment with trans-162  being the dominant 

species with a concentration of 7.34 mM. The gap to its partner replicator trans-69  is caused 

by the fact that the value is corrected by the amount of added template so that only newly 

formed template is considered in the calculation of the concentrations. Once more, a 

difference in activity for both self-replicators is visible resulting in a concentration gap of 0.62 

mM in favour of trans-161. 

! The presence of trans-161 template at the start of the reaction favours the 

autocatalytic production of more template and limits the activity of the reciprocal replicators 

(lane + trans-161). After 12 h, trans-161  and both reciprocal replicators were formed to nearly 

equal amounts. Simultaneously, also the production of trans-59b was up-regulated even 

though to a minor degree. As a consequence of the tight interconnectedness of the four 

building blocks, system-level behaviour stimulates an up-regulation for one of the self-

replicators upon addition of the partner replicator even though there is no direct connection 

between the two systems. This independence in formation is reflected by the gap in 

concentration of 1.06 mM between the two replicators after 12 h. Being the weaker replicator, 

trans-59b does not possess the prowess to instantly capitalise on the excess of its building 

blocks provided by the presence of enhanced trans-161. On the other hand, being the 

stronger replicator, trans-161 can respond more effectively to such favourable situation and 

the difference in concentration is less pronounced when adding trans-59b to the reaction 

mixture (lane + trans-59b). After 12 h, all four templates are being formed to nearly the same 

extent with trans-161 only slightly less abundant than seeded template trans-59b.

! In summary, the crosscatalytic relationship between trans-69 and trans-162 was 

found to be the major pathway in this multicyclic system. This dominance may be a 

consequence of the slightly less favourable reciprocal product duplex compared to the two 

self-complementary duplexes of the autocatalysts. Upon addition of instructional template, 

the interconnectedness of the crosscatalytic pathways led to a concomitant increase of both 
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reciprocal templates upon addition of the reciprocal template (lane + trans-162). Seeding the 

reaction with self-replicating template primarily enhanced the formation of the very 

template whereas an increase in concentration of the partner self-replicator was found to be a 

consequence of the topology of the multicyclic system and can be regarded as emergent 

property of the multicyclic network (lanes + trans-161 and + trans-59b). 

7.7 Recycling experiments

Having established the directed manipulation of the multicyclic network, we next envisaged 

an experiment in which the behaviour of this system was probed under conditions that 

simulated evolution in a closed environment (Figure 7.17a). In this set-up, an equimolar 

amount of maleimides 33 and 66 and nitrones 141 and 55  were reacted in the absence of any 

additives (Cycle 0). Sub-stochiometric amounts of the outcome of this reaction were then 

used as dopant for a fresh batch of reagents (Cycle 1). This procedure was repeated a second 

and third time while the product distribution was monitored for each cycle (Cycle 2 and 3).

Figure 7.17 a) Design of a recycling experiment on the basis of the multicyclic system depicted in 
Figure 7.5 in which the outcome of the native reaction (Cycle 0) is used as input for further reaction 
cycles. b) The outcome of each reaction cycle was monitored by 19F NMR spectroscopy and the 
concentration of the reciprocal replicator (RR) was divided by the concentration of the self-replicating 
products.
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! In the previous sections, we showed that addition of instructional template 

manipulated the outcome of the multicyclic system in a foreseeable manner. In all cases, the 

seeded template was purified template of either a self-replicator or reciprocal replicator 

ensuring that the system ‘understands’ unambiguously the input. In the present experiment, 

we use mixtures of all four templates as dopants and focus our main attention on whether 

this repetitive doping procedure will cause one of the two replicating species to start to 

dominate the product pool under extinction of the inferior species. A first indication for such 

behaviour can be found in the previous sections, in which addition of a relatively small 

amount of template showed to have a major impact on the final product distribution for the 

benefit of the seeded template. Knowing about the prowess of the reciprocal replicators in 

the native reaction and their response to addition of template trans-69, we considered that 

repetitive cycling might result in a steady strengthening of the crosscatalytic pathway 

leading to the eventual extermination of all autocatalytic pathways.

! Besides this ‘survival of the fittest’ scenario, it is also possible that repetitive cycling 

leads to co-existence with the concentrations for all four template products approaching a 

constant value. Szathmary et al. have established[204-206] that competition between a set of sub-

exponential replicators will always lead to co-existence and never cause the extinction of the 

weaker species. However, the present multicyclic system is more complex than the simple 

combination of individual replicators and the tight linking of the building blocks causing 

system-level behaviour was highlighted previously.

! With these theoretical considerations at hand, the native reaction of the multicyclic 

system between maleimides 33 and 66 with nitrones 141 and 55 was repeated and the ratio of 

reciprocal replicators, trans-69 and trans-162, to self-replicators, trans-161 and trans-59b, 

was determined as 2.1 by 19F NMR spectroscopy after full conversion of all starting materials 

(Cycle 0 in Figure 7.17b). Next, 10 mol-% of the product mixture containing 344 µM of each 

reciprocal template and 156 µM of each self-replicating template was added to a fresh batch 

of reagents at 10 mM concentration in CDCl3 and the outcome was analysed after full 

conversion of starting materials. The ratio between reciprocal replicators and self-replicators 

changed marginally to around 2.2 (Cycle  1). This recycling procedure was repeated twice 

and the values for the RR/SR ratio were recorded to be 2.3 in both cases (Cycle 2 and 3). It 

can clearly be seen that after a slight increase in ratio in the first recycling step, further cycles 

of doping had no impact on the final product distribution. In order to find a coherent 

explanation for this behaviour, two additional experiments were conducted in which the 

recycling experiments were performed after the equilibrium concentration of the native 

experiment was biased by the addition of either reciprocal or autocatalytic template.
210



7.8 Imbalance reaction

In the previous section, repetitive cycling of the outcome of the multicyclic network led to 

coexistence of both species of replication at a fixed ratio. In two additional experiments, the 

initial reaction was performed in the presence of either 20 mol-% reciprocal template trans-69 

or 20  mol-% of self-replicating template trans-161 (Figure 7.18a). The outcome of this 

reaction was then again used as dopant in a fresh batch of reagents and so forth. We 

reasoned that by doping the original solution, an imbalance in product distribution is created 

and the reaction network is moved away from its equilibrium point. Repetitive cycling might 

then lead to an amplification of this initial imbalance causing a lasting change in product 

distribution generating selectivity for one of the two replicating species. 

! Reciprocal replicator trans-69  was chosen to be the first dopant and 20 mol-% were 

added to an equimolar mixture of maleimides 33 and 66 with nitrones 141 and 55 at 10 mM 

concentration in CDCl3. Analysis of the reaction by 19F NMR spectroscopy verified the up-

regulation of both reciprocal replicators pushing the RR/SR ratio to 3.7:1 (Cycle 0 in Figure 

7.18b). However, subsequent addition of 20 mol-% of this mixture to a fresh batch of reagents 

failed to further enhance the selectivity for the reciprocal templates and the ratio dropped to 

3.3:1 (Cycle 1). Three further recycling experiments were performed resulting in a 

continuous reduction of fabricated reciprocal replicator and a decrease in RR/SR ratio from 

2.7:1 (Cycle 2) over 2.6:1 (Cycle 3) to 2.5:1 (Cycle 4). The progression for the calculated values 

again suggests an equilibrium ratio for both replicating species similar to the one found in 

Figure 7.17b. The slight deviation for the ratios might be explained by the increase in dopant 

from 10 mol-% in the previous experiment to 20 mol-% for the recent set-up.

! Since the reciprocal replicators failed to establish their supremacy, we repeated the 

experiments using 20 mol-% of autocatalytic template trans-161 as initial dopant. Self-

replicators operate in a less cooperative way than reciprocal replicators and might therefore 

be able to take advantage of any favourable initial disturbance of the equilibrium point of the 

multicyclic network. As expected, the formation of autocatalyst was favoured in the doping 

reaction lowering the RR/SR ratio to around 1.1 (Cycle 0 in Figure 7.18b). However, using 20 

mol-% of the product mixture as dopant for the next cycle did not result in a propagation of 

the induced imbalance. Instead, the ratio for both types of replicating first increased to 1.8 in 

favour of the reciprocal replicators (Cycle 1) before continuously approaching the exact same 

equilibrium ratio of 2.5 found in the previous experiment (Cycle 2-4).
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Figure 7.18 a) Experimental set-up to investigate the behaviour of the multicyclic system depicted in 
Figure 7.5 after initial addition of 20 mol-% of instructional template followed by repetitive doping of 
20 mol-% of the outcome of the previous cycle in a fresh batch of reagents. After full conversion of 
starting materials, the product distribution was determined by 19F NMR spectroscopy and the 
concentration of the reciprocal replicators (RR) was divided by the concentration of the self-replicator 
(SR) to provide values for the RR/SR ratio obtained upon initial addition of b) reciprocal template 
trans-69 or c) autocatalytic template trans-161.
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! In the last two sections, attempts were made to induce selection into a complex 

reaction network composed of four interlinked replicating competitors by subjecting it to a 

repetitive sequence in which the outcome of each cycle was used as an instruction for the 

next generation. However, the multicyclic system presented in this chapter did not show a 

specific selectivity for any of its two possible replicating species. Instead, an ‘equilibrium 

position’ for the ratio in concentrations of reciprocal and self-replicators was established. 

Depending on the extent of the imbalance created in the initial reaction, this ratio was 

reached sooner or later. Without any bias, this equilibrium in ratio was already established 

after the first cycle (Figure 7.17b), whereas injection of 20  mol-% of preformed template 

created a greater imbalance and the equilibrium was found after four cycles only (Figure 

7.18a and Figure 7.18b). 

! These results are summarised in Figure 7.19a and compared with simulations based 

on the kinetic model with two minimal (A + B ! R1 and C + D ! R2) and two reciprocal 

replicators (B + C ! T1  and A  + D ! T2) depicted in Figure 7.1. In order to mimic the 

reactivity found for the multicyclic system established experimentally, the parameters for the 

enhanced rate constants were altered from their original common value. The rate constants 

for formation of the two reciprocal replicators T1 and T2 through their ternary complexes 

were set to 1.35 × 10–3 s–1 and 1.55 × 10–3 s–1, respectively. The value for the minimal replicator 

R1 was adjusted to 0.85 × 10–3 s–1 whereas the rate for R2 was fixed at 1.00 × 10–3 s–1. Values 

for the bimolecular reactions (5 × 10–5 M–1 s–1), single point associations (1000 M–1) and 

association in the auto- and crosscatalytic duplexes (1 × 106 M–1) were not changed. All 

calculations were performed with a starting concentration of 10 mM for all reagents. The 

kinetic model used for the native experiment without any additives can be found in the 

appendix. Figure 7.19b shows the outcome of the theoretical analysis of the recycling 

experiments. In all calculations, the final concentration of reciprocal replicators was divided 

by the concentration of minimal replicators to provide the ratio of both species, [RR]/[SR]. 

Again, three different scenarios were considered. First, all four reagents were allowed to 

react until completion without any added template in a native reaction. 10  mol-% of the 

outcome was then used as dopant for the next cycle which in turn was applied as dopant to 

the next cycle (red data points). The same calculation was repeated using either 20 mol-% of 

T1 (green data points) or 20 mol-% of R2 (orange data points) as dopant in the initial 

reaction. Even though the kinetic models is rather idealised ignoring many of the subtleties 

of the real system such as different association constants between the individual building 

blocks, the calculated results correspond well with the ones found in the experiment, and the 
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trend towards a common equilibrium ratio for all three experiments can be seen clearly. After 

three cycles, the ratio for all three scenarios was found to be close to a ratio of 2.9 (compared 

to 2.5 in the experiment). The only outlier occurs for the native reaction when doping with 

T1, but its behaviour is corrected instantly in the following cycles. Overall, the calculations 

underline the conclusion drawn from the experimental results, that an unperturbed recycling 

system will always approach a predetermined ratio between the replicator species. This rigid 

behaviour was explained with a saturation of reactive ternary complexes at the early stage of 

the reaction and was also seen in chapter 6 when trying to perturb the outcome of several 

competition scenarios.

Figure 7.19 a) Overview over the results for the recycling experiments in Figure 7.18 using no 
template (--■--), 20 mol-% trans-69 (--■--) and trans-161 (--■--). b) Results for the calculation of the 
scenarios shown in Figure 7.18 based on a variation of the kinetic model from Figure 7.1 using no 
template (--■--), 20 mol-% T1 (--■--) and R2 (--■--). c) Computed ratios of reaction rates for the 
formation of reciprocal (RR) and minimal (SR) templates after 500 s based on the results for the 
calculations using 20 mol-% trans-69 as initial dopant in Figure 7.19b. d) Calculation of a recycling 
experiment in which the initial reaction was biased by addition of 20 mol-% T1 or R2 and every 
further cycle was doped with 10 mol-% of the reaction outcome and a further 10 mol-% T1 (--●--),  20 
mol-% T1 (--■--), 10 mol-% R2 (--●--) or 20 mol-% R2 (--■--). Equilibrium ratios between reciprocal and 
minimal replicators in a), b) and c) are highlighted by the dashed black line. 
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! With a reliable kinetic model at hand, it was now possible to extract the 

concentrations of all four reactive ternary complexes, [A·B·R1], [A·B·R2], [A·D·T1] and 

[B·C·T2], and to calculate the reaction rates for the formation of each template after 500 s. 

Figure 7.19c shows the ratio of the averaged rate of formation for reciprocal to minimal 

replicators over five cycles for the case of initial doping with 20 mol-% T1 (Figure 7.19b, 

green data points). A direct correlation between the ratio of the reaction rates and the ratio of 

the final product concentration can be seen. Again, the highest ratio of 6.4 is seen for the 

native experiment (Cycle 0) which gradually decreases towards the equilibrium ratio of 

about 2.9 (from Cycle 3 onwards). This match between the two graphs confirm the 

assumption made earlier that the final ratio in concentration between both replicating species 

is governed by the speciation of their active ternary complexes and their reaction rates at the 

start of the experiment. Addition of presynthesised template therefore has a major impact on 

the product distribution by changing the concentrations of ternary complexes, however, this 

advantage is lost in the course of the recycling procedure as the concentration of original 

dopant decreases in every following cycle on the expense of all other templates until it 

reaches the predetermined ratio in concentrations.

! Having said this, it would be interesting to simulate a scenario in which the system is 

forced out of equilibrium not only in the initial reaction but in all following reaction cycles. 

A protocol was therefore established in which not only the initial reaction was doped with 

various amounts of purified T1  or R2 but also every following cycle. In addition to the 

application of presynthesised template, 10 mol-% of the reaction outcome was also injected 

continuously to new batches of reagents. Since the final mixture of templates always contains 

a large amount of the initial dopant, one would expect an increased dominance of this very 

template with progressing recycling. However, the simulations once more show a 

degradation rather than dominance for the amplified template over the course of the 

experiment (Figure 7.19d). For all four investigated scenarios, the impact of the template 

addition decreases with every cycle until the system reaches the fixed ratio in concentration 

between both product types. This ratio is now dependent on the amount of purified template 

which is continuously added to the reaction mixture. Larger amounts of template create a 

more pronounced deviation from the natural ratio of the system. It is important to point out 

that, since every reaction outcome consists of all four templates, the net amount of the 

original dopant increases from Cycle 0 to Cycle 1  by the amount present in the previous 

reaction mixture. However, since this mixture also contains molecules of the competing 

templates, it is again the ratio of active ternary complexes formed at the start of the reaction 

that governs the performance of the multicyclic system and results in a decrease of the 
215



concentration of the original template. With this set of experiments, it was shown that it is 

only possible to steer systems away from their equilibrium under continuous input of 

presynthesised template. It can be assumed that a continuation of this recycling protocol 

without any added pure template input will very soon reach the established equilibrium 

RR/SR ratio of 2.9.

! Altogether, these findings further highlight that working in a closed system limits 

drastically the possibility of performing evolutionary selection. In a static environment, 

initial advantages for the formation of a preferred species cannot be fully passed on to the 

next generation but inevitably result in an equilibrium concentration for both the dominant 

and the inferior species. Previous investigations on the behaviour of the multicyclic system 

depicted in Figure 7.2 in a similar recycling scenario also failed to induce selectivity despite 

using equimolar amounts of dopants. This shortcoming was explained with the fact that 

reciprocal and self-replicating templates exhibit different responses to the addition of 

template.[139] With the current results at hand, a more general explanation can be formulated. 

Instructing the network with template strengthens the catalytic efficiency for one type of 

replicator and this allows to selectively increase the formation of either the auto- or 

crosscatalyst. Amplification in this doping process is proportional to the influence that the 

added template has on the concentrations of active ternary complexes at the start of the 

reaction. Since all ternary complexes are in equilibrium, an infinite excess of dopant is 

required to eliminate all unwanted complexes, a situation that cannot be reached in practice. 

Accordingly, all competition scenarios from chapter 6 showed saturation points at which the 

addition of increasing amounts of template had only little effect on the outcome of the 

reaction. Since we are not able to completely erase the weaker species through addition of 

large amounts of strong template, using the outcome of the reaction as the sole source for the 

next doping experiment ensures that the amount of template for the stronger species will at 

best be constant (when doping stochiometric amounts) or gradually diminish (with sub-

stochiometric amounts) until the ratio for both competing species are again governed by 

their intrinsic catalytic efficiencies.

! The reasoning outlined above explains that when dealing with replicating networks 

in a closed environment, work has to be preformed in order to move the system away from 

its equilibrium point. In the case of the multicyclic system, this work is done by addition of 

preformed template which manipulates the system in a defined way. However, the impulse 

does not persist over time and the system eventually falls back to its equilibrium state. 

Moving away from a closed environment to open systems might allow for the envisaged 
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selection process to take place. A basic discussion of the advantages of open systems can be 

found in section 8.4.

7.9 Creating an imbalance by changing the recognition site

In the design of the multicycle depicted in Figure 7.5, we purposely employed maleimide 66 

bearing the 6-methyl substituent instead of 4,6-dimethyl derivative 72 to avoid the presence 

of two amidopyridine moieties with different substitution patterns. In chapter 4, we have 

established that the additional methyl group on the recognition site increases its single point 

association with both carboxylic and phenylacetic acid. This increase was shown to only 

have a minor impact on the functioning of self-replicating and AB systems studied. We 

therefore wish to investigate whether replacing maleimide 66 with 72 as building block in the 

multicycle has an effect on the performance of the network. Since the maleimide will be 

incorporated into both autocatalytic template trans-146 and reciprocal template trans-167 

now bearing two different amidopicoline sites, we can only speculate about its impact on the 

overall ratio of the two replicating types, however, the change in association strength is 

expected to create a slight imbalance in reactivity for the two self-replicating systems by 

further favouring the formation of template trans-161 over replicator trans-59b.

! In this experiment, an equimolar amount of maleimide 33 and 72, and nitrones 141 

and 55 at 10 mM concentration in CDCl3 were incubated at 10 ºC and the progression of the 

reaction was followed by 19F NMR spectroscopy. Deconvolution of the obtained spectra 

allowed for the construction of the rate profile depicted in Figure 7.20a, but overlay of the 

peaks for the products arising from nitrone 141 in the 19F NMR spectra again limited 

significantly the quality of the deconvoluted rate profile. However, it can clearly be seen that 

the formation of all four products is very similar to the original scenario. The two reciprocal 

replicators dominated the product pool with the two autocatalysts being formed to minor 

extent (Figure 7.5a). Comparison of the two graphs confirms that variation of the recognition 

site has only a negligible impact on the final product distribution and is within the accuracy 

given by the deconvolution of the obtained 19F NMR spectra. From the individual 

concentrations of the four products, 84% conversion of nitrone 141 and 82% conversion of 

nitrone 55 into products was established (compared to 84% and 83% in the previous 

experiment). After full conversion of building blocks, the RR/SR ratio was calculated as 2.0 

with a concentration of 6.7 mM for the reciprocal templates and 3.3 mM for the autocatalysts 

(compared to 2.1:1).
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! These results suggest that a subtle variation of substituent pattern on the 

amidopyridine site to increase selectively the association constant of one building block has 

no measurable impact on the overall performance of the multicyclic system.

Figure 7.20 a) Concentration vs time profiles for reaction of maleimides 33 and 72 with nitrones 141 
and 55 gives rise to self-replicating templates trans-146 (●) and trans-59b (●) and reciprocal templates 
trans-162 (▪) and trans-167 (▪).  b) Product distribution for the templates after 12 h. All reactions were 
performed at 10 ºC in CDCl3 at 10 mM reagent concentration and monitored by 19F NMR spectroscopy. 

7.10 Using trans-149 as autocatalyst in the multicyclic system

In the previous chapters, a set of replicating systems based on three maleimides and two 

nitrones was presented (chapter 3) and some selected replicators were used as building 

blocks for various competition scenarios (chapter 6). In the course of these investigations, a 

clear hierarchy was established for the efficiency of these systems. In the following sections, 

the two self-replicating systems trans-149 and trans-147  as well as an analogue of hybrid 

system 148 will be coupled to replicator trans-59b to give rise to three multicyclic networks 
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with different topology. For each system, the reciprocal relationship was first investigated 

before the functionality of the multicycle was probed and analysed.

Figure 7.21 Multicyclic network combining the self-replicating systems trans-149 (from maleimide 74 
and nitrone 142) and trans-59b (from maleimide 33 and nitrone 55) to form two additional reciprocal 
templates trans-168 and trans-169.

! Replacing maleimide 66 with maleimide 74, and nitrone 141 with nitrone 74 leads to 

the design depicted in Figure 7.21. In order to warrant sufficient solubility of self-replicating 

template trans-149 in non-polar solvents, maleimide 74 maintained its 4,6-dimethyl 

recognition site. It was demonstrated in the previous section that small changes in strength of 

recognition have only a minor impact on the performance of the individual systems in the 

network.

! As shown in 6.4.4, the autocatalytic formation of template trans-149 proceeds with 

exceptionally high efficiency. As a consequence of the relatively high bimolecular rate for 

trans-149, its effective molarity is however lower than the one for trans-161 (23.6 compared 

to 58.8). Additionally, a relatively low duplex stabilisation is observed for the product duplex 

and the replicator was found to perform better in the competition scenario against AB system 

cis-148. Introduction of trans-149 is therefore expected to strengthen the autocatalytic 

contribution within the network. 
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! Substitution of the two building blocks does not only influence the self-replicating 

system but it also creates a geometric change for the crosscatalytic system. In order to 

investigate the influence of the novel building blocks on the efficiency of the reciprocal 

system, a diastereoisomeric mixture of template trans-169 bearing two amidopyridine 

moieties was synthesised by reacting an equimolar amount of maleimide 74 with nitrone 55 

in CDCl3 at room temperature for five days (Scheme 7.7). The trans/cis ratio was determined 

as 2.0:1. Separation of the mixture by crystallisation or column chromatography was 

unsuccessful but showed to be only a minor handicap for the investigation of the reciprocal 

system.

Scheme 7.7 Synthesis of template 169. Conditions: a) CHCl3,  5 d, rt, 98% for both diastereoisomers 
with a trans/cis of 2.0:1.

Scheme 7.8 Formation of trans-168 in the absence and presence of reciprocal template trans-169. 
Kinetics for this reaction are depicted in Figure 7.22.

! The influence of template 169 on the reaction between acid maleimide 33 and acid 

nitrone 142 was investigated (Scheme 7.8). First, the reaction between the acids was 

performed in the absence o template f 169  by reacting an equimolar amount of both reagents 

at 10 mM concentration in CDCl3 for 16 h at 0 ºC. The progression was followed by 1H NMR 

spectroscopy and the obtained data were deconvoluted to give the corresponding rate profile 

(Figure 7.22a).
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! It can clearly be seen that the reaction is slow and unselective, only 17 % of starting 

material were converted into products after 16 h. Interestingly, the cis-product was found to 

be the major diastereoisomer in the product pool resulting in a cis/trans ratio of 1.9:1. This 

rather surprising selectivity can be explained with the presence of an AB-like complex in 

which weak hydrogen bonds between both phenylacetic acid moieties position the reactive 

sites in close proximity to form the cis-isomer in a rate-enhanced fashion. The potential of 

this recognition-mediated process is currently under investigation in the group.
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Figure 7.22 Concentration vs time profiles for the reaction of nitrone 142 and maleimide 33 to give 
trans- and cis-168 a) in the absence of any added template b) in the presence of 67 mol-% trans-169 
and 33 mol-% cis-169.  The formation of trans-product is shown as red filled circles and the formation 
of cis-product as blue filled diamonds. Straight lines in b) represent the results for the fitting of the 
trans-(–) and cis-(–) product. All reactions were performed at 0 ºC in CDCl3 at 10  mM reagent 
concentration and monitored by 1H NMR spectroscopy.

! Next, the reaction was repeated in the presence of 100 mol-% of a diastereoisomeric 

mixture of 169  consisting of 67% trans- and 33% cis-template. The dopant was added to a 

fresh batch of reagents, 142 and 33, and the progression of the reaction gave rise to the 

concentration vs time profile in Figure 7.22b. After 16 h, 70% of starting material were 

converted into products and the selectivity was calculated to be 14:1 in favour of the trans-

isomer. Clearly, addition of a diastereoisomeric mixture of template had no impact on the 

formation of cis-168 which is in accordance with its predicted folded structure. The rate 

profile for trans-168 however exhibits the characteristic progression for the reaction of a 

reciprocal template in the presence of its crosscatalytic partner. The maximum rate of the 

reaction is found at the start with a gradient that is slightly smaller than for the crosscatalytic 

system between trans-69 and trans-162 (Figure 7.7). As soon as nearly all of the added 

template is saturated, product inhibition causes the curve to flatten and the bimolecular 

pathway becomes the main contribution to the formation of trans-168. This saturation is 

reached at a concentration of roughly 6 mM and the proportional relationship between the 
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amount of added template and newly formed template further suggests that the catalytic 

duplex in this reciprocal system exists between trans-169 and trans-168. 

Figure 7.23 Molecular model of the reciprocal duplex of trans-168 and trans-169 monomer. Carbon 
atoms are shown in dark grey, hydrogen atoms in light grey, nitrogen atoms in blue and oxygen atoms 
in red. Hydrogen bonds are indicated by the dotted lines.  Most other hydrogens were omitted for 
clarity.

! The model for the two reciprocal templates trans-168 and trans-169 further support 

this finding as they show a reasonably well-matched duplex in which the bisamido template 

encloses its partner template (Figure 7.23). Once more, we can only speculate about the 

respective orientation of the two templates and this ambiguity needs to be considered in the 

computational analysis of the system.

! In order to extract kinetic parameters for this reciprocal relationship, we conducted 

fitting of the experimental data using SimFit. The results of the fitting are listed in Table 7.3 

and the quality of the fit can be seen in Figure 7.22b. The association constant between two 

phenylacetic acids at 10 mM concentration in CDCl3 and 0 ºC was determined as 50 M–1 and 

attempts were made to include the AB mediated formation of cis-168 into the kinetic model. 

However, an additional term ultimately generated a situation for the native reaction in which 

three parameters, the rate-enhanced formation of cis-168  and the bimolecular rates for both 

isomers, had to be determined by only two data sets, formation of the trans- and cis-isomers. 

Since cis-168 does not engage in any crosscatalytic processes, the contribution of this weak 

AB system to the overall performance of the template doped scenario was considered to be 

minimal and was therefore neglected in the kinetic model (see appendix). As a result, the 
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bimolecular rate for cis-168 includes the contribution of the AB system and was found to be 

higher than the rate for trans-168.

Table 7.3 Kinetic parameters for the reaction of maleimide 33 and nitrone 142 to give cycloadduct 168 
at 0   ºC in CDCl3 at 10 mM reagent concentration. The kinetic parameters for the crosscatalytic 
relationship between trans-168 and trans-169 were determined by fitting the experimental data 
depicted in Figure 7.22 using SimFit. Values for the replicators cis-149 and trans-59b are listed for 
comparison.

trans-168 cis-168 trans-149 trans-59b

bimolecular rate constant / M–1 s–1 1.37 x 10–4 2.51 x 10–4 6.99 x 10–4 2.66 x 10–4

recognition-mediated rate constant / s–1 6.42 x 10–4 - 1.57 x 10–2 1.32 x 10–3

effective molarity / M 4.69 - 22.5 4.96

!Gs / kJ mol–1 12.9 - 9.46 12.5

! Fitting of the doped reaction provided the values for the effective molarity and the 

free energy of connection. Compared to the crosscatalytic relationship between trans-162 and 

trans-69 (Table 7.2), the effective molarity was lower (4.96 M compared to 10.1 M) and the 

templates in the product duplex were found to be more tightly bound (12.9 kJ mol–1 

compared to 10.6 kJ mol–1). This difference in reactivity is also reflected in the rate profile 

which exhibits a lower gradient and a slightly less pronounced curvature at the start of the 

reaction. In general, the replacement of the benzene spacer with a naphthalene group in the 

bisamido building block was compensated by the introduction of the phenylacetic acid to 

give rise to a second reciprocal system. However, comparison of the kinetic parameters for 

the reciprocal and the self-replicating systems clearly suggest that replicator trans-149 will be 

a strong competitor in this multicyclic reaction. Its low template association guarantees for 

high concentrations of catalytically active ternary complexes and the high effective molarity 

will ensure for rapid reaction of the building blocks.

! Having established the crosscatalytic relationship between the two reciprocal 

templates, the native experiment using all four components 142, 74, 33 and 55 at a starting 

concentration of 10 mM were conducted at 10 ºC. The progression of the reaction was 

monitored by 19F NMR spectroscopy and the deconvolution of the spectra allowed for the 

construction of the concentration vs time profile shown in Figure 7.24. Broadening of the 

signals for products trans-59b and trans-169 caused them to overlap and reduced slightly 
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the quality of the deconvolution. However, the main trends of the formation of all four 

products are clearly visible.

Figure 7.24 a) Concentration vs time profile of the multicyclic system depicted in Figure 7.21. The 
reactions of maleimides 33 and 74 with nitrones 142 and 55 gives rise to self-replicating templates 
trans-149 (●) and trans-59b (●) and reciprocal templates trans-168 (▪) and trans-169 (▪). b) Product 
distribution for the templates after 12 h. All reactions were performed at 10 ºC in CDCl3 at 10 mM 
reagent concentration and monitored by 19F NMR spectroscopy.

! It can instantly be seen that replacing original replicator trans-161 with trans-149  has 

a dramatic effect on the functioning of the multicyclic network. As a consequence of its 

intrinsic efficiency, it is newly introduced self-replicator trans-149 that drives the reaction 

becoming the most dominant species in the product pool with a concentration of 5.75 mM 

after 12 h (Figure 7.24b). The formation of trans-149 starts with a short lag period which is 

followed by a relatively steep gradient for the maximum rate of the reaction. Identical to the 

doping scenarios in which self-replicating template is added to the multicyclic system, the 
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enhanced efficiency of one of the autocatalysts causes a drain in reagents which 

correspondingly down-regulates the formation of the two interconnected reciprocal 

templates. Since maleimide 74  and nitrone 142 are now preferably incorporated into 

trans-149, a larger amount of the other two building blocks are available for the construction 

of trans-59b. However, the autocatalytic production of trans-59b cannot quite keep up with 

its partner template and after 12 h, its concentration was 4.17 mM. After full conversion of 

starting material, the self-replicating species were determined to be in 1.4-fold excess over 

the reciprocal templates.

! Even though the reciprocal templates trans-162 and trans-69  were outperformed by 

the self-replicators, both cycloadducts were still being formed to a reasonable amount after 

12   h (3.62  mM and 3.26 mM, respectively). As a consequence of their crosscatalytic 

relationship, the formation of the two reciprocal templates proceeded simultaneously. Both 

curves again exhibited a sigmoidal rate profile with an initial lag period as seen for the 

original multicyclic network.

! Overall, replacing self-replicating system trans-161 with more efficient replicator 

trans-149 has proven to change drastically the outcome of the multicyclic system in favour of 

the self-replicators. The induced geometric changes furthermore resulted in a less effective 

reciprocal system between trans-168 and trans-169 with lower EM and more stable duplex. 

Both factors lead to a weakening of the crosscatalytic pathway since both the amount of 

active ternary complex and the rate-enhanced formation of the cycloadduct are decreased.

! The analysis of this multicyclic network demonstrated once more that strengthening 

one of the relationships between the building blocks has a severe impact on the performance 

of all other present interactions. In this case, increasing the efficiency of one of the two self-

replicating fragments in the network simultaneously stimulated the enhanced production of 

the second autocatalytic system in a non-directed manner and at the same time, down-

regulated the formation of the reciprocal templates.

7.11 Using trans-147 as autocatalyst in the multicyclic system

Another replicating system that was thoroughly investigated in the previous chapters is 

based on the reaction between naphthalene maleimide 74 and carboxy nitrone 141 to give 

template trans-147. Even though it was shown to be the least efficient replicator when 

studied in isolation, this system has proven to be surprisingly robust in complex competition 

scenarios (section 6.5.7). With this knowledge at hand, it would be interesting to see how this 

self-replicator performs within a multicyclic system. Figure 7.25 shows the design in with the 
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original benzene maleimide 66 was replaced with maleimide 74 bearing the naphthalene 

spacer.

Figure 7.25 Multicyclic network combining self-replicating systems trans-147 (from maleimide 74 and 
nitrone 141) and trans-59b (from maleimide 33 and nitrone 55) to form two additional reciprocal 
templates trans-162 and trans-169.

! As a consequence of the interconnectedness of the network, changing one of the self-

replicating systems has an impact on the performance of the reciprocal system between 

templates trans-162 and trans-169. In order to elucidate the crosscatalytic relationship 

between both templates, two crucial experiments were conducted. The reaction between acid 

maleimide 33 and nitrone 141 has been shown to be slow and unselective in the absence of 

any added template yielding a diastereoisomeric mixture of 162  (Figure 7.7). In the presence 

of 92 mol-% diastereoisomeric mixture of 169, consisting of 58 mol-% of trans-isomer and 34 

mol-% of cis-isomer, a catalytic effect is clearly visible (Figure 7.26). The formation of 

trans-162 is enhanced significantly pointing at a crosscatalytic relationship between the two 

trans-isomers. The amount of cis-isomer is unaltered with respect to tis bimolecular reaction 

confirming that this isomer has no catalytic relationship with either of the two isomers of 

169. However, compared with the two reciprocal systems discussed above, the catalytic 

efficiency of trans-169 for the formation of trans-162 is relatively low. The initial rate of 
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product formation is slower and after 16 h, only 48% of starting material was converted into 

products with a trans/cis ratio of 16:1. This reduced reactivity is a result of the geometric 

change induced when replacing benzene maleimide 66 with naphthalene maleimide 74.

Figure 7.26 Concentration vs time profile for the reaction of nitrone 141 and maleimide 33 to give 
trans- and cis-162 in the presence of 58 mol-% trans-169 and 34 mol-% cis-169. The formation of trans-
product is shown as red filled circles and the formation of cis-product as blue filled diamonds. Straight 
lines in represent the results for the fitting of the trans-(–) and cis-(–) product.  The reaction was 
performed at 0 ºC in CDCl3 at 10 mM reagent concentration and monitored by 1H NMR spectroscopy.

Figure 7.27 Molecular model of the reciprocal duplex of trans-162 and trans-169 monomer. Carbon 
atoms are shown in dark grey, hydrogen atoms in light grey, nitrogen atoms in blue and oxygen atoms 
in red. Hydrogen bonds are indicated by the dotted lines.  Most other hydrogens were omitted for 
clarity.

! In the scenario discussed in the previous section, the additional distance between the 

recognition and reactive site in the naphthalene maleimide 74 was compensated by 

employing phenylacetic acid nitrone 142  instead of shorter carboxy nitrone 141. However, 
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the calculated structure of the reciprocal duplex does not show any apparent mismatch for 

both reciprocal templates (Figure 7.27). In this duplex, the orientation of the two templates 

was fixed to allow for the strong interaction between the carboxylic acid and the 4,6-

dimethyl amido pyridine moiety.

! In order to elucidate the origin of the reduced activity for this reciprocal system, we 

fitted the experimental data using SimFit (Table 7.4). The bimolecular rates were established 

previously and the procedure yielded the parameters for the effective molarity and the free 

energy of connection. The quality of the fit can be seen in Figure 7.26. Interestingly, this 

reciprocal system shows very strong duplex stabilisation which corresponds with the good 

match for the calculated structures of both templates. However, the effective molarity of this 

system is much lower than for the two previous systems which explains the limited 

efficiency of the reciprocal relationship. 

Table 7.4 Kinetic parameters for the reaction of maleimide 33 and nitrone 141 to give cycloadduct 162 
at 0   ºC in CDCl3 at 10 mM reagent concentration. The kinetic parameters for the crosscatalytic 
relationship between trans-162 and trans-169 were determined by fitting the experimental data 
depicted in Figure 7.26 using SimFit. Values for the replicators cis-147 and trans-59b are listed for 
comparison.

trans-162 cis-162 trans-147 trans-59b

bimolecular rate constant / M–1 s–1 1.51 x 10–4 9.39 x 10–5 3.47 × 10–4 2.66 x 10–4

recognition-mediated rate constant / s–1 1.62 x 10–4 - 8.68 × 10–5 1.32 x 10–3

effective molarity / M 1.07 - 0.25 4.96

!Gs / kJ mol–1 22.6 - –1.36 12.5

! Comparison of the kinetic parameters for all four participating replicating systems 

reveals that trans-59b possesses the highest effective molarity. However, the exceptionally 

low value for the free energy of connection for trans-147 was already shown to provide the 

replicator with an advantage in complex reaction networks. Low duplex stabilisation leads to 

an increasing concentration of free template which further increases the concentration of 

ternary complexes.

! In order to investigate whether trans-147 can exploit this advantage in the scenario of 

a multicyclic system, the native experiment using all four components 141, 33, 55 and 74 at a 

starting concentration of 10 mM were conducted at 10 ºC. The progression of the reaction 
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was monitored by 19F NMR spectroscopy and the deconvolution of the spectra allowed for 

the construction of the concentration vs time profile shown in Figure 7.28a.

Figure 7.28 a) Concentration vs time profile of the multicyclic system depicted in Figure 7.25. The 
reactions of maleimides 33 and 74 with nitrones 141 and 55 gives rise to self-replicating templates 
trans-147 (●) and trans-59b (●) and reciprocal templates trans-162 (▪) and trans-169 (▪). b) Product 
distribution for the templates after 12 h. The reaction was performed at 10 ºC in CDCl3 at 10  mM 
reagent concentration and monitored by 19F NMR spectroscopy.

! When compared with the original multicyclic system, it instantly becomes apparent 

that replacing maleimide 66 with its naphthalene counterpart 74 has a major impact on the 

product distribution. All four curves show the characteristic sigmoidal shape but it is now 

the self-replicating systems trans-147  and trans-59b that clearly dominate over their 

reciprocal counterpart (Figure 7.28b). As expected, replicator trans-147 is the most abundant 

species with a concentration of 6.67 mM after 12 h followed by trans-59b with 5.32 mM. Both 

reciprocal templates were formed to a concentration of only 1.65 mM (trans-162) and 1.82 
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mM (trans-69). After full conversion of all starting material, the self-replicating species were 

determined to be in 3.3-fold excess over the reciprocal templates.!The driving force in this 

network is template trans-147 whose stamina in competition scenarios has already been 

shown. Even though their reactivity in isolation would suggest otherwise, replicator 

trans-147 is performing better than its self-replicating partner trans-59b. It is however not 

only for the efficiency of the self-replicators that they are doing well in the competition for 

building blocks, but the weakness of the reciprocal templates reduces drastically their ability 

to compete for reagents. Despite their reduced activity, both reciprocal template are still 

formed simultaneously proving the presence of the crosscatalytic cycle to be the major 

reaction pathway.

! Once more, the sensitivity of the multicyclic system with respect to geometric 

changes has been demonstrated by replacing benzene maleimide 66 with maleimide 74. This 

extension in spacer group reduced significantly the efficiency of the reciprocal system and 

simultaneously introduced a self-replicator with proven assertiveness in competition 

situation. As a result, the production of autocatalytic templates was enhanced drastically on 

expense of the reciprocal replicators.

7.12 Using AB system cis-170 in the multicyclic system

In the examples discussed so far, the variations of compounds in the multicyclic system were 

designed to replace one autocatalytic system with another system of different efficiency. In 

this section, replacing carboxy acid nitrone 141 from the original multicyclic design with 

phenylacetic acid 142 converted the efficient self-replicating template trans-161 into hybrid 

system 170 giving rise to AB system cis-170 with replicator trans-170 being formed in minor 

extend (Figure 7.29).

! As pointed out in the previous chapters for the non-fluorinated system cis-105  and 

4,6-dimethyl analogue cis-148, the rate-enhanced formation of cis-170 proceeds through a 

binary complex which results in an intrinsically different rate profile as found for self-

replicators. The maximum rate of the AB reaction is found at its start when the concentration 

of the reagents is highest providing a clear advantage over all other replicators who reach 

their maximum rate only after overcoming the initial lag period. Hence, in the context of a 

multicyclic system, the AB system is expected to be the driving force. Withdrawing the 

necessary reagents for cis-170 from the crosscatalytic system leaves a larger amount of 

building blocks trans-59b which is therefore expected to perform better than in the original 

experiment.
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Figure 7.29 Multicyclic network combining AB system trans-170 (from maleimide 66 and nitrone 142) 
and self-replicator trans-59b (from maleimide 33 and nitrone 55) to form two additional reciprocal 
templates trans-168 and trans-69.

Figure 7.30 Concentration vs time profile for the reaction of nitrone 142 and maleimide 33 to give 
trans- and cis-168 in the presence of 59 mol-% trans-69. The formation of trans-product is shown as 
red filled circles and the formation of cis-product as blue filled diamonds. Straight lines in represent 
the results for the fitting of the trans-(–) and cis-(–) product. The reaction was performed at 0 ºC in 
CDCl3 at 10 mM reagent concentration and monitored by 1H NMR spectroscopy.!

! Before the native experiment can be conducted, the efficiency of the reciprocal 

replicating system needs to be investigated in isolation. The reaction between both 

phenylacetic acid compounds has already been shown to be slow and unselective even 
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though a small contribution of a binary AB complex between both acids leads to a slight 

increase for the cis-isomer (Figure 7.22). In order to probe for crosscatalytic activity between 

the two reciprocal templates, the reaction between nitrone 142 and maleimide 33 was 

repeated in the presence of presynthesised 59 mol-% trans-69.

! Deconvolution of the obtained 1H NMR spectra allowed for the construction of the 

concentration vs rate profile depicted in Figure 7.30. It instantly becomes visible that addition 

of trans-69 has a catalytic effect on the formation of trans-168. As seen for other crosscatalytic 

systems, the maximum rate of the reaction is at the start when the concentration of free 

trans-69 is highest. As the reaction progresses, trans-168 binds to the reciprocal template 

thereby reducing the amount of available catalyst. This product inhibition limits drastically 

the rate of formation of trans-168  and the rate of reaction is gradually reduced in the course 

of the reaction. After 16 h, 75% of starting material was converted into products with a ratio 

of diastereoisomers 29:1 in favour of trans-168. Once more, addition of trans-69  has no effect 

on the formation of the cis-isomer since the closed structure of this isomer does not allow for 

the formation of a catalytically active ternary complex.

Figure 7.31 Molecular model of the reciprocal duplex of trans-168 and trans-169 monomer. Carbon 
atoms are shown in dark grey, hydrogen atoms in light grey, nitrogen atoms in blue and oxygen atoms 
in red. Hydrogen bonds are indicated by the dotted lines.  Most other hydrogens were omitted for 
clarity.

! The computational simulation of the product duplex [trans-168·trans-69] is depicted 

in Figure 7.31. A significant mismatch can be seen which forces the two templates to wrap 

around each other. Using the extended phenylacetic acid for the diacid template while 

maintaining the benzene spacer in the corresponding bisamido template created an 

imbalance in length between the two templates. Even though bisamido template trans-69 is 
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still able to recognise both acid building blocks, the additional methylene group in nitrone 

142 seems to induce too much flexibility and it is more difficult to bring both reactive sites 

into the correct position to ensure highly efficient rate-enhanced template formation.

! Kinetic fitting of the doping reaction using SimFit confirm these observations by 

providing a low EM value, however, the stability of the template duplex is surprisingly high 

(Table 7.5). The kinetic parameters for analogue AB system cis-148 bearing a 4,6-

dimethylpyridine substituent and replicator trans-59b are listed for comparison. Since the 

mechanism for the recognition-mediated process via AB pathway is intrinsically different 

from the ones for the replicator, it is not instructive to compare the values for the individual 

reactions. We can however assume that cis-170 will use its bimolecular mode of formation to 

its advantage providing a pull for the second replicator trans-59b. It will furthermore be 

interesting to see how trans-170, the replicating isomer of the AB system, will behave in this 

multicyclic set-up.

Table 7.5 Kinetic parameters for the reaction of maleimide 33 and nitrone 142 to give cycloadduct 168 
at 0   ºC in CDCl3 at 10 mM reagent concentration. The kinetic parameters for the crosscatalytic 
relationship between trans-168 and trans-69 were determined by fitting the experimental data 
depicted in Figure 7.30 using SimFit. Values for the replicators cis-148 and trans-59b are listed for 
comparison.

trans-168 cis-168 cis-148 trans-59b

bimolecular rate constant / M–1 s–1 1.37 x 10–4 2.51 x 10–5 1.03 x 10–4 2.66 x 10–4

recognition-mediated rate constant / s–1 2.07 x 10–4 - 7.65 x 10–5 1.32 x 10–3

effective molarity / M 1.51 - 0.743 4.96

!Gs / kJ mol–1 25.7 - - 12.5

! Having established the crosscatalytic relationship between both reciprocal templates, 

the native experiment using all four building blocks 142, 33, 66  and 55 was conducted at 10 

ºC and with 10 mM reagent concentration. 19F NMR spectroscopy was employed to record 

the kinetics of the reaction. Deconvolution of the obtained spectra allowed for the 

construction of the concentration vs time profile shown in Figure 7.32a.
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Figure 7.32 a) Concentration vs time profile of the multicyclic system depicted in Figure 7.29. The 
reactions of maleimides 33 and 74 with nitrones 142 and 55 gives rise to AB system cis-170 ("), self-
replicating templates trans-170 (●) and trans-59b (●) and reciprocal templates trans-168 (▪) and 
trans-69 (▪). b) Product distribution for the templates after 12 h. The reaction was performed at 10 ºC 
in CDCl3 at 10 mM reagent concentration and monitored by 19F NMR spectroscopy.

! It can clearly be seen, that throughout the reaction, the AB system cis-170 is 

performing better than all other systems. As a result of the bimolecular reaction mechanism, 

the maximum rate of formation for cis-170 is at the start of the reaction when the amount of 

building blocks is highest. As the reaction progresses, the amount of available reagents is 

reduced and the rate of the recognition-mediated formation decreases. The high efficiency of 

the AB system consequently allows self-replicator trans-59b to perform better than in the 

original experiment by providing it with a larger amount of building block. After 12 h, the 

concentration for cis-170  and trans-59b was 5.80 mM and 5.07 mM, respectively (Figure 

7.32b). Both reciprocal replicators trans-162 and trans-69 were formed to a concentration of 

1.23 mM and 1.37 mM, respectively. Despite their failure to compete successfully for building 
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blocks, the simultaneous progression for both crosscatalysts again proves the 

interconnectedness of both templates. Additionally, the concentration of the self-replicating 

partner of the AB system, trans-170, was determined as 1.03 mM. The dominance of cis-170 

could even be more pronounced if its trans-isomer did not function as direct competitor for 

the same two building blocks. After complete conversion of all starting material, the RR/SR 

ratio between reciprocal replicator trans-69 and self-replicator trans-59b, which both 

competed for a limited amount of nitrone 55, was calculated to be 0.25 compared to the ratio 

of 2.1 found in the original network.

! Introduction of an AB system into the multicyclic framework suppressed significantly  

the formation of reciprocal templates. From the start of the reaction, the AB system drives the 

reaction resulting in a concomitant increase for its partner replicator trans-59b. But their 

ascendancy is also a consequence of the poor crosscatalytic performance of the two reciprocal 

templates.

7.13 Summary of results

The combination of replicators trans-161  and trans-59b was shown to form a fully functional 

multicyclic system (Figure 7.5). Replacing either or both of the building blocks for trans-161 

by structurally similar compounds did not only alter the nature of this replicating fragment 

in the multicycle but the functioning of the whole network. The effect of these substitutions 

on the outcome of the multicyclic reaction are summarised in Figure 7.33. It can clearly be 

seen that every variation of the original multicycle (lane I) leads to an increased production 

of self-replicating species with concomitant down-regulation of both reciprocal replicators 

(lanes II, III and IV). In every case, it is the newly introduced system which turns out to be 

the dominating force in the networks. However, the cause for this inversion in reactivity is 

different for each of the investigated systems.

! The most conservative replacement from a structural point of view was made by 

using trans-149 instead of trans-161 (lane II). The increase in spacer length from benzene to 

naphthalene was compensated by using phenylacetic acid nitrone 142 instead of the shorter 

carboxy nitrone 141. In isolation, this compensation guarantees that both replicating systems 

are especially efficient. As a matter of fact, trans-149 has shown to be the stronger replicator 

which also reflected in the context of the multicyclic system. Separate analysis of the 

reciprocal replicators revealed only a small reduction in activity compared to the original 

system. Hence, it is mainly the efficiency of replicator trans-149 which boosted the formation 

of autocatalysts on expense of the reciprocal replicators.
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Figure 7.33 Overview over the multicyclic systems investigated in this chapter depicted in Figure 7.5 
(System I), Figure 7.21 (System II),  Figure 7.25 (System III) and Figure 7.29 (System IV). The 
efficiency of each individual autocatalytic (circular arrow on the right side of template name), 
crosscatalytic (double-headed arrow between two template names) and AB (circular arrow on the left 
side of template name) system is classified on basis of their kinetic values as either low (#), medium 
(# #) or high (# # #). Reaction products are summarised to form four groups: diacid templates (DAT 
= trans-162 or trans-168), templates bearing bisamidopyridine moieties (BAT = trans-69 or trans-169), 
self-replicator (SR = trans-147, trans-149 or trans-161) a variable self-replicator or AB system 170 (SR 
= trans-170 and AB = cis-170) and reference replicator 59b (ET).

! The situation is fundamentally different for the substitution of only one of the 

building blocks. Replacing benzene maleimide 66 with naphthalene maleimide 74 altered the 

geometry of the product duplex for the two complementary reciprocal templates (lane III). 

Calculations have revealed that even though the stability of the duplex is increased, the 

effective molarity for the reaction of the two acid building blocks catalysed by the bisamido 

template was reduced. Simultaneously, the change in maleimide building block generated 

replicator trans-147  who benefits from its low duplex stabilisation in competition scenarios. 

Both factors, weakening of the reciprocal system and installation of a highly competitive 
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replicator, led in a drastic increase in production for the autocatalysts on the expanse of the 

replicating systems.

! In the third scenario, carboxy nitrone 141  was replaced by phenylacetic acid 142 (lane 

IV). Combination of this acid with benzene maleimide 66 resulted in the construction of AB 

system cis-170. AB systems proceed through a bimolecular pathway exhibiting their 

maximum rate at the start of the reaction. They are therefore able to compete very effectively 

for available building blocks at the start of the reaction and hamper the formation of both 

reciprocal species. Concomitantly, also trans-59b benefits from the presence of the AB 

system. 

! Especially the last example demonstrates that very subtle changes can cause a drastic 

change in the topology of the network. The only difference between system I and IV is one 

additional methyl group in the nitrone building block and yet, the behaviour of the system is 

entirely different. In the design of single replicating structures (chapter 3), we showed that it 

is crucial to limit the flexibility of the building blocks in order to avoid reactive bimolecular 

complexes while maintaining the possibility to form self-complementary template duplexes. 

The same recipe should be used for the design of more complex systems. However, when 

working with networks consisting of several building blocks such as this multicycle, 

modification of one particular building block will have consequences on more than one 

replicating pathway. In order to learn more about the principles, it would be highly 

instructive to investigate further variations of this type of multicycle. Several example can be 

found in the next chapter.
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8.  Future work

The results presented in this thesis shed some light on the collective behaviour of interacting 

replicating species. A wide array of future experiments can potentially tie in with these 

recent achievements to deepen the understanding of emergent behaviour in such complex 

networks. These future experiments may include the expansion of the established procedure 

of competing self-replicators, coupling the reaction network with a reversible exchange 

process or choosing an entirely thermodynamic platform for the design of a multicyclic 

system. An example for each of these potential research targets is highlighted briefly in this 

chapter. Ultimately, the feasibility of moving away from working in closed systems is probed 

and some encouraging initial results are discussed.

8.1 Systems including maleimide 73

In chapter 3, six self-replicating and one AB system were established by combining three 

maleimides with two nitrones. For the individual systems, a clear hierarchy was found and 

the two most and the least efficient system as well as the hybrid system producing both the 

AB and autocatalytic system were used as building blocks for the investigation of 

competition scenarios and complex networks.

Scheme 8.1 Structure of benzofuran maleimide 73 and the potential autocatalytic templates of its 
reaction with carboxy acid 141 (trans-171) and phenylacetic acid 142 (trans-172).

! Since the efficiencies of the two replicating systems based on the reaction of 

maleimide 73 were found to be rather moderate, they were thought to make less interesting 

building blocks and were disregarded in the following experiments. However, with the 

results of this thesis at hand, we should have understood that the efficiency of a replicator in 

isolation does not necessarily reflect their behaviour within multi-component networks of 

O

N
O

O

N

O

N

O

N
O

O

N

O

N
H

N
OH

H

HO2C

O

N
O

O

N

O

N
H

N
OH

H

HO2C

H

FF

73 trans-171 trans-172

238



higher order. It would therefore be of great interest to incorporate templates trans-171 and 

trans-172 into multicomponent networks similar to the competition scenarios in chapter 6 

(Scheme 8.1).

! Many possible combinations of building blocks can be imagined to produce scenarios 

of increasing complexity. The relatively simple three component reaction between maleimide 

73  and nitrones 141 and 142 would induce a competition between trans-171 and trans-172. 

Compared to the previous rivalry between two autocatalysts, such as trans-147 and 

trans-149, both replicators now show similar replicating efficiencies. The outcome of the 

native three component reaction can therefore be expected to be more balanced and the 

influence of template addition may be greater. A combination of all three maleimides with 

carboxy nitrone will lead to the formation of three different self-replicating products of 

distinctively different efficiencies. Emergent behaviour can be revealed by comparing the 

experimentally obtained order of product formation with the individual activities of the 

systems. Exchanging carboxy nitrone with phenylacetic acid nitrone creates a scenario in 

which two self-replicators compete with an AB system. Provided that clean analysis can be 

guaranteed, a system including all five building blocks can be set up.

Scheme 8.2 Proposed design of a multicycle using benzofuran maleimide 73 with carboxy nitrone 141 
and maleimide 174 with nitrone 55.
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! Ultimately, trans-172  or trans-171  can be combined with trans-59b to form two 

further sets of multicycle. In this respect, it would also be interesting to investigate the 

possibility of substituting the benchmark replicator trans-59b with a less efficient 

autocatalytic system but similar geometry such as trans-175 from nitrone 55 and maleimide 

174 (Scheme 8.2). By weakening the self-replicating contributions in the multicycle without 

causing a dramatic change in the geometry of the building blocks, it might be possible to 

generate a network in which the dominance of the reciprocal systems in the product pool is 

strengthened.

8.2 Developing a dynamic multicyclic system

In this thesis, the design and characterisation of a set of self-replicating structures is 

presented. Ultimately, some of these replicators were successfully incorporated in the design 

of fully functional multicyclic systems. In these constructs, the hierarchy of interactions 

among the replicating entities was dissected and the feasibility of influencing the outcome of 

the experiments by adding informational templates was established. However, since the 

cycloaddition that leads to the template is relatively fast and irreversible, the limits of 

enhancing selectively one species is fixed within certain kinetic boundaries. One possibility 

of reducing the kinetic drive would be to feed in slowly some of the reagents during the 

reaction as shown in chapter 6 for the competition scenario between a self-replicator and an 

AB system. By doing this, the concentrations of reactive components would be low, thereby 

reducing the contributions of the bimolecular pathways and emphasising the template 

directed formation of products. In the case of doping a reaction mixture with presynthesised 

template, the formation of the unwanted template would therefore be suppressed and 

enhancements for the instructed template would be much greater. At the same time, 

undesired bimolecular background reactions which unselectively form all templates in 

nearly equal amounts are suppressed.

! Instead of slow addition of one reagent to the reaction mixture, the exchange protocol 

established previously in which a reactive nitrone bearing a recognition unit is formed from 

a pool of imines and nitrones under hydrolytic cleavage and recombination of the fragments 

can be exploited (Scheme 8.3). Starting from recognition-disabled nitrone 179 and imine 178 

bearing an acid recognition site, recombination of the aldehyde fragments generates carboxy 

nitrone 180, a member of the original multicyclic system (Scheme 8.3a). The process can be 

modified for the formation of amidopyridine nitrone 183 from feed nitrone 179 and 

recognition imine 182(Scheme 8.3b).
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Scheme 8.3 Proposed imine-nitrone exchange protocol to form a) carboxy nitrone 180 from feed 
nitrone 179 and acid imine 178,  and b) amidopyridine nitrone 183 from the same feed nitrone 179 and 
imine 182. In both cases,  the stochiometry also leads to the formation of feed imine 181. Details for the 
mechanism and conditions of the exchange reaction can be found in chapter 6. Substituents R1, R2 and 
R3 ideally increase the solubility of the components and facilitate the analysis of this system.

! Thus, substitution of both nitrones in the original multicycle from Figure 7.5  with the 

corresponding imine structures produces a system that can only perform upon addition of 

feed nitrone 179 (Figure 8.1). Both nitrones needed for the multicyclic system are now only 

formed through the exchange processes. Since the concentration of active compounds is kept 

low, this approach is bound to generate higher selectivities for the doping experiments using 

preformed template. However, incorporation of the dynamic exchange pools leads to two 

further products. Feed nitrone 179 can react with both maleimides 33  and 66 to form two sets 

of diastereoisomeric products, 184 and 185. With feed nitrone 179  being needed for both 

exchange pools, its concentration is twice as high as for the other building blocks and its 

bimolecular reaction at the start of the reaction will be rather high. The investigation of this 

dynamic multicyclic system therefore requires a well thought-out concept regarding the 

analysis of such complex network and its mixture of products. Also other important factors 

such as the solubility and stability of all participating species have to be considered.
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Figure 8.1 Proposed dynamic multicyclic network based on the system presented in Figure 7.5 and the 
exchange processes in Scheme 8.3.  The nitrones required, 180 and 183 (highlighted as solid boxed 
building blocks), are formed through exchange pool I and II, respectively, and highlighted as 
members of the multicycle. The reaction of feed nitrone 179 with maleimide 33 and 66 leads to the 
formation of diastereoisomeric sets of 184 and 185 as side-products. 

8.3. Developing a multicyclic imine system

The design of a multicyclic system on an entirely dynamic basis is another interesting 

research target. Recent work has established[185] the self-replicating nature of the 

condensation reaction between amine 45 and aldehyde 46 to form imine 47  (left side of 

Figure 8.2). When doping preformed template 47 into a fresh batch of reagents, the reaction 

was indeed found to be enhanced at the early stage of the reaction. However, the amount of 

newly formed 47  actually decreased with increasing amount of dopant. Since the formation 

of the product is under thermodynamic control, adding imine to the reaction mixture shifts 

the equilibrium towards the reagents. This behaviour is in contrast to the kinetic scenario in 

which addition of template strengthens the native template.
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Figure 8.2 Proposed design of a multicyclic system based on the condensation reaction between 
aldehyde and aniline to reversibly form an imine template. Two self-replicating templates 47 and 193 
can be combined to open up the crosscatalytic pathway between the reciprocal templates 191 and 192. 
The self-replicating system 47 has previously been established.[185] Formation of template 193 from 
aldehyde 132 and 190 has not yet been achieved because of the limited solubility of 190 in chloroform 
and dichloromethane.

! In this context, the development of a multicyclic replicating system based entirely on 

reversible interactions could shed light on the connectivity and the interplay of the 

individual components. One possible scenario is depicted in Figure 8.2, in which the existing 

imine replicator 47 is coupled with a second system based on acid amine 190 and recognition 

aldehyde 132. The self-replicating efficiency of 193 has not yet been investigated since 190 

showed very limited solubility in CDCl3. However, attaching solubilising groups to the 

benzene core in 190 should allow to overcome this problem and permit to investigate the 

interplay between both imine replicators. Just as in the case of the nitrone replicators, 

merging both autocatalytic systems could open the formation of a reciprocal relationship 

between template 191 and 192. As a consequence of the interconnectedness of the system, 

addition of one template will cause the system to respond as a whole. For example, addition 

of a fixed amount of minimal template 193  is expected to shift the equilibrium towards its 

building blocks, amine 132 and aldehyde 190. Since both compounds are also part of the 

crosscatalytic system, an increase in their concentration will favour the formation of the 

reciprocal templates, 191  and 192. Both templates also require aldehyde 132 and amine 190 as 
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building blocks who in turn will be subducted from the second minimal replicator 193. In 

effect, addition of template 191 or 192 is expected to cause a reduction in template 

concentration for both minimal templates while strengthening the equilibrium position of 

the reciprocal templates.

! Additionally, experimental investigation of such system could also provide important 

information about how the equilibrium position of the condensation reaction varies under 

different conditions. A fully equilibrated system responds to stimuli like changes in 

temperature, progressive dilution or gradual modification of the polarity of the solvent, and 

the changes could be monitored conveniently by 1H or 19F NMR spectroscopy.

! The situation presented in Figure 8.2 is only one possibility to couple the existing 

replicator 47 with a suitable second system based on simple building blocks. As previously 

mentioned, initial attempts to investigate the depicted system failed because of the limited 

solubility of amine 190 in non-polar solvents. Two further candidates for the design of a self-

replicating imine that can potentially be coupled with 47 are presented in Scheme 8.4. 

Variation of the substituents on the benzene ring gives rise to another pair of self-

complementary imines structures 196 and 197. However, also the two additional amine 

structures 194 and 195 will surely need to be modified to increase their solubility and to 

facilitate the analysis of the final multicyclic system.

Scheme 8.4 Two potential self-replicating imine templates for the incorporation into the dynamic 
multicyclic system depicted in Figure 8.2. Aldehyde 132 could react with 194 or 195 to form 
replicating templates 196 and 197, respectively.

8.4 Chemical waves

The experiments presented in this thesis including the hypothetical ones in this chapter are 

carried out in a closed system. In general, all reagents are dissolved in an NMR tube or flask 

using a suitable solvent and this solution is then incubated at a certain temperature while the 

progression of the reaction is followed by NMR spectroscopy. Except for the pH controlled 

reactions in chapter 5 which required specific addition of acid or base, no exchange of matter 

N N

O

O

H

H

H2N CO2HH2N

CO2H

N
N

O

H

N

N
N

O

H

N

O
O

O
O

H
H

N

N

O

N

H

H

O

ON

N

O

N

H

H

O

O
H

H
132

194 195

196 197

244



takes place with the environment and the reaction set-up follows the model of the static well-

stirred batch reactor (WSBR). We have established that working in a closed system places 

fundamental limits on the ability of replication networks to express complex outcomes since 

the amount of reagent is limited. Most intriguingly, the envisaged selection for one of the two 

replicating types within the multicyclic framework by repetitive recycling failed and led to 

cooperation of all species rather than extinction of the weaker one. 

! As a future direction of research, our well-characterised replicating systems may be 

moved from closed reaction systems into two different kinds of open systems. Firstly, the 

design of reaction diffusion systems can be envisaged in which a chemical process is initiated 

at one point in a reactor and a reaction wave propagates from this origin through the reactor. 

For example, traveling waves of short self-replicating RNA variants along thin capillary 

tubes have been reported.[207,208] Secondly, the use of a continuous stirred tank reactor (CSTR) 

would provide the possibility to introduce one or more fluid reagents into a tank reactor to 

generate a continuous flow of reagents. Adjusting the steady state condition of the CSTR, it is 

possible to manipulate the system such that an autocatalyst present can operate under its 

optimum conditions at all times.

! In order to permit real-time monitoring of the reaction mixture, alternative methods 

of analysis must be sought. Attaching a fluorescent tag to one of the building blocks allows 

for optical sensing by fluorescent spectroscopy and by naked eye (Scheme 8.5). Replicator 

trans-198 is based on system trans-59b but bears an anthracene group which exhibits a shift 

in emission from yellow for nitrone 199 to blue for cycloadduct trans-198. Despite the bulky 

tag, the efficiency of the self-replicator remains nearly as high as for the original system.

Scheme 8.5 Autocatalytic formation of trans-198 from nitrone 199 and maleimide 33. The presence of 
the anthracene group leads to a yellow emission for 199 and blue emission for trans-198.
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! With this system at hand, a propagating reaction-diffusion front could be created by 

transferring an equimolar mixture of reagents into a syringe and seeding at one end with a 

fixed amount of preformed template.[209] Encouraged by these initial results, we are currently 

investigating a set of variants of nitrone 199  bearing slightly different fluorescent tags. 

Ultimately, we wish to study more complex phenomena such as the behaviour of a system 

comprising two competitive autocatalytic processes in an open system. In a WSBR, the 

equilibrium composition will always correspond to a mixture of the two products, with their 

respective equilibrium concentrations depending on the ratio of the rate constants and their 

initial concentrations. When the same reaction is carried out in a reaction diffusion system, 

exclusive product selectivity might occur since both replicator waves propagate 

differentially. One of the autocatalysts will propagate more efficiently thereby depleting the 

common building block more rapidly leading to a level of selectivity which is unattainable in  

closed systems.
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9. Conclusion

The emerging field of Systems Chemistry aims at gaining insight into the construction, the 

analysis and the understanding of complex molecular networks. Autocatalytic processes 

feature prominently in the discussion of such networks. The feedback caused by the non-

linear amplification of a self-replicator allows for its directed selection over other molecules. 

This principle not only provides a means to control the composition and evolution of 

mixtures of small molecules, but it may further provide answers to fundamental questions 

regarding the Origin of Life or the homochirality of natural building blocks.

! Early research on the topic of self-replication focused on the mathematical explanation 

of experimental observations. This approach led to a thorough understanding of some of the 

major principles and within a short time period, a large amount of replicators based on 

nucleotides, peptides and small organic molecules appeared in literature. Besides looking at 

the performance of individual replicators, systems appeared in which the main focus was on 

the study of the interaction between replicators. Especially systems of peptide replicators 

reached a high degree of sophistication, whereas only few examples of networks based on 

organic replicators are known.

! The main objective of the thesis presented here was therefore to explore if structurally 

simple organic molecules can be used as building blocks for the construction of complex 

replicator  networks. Once such networks were established, the next step was to probe to 

what degree external stimuli can influence their behaviour and whether their networks’ 

topology can be deduced directly from the properties of the individual building blocks.

! The initial task of establishing a set of replicators to construct these networks was 

achieved using computational methods and insight gained from previous screenings for 

replicating systems. Kinetic parameters could be extracted showing non-exponential growth 

for all systems and a clear hierarchy in efficiency could be explained by the geometric 

variations of the incorporated backbone. Two of these systems together with two systems 

established previously in the group were used to test how subtle variations in recognition 

strength change the outcome of recognition-mediated reactions. It was shown that such 

variation had very little effect on the performance of the self-replicators. Strong single point 

interaction indeed created a high concentration of active ternary complex but for the tested 

systems this favourable interaction lived on in the product duplex leading to product 

inhibition. On the other hand, changes in recognition strength effected the performance of 

the AB system in a more direct way. Strong interaction between the building blocks created a 

high concentration of binary complex, a higher initial rate and, therefore, more product.
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! The same AB and self-replicating system were then used as the first example of a 

scenario in which two recognition-mediated processes competed for a limited amount of 

building block. It was shown that in these three-component systems, the outcome of the 

competition could be predicted by the properties of the individual systems. For instance, 

replicators that proved efficient in isolation would always dominate weaker systems. 

Moreover, the outcome of the competition could be influenced by the addition of 

autocatalytic template at the start of the reaction. This manipulation did, however, achieve 

only small shifts in the product distribution and with increasing amounts of added template, 

a saturation point was reached. Moving away from a purely kinetic environment into a 

scenario in which some of the building blocks were formed in a dynamic exchange process 

pushed the degree of enhancement beyond the original point of saturation.

! A combination of four building blocks from the original set of replicators gave rise to 

five major products via four autocatalytic and one AB pathway. As a consequence of the 

increased interconnectedness between the building blocks, the outcome of the competition 

scenario could not be deduced from the kinetic and thermodynamic parameters determined 

for the individual systems. It was found that in this scenario, replicators with low duplex 

stability, leading to an increased amount of free template, had an advantage over systems 

with strong duplex association. This change in mode of functioning can be regarded as a case 

of emergence, since the behaviour of the four-component network could not be readily 

predicted from the behaviour of any of it subsystems.

! A multicyclic network was constructed by combination of one of the replicators 

presented in this thesis with a previously established system bearing reversed recognition 

and reactive sites. In this network, the four building blocks could interact via four interlinked 

replicating pathways, two autocatalytic and two crosscatalytic. Conceptually, this network 

bears some resemblance to Ghadiri’s hypercycle based on peptides (Figure 1.9). Our 

multicyclic system however differs not only by the number and chemical nature of its 

constituents, but also from the degree of interaction between the building blocks. By 

definition, a hypercycle consists of autocatalysts that organise to form a cyclic network in 

which each member is closely connected to another member in a crosscatalytic fashion. By 

doing this, the hypercycle can compete more efficiently for existing resources than any 

member on its own. Accordingly, the peptide hypercycle gives rise to two autocatalytic 

products which catalyse the formation of each other in a symbiotic manner.

! In the multicyclic system presented in this thesis, every building block can react via two 

different reaction modes to form an auto- or crosscatalytic template giving rise to four 

reaction products. This high degree of connectivity between the building blocks creates a 
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situation of competition between the two modes of replication reducing the activity for every 

replicator compared to its individual performance. Our network is therefore more closely 

related to the system presented by von Kiedrowski using four oligonucleotides (Figure 1.5). 

! In both cases, the interconnectedness between the building blocks rendered the 

systems instructable to the addition of informational template. Addition of reciprocal 

template up-regulated the formation of both reciprocal templates in a symbiotic manner, 

whereas addition of minimal template instructs only the autocatalytic enhancement of one of 

the two templates. The enhancement of the partner autocatalyst occurs without explicit 

instruction and can be seen as another example of system-level behaviour. Subsequent 

replacement of one of the autocatalysts with a close structural variant modified the product 

distribution by changing the efficiency of both replicating modes.

! With a functioning multicyclic system at hand, experiments were carried out in which 

the outcome of a reaction was used as template for a fresh batch of reagents. This repetitive 

doping procedure was thought to lead ultimately to the dominance of one of the two 

replicating modes,  auto- or crosscatalytic, but the envisaged selection failed and co-

operation of all species was  instead observed. The intrinsic ratio between the two competing 

species was governed by the initial concentrations of their active ternary complexes. 

Addition of pre-synthesised template altered this ratio but the perturbation did not 

propagate over the doping cycles with the ratio always degrading to the original value. In 

the context of the Origin of Life, this finding gives experimental evidence that for sub-

exponential replicators Darwinian evolution in a closed environment is improbable leading 

to a scenario in which ‘everybody lives’.[205,206]

! The repetitive doping experiments have clearly shown that working in closed 

systems places artificial boundaries on the selectivities of replicators, since they function 

outside their optimum concentration range for much of the reaction time course. Theoretical 

discussions of replicating networks in open systems suggest that scenarios exhibiting 

temporal and spatial separation are capable of displaying much more diverse behaviour. It is 

therefore time to take the next step forward and to incorporate the well-established 

replicators developed in our group into the context of open reaction systems.
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10. Experimental

10.1 General procedures

Chemicals were purchased from ABCR GmbH & Co, Alfa Aesar, Apollo Scientific Ltd., Fisher 

Scientific UK Ltd., TCI UK Ltd., Sigma–Aldrich Company Ltd. or VWR International Ltd. 

and purified by standard techniques where necessary.[210] Where appropriate and if not 

otherwise stated, all non-aqueous reactions were carried out under an inert nitrogen or argon 

atmosphere with the inert gas passing through a bed of 4 Å molecular sieves and self-

indicating silica gel. Brine refers to a saturated aqueous solution of sodium chloride. 

Anhydrous solvents were obtained under the following conditions: dry THF was distilled 

from sodium in a recycling still using benzophenone ketyl as indicator; dry acetonitrile was 

distilled from calcium hydride in a recycling still; dry CH2Cl2 was obtained using a 

MBRAUN GmbH MB SPS–800 solvent purification system, where solvent was dried by 

passage through filter columns and dispensed under an atmosphere of N2 or Ar gas; CDCl3 

was neutralised by filtering through CaCl2 and then stored over 4 Å activated molecular 

sieves. Analytical Thin Layer Chromatography (TLC) analysis was performed on 

MACHEREY–NAGEL GmbH & Co. POLYGRAM SIL G/UV254 plates, plastic backed 0.2 mm 

silica gel plates with fluorescent indicator. Developed plates were air–dried and visualised 

under a UV lamp (%max 254 or 366 nm) or after incubating with iodine on sand. Where 

necessary, thermal development after dipping in: methanolic DNP and sulfuric acid solution, 

ninhydrin in n–butanol or a solution of aqueous potassium permanganate, potassium 

carbonate and sodium hydroxide, was used to aid visualisation. Flash Column 

chromatography and silica plugs were carried out on Apollo Scientific Ltd. silica gel 40–63 

micron or Silicycle SiliaFash P60 silica gel (230–400 mesh) eluting with solvents as supplied 

under a positive pressure of compressed air. Melting points were determined using an 

Electrothermal 9200 melting point apparatus and are uncorrected. Mass spectra were 

recorded on a Micromass GCT spectometer for electron impact ionisation (EI) operating at 70 

eV or chemical ionisation (CI) using isobutane as the ionising gas. Electrospray ionisation 

spectra (ES) were performed on a Micromass LCT spectrometer operating in positive or 

negative mode from solutions of methanol, acetonitrile or water. m/z values are reported in 

Daltons and followed by their percentage abundance in parentheses.
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10.2 NMR spectroscopy
1H NMR spectra were recorded on a Bruker Avance 500 (500.1 MHz), a Varian UNITYplus 

500 (500.1 MHz), a Bruker Avance II 400 (400.1 MHz) or a Bruker Avance 300 (300.1 MHz) 

spectrometer using the deuterated solvent as the lock and the residual solvent as the internal 

reference in all cases. In the assignment of 1H NMR spectra the chemical shift information 

(&H) for each resonance signal is given in units of parts per million (ppm) relative to 

trimethylsilane (TMS) where &H TMS = 0.00 ppm. The number of protons (n) for a reported 

resonance signal are indicated as nH from their integral value and their multiplicity by the 

symbols s, d, t, q, m and br which denote singlet, doublet, triplet, quartet, multiplet and 

broad singlet respectively. Their coupling constants (J) are determined by analysis using the 

iNMR software (Version 3.4.6, Mestrelab Research, 2007) quoted to the nearest 0.1 Hz. 

Identical coupling constants are averaged in each spectrum and are reported to the nearest 

0.1 Hz. 13C NMR spectra were recorded on a Bruker Avance 500 (125.7 MHz), a Bruker 

Avance II 400 (100.6 MHz) or a Bruker Avance 300 (75.5 MHz) spectrometer using the CPD or 

DEPTQ pulse sequences with broadband proton decoupling using the deuterated solvent as 

the lock and the residual solvent as the internal reference in all cases. The chemical shift 

informations (&c) for each resonance signal are given in units of parts per million (ppm) 

relative to trimethylsilane (TMS) where &c TMS = 0.00 ppm. All signals are singlets unless 

stated, in which case their multiplicity is represented by the symbol d for doublet. 19F NMR 

spectra were recorded using a Bruker Avance 500 (470.3 MHz), a Bruker Avance II 400 (376.5 

MHz) or a Bruker Avance 300 (282.4 MHz) spectrometer using a broadband proton 

decoupling pulse sequence with the deuterated solvent as the internal lock. The chemical 

shift informations (&F) for each resonance signal are given in units of parts per million (ppm) 

relative to CCl3F where &F CCl3F = 0.00 ppm. All 1H, 13C and 19F spectra were analysed using 

iNMR software (Version 3.4.6, Mestrelab Research, 2007).

10.2.1 Kinetic measurements using 1H NMR spectroscopy

500.1 MHz 1H NMR spectroscopy was used for kinetic analysis of the systems described in 

chapters 3, 4 and 5. Masses of reagents were measured using a Sartorius BP 211D balance (± 

0.01 mg). Stock solutions of the appropriate starting materials were made using a fresh batch 

of CDCl3 stored over 4 Å molecular sieves and equilibrated in a thermostatically controlled 

water bath at reaction temperature.

! In a typical experiment, an NMR sample was prepared in a 5 mm NMR tube (Wilmad 

528PP) by mixing appropriate volumes of stock solutions such that the total volume was 800 
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µL and the concentration of each component was 10 mM. A polyethylene pressure cap was 

then applied to the top of the tube to prevent solvent evaporation. The NMR tube was 

transferred to an NMR   spectrometer (Varian UNITYplus) regulated at the desired 

temperature, and 500.1 MHz 1H NMR spectra were acquired automatically at a given time 

interval over a period of 8-40 hours. Analysis and deconvolution of the arrayed set of 1H 

NMR spectra recorded during this time was performed using iNMR software (Version 3.4.6, 

Mestrelab Research, 2007).

! The chemical reaction monitored in the described systems was a 1,3-dipolar 

cycloaddition between a maleimide and a nitrone, giving rise to two cycloadduct products. 

The percentage completion of the reaction was monitored through the disappearance of the 

maleimide protons signal and the appearance of the cycloadduct proton signals. The two 

diastereoisomeric products of the reaction between a nitrone and a maleimide are easily 

distinguishable in the 1H NMR spectrum, since the signals of the isoxazolidine protons give a 

different splitting pattern for the two cycloadducts (Figure 9.1). 

Figure 9.1 500.1 MHz 1H NMR spectra for the reaction between benzofuran maleimide 73 and 
phenylacetic acid nitrone 71 at 10 mM concentration recorded at 10 ºC after 32000 s. The inset shows 
the signals used to identify the products of the reaction.

In order to extract product concentrations from the 1H NMR spectrum the area of the 

maleimide proton signals and one of the signals of the corresponding cycloadduct proton 

were calculated through deconvolution of the spectrum. The area of the maleimide protons 
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signal was divided by two and added to the area of the cycloadduct proton signal. The 

obtained number signifies the area of a proton signal of a species at a concentration of 10 mM 

and was used as a reference to calculate the concentration of all species detectable in the 

spectrum. This procedure was repeated for all spectra recorded at different time points. The 

time at which each spectrum was recorded was extracted from the log file, which 

accompanies the NMR spectroscopy data. Knowing the concentration of the products at each 

time point, it was possible to plot a reaction profile for each reaction using the ProFit 

program (version 6.1.12, Quantum Soft, Switzerland).

10.2.2 Kinetic measurements using 19F NMR spectroscopy

470.4 MHz 19F NMR spectroscopy was used for kinetic analysis of the systems described in 

chapters 6 and 7. Masses of reagents were measured using a Sartorius BP 211D balance (± 

0.01 mg). Stock solutions of the appropriate starting materials were made using a fresh batch 

of CDCl3 stored over 4 Å molecular sieves and equilibrated in a thermostatically controlled 

water bath at reaction temperature. In a typical experiment, an NMR sample was prepared in 

a 5 mm NMR tube (Wilmad 528PP) by mixing appropriate volumes of stock solutions such 

that the total volume was 800 µL and the concentration of each component was 10 mM. A 

polyethylene pressure cap was then applied to the top of the tube to prevent solvent 

evaporation. The NMR tube was transferred to an NMR spectrometer Bruker Avance 500 

regulated at reaction temperature, and 470.4 MHz 19F{1H} NMR were acquired automatically 

at a given time interval for 8-40 hours. Analysis and deconvolution of each of the 19F NMR 

spectra recorded during this time was performed using iNMR software (Version 3.4.6, 

Mestrelab Research, 2007). The percentage completion of the reaction was monitored through 

the disappearance of the nitrone fluorine signals and the appearance of the cycloadduct 

fluorine signals (three examples of increasing complexity in Figure 9.2, 9.3 and 9.4). In order 

to extract product concentrations from the 19F NMR spectrum, the areas of all fluorine signals 

were calculated through deconvolution of the spectrum. The area of the nitrone fluorine 

signals and the area of all cycloadduct fluorine signals were summed up. The obtained 

number was used as a reference to calculate the concentration of other species detectable in 

the spectrum. This procedure was repeated for all spectra recorded at different time points. 

The time at which each spectrum was recorded was extracted from the log file, which 

accompanies the NMR spectroscopy data. Knowing the concentration of the products at each 

time point it was possible to plot a reaction profile for each reaction using graphing the 

ProFit program (version 6.1.12, Quantum Soft, Switzerland).
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Figure 9.2 Partial 470.4 MHz 19F NMR spectra for the reaction between benzene maleimide 72 and 
phenylacetic acid nitrone 142 at 10 mM concentration recorded at 0 ºC after 10000 s.

Figure 9.3 Partial 470.4 MHz 19F NMR spectra for the competition reaction between naphthalene 
maleimide 72, phenylacetic acid nitrone 142 and carboxylic nitrone 141 at 10 mM concentration 
recorded at 25 ºC after 58000 s.
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Figure 9.3 Partial 470.4 MHz 19F NMR spectra for the multicyclic network between nitrones 55 and 
141, and maleimides 66 and 33 10 mM concentration recorded at 10 ºC after 17800 s.

10.3 Determination of binding constants[211,212]

Experimental values for the association constants Ka were determined by the NMR titration 

method using 1H NMR spectroscopy at 273 or 283 K. All stock solutions and samples were 

made up in CDCl3 using volumetric flasks (accuracy ± 0.02 mL). In a typical NMR titration 

experiment, small aliquots of guest are added to a solution of host of known concentration 

and the NMR spectrum of the sample monitored as a function of guest concentration. 

Commonly, changes in chemical shift are noted for various atomic nuclei. The binding 

constant is extracted from the titration curve (plot of changes in chemical shift against added 

guest concentration) by fitting the curve using a non-linear curve-fitting program. Selected 

examples of titration curves can be found in the appendix.

10.4 Kinetic simulation and fitting

All kinetic fitting and simulations were performed using the software package SimFit 

(Version 32, Günther von Kiedrowski, 2003) and the ISOSIM package incorporated within 

the SimFit package. A detailed kinetic model of all possible interactions involved in the 

studied systems was constructed. This model was converted into a series of rate equations 
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whose solution determine the concentration of reactant and product species as a function of 

time. The program varies experimentally inaccessible kinetic values until the calculation 

matches the experimental data. The ISOSIM mode of SimFit allowed the usage of data 

obtained from the fitting to simulate scenarios under a range of different conditions some of 

which were not directly experimentally available. Selected examples of kinetic models and 

simulation scripts can be found in the appendix.

10.5 Molecular modelling

Molecular modelling calculations were performed on a Linux workstation using 

Macromodel (Version 9.5, Schrödinger Inc., 2008) as part of the Maestro program. Each 

model was initially energy minimised using the MMFFs forcefield with the Polak-Riiere 

Conjugate Gradient (PRCG) method and under the GB/SA solvation model for chloroform. 

The energy minimised structures were then further investigated by running a Monte-Carlo 

Multiple Minimum (MCMM) conformational search method to minimise 1000 iterations 

using the AMBER* forcefield and GB/SA solvation model for chloroform. Transition states 

were successfully located by semi-empirical calculations using the RM1 method as 

implemented in MOPAC2009 (version 10.014L) running on a Linux cluster.

256



10.6 Synthetic Procedures

1-nitro-4-(non-1-ynyl)benzene 76

1-iodo-4-nitrobenzene 75  (3.74 g, 15.0 mmol) was suspended in Et3N (100 mL). 

Triphenylphosphine (421 mg, 1.61 mmol), copper iodide (245 mg, 1.29 mmol) and dichlorobis

(triphenylphosphine) palladium (563 mg, 800  µmol) were added and the mixture was 

degassed with argon for 30 min. 1-nonyne (2.48 g, 20.0 mmol) was added via syringe under a 

protective argon atmosphere and the mixture was stirred overnight. The occurring brown 

solution was filtered through celite, concentrated and purified by column chromatography 

over silica using hexane as eluent to obtain the desired product as a dark yellow liquid 

(4.22 g, 86%). 1H NMR (400.1 MHz, CDCl3): &H 8.15 (d, J = 8.9 Hz, 2H, Ar CH), 7.51 (d, J = 8.9 

Hz, 2H, Ar CH), 2.44 (t, J = 7.1 Hz, 2H, CH2), 1.60-1.64 (m, 2H, CH2), 1.51-1.39 (m, 2H, CH2), 

1.39-1.24 (m, 6H, 3 × CH2), 0.93-0.86 (m, 3H, CH3). 13C NMR (100.6 MHz, CDCl3): &C 146.7 

(quat. C), 132.4 (CH), 131.4 (quat. C), 123.6 (CH), 97.0 (quat. C), 79.4 (quat. C), 31.9 (CH2), 29.1 

(CH2), 28.9 (CH2), 28.6 (CH2), 22.8 (CH2), 19.7 (CH2), 14.2 (CH3). MS (ES+) m/z 268 (100%, [M

+Na]+), 300 (28%). HRMS (ES+) calc. for C15H19NO2Na 268.131, found 268.1310.

N-(4-(non-1-ynyl)phenyl)hydroxylamine 77

1-nitro-4-(non-1-ynyl)benzene 76 (613 mg, 2.50 mmol) was dissolved in THF (20 mL). 

Rhodium (125 mg, 5 wt.-% on carbon, wet) and hydrazine monohydrate (129 mg, 2.58 mmol) 

were added and the reaction was followed by tlc (Hex:EtOAc, 1:1). After completion, the 

solution was filtered through celite and concentrated in vacuo to obtain the desired 

intermediate product as a dark brown liquid which was directly used in the next step 

without further purification. 1H NMR (300.1 MHz, CDCl3): &H 7.31 (d, J = 8.7 Hz, 2H, Ar CH), 

6.90 (d, J = 8.7 Hz, 2H, Ar CH), 2.38 (t, J = 7.1 Hz, 2H, CH2), 1.61-1.57 (m, 2H, CH2), 1.48-1.37 

(m, 2H, CH2), 1.38-1.24 (m, 6H, 3 × CH2), 0.91-0.85 (m, 3H, CH3).
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(Z)-N-(3-carboxybenzylidene)-4-(non-1-ynyl)aniline oxide 70 

Crude (4-(non-1-ynyl)phenyl)hydroxylamine 77 (2.50 mmol) was dissolved in EtOH (15 mL) 

and 3-carboxybenzaldehyde (375 mg, 2.50 mmol) was added neat. The solution was left to 

stir overnight in the dark at room temperature. After removal of EtOH, the crude solid was 

recrystallised using DCM and petroleum ether to yield the desired product as a white solid 

(476 mg, 52% over two steps). M.p.: 175.2 - 175.5 ºC. 1H NMR (400.1 MHz, CDCl3): &H 9.00 (d, 

J = 8.0 Hz, 1H, Ar CH), 8.77 (s, 1H, Ar CH), 8.18 (d, J = 7.8 Hz, 1H, Ar CH), 8.03 (s, 1H, CH), 

7.74 (d, J = 8.6 Hz, 2H, Ar CH), 7.61 (dd, J = 8.0, 7.8 Hz, 1H, Ar CH), 7.50 (d, J = 8.6 Hz, 2H, Ar 

CH), 2.43 (t, J = 7.1 Hz, 2H, CH2), 1.67-1.56 (m, 2H, CH2), 1.49-1.40 (m, 2H, CH2), 1.38-1.25 (m, 

6H, 3 × CH2), 0.93-0.86 (m, 3H, CH3). 13C NMR (100.6 MHz, CDCl3): &C 170.6 (quat. C), 147.3 

(quat. C), 134.3 (CH), 133.4 (CH), 132.5 (CH), 132.5 (CH), 131.5 (CH), 130.9 (quat. C), 130.2 

(quat. C), 129.3 (CH), 126.7 (quat. C), 121.7 (CH), 93.6 (quat. C), 79.6 (quat. C), 31.9 (CH2), 29.1 

(CH2), 29.0 (CH2), 28.7 (CH2), 22.8 (CH2), 19.6 (CH2), 14.2 (CH3). MS (ES+) m/z 386 (100%, [M

+Na]+). HRMS (ES+) calc. for C23H25NO3Na 386.1732, found 386.1731.

2-(4-(bromomethyl)phenyl)acetic acid 79 

A solution of p-tolylacetic acid 78  (6.30 g, 42.0 mmol) and bromine (7.35 g, 46.0 mmol) in 

chlorobenzene (50 mL) was stirred for 2 hours under irradiation of a 60 watt tungsten lamp. 

The occurring precipitate was filtered, washed with copious amounts of hexanes and dried 

to yield the desired product as a white solid (6.03 g, 62%). M.p.: 177.6 - 178.5 ºC (lit.[213]: 180 

ºC). 1H NMR (400.1 MHz, d6-DMSO): &H 7.38 (d, J = 8.2 Hz, 2H, Ar CH), 7.24 (d, J = 8.2 Hz, 

2H, Ar CH), 4.69 (s, 2H, CH2), 3.57 (s, 2H, CH2). 13C NMR (75.5 MHz, d6-DMSO): &C 172.5 

(quat. C), 136.3 (quat. C), 135.2 (quat. C), 129.7 (CH), 129.2 (CH), 40.3 (CH2), 34.4 (CH2).
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2-(4-formylphenyl)acetic acid 46

2-(4-(Bromomethyl)phenyl)acetic acid 79 (5.70 g, 24.9 mmol) was suspended in a mixture of 

EtOH (20 mL) and H2O (20 mL). Hexamethylenetetramine (10.4 g, 79.5 mmol) was added 

and the mixture was refluxed at 80 ºC for 4 hours. After addition of conc. HCl (10 mL), the 

solution was refluxed for another 30 minutes. The mixture was then allowed to cool to room 

temperature and extracted into DCM (2 x 40 mL). The combined organic layers were dried 

over MgSO4, filtered and concentrated. The crude product was recrystallised from DCM/

hexanes to yield the desired product as a white solid (3.63 g, 88%). M.p.: 125.5 - 126.6 ºC (lit.
[214]: 131 ºC). 1H NMR (400.1 MHz, CDCl3): &H 10.00 (s, 1H, C(O)H), 7.86 (d, J = 8.0 Hz, 2H, Ar 

CH), 7.46 (d, J = 8.0 Hz, 2H, Ar CH), 3.74 (s, 2H, CH2). 13C NMR (100.6 MHz, CDCl3): &C 192.1 

(CH), 176.5 (quat. C), 140.3 (quat. C), 135.6 (quat. C), 130.29 (CH), 130.18 (CH), 41.2 (CH2).

(Z)-N-(4-(carboxymethyl)benzylidene)-4-(non-1-ynyl)aniline oxide 71 

Crude (4-(non-1-ynyl)phenyl)hydroxylamine (1.75 mmol) was dissolved in EtOH (15 mL) 

and 2-(4-formylphenyl)acetic acid 46 (287 mg, 1.75 mmol) was added neat. The solution was 

left to stir overnight in the dark at room temperature and placed in the fridge. The precipitate 

was filtered, washed with hexanes and dried to furnish the desired product as a white solid 

(460 mg, 70%). M.p.: 138.2 - 138.5 ºC. 1H NMR (300.1 MHz, CDCl3): &H 8.28 (d, J = 8.4 Hz, 2H, 

Ar CH), 7.93 (s, 1H, CH), 7.71 (d, J = 8.8 Hz, 2H, Ar CH), 7.48 (d, J = 8.8, 2H, Ar CH), 7.35 (d, J 

= 8.4 Hz, 2H, Ar CH), 3.64 (s, 2H, CH2), 2.43 (t, J = 7.1 Hz, 2H, CH2), 1.57-1.65 (m, 2H, CH2), 

1.50-1.38 (m, 2H, CH2), 1.39-1.27 (m, 6H, 3 × CH2), 0.92-0.87 (m, 3H, CH3). 13C NMR (100.6 

MHz, CDCl3): &C 174.2 (quat. C), 147.3 (quat. C), 137.7 (quat. C), 136.2 (CH), 132.4 (CH), 129.9 

(CH), 129.8 (CH), 129.2 (quat. C), 126.5 (quat. C), 121.8 (CH), 93.5 (quat. C), 79.6 (quat. C), 

41.5 (CH2), 31.9 (CH2), 29.07 (CH2), 28.97 (CH2), 28.7 (CH2), 22.8 (CH2), 19.6 (CH2), 14.3 (CH3). 

MS (ES+) m/z 755 (23%), 400 (48%, [M+Na]+), 378 (100%, [M+H]+). HRMS (ES+) calc. for 

C24H28NO3 378.2078, found 378.2069.
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N-(4-chlorophenyl)hydroxylamine[215]

1-chloro-4-nitrobenzene 80 (1.58 g, 10.0 mmol) was dissolved in THF (25 mL). Rhodium (500 

mg, 5 wt.-% on carbon, wet) and hydrazine monohydrate (516 mg, 10.3 mmol) were added 

and the reaction was followed by tlc (Hex:EtOAc, 1:1). After completion, the solution was 

filtered through celite and concentrated in vacuo to obtain the desired intermediate product 

as a light yellow solid which was directly used in the next step without further purification.  

The obtained spectra is in accordance with the literature. 1H NMR (400.1 MHz, CDCl3): &H 

7.24 (d, J = 8.9 Hz, 2H, Ar CH), 6.93 (d, J = 8.9 Hz, 2H, Ar CH), 6.77 (s, 1H, NH), 5.69 (s, 1H, 

OH). 13C NMR (75.5 MHz, CDCl3): &C 148.3 (quat. C), 129.1 (CH), 127.3 (quat. C), 115.9 (CH).

(Z)-4-chloro-N-(4-methylbenzylidene)aniline oxide 82

Crude N-(4-chlorophenyl)hydroxylamine (574 mg, 4.00 mmol) was dissolved in EtOH (10 

mL) and 4-methylbenzaldehyde (421 mg, 3.50 mmol) was added neat. The mixture was kept 

overnight in the dark at room temperature. The following day, the precipitate was filtered, 

washed with a copious amount of petroleum ether and dried to yield the desired product as 

a white solid (611 mg, 62%). M.p.: 179.7 - 180.2 ºC. 1H NMR (300.1 MHz, CDCl3): &H 8.28 (d, J 

= 8.4 Hz, 2H, Ar CH), 7.86 (s, 1H, CH), 7.73 (d, J = 9.0 Hz, 2H, Ar CH), 7.44 (d, J = 9.0 Hz, 2H, 

Ar CH), 7.29 (d, J = 8.1 Hz, 2H, Ar CH), 2.42 (s, 3H, CH3). 13C NMR (100.6 MHz, CDCl3): & 

147.4 (quat. C), 142.0 (quat. C), 135.6 (quat. C), 134.7 (CH), 129.5 (CH), 129.3 (CH), 129.2 (CH), 

127.8 (quat. C), 123.0 (CH), 21.9 (CH3). MS (ES+) m/z 300 (15%), 270 (30%), 268 (100%, [M

+Na]+). HRMS (ES+) calc. for C14H12NONaCl 268.0512, found 268.0505.

(Z)-4-chloro-N-(3-fluorobenzylidene)aniline oxide 81 

Crude N-(4-chlorophenyl)hydroxylamine (574 mg, 4.00 mmol) was dissolved in EtOH (10 

mL) and 3-fluorobenzaldehyde (434 mg, 3.50 mmol) was added neat. The mixture was kept 
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overnight in the dark at room temperature. The following day, the precipitate was filtered, 

washed with a copious amount of petroleum ether and dried to yield the desired product as 

a white solid (629 mg, 63%). M.p.: 128.9 - 129.3 ºC. 1H NMR (400.1 MHz, CDCl3): &H 8.42 (d, J 

= 10.6 Hz, 1H, Ar CH), 7.91 (s, 1H, CH), 7.88 (d, J = 7.8 Hz, 1H, Ar CH), 7.73 (d, J = 8.9 Hz, 

2H, Ar CH), 7.46 (d, J = 8.9 Hz, 2H, Ar CH), 7.42 (d, J = 8.0 Hz, 1H, Ar CH), 7.18 (t, J = 8.3 Hz, 

1H, Ar CH). 19F NMR (282 MHz, CDCl3): &F -112.0. MS (ES+) m/z 304 (40%), 274 (15%), 272 

(100%, [M+Na]+). HRMS (ES+) calc. for C13H9NONaFCl 272.0254, found 272.0254.

N-(4,6-dimethylpyridin-2-yl)-4-nitrobenzamide 84

4-nitrobenzoyl chloride (2.13 g, 11.5 mmol) was suspended in dry DCM (25 mL) and cooled 

to 0 ºC. A solution of 4,6-dimethylpyridin-2-amine (3.05 g, 25.0 mmol) in dry DCM (25 mL) 

was slowly added dropwise. The addition resulted in the formation of a clear solution, which 

was stirred overnight while warming to room temperature. Work-up included extraction of 

excess amine from the organic layer with 1M HCl solution (2 x 30 mL), re-extracting the 

aqueous layer with DCM (2 x 30 mL), washing the combined organic layers with sat. 

aqueous NaHCO3 solution (30 mL), drying over MgSO4, filtration and concentration in vacuo 

to furnish the desired product as a white powder (2.89 g, 93%). M.p.: 205.7 - 206.9 °C (lit.[216]: 

163 ºC). 1H NMR (300.1 MHz, CDCl3): &H 8.83 (s, 1H, NH), 8.30 (d, J = 9.0 Hz, 2H, Ar CH), 

8.06 (d, J = 9.0 Hz, 2H, Ar CH), 8.00 (s, 1H, Ar CH), 6.79 (s, 1H, Ar CH), 2.36 (s, 3H, CH3), 2.36 

(s, 3H, CH3). 13C NMR (75.5 MHz, CDCl3): &C 163.8 (quat. C), 156.7 (quat. C), 150.6 (quat. C), 

150.4 (quat. C), 150.0 (quat. C), 140.1 (quat. C), 128.5 (CH), 124.1 (CH), 121.4 (CH), 112.1 (CH), 

23.8 (CH3), 21.5 (CH3). MS (ES+) m/z 272 (100%, [M+H]+). HRMS (ES+) calc. for C14H14N3O3 

272.1035, found 272.1037.

4-amino-N-(4,6-dimethylpyridin-2-yl)benzamide[216]

N-(4,6-dimethylpyridin-2-yl)-4-nitrobenzamide (1.20 g, 4.98 mmol) was dissolved in a 9:1 

MeOH/DCM mixture (50  mL). Palladium (120 mg, 10 wt.-% on carbon, dry) was added 
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carefully. The solution was purged with hydrogen and kept under a hydrogen atmosphere 

overnight using hydrogen filled balloons. The following day, the solution was filtered 

through celite and concentrated in vacuo to yield the desired product in sufficient quality for 

further conversion. The obtained spectra is in accordance with the literature. 1H NMR (400.1 

MHz, CDCl3): &H 8.49 (s, 1H, NH), 8.04 (s, 1H, Ar CH), 7.77 (d, J = 8.7 Hz, 2H, Ar CH), 6.74 (s, 

1H, Ar CH), 6.69 (d, J = 8.6 Hz, 2H, Ar CH), 2.42 (s, 3H, CH3), 2.34 (s, 3H, CH3).

(Z)-4-(4-(4,6-dimethylpyridin-2-ylcarbamoyl)phenylamino)-4-oxobut-2-enoic acid 85

Crude 4-amino-N-(4,6-dimethylpyridin-2-yl)benzamide was dissolved in acetic acid (30 mL) 

and maleic anhydride (586 mg, 5.98 mmol) was added neat. The reaction was left to stir 

overnight at room temperature before the precipitate was filtered and thoroughly washed 

with Et2O (60 mL) to yield the desired product as a light yellow solid (1.57 g, 93% over two 

steps). M.p.: 198.0 - 199.0 °C. 1H NMR (400.1 MHz, d6-DMSO): &H 10.58 (s, 1H, NH), 10.52 (s, 

1H, NH), 8.02 (d, J = 8.8 Hz, 2H, Ar CH), 7.86 (s, 1H, Ar CH), 7.73 (d, J = 8.8 Hz, 2H, Ar CH), 

6.87 (s, 1H, Ar CH), 6.50 (d, J = 12.0 Hz, 1H, CH), 6.34 (d, J = 12.0 Hz, 1H, CH), 2.40 (s, 3H, 

CH3), 2.31 (s, 3H, CH3). 13C NMR (100.6 MHz, d6-DMSO): &C 166.9 (quat. C), 165.1 (quat. C), 

163.6 (quat. C), 155.9 (quat. C), 151.5 (quat. C), 149.2 (quat. C), 141.9 (quat. C), 131.7 (CH), 

130.2 (CH), 129.02 (CH), 128.86 (quat. C), 120.0 (CH), 118.5 (CH), 112.2 (CH), 23.3 (CH3), 20.9 

(CH3). MS (ES–) m/z 338 (100%, [M–H]-). HRMS (ES+) calc. for C18H18N3O4 340.1295, found 

340.1297.

N-(4,6-dimethylpyridin-2-yl)-4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzamide 72

(Z)-4-(4-(4,6-dimethylpyridin-2-ylcarbamoyl)phenylamino)-4-oxobut-2-enoic acid 85  (1.19 g, 

3.50 mmol) was suspended in dry MeCN (30 mL). ZnBr2 (791 mg, 3.50  mmol) and 
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hexamethyldisilazane (2.82 g, 17.5 mmol) were added at room temperature. The reaction was 

refluxed at 90 ºC for 1 h. After cooling to room temperature, the precipitate was filtered and 

the filtrate was reduced to roughly 10% of its original volume. Water (25 mL) was added and 

a pH of 1 was adjusted using 1M HCl. The solution was extracted with DCM (3 x 50 mL). 

The combined organic layers were subsequently treated with an aqueous 0.1M EDTA 

solution (2 x 50 mL), H2O (2 x 50 mL) and brine (50 mL), dried over MgSO4, filtered and 

concentrated to yield the desired product as a light yellow solid (890 mg, 79%). M.p.: 226.1 - 

226.9 °C. 1H NMR (400.1 MHz, CDCl3): &H 8.55 (s, 1H, NH), 8.05 (s, 1H, Ar CH), 8.03 (d, J = 

8.8 Hz, 2H, Ar CH), 7.56 (d, J = 8.8 Hz, 2H, Ar CH), 6.90 (s, 2H, 2 × CH), 6.79 (s, 1H, Ar CH), 

2.43 (s, 3H, CH3), 2.37 (s, 3H, CH3). 13C NMR (100.6 MHz, CDCl3): &C 169.1 (quat. C), 164.7 

(quat. C), 156.4 (quat. C), 150.7 (quat. C), 141.1 (quat. C), 134.9 (quat. C), 134.6 (CH), 133.4 

(quat. C), 128.3 (CH), 125.7 (CH), 121.0 (CH), 111.8 (CH), 23.9 (CH3), 21.5 (CH3). MS (ES+) m/z 

322 (100%, [M+H]+). HRMS (ES+) calc. for C18H16N3O3 322.1180, found 322.1192.

Template trans-94

In an NMR tube, maleimide 72  (5.14 mg, 16.0 µmol) in CDCl3 (400 µL) was combined with a 

solution of nitrone 70 (5.81 mg, 16.0 µmol) in CDCl3 (400 µmol). After 48 hours at 0 ºC, the 

reaction showed complete conversion of the starting materials and proved sufficiently pure 

for characterisation (trans/cis > 15:1). 1H NMR (400.1 MHz, CDCl3): &H 11.86 (s, 1H, H8), 8.24 

(s, 1H, H6), 8.18 (s, 1H, H20), 8.14 (d, J = 8.9 Hz, 2H, H11), 8.07 (d, J = 7.7 Hz, 1H, H23), 7.63 (d, J 

= 7.4 Hz, 1H, H25), 7.44 (t, J = 7.7 Hz, 1H, H24), 7.27 (d, J = 8.9 Hz, 2H, H27), 7.04 (d, J = 8.8 Hz, 

2H, H28), 7.01 (d, J = 8.8 Hz, 2H, H12), 6.84 (s, 1H, H3), 5.76 (s, 1H, H18), 5.19 (d, J = 7.4 Hz, 1H, 

H15), 4.21 (d, J = 7.2 Hz, 1H, H17), 2.56 (s, 3H, H1), 2.42 (s, 3H, H5), 2.36 (t, J = 7.2 Hz, 2H, H32), 

1.61-1.53 (m, 2H, H33), 1.43-1.38 (m, 2H, H34), 1.32-1.24 (m, 8H, H35-37), 0.88-0.84 (m, 3H, H38). 
13C NMR (75.5 MHz, CDCl3): & 174.2 (quat. C, C16), 173.2 (quat. C, C14), 171.4 (quat. C, C22), 

166.5 (quat. C, C9), 155.1 (quat. C2), 152.8 (quat. C, C4), 151.5 (quat. C, C7), 147.2 (quat. C26), 
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137.9 (quat. C, C19), 135.2 (quat. C, C13), 134.2 (quat. C, C10), 132.7 (CH, C23), 132.7 (CH, C27), 

131.9 (quat. C, C21), 129.8 (CH, C25), 129.7 (CH, C11), 128.9 (CH, C24), 128.4 (CH, C20), 126.0 

(CH, C12), 121.2 (CH, C3), 119.3 (quat. C, C29), 115.0 (CH, C28), 113.9 (CH, C6), 90.3 (quat. C, 

C30), 79.9 (quat. C, C31), 77.5 (CH, C15), 69.5 (CH, C18), 56.1 (CH, C17), 31.9 (CH2, C35), 29.9 

(CH2, C36), 29.1 (CH2, C34), 29.0 (CH2, C33), 22.8 (CH2, C37), 21.9 (CH3, C1), 21.8 (CH3, C5), 19.6 

(CH2, C32), 14.2 (CH3, C38). MS (ES+) m/z 685 (100%, [M+H]+), 495 (10%). HRMS (ES+) calc. 

for C41H41N4O6 685.3026, found 685.3036.

Template cis-95

In an NMR tube, maleimide 72  (5.14 mg, 16.0 µmol) in CDCl3 (400 µL) was combined with a 

solution of nitrone 71 (6.03 mg, 16.0 µmol) in CDCl3 (400 µmol). After 48 hours at 0 ºC, the 

reaction showed complete conversion of the starting materials and proved sufficiently pure 

for characterisation of the cis-isomer (cis/trans = 3:1). 1H NMR (499.9 MHz, CDCl3): &H 8.10 (s, 

1H, H6), 7.91 (d, J = 8.3 Hz, 2H, H11), 7.39 (d, J = 8.1 Hz, 2H, H21), 7.28 (d, J = 8.7 Hz, 2H, H26), 

7.21 (d, J = 8.1 Hz, 2H, H20), 7.10 (d, J = 8.3 Hz, 2H, H12), 6.99 (d, J = 8.6 Hz, 2H, H27), 6.79 (s, 

1H, H3), 5.08 (d, J = 8.6 Hz, 1H, H15), 5.01 (d, J = 8.7 Hz, 1H, H18), 4.13 (t, J = 8.6 Hz, 1H, H17), 

3.65 (d, J = 16.3 Hz, 1H, H23), 3.62 (d, J = 16.3 Hz, 1H, H23’), 2.42 (s, 3H, H1), 2.38 (s, 3H, H5), 

2.36 (t, J = 7.2 Hz, 2H, H31), 1.61-1.54 (m, 2H, H32), 1.45-1.37 (m, 2H, H33), 1.35-1.27 (m, 6H, 

H34-36), 0.91-0.85 (m, 3H, H37). 13C NMR (125.7 MHz, CDCl3): &C 176.4 (quat. C, C24), 172.4 

(quat. C, C14), 170.8 (quat. C, C16), 166.3 (quat. C, C9), 155.0 (quat. C, C4), 152.9 (quat. C, C2), 

151.0 (quat. C, C7), 147.5 (quat. C, C25), 135.2 (quat. C, C19), 134.2 (quat. C, C10), 134.1 (quat. C, 

C13), 133.1 (quat. C, C22), 132.4 (CH, C27), 130.5 (CH, C20), 129.0 (CH, C11), 127.9 (CH, C21), 

125.8 (CH, C12), 121.2 (CH, C3), 120.4 (quat C, C28), 116.9 (CH, C26), 113.7 (CH, C6), 90.7 (quat. 

C, C29), 79.9 (quat. C, C30), 77.4 (CH, C15), 72.2 (CH, C18), 54.5 (CH, C17), 40.6 (CH2, C23), 31.9 

(CH2, C34), 29.9 (CH2, C35), 29.1 (CH2, C33), 28.9 (CH2, C32), 22.8 (CH2, C36), 21.9 (CH3, C1), 21.7 
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(CH3, C5), 19.6 (CH2, C31), 14.3 (CH3, C37). MS (ES+) m/z 699 (100%, [M+H]+). HRMS (ES+) 

calc. for C42H43N4O6 699.3170, found 699.3183.

Methyl 5-nitrobenzofuran-2-carboxylate 87

2-Hydroxy-5-nitrobenzaldehyde (500 mg, 3.00 mmol) was dissolved in dry MeCN (15 mL). 

Methyl 2-bromoacetate (459 mg, 3.00 mmol) and K2CO3 (1.24 g, 9.00 mmol) were added and 

the yellow solution was stirred for 4 hours at room temperature before being refluxed at 90 

ºC overnight. Cooling to room temperature and addition of H2O (60 mL) resulted in the 

formation of a precipitate, which was filtered, washed intensively with H2O and dissolved in 

DCM (75 mL). The organic solution was then dried over MgSO4, filtered and concentrated in 

vacuo to furnish the desired product as a light brown solid (264 mg, 43%). M.p.: 164.6 - 165.1 

ºC (lit.[217]: 163.5 - 164.5 ºC). 1H NMR (400.1 MHz, CDCl3): &H 8.65 (dd, J = 2.3, 0.5 Hz, 1H, Ar 

CH), 8.38 (dd, J = 9.2, 2.3 Hz, 1H, Ar CH), 7.70 (ddd, J = 9.2, 0.9, 0.5 Hz, 1H, Ar CH), 7.65 (d, J 

= 0.9 Hz, 1H, Ar CH), 4.02 (s, 3H, CH3). 13C NMR (75.5 MHz, CDCl3): &C 159.0 (quat. C), 158.0 

(quat. C), 148.4 (quat. C), 144.8 (quat. C), 127.2 (quat. C), 123.1 (CH), 119.6 (CH), 114.2 (CH), 

113.0 (CH), 52.9 (CH3). MS (CI+) m/z 222 (100%, [M+H]+). HRMS (CI+) calc. for C10H8NO5 

222.0400, found 222.0402.

5-nitrobenzofuran-2-carboxylic acid 88

Methyl 5-nitrobenzofuran-2-carboxylate 87 (1.90 g, 8.59 mmol) was suspended in a mixture 

of EtOH (95 mL) and H2O (5 mL). KOH powder (964 mg, 17.2 mmol) was added and the 

mixture was refluxed overnight at 85 ºC. After cooling to room temperature, the solution was 

poured into H2O (50 mL) and acidified to pH 1 using 1M HCl. The occurring precipitate was 

filtered and redissolved in EtOAc (100 mL). The filtrate was extracted thoroughly with 

EtOAc (3 x 75 mL). The combined organic layers were dried over MgSO4, filtered and 

concentrated in vacuo to yield the desired product as a light brown solid (1.66 g, 94%). M.p.: 

236.1 - 238.4 ºC (lit.[218]: 274 - 275 ºC). 1H NMR (300.1 MHz, d6-DMSO): &H 8.73 (d, J = 2.4 Hz, 

1H, Ar CH), 8.33 (dd, J = 9.2, 2.4 Hz, 1H, Ar CH), 7.94 (d, J = 9.2 Hz, 1H, Ar CH), 7.82 (s, 1H, 

Ar CH). 13C NMR (75.5 MHz, d6-DMSO): &C 159.4 (quat. C), 157.5 (quat. C), 149.0 (quat. C), 

144.2 (quat. C), 127.4 (quat. C), 122.7 (CH), 119.8 (CH), 114.1 (CH), 113.2 (CH). MS (CI+) m/z 

208 (100%, [M+H]+). HRMS (CI+) calc. for C9H6NO5 208.0249, found 208.0246.
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(Z)-5-(3-carboxyacrylamido)benzofuran-2-carboxylic acid 89

5-nitrobenzofuran-2-carboxylic acid 88 (300 mg, 1.45 mmol) was dissolved in THF (15 mL). 

Palladium (30 mg, 10 wt.-% on carbon, dry) was added at room temperature. The flask was 

purged with hydrogen and kept under a hydrogen atmosphere overnight using hydrogen 

filled balloons. The following day, the solution was filtered through celite to remove the 

catalyst and maleic anhydride (147 mg, 1.50 mmol) was added neat. After stirring at room 

temperature for 3 hours, the precipitate was filtered, washed with a copious amount of THF 

and dried to give the desired product as a light brown solid (366 mg, 92% over two steps). 

M.p.: 208.0 - 208.8 ºC. 1H NMR (300.1 MHz, d6-DMSO): &H 10.53 (s, 1H, NH), 8.23 (d, J = 1.9 

Hz, 1H, Ar CH), 7.69 (s, 1H, Ar CH), 7.66 (s, 1H, Ar CH), 7.56 (dd, J = 8.8, 2.2 Hz, 1H, Ar CH), 

6.51 (d, J = 12.0 Hz, 1H, CH), 6.32 (d, J = 12.0 Hz, 1H, CH). 13C NMR (75.5 MHz, d6-DMSO): 

&C 166.8 (quat. C), 163.3 (quat. C), 160.0 (quat. C), 151.7 (quat. C), 146.8 (quat. C), 134.7 (quat. 

C), 131.8 (CH), 130.4 (CH), 127.1 (quat. C), 120.5 (CH), 113.8 (CH), 113.1 (CH), 112.3 (CH). MS 

(ES–) m/z 549 (45%), 274 (100%, [M–H]-), 230 (9%). HRMS (ES–) calc. for C13H8NO6 274.0352, 

found 274.0347.

5-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzofuran-2-carboxylic acid 90

(Z)-5-(3-carboxyacrylamido)benzofuran-2-carboxylic acid 89 (311 mg, 1.13 mmol) was 

suspended in acetic anhydride (10 mL). Sodium acetate (9.27 mg, 113 µmol) was added and 

the reaction was refluxed overnight at 100 ºC. After cooling to room temperature, water (20 

mL) was added and the biphasic solution was stirred vigorously for 2 hours while being 

cooled over an ice bath. The solution was then extracted with EtOAc (3 x 50 mL), the organic 

layer dried over MgSO4, filtered and concentrated. After being redissolved in DCM (25 mL), 

an excess of trifluoracetic acid (2 mL) was added and the mixture was stirred for 2 hours. 

Water was added (25 mL) and the mixture was left to stir for an additional 2 hours. The 

solution was then extracted with EtOAc (3 x 50 mL), the organic layer dried over MgSO4, 

filtered and concentrated to yield the desired product (231 mg, 80%). M.p.: 283.5 - 285.8 ºC. 
1H NMR (300.1 MHz, d6-DMSO): &H 7.81 (d, J = 8.8 Hz, 1H, Ar CH), 7.75 (d, J = 1.9 Hz, 1H, 
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Ar CH), 7.73 (s, 1H, Ar CH), 7.44 (dd, J = 8.8, 2.1 Hz, 1H, Ar CH), 7.20 (s, 2H, 2 × CH). 13C 

NMR (75.5 MHz, d6-DMSO): &C 170.1 (quat. C), 160.0 (quat. C), 153.9 (quat. C), 147.6 (quat. 

C), 134.7 (CH), 127.4 (quat. C), 127.2 (quat. C), 126.7 (CH), 121.8 (CH), 113.4 (CH), 112.5 (CH). 

MS (ES–) m/z 256 (100%, [M–H]-), 212 (40%). HRMS (ES–) calc. for C13H6NO5 256.0244, found 

256.0246.

5-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzofuran-2-carbonyl chloride

5-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl) benzofuran-2-car-boxylic acid 90 (257 mg, 1.00 

mmol) was suspended in toluene (25 mL). An excess of thionyl chloride (15 mL) was added 

and the mixture was refluxed overnight at 90 ºC. The next day, all solvent was removed in 

vacuo, the resulting solid was dried thoroughly and proved to be sufficiently pure for further 

conversion. 1H NMR (400.1 MHz, CDCl3): &H 7.87 (d, J = 0.9 Hz, 1H, Ar CH), 7.76 (d, J = 1.6 

Hz, 1H, Ar CH), 7.70 (d, J = 9.0 Hz, 1H, Ar CH), 7.54 (dd, J = 9.0 Hz, 2.1, 1H, Ar CH), 6.91 (s, 

2H, 2 × CH). 13C NMR (100.6 MHz, CDCl3): &C 169.5 (quat. C), 157.3 (quat. C), 155.7 (quat. C), 

147.8 (quat. C), 134.5 (CH), 128.07 (CH), 128.03 (quat. C), 127.0 (quat. C), 121.5 (CH), 120.3 

(CH), 113.6 (CH).

N-(4,6-dimethylpyridin-2-yl)-5-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzofuran-2-

carboxamide 73

Crude 5-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzo-furan-2-carbonyl chloride (276 mg, 1.00 

mmol) was suspended in dry DCM (10 mL) and 2-amino-4,6-dimethyl pyridine (269 mg, 2.20 

mmol) in dry DCM (10  mL) was added dropwise at 0 ºC. The solution was left to stir 

overnight while warming to room temperature. In order to precipitate the product, the 

solution was kept in the fridge overnight. The filtered solid was redissolved in DCM (20 mL) 

and washed with 1M HCl (2 x 20 mL). The organic layer was dried over MgSO4, filtered and 
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concentrated to give directly the desired product as a light brown solid (222 mg, 61% over 

two steps). M.p.: 157.5 - 158.8 ºC. 1H NMR (400.1 MHz, CDCl3): &H 8.96 (s, 1H, NH), 8.03 (s, 

1H, Ar CH), 7.69-7.63 (m, 3H, Ar CH), 7.42 (dd, J = 8.9, 2.1 Hz, 1H, Ar CH), 6.90 (s, 2H, 2 × 

CH), 6.82 (s, 1H, Ar CH), 2.47 (s, 3H, CH3), 2.38 (s, 3H, CH3). 13C NMR (100.6 MHz, CDCl3): 

&C 169.6 (quat. C), 156.6 (quat. C), 156.3 (quat. C), 153.8 (quat. C), 150.5 (quat. C), 149.9 (quat. 

C), 149.4 (quat. C), 134.3 (CH), 128.2 (quat. C), 127.2 (quat. C), 125.7 (CH), 121.1 (CH), 120.9 

(CH), 112.7 (CH), 111.90 (CH), 111.72 (CH), 23.8 (CH3), 21.4 (CH3). MS (ES+) m/z 384 (80%, [M

+Na]+), 362 (100%, [M+H]+). HRMS (ES+) calc. for C20H16N3O4 362.1146, found 362.1141.

Template trans-96

In an NMR tube, maleimide 73  (5.78 mg, 16.0 µmol) in CDCl3 (400 µL) was combined with a 

solution of nitrone 70 (5.81 mg, 16.0 µmol) in CDCl3 (400 µL). After 48 hours at 0  ºC, the 

reaction showed complete conversion of the starting materials and proved sufficiently pure 

for characterisation (trans/cis > 15:1). 1H NMR (300.1 MHz, CDCl3): &H 11.44 (s, 1H, H8), 8.28 

(s, 1H, H24), 8.18 (s, 1H, H6), 8.13 (d, J = 7.8 Hz, 1H, H27), 7.93 (s, 1H, H11), 7.74 (d, J = 7.9 Hz, 

1H, H29), 7.51 (t, J = 7.4 Hz, 1H, H28), 7.48 (d, J = 8.8 Hz, 1H, H14), 7.29 (d, J = 8.8 Hz, 2H, H31), 

7.16 (s, 1H, H17), 7.07 (d, J = 8.8 Hz, 2H, H32), 6.84 (s, 1H, H3), 6.64 (d, J = 8.4 Hz, 1H, H15), 5.78 

(s, 1H, H22), 4.99 (d, J = 7.4 Hz, 1H, H20), 4.00 (d, J = 7.4 Hz, 1H, H21), 2.55 (s, 3H, H1), 2.42 (s, 

3H, H5), 2.39 (t, J = 7.2 Hz, 2H, H36), 1.65-1.55 (m, 2H, H37), 1.48-1.38 (m, 2H, H41), 1.37-1.19 

(m, 6H, H38-40), 0.92-0.82 (m, 3H, H42). 13C NMR (75.5 MHz, CDCl3): &C 174.4 (quat. C, C19), 

173.2 (quat. C, C18), 171.0 (quat. C, C26), 157.7 (quat. C, C7), 155.3 (quat. C, C2), 154.8 (quat. C, 

C13), 152.6 (quat. C, C4), 150.8 (quat. C, C10), 149.5 (quat. C, C9), 147.6 (quat. C, C30), 138.7 

(quat. C, C25), 132.8 (CH, C31), 132.1 (CH, C29), 131.8 (quat. C, C23), 129.9 (CH, C27), 129.1 (CH, 
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C28), 128.3 (quat. C, C12), 128.1 (CH, C24), 126.9 (quat. C, C16), 125.6 (CH, C15), 121.4 (CH, C3), 

121.2 (CH, C17), 119.2 (quat. C, C33), 114.7 (CH, C32), 113.8 (CH, C6), 113.0 (CH, C14), 111.6 (CH, 

C11), 90.5 (quat. C, C35), 79.8 (quat. C, C34), 77.5 (CH, C20), 69.5 (CH, C22), 56.9 (CH, C21), 31.9 

(CH2, C39), 29.9 (CH2, C40), 29.1 (CH2, C38), 29.0 (CH2, C37), 22.8 (CH2, C41), 22.1 (CH3, C1), 21.8 

(CH3, C5), 19.6 (CH2, C36), 14.2 (CH3, C42). MS (ES+) m/z 725 (100%, [M+H]+). HRMS (ES+) 

calc. for C43H41N4O7 725.2970, found 725.2965.

Template trans-97

In an NMR tube, maleimide 73  (5.78 mg, 16.0 µmol) in CDCl3 (400 µL) was combined with a 

solution of nitrone 71 (6.03 mg, 16.0 µmol) in CDCl3 (400 µL). After 48 hours at 0 ºC, the 

reaction showed complete conversion of the starting materials and proved sufficiently pure 

for characterisation (trans/cis > 15:1). 1H NMR (300.1 MHz, CDCl3): &H 11.16 (s, 1H, H8), 8.18 

(s, 1H, H6), 7.54 (s, 1H, H11), 7.45 (d, J = 8.2 Hz, 2H, H25), 7.38 (d, J = 8.2 Hz, 2H, H24), 7.31 (d, J 

= 8.9 Hz, 2H, H30), 7.09 (d, J = 8.9 Hz, 2H, H31), 6.92 (d, J = 8.7 Hz, 1H, H14), 6.83 (s, 1H, H3), 

6.74 (d, J = 1.9 Hz, 1H, H17), 6.61 (dd, J = 8.8, 2.0 Hz, 1H, H15), 5.68 (s, 1H, H22), 5.10 (d, J = 7.4 

Hz, 1H, H20), 3.89 (d, J = 7.6 Hz, 1H, H21), 3.79 (s, 2H, H27), 2.49 (s, 3H, H1), 2.43 (t, J = 7.2 Hz, 

2H, H35), 2.39 (s, 3H, H5), 1.68-1.56 (m, 2H, H36), 1.51-1.38 (m, 2H, H40), 1.39-1.15 (m, 6H, 

H37-39), 0.94-0.78 (m, 3H, H41). 13C NMR (75.5 MHz, CDCl3): &C 176.7 (quat. C, C28), 175.3 

(quat. C, C19), 173.2 (quat. C, C18), 157.5 (quat. C, C7), 155.5 (quat. C, C2), 154.4 (quat. C, C13), 

152.3 (quat. C, C4), 150.8 (quat. C, C10), 149.5 (quat. C, C9), 148.0 (quat. C, C29), 137.1 (quat. C, 

C23), 135.1 (quat. C, C26), 132.8 (CH, C30), 130.7 (CH, C24), 128.3 (quat. C, C12), 127.1 (CH, C25), 

126.7 (quat. C, C16), 125.0 (CH, C15), 121.5 (CH, C3), 121.2 (CH, C17), 119.0 (quat. C, C32), 114.7 

(CH, C31), 113.8 (CH, C6), 113.1 (CH, C14), 111.5 (CH, C11), 90.4 (quat. C, C34), 79.9 (quat. C, 
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C33), 77.6 (CH, C20), 70.0 (CH, C22), 56.8 (CH, C21), 40.5 (CH2, C27), 31.9 (CH2, C38), 29.9 (CH2, 

C39), 29.1 (CH2, C37), 29.0 (CH2, C36), 22.8 (CH2, C40), 22.1 (CH3, C1), 21.7 (CH3, C5), 19.6 (CH2, 

C35), 14.2 (CH3, C41). MS (ES+) m/z 739 (100%, [M+H]+). HRMS (ES+) calc. for C44H43N4O7 

739.3132, found 739.3134.

(Z)-6-(3-carboxyacrylamido)-2-naphthoic acid 92

6-amino-2-naphthoic acid (449 mg, 2.40 mmol) was dissolved in THF (10 mL). Maleic 

anhydride (236 mg, 2.40  mmol) was added and the solution was stirred overnight. The 

occurring precipitate was filtered, washed with Et2O and dried under high vacuum to 

furnish the desired product as a pale yellow solid (664 mg, 97%). M.p.: 241.7 - 242.0 ºC. 1H 

NMR (400.1 MHz, d6-DMSO): &H 10.68 (s, 1H, NH), 8.53 (s, 1H, Ar CH), 8.45 (s, 1H, Ar CH), 

8.08 (d, J = 8.9 Hz, 1H, Ar CH), 7.96-7.91 (m, 2H, Ar CH), 7.67 (dd, J = 8.9, 1.9 Hz, 1H, Ar CH), 

6.54 (d, J = 12.0 Hz, 1H, CH), 6.37 (d, J = 12.0 Hz, 1H, CH). 13C NMR (100.6 MHz, d6-DMSO): 

&C 167.5 (quat. C), 167.0 (quat. C), 163.7 (quat. C), 138.4 (quat. C), 135.7 (quat. C), 131.4 (CH), 

130.6 (CH), 130.3 (CH), 130.2 (CH), 129.0 (quat. C), 127.7 (CH), 126.8 (quat. C), 125.8 (CH), 

120.6 (CH), 115.2 (CH). MS (ES–) m/z 567 (20%), 284 (100%, [M–H]-), 240 (20%), 186 (18%). 

HRMS (ES–) calc. for C15H10NO5 284.0559, found 284.0562.

6-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-2-naphthoic acid 93

(Z)-6-(3-carboxyacrylamido)-2-naphthoic acid 92 (571 mg, 2.00 mmol) was suspended in dry 

MeCN (40 mL). ZnBr2 (450 mg, 2.00 mmol) and HMDS (1.61 g, 10.0 mmol) were added and 

the mixture was refluxed at 90 ºC for 1 hour. After cooling to room temperature, the solution 

was filtered and reduced to roughly 10% of its original volume. Water (25 mL) was added 

and the pH was adjusted to 1 using 1M HCl. The solution was washed intensively with 

EtOAc (10 x 50 mL). All combined organic fractions were dried over MgSO4, filtered and 

reduced to yield the desired product as a brown solid (417 mg, 78%). M.p.: 341.2 - 342.0 ºC. 
1H NMR (400.1 MHz, d6-DMSO): &H 8.66 (s, 1H, Ar CH), 8.23 (d, J = 8.8 Hz, 1H, Ar CH), 
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8.08-7.99 (m, 3H, Ar CH), 7.58 (dd, J = 8.8, 1.8 Hz, Ar CH, 1H), 7.26 (s, 2H, 2 × CH). 13C NMR 

(100.6 MHz, d6-DMSO): &C 169.9 (quat. C), 167.3 (quat. C), 134.9 (CH), 134.7 (quat. C), 131.2 

(quat. C), 131.0 (quat. C), 130.3 (CH), 130.1 (CH), 128.8 (quat. C), 128.3 (CH), 125.9 (CH), 125.5 

(CH), 124.9 (CH). MS (ES–) m/z 266 (100%, [M–H]-). HRMS (ES–) calc. for C15H8NO4 266.0456, 

found 266.0453.

6-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-2-naphthoyl chloride

6-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-2-naphthoic acid 93 (350 mg, 1.31 mmol) was 

suspended in a mixture of thionyl chloride (50 mL) and toluene (50 mL). The mixture was 

refluxed at 90 ºC overnight. A clear solution was obtained which was concentrated in vacuo to 

yield the desired product as a brown solid in sufficient purity for direct further conversion. 
1H NMR (400.1 MHz, CDCl3): &H 8.76 (s, 1H, Ar CH), 8.10 (m, 2H, Ar CH), 7.97-7.94 (m, 2H, 

Ar CH), 7.67 (dd, J = 8.8, 2.0 Hz, 1H, Ar CH), 6.94 (s, 2H, 2 × CH).

N-(4,6-dimethylpyridin-2-yl)-6-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-2-naphthamide 74

6-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-2-naph-thoyl chloride (350 mg, 1.28 mmol) was 

dissolved in dry DCM (20 mL). 4,6-dimethylpyridin-2-amine (345 mg, 2.82 mmol) in dry 

DCM (10 mL) was slowly added to the acid chloride at 0   ºC. The solution was stirred 

overnight while warming to room temperature. The occurring precipitate was filtered and 

washed with cold DCM (10 mL) to yield the desired product as a pale grey solid (305 mg, 

63% over two steps). M.p.: 264.8 - 265.0 ºC. 1H NMR (400.1 MHz, d6-DMSO): &H 10.80 (s, 1H, 

NH), 8.74 (s, 1H, Ar CH), 8.17 (d, J = 8.9 Hz, 1H, Ar CH), 8.10 (dd, J = 8.6, 1.6 Hz, 1H, Ar CH), 

8.07 (d, J = 8.7 Hz, 1H, Ar CH), 7.99 (d, J = 1.8 Hz, 1H, Ar CH), 7.94 (s, 1H, Ar CH), 7.59 (dd, J 

= 8.7, 2.0 Hz, 1H, Ar CH), 7.26 (s, 2H, 2 × CH), 6.89 (s, 1H, Ar CH), 2.42 (s, 3H, CH3), 2.33 (s, 

3H, CH3). 13C NMR (100.6 MHz, d6-DMSO): &C 169.9 (quat. C), 165.7 (quat. C), 156.2 (quat. 

C), 151.6 (quat. C), 149.0 (quat. C), 134.8 (CH), 134.1 (quat. C), 131.9 (quat. C), 130.82 (quat. 
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C), 130.8 (quat. C), 129.8 (CH), 128.4 (CH), 127.9 (CH), 125.4 (CH), 125.2 (CH), 124.8 (CH), 

120.1 (CH), 112.1 (CH), 23.4 (CH3), 20.9 (CH3). MS (ES+) m/z 394 (100%, [M+Na]+), 123 (12%). 

HRMS (ES+) calc. for C22H18N3O3 372.1347, found 372.1348.

Template trans-98

In an NMR tube, maleimide 74  (5.94 mg, 16.0 µmol) in CDCl3 (400 µL) was combined with a 

solution of nitrone 70 (5.81 mg, 16.0 µmol) in CDCl3 (400 µL). After 48 hours at 0  ºC, the 

reaction showed complete conversion. Removal of the solvent provided sufficiently pure 

material (trans/cis > 25:1). M.p.: 198.2 - 198.8 ºC. 1H NMR (300.1 MHz, d6-DMSO): &H 10.87 (s, 

1H, H8), 8.72 (s, 1H, H11), 8.16 (s, 1H, H26), 8.09 (d, J = 8.6 Hz, 2H, H13), 8.08 (d, J = 8.5 Hz, 2H, 

H29), 7.96-7.90 (m, 3H, H6,18,19), 7.82 (d, J = 8.0 Hz, 1H, H31), 7.58 (t, J = 7.7 Hz, 1H, H30), 7.33 

(d, J = 9.0 Hz, 2H, H33), 7.28 (d, J = 9.1 Hz, 2H, H34), 7.05 (dd, J = 8.7, 2.0 Hz, 1H, H14), 6.92 (s, 

1H, H3), 6.86 (d, J = 1.7 Hz, 1H, H16), 6.13 (s, 1H, H24), 5.46 (d, J = 7.3 Hz, 1H, H22), 4.24 (d, J = 

7.4 Hz, 1H, H23), 2.43 (s, 3H, H1), 2.43 (t, J = 6.8 Hz, 2H, H38), 2.34 (s, 3H, H5), 1.60-1.51 (m, 2H, 

H39), 1.46-1.36 (m, 2H, H40), 1.32-1.19 (m, 6H, H41-43), 0.82-0.77 (m, 3H, H44). 13C NMR (75.5 

MHz, d6-DMSO): &C 174.3 (quat. C, C21), 173.0 (quat. C, C20), 167.1 (quat. C, C28), 165.6 (quat. 

C, C9), 155.9 (quat. C, C2), 151.4 (quat. C, C7), 149.4 (quat. C, C4), 148.4 (quat. C, C32), 139.5 

(quat. C, C27), 133.8 (quat. C, C17), 132.4 (quat. C, C10), 132.2 (CH, C33), 131.4 (quat. C, C25), 

131.4 (CH, C31), 131.1 (quat. C, C12), 130.6 (quat. C, C15), 130.0 (CH, C13), 129.0 (CH, C30), 128.7 

(CH, C18), 128.5 (CH, C11), 127.9 (CH, C19), 127.9 (CH, C26), 125.3 (CH, C29), 125.1 (CH, C16), 

124.8 (CH, C14), 120.2 (CH, C3), 117.4 (quat. C, C35), 114.6 (CH, C34), 112.2 (CH, C6), 89.9 (quat. 

C, C36), 80.1 (quat. C, C37), 78.1 (CH, C22), 67.9 (CH, C24), 56.6 (CH, C23), 31.2 (CH2, C43), 28.36 

(CH2, C42), 28.33 (CH2, C41), 28.27 (CH2, C40), 23.2 (CH3, C1), 22.0 (CH2, C39), 20.9 (CH3, C5), 

18.7 (CH2, C38), 13.9 (CH3, C44). MS (ES–) m/z 733 (100%, [M–H]–). HRMS (ES+) calc. for 

C45H41N4O6 733.3026, found 733.3026.
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Template trans-99

In an NMR tube, maleimide 74  (5.94 mg, 16.0 µmol) in CDCl3 (400 µL) was combined with a 

solution of nitrone 71 (6.03 mg, 16.0 µmol) in CDCl3 (400 µL). After 48 hours at 0  ºC, the 

reaction showed complete conversion of the starting materials and proved sufficiently pure 

for characterisation (trans/cis > 15:1). M.p.: 218.0 - 218.6 ºC. 1H NMR (400.1 MHz, CDCl3): &H 

11.29 (s, 1H, H8), 8.57 (s, 1H, H15), 8.30 (s, 1H, H6), 8.10 (d, J = 9.7 Hz, 1H, H11), 7.85 (d, J = 8.6 

Hz, 1H, H12), 7.40 (d, J = 7.9 Hz, 1H, H17), 7.36 (d, J = 8.7 Hz, 2H, H33), 7.29 (d, J = 7.5 Hz, 2H, 

H27), 7.21 (d, J = 7.8 Hz, 2H, H26), 7.13 (d, J = 8.7 Hz, 2H, H32), 6.90 (d, J = 5.0 Hz, 1H, H16), 

6.81 (s, 1H, H3), 6.70 (s, 1H, H19), 5.71 (s, 1H, H24), 5.00 (d, J = 7.0 Hz, 1H, H22), 3.89 (d, J = 7.0 

Hz, 1H, H23), 3.75 (s, 2H, H29), 2.48 (s, 3H, H1), 2.44 (t, J = 7.3 Hz, 2H, H37), 2.41 (s, 3H, H5), 

1.67-1.60 (m, 2H, H38), 1.50-1.43 (m, 2H, H42), 1.38-1.18 (m, 6H, H39-41), 0.91-0.82 (m, 3H, H43). 
13C NMR (100.6 MHz, CDCl3): &C 177.2 (quat. C, C30), 175.3 (quat. C, C20), 173.1 (quat. C, C21), 

166.6 (quat. C, C9), 152.5 (quat. C, C4), 155.1 (quat. C, C2), 151.6 (quat. C, C7), 148.2 (quat. C, 

C31), 136.6 (quat. C, C25), 134.9 (quat. C, C10), 134.7 (quat. C18), 132.9 (CH, C33), 132.3 (quat. C, 

C14), 132.2 (quat. C, C13), 131.0 (CH, C16), 130.6 (CH, C26), 130.2 (quat. C, C28), 128.9 (CH, C12), 

128.4 (CH, C15), 126.8 (CH, C27), 126.2 (CH, C11), 125.9 (CH, C19), 123.8 (CH, C17), 121.2 (CH, 

C3), 118.9 (quat. C, C34), 114.6 (CH, C32), 113.9 (CH, C6), 90.5 (quat. C, C36), 80.1 (quat. C, C35), 

77.9 (CH, C22), 69.5 (CH, C24), 56.6 (CH, C23), 40.4 (CH2, C29), 31.9 (CH2, C42), 29.9 (CH2, C41), 

29.2 (CH2, C40), 29.1 (CH2, C39), 29.0 (CH2, C38), 21.9 (CH3, C1), 21.8 (CH3, C5), 19.6 (CH2, C37), 

14.2 (CH3, C43). MS (ES+) m/z 749 (20%, [M+H]+), 372 (70%), 123 (100%). HRMS (ES+) calc. for 

C46H45N4O6 749.3339, found 749.3347.
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4-nitro-N-(pyridin-2-yl)benzamide 114

4-nitrobenzoyl chloride (928 mg, 5.00 mmol) was suspended in dry DCM (20 mL) and cooled 

to 0 ºC. A solution of 2-aminopyridine (113 mg, 12.5 mmol) in dry DCM (20 mL) was slowly 

added dropwise. The addition resulted in the formation of a clear solution, which was stirred 

overnight while warming to room temperature. Work-up included extraction of excess amine 

from the organic layer with 1M HCl solution (2 x 30 mL), re-extracting the aqueous layer 

with DCM (2 x 30 mL), washing the combined organic layers with sat. aqueous NaHCO3 

solution (30 mL), drying over MgSO4, filtration and concentration in vacuo to furnish the 

desired product as a white powder (907 mg, 74%). M.p.: 242.1 - 243.7 ºC (lit.[219]: 211 - 212 ºC). 
1H NMR (300.1 MHz, d6-DMSO): &H 11.18 (s, 1H, NH), 8.41 (dd, 1H, J = 4.7, 0.9 Hz, Ar CH), 

8.33 (d, J = 8.8 Hz, 2H, Ar CH), 8.22 (d, J = 9.0 Hz, 2H, Ar CH), 8.20-8.16 (m, 1H, Ar CH), 

7.90-7.84 (m, 1H, Ar CH), 7.20 (dd, J = 6.7, 5.0 Hz, 1H, Ar CH). 13C NMR (75.5 MHz, d6-

DMSO): &C 164.6 (quat. C), 151.8 (quat. C), 149.3 (quat. C), 148.0 (CH), 139.9 (quat. C), 138.3 

(CH), 129.6 (CH), 123.4 (CH), 120.2 (CH), 114.8 (CH). MS (ES–) m/z 242 (100%, [M–H]–). 

(Z)-4-oxo-4-(4-(pyridin-2-ylcarbamoyl)phenylamino)but-2-enoic acid 115

4-nitro-N-(pyridin-2-yl)benzamide 114 (200 mg, 822 µmol) was dissolved in THF (15 mL). 

Palladium (20 mg, 10 wt.-% on carbon, dry) was added carefully. The solution was purged 

with hydrogen and kept under a hydrogen atmosphere overnight using hydrogen filled 

balloons. The following day, the solution was filtered through celite, maleic anhydride (98.1 

mg, 1.00 mmol) was added to the filtrate and the solution was stirred overnight. Filtration of 

the precipitate yielded the desired product as a white solid (114 mg, 45% over two steps). 

M.p.: 188.1 - 188.4 ºC. 1H NMR (300.1 MHz d6-DMSO: &H 10.73 (s, 1H, NH), 10.63 (s, 1H, 

NH), 8.39 (s, 1H, Ar CH), 8.18 (d, J = 8.3 Hz, 1H, Ar CH), 8.04 (d, J = 8.7 Hz, 2H, Ar CH), 7.86 

(t, J = 7.3 Hz, 1H, Ar CH), 7.76 (d, J = 8.6 Hz, 2H, Ar CH), 7.18 (dd, J = 6.6, 5.2 Hz, 1H, Ar 

CH), 6.52 (d, J = 12.0 Hz, 1H, CH), 6.34 (d, J = 12.0 Hz, 1H, CH). 13C NMR (75.5 MHz, d6-

DMSO): & 172.0 (quat. C), 166.9 (quat. C), 165.4 (quat. C), 163.6 (quat. C), 152.1 (quat. C), 
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147.4 (CH), 142.1 (quat. C), 138.5 (CH), 131.6 (CH), 130.3 (CH), 129.1 (CH), 119.8 (CH), 118.6 

(CH), 114.8 (CH). MS (ES+) m/z 312 (100%, [M+H]+). HRMS (ES+) calc. for C16H14N3O4 

312.0984, found 312.0992.

4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-N-(pyridin-2-yl)benzamide 101

(Z)-4-oxo-4-(4-(pyridin-2-ylcarbamoyl) phenylamino)but-2-enoic acid 115 (114 mg, 367 µmol) 

was suspended in dry MeCN (10 mL). Zinc bromide (83.3 mg, 367 µmol) and HMDS (296 

mg, 1.84 mmol) were added at room temperature and the mixture was refluxed at 85 ºC for 1 

hour. After cooling to room temperature, the precipitate was filtered and the filtrate was 

reduced to roughly 10% of its original volume. Water (25 mL) was added and a pH of 1 was 

adjusted using 1M HCl. The solution was extracted with DCM (3 x 50 mL). The combined 

organic layers were subsequently treated with an aqueous 0.1M EDTA solution (2 x 50 mL), 

H2O (2 x 50 mL) and brine (50 mL), dried over MgSO4, filtered and concentrated to yield the 

desired product as a light yellow solid (89 mg, 83%). M.p.: 256.0 - 256.5 ºC. 1H NMR (300.1 

MHz, CDCl3): &H 8.73 (s, 1H, NH), 8.42 (d, J = 8.4 Hz, 1H, Ar CH), 8.31 (ddd, J = 5.0, 1.8, 0.9 

Hz, 1H, Ar CH), 8.05 (d, J = 8.9 Hz, 2H, Ar CH), 7.80 (ddd, J = 8.4, 7.4, 1.9 Hz, 1H, Ar CH), 

7.59 (d, J = 8.9 Hz, 2H, Ar CH), 7.11 (ddd, J = 7.4, 5.0, 1.0 Hz, 1H, Ar CH), 6.91 (s, 2H, 2 × CH). 
13C NMR (75.5 MHz, d6-DMSO): &C 169.6 (quat. C), 165.3 (quat. C), 152.1 (quat. C), 147.9 

(CH), 138.1 (CH), 134.8 (CH), 134.7 (quat. C), 133.0 (quat. C), 128.7 (CH), 126.0 (CH), 119.9 

(CH), 114.7 (CH). MS (ES+) m/z 348 (40%), 316 (100%, [M+Na]+).

N N

O

N

O

O
H

275



Template trans-104

In an NMR tube, maleimide 101 (4.69 mg, 16.0 µmol) in CDCl3 (400 µL) was combined with a 

solution of nitrone 70 (5.81 mg, 16.0 µmol) in CDCl3 (400 µmol). After 48 hours at 0 ºC, the 

reaction showed complete conversion of the starting materials and proved sufficiently pure 

for characterisation (trans/cis > 15:1). 1H NMR (300.1 MHz CDCl3): &H 11.77 (s, 1H, NH), 8.60 

(d, J = 8.5 Hz, 1H, Ar CH), 8.28 (ddd, J = 5.2, 1.8, 0.7 Hz, 1H, Ar CH), 8.20 (s, 1H, Ar CH), 8.17 

(d, J = 8.7 Hz, 2H, Ar CH), 8.05 (d, J = 7.8 Hz, 1H, Ar CH), 7.91 (ddd, J = 8.7, 7.2, 1.7 Hz, 1H, 

Ar CH), 7.64 (d, J = 7.5 Hz, 1H, Ar CH), 7.46 (t, J = 7.7 Hz, 1H, Ar CH), 7.28 (d, J = 8.9 Hz, 2H, 

Ar CH), 7.20 (ddd, J = 7.3, 5.2, 1.0 Hz, 1H, Ar CH), 7.05 (d, J = 8.9 Hz, 2H, Ar CH), 7.04 (d, J = 

8.7 Hz, 2H, Ar CH), 5.76 (s, 1H, CH), 5.22 (d, J = 7.3 Hz, 1H, CH), 4.21 (d, J = 7.4 Hz, 1H, CH), 

2.35 (t, J = 7.1 Hz, 2H, CH2), 1.61-1.52 (m, 2H, CH2), 1.45-1.38 (m, 2H, CH2), 1.31-1.23 (m, 6H, 

3 × CH2), 0.90-0.83 (m, 3H, CH3). 13C NMR (75.5 MHz, CDCl3): &C 174.1 (quat. C), 173.2 (quat. 

C), 171.3 (quat. C), 166.4 (quat. C), 152.4 (quat. C), 147.2 (quat. C), 145.4 (CH), 140.5 (CH), 

138.0 (quat. C), 135.0 (quat. C), 134.3 (quat. C), 133.0 (CH), 132.7 (CH), 131.4 (quat C), 129.7 

(CH), 129.6 (CH), 129.0 (CH), 128.5 (CH), 126.0 (CH), 120.0 (CH), 119.3 (quat. C), 116.3 (CH), 

115.0 (CH), 90.4 (quat. C), 79.8 (quat. C), 77.5 (CH), 69.6 (CH), 56.0 (CH), 31.9 (CH2), 29.9 

(CH2), 29.1 (CH2), 29.0 (CH2), 22.8 (CH2), 19.6 (CH2), 14.2 (CH3). MS (ES–) m/z 669 (5%), 655 

(40%, [M–H]–), 362 (100%). HRMS (ES–) calc. for C39H35N4O6 655.2557, found 655.2570.
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Template cis-107

In an NMR tube, maleimide 101 (4.69 mg, 16.0 µmol) in CDCl3 (400 µL) was combined with a 

solution of nitrone 71 (6.03 mg, 16.0 µmol) in CDCl3 (400 µmol). After 48 hours at 0 ºC, the 

reaction showed complete conversion of the starting materials and proved sufficiently pure 

for characterisation of the cis-isomer (cis/trans = 1.3:1). 1H NMR (300.1 MHz, CDCl3): &H 10.84 

(s, 1H, NH), 8.47 (d, J = 8.5 Hz, 1H, Ar CH), 8.20 (d, J = 4.9 Hz, 1H, Ar CH), 7.92 (d, J = 8.6 Hz, 

2H, Ar CH), 7.87-7.84 (m, 1H, Ar CH), 7.36 (d, J = 8.1 Hz, 2H, Ar CH), 7.26 (d, J = 8.6 Hz, 2H, 

Ar CH), 7.21 (d, J = 8.1 Hz, 2H, Ar CH), 7.13 (d, J = 8.3 Hz, 2H, Ar CH), 7.16-7.10 (m, 1H, Ar 

CH), 6.99 (d, J = 8.6 Hz, 2H, Ar CH), 5.12 (d, J = 7.3 Hz, 2H, 2 × CH), 4.13 (t, J = 8.6 Hz, 1H, 

CH), 3.65 (s, 2H, CH2), 2.36 (t, J = 7.0 Hz, 2H, CH2), 1.61-1.52 (m, 2H, CH2), 1.45-1.38 (m, 2H, 

CH2), 1.31-1.23 (m, 6H, 3 × CH2), 0.90-0.83 (m, 3H, CH3). 13C NMR (75.5 MHz, CDCl3): &C 

176.2 (quat. C), 172.5 (quat. C), 170.8 (quat. C), 166.2 (quat. C), 152.1 (quat. C), 147.5 (quat. C), 

145.4 (CH), 140.4 (CH), 135.0 (quat. C), 134.2 (quat. C), 134.1 (quat. C), 133.3 (quat. C), 132.4 

(CH), 130.6 (CH), 129.1 (CH), 127.9 (CH), 125.9 (CH), 120.4 (quat. C), 120.0 (CH), 117.0 (CH), 

116.4 (CH), 90.7 (quat. C), 79.9 (quat. C), 77.4 (CH), 72.1 (CH), 54.5 (CH), 40.3 (CH2), 31.9 

(CH2), 29.1 (CH2), 29.0 (CH2), 28.9 (CH2), 22.8 (CH2), 19.6 (CH2), 14.2 (CH3). MS (ES+) m/z 672 

(7%), 671 (100%, [M+H]+), 294 (80%). HRMS (ES+) calc. for C40H39N4O6 671.2870, found 

671.2869.

N-(4-methylpyridin-2-yl)-4-nitro-N-(4-nitrobenzoyl)benzamide 111

4-nitrobenzoyl chloride (3.75 g, 19.9 mmol) was suspended in dry DCM (40 mL) and cooled 

to 0 ºC. A solution of 4,6-dimethylpyridin-2-amine (5.39 g, 49.8 mmol) in dry DCM (30 mL) 
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was slowly added dropwise. After stirring for 2 hours in which the solution was allowed to 

warm to room temperature, the occurring precipitate was filtered, redissolved in DCM (30 

mL), washed with 1M HCl solution (2 x 40 mL), dried over MgSO4 and concentrated to give 

the desired product as a white solid (3.65 g, 90%) which proved sufficiently pure for further 

conversion. 1H NMR (400.1 MHz, CDCl3): &H 8.24 (d, J = 8.9 Hz, 4H, 2 × Ar CH), 8.21 (d, J = 

5.0 Hz, 1H, Ar CH), 7.90 (d, J = 8.9 Hz, 4H, 2 × Ar CH), 7.15 (s, 1H, 2 × Ar CH), 7.05 (d, J = 5.0 

Hz, 1H, 2 × Ar CH), 2.39 (s, 3H, CH3).

N-(4-methylpyridin-2-yl)-4-nitrobenzamide 112

N-(4-methylpyridin-2-yl)-4-nitro-N-(4-nitrobenzoyl)benzamide 111 (450 mg, 1.11 mmol) was 

suspended in a mixture of methanol (10 mL) and dioxane (10 mL). Finely powdered sodium 

hydroxide (66.8 mg, 1.67 mmol) was added neat and the reaction was stirred for 2 hours at 

room temperature after which saturated aqueous NaHCO3 solution (20 mL) was added. The 

reaction mixture was then extracted with DCM (2 x 20 mL). The combined organic layers 

were re-extracted with saturated aqueous NaHCO3 solution (20 mL), dried over MgSO4, 

filtered and concentrated to give a crude solid that was further purified by column 

chromatography (SiO2, 300:100:4 Hex/EtOAc/Et3N) to yield the desired product as a white 

solid (273 mg, 96%). M.p.: 194.2 - 196.3 ºC (lit.[220] 300 ºC). 1H NMR (300.1 MHz, CDCl3): &H 

9.17 (s, 1H, NH), 8.33 (d, J = 9.0 Hz, 2H, Ar CH), 8.21 (dt, J = 1.5, 0.7 Hz, 1H, Ar CH), 8.08 (d, J 

= 9.0 Hz, 2H, Ar CH), 8.02 (dd, J = 5.1, 0.5 Hz, 1H, Ar CH), 6.92 (ddd, J = 5.1, 1.5, 0.7 Hz, 1H, 

Ar CH), 2.42 (s, 3H, CH3). 13C NMR (75.5 MHz, CDCl3): &C 164.0 (quat. C), 151.3 (quat. C), 

150.6 (quat. C), 150.0 (quat. C), 147.5 (CH), 140.1 (quat. C), 128.7 (CH), 124.1 (CH), 121.9 (CH), 

115.3 (CH), 21.6 (CH3). MS (ES+) m/z 685 (8%), 569 (9%), 258 (100%, [M+H]+), 195 (14%), 138 

(9%).
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(Z)-4-(4-(4-methylpyridin-2-ylcarbamoyl)phenylamino)-4-oxobut-2-enoic acid 113

N-(4-methylpyridin-2-yl)-4-nitrobenzamide 112 (1.42 g, 5.52 mmol) was dissolved in THF (60 

mL). Palladium (142 mg, 10 wt.-% on carbon, dry) was added carefully. The solution was 

purged with hydrogen and kept under a hydrogen atmosphere overnight using hydrogen 

filled balloons. The following day, the solution was filtered through celite and concentrated 

to give crude amine intermediate which was directly dissolved in acetic acid (30 mL) without 

further purification. Maleic anhydride (650 mg, 6.62 mmol) was added neat and the solution 

was stirred overnight. Filtration of the precipitate yielded the desired product as a white 

solid (1.61 g, 90% over two steps). M.p.: 180.3 - 181.1 ºC. 1H NMR (300.1 MHz, d6-DMSO): &H 

10.59 (s, 2H, NH), 8.23 (dd, J = 5.1, 0.6 Hz, 1H, Ar CH), 8.04-8.03 (m, 1H, Ar CH), 8.03 (d, J = 

8.8 Hz, 2H, Ar CH), 7.74 (d, J = 8.8 Hz, 2H, Ar CH), 7.00 (ddd, J = 5.1, 1.5, 0.6 Hz, 1H, Ar CH), 

6.51 (d, J = 12.0 Hz, 1H, CH), 6.34 (d, J = 12.0 Hz, 1H, CH), 2.35 (s, 3H, CH3). 13C NMR (75.5 

MHz, d6-DMSO): &C 172.0 (quat. C), 166.9 (quat. C), 165.2 (quat. C), 163.6 (quat. C), 152.2 

(quat. C), 149.0 (quat. C), 147.3 (CH), 142.0 (quat. C), 131.7 (CH), 130.2 (CH), 129.0 (CH), 120.7 

(CH), 118.6 (CH), 115.1 (CH), 21.0 (CH3). MS (ES+) m/z 326 (100%, [M+H]+). HRMS (ES+) 

calc. for C17H16N3O4 326.1141, found 326.1130.

4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-N-(4-methylpyridin-2-yl)benzamide 100

(Z)-4-(4-(4-methylpyridin-2-ylcarbamoyl)phenylamino)-4-oxobut-2-enoic acid (976 mg, 3.00 

mmol) was suspended in dry MeCN (80 mL). Zinc bromide (676 mg, 3.00 mmol) and HMDS 

(1.45 g, 9.00 mmol) were added at room temperature and the mixture was refluxed at 90 ºC 

for 1 hour. After cooling to room temperature, the precipitate was filtered and the filtrate was 

reduced to roughly 10% of its original volume. Water (150 mL) was added and a pH of 1 was 

adjusted using 1M HCl. The solution was extracted with DCM (3 x 150 mL). The combined 
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organic layers were subsequently treated with an aqueous 0.1M EDTA solution (2 x 50 mL), 

H2O (2 x 50 mL) and brine (50 mL), dried over MgSO4, filtered and concentrated to yield the 

desired product as a light yellow solid (749 mg, 81%). M.p.: 265.3 - 266.2 ºC. 1H NMR (300.1 

MHz, CDCl3): &H 8.60 (s, 1H, NH), 8.26 (s, 1H, Ar CH), 8.17 (d, J = 6.0 Hz, 1H, Ar CH), 8.04 

(d, J = 8.7 Hz, 2H, Ar CH), 7.58 (d, J = 8.7 Hz, 2H, Ar CH), 6.93 (d, J = 6.0 Hz, 1H, Ar CH), 6.91 

(s, 2H, 2 × CH), 2.35 (s, 3H, CH3). 13C NMR (75.5 MHz, d6-DMSO): &C 169.6 (quat. C), 165.2 

(quat. C), 152.1 (quat. C), 149.0 (quat. C), 147.5 (CH), 134.8 (CH), 134.6 (quat. C), 133.0 (quat. 

C), 128.6 (CH), 126.1 (CH), 120.9 (CH), 115.1 (CH), 20.9 (CH3). MS (CI+) m/z 308 (100%, [M

+H]+). HRMS (ES+) calc. for C17H14N3O3 308.1035, found 308.1035.

Template trans-103

In an NMR tube, maleimide 100 (4.92 mg, 16.0 µmol) in CDCl3 (400 µL) was combined with a 

solution of nitrone 70 (5.81 mg, 16.0 µmol) in CDCl3 (400 µmol). After 48 hours at 0 ºC, the 

reaction showed complete conversion of the starting materials and proved sufficiently pure 

for characterisation (trans/cis > 15:1). 1H NMR (499.9 MHz, CDCl3): &H 11.85 (s, 1H, NH), 8.47 

(s, 1H, Ar CH), 8.21 (s, 1H, Ar CH), 8.18 (d, J = 8.4 Hz, 2H, Ar CH), 8.13 (d, J = 5.4 Hz, 1H, Ar 

CH), 8.05 (d, J = 7.7 Hz, 1H, Ar CH), 7.65-7.64 (m, 1H, Ar CH), 7.46 (t, J = 7.7 Hz, 1H, Ar CH), 

7.28 (d, J = 8.7 Hz, 2H, Ar CH), 7.05 (d, J = 8.9 Hz, 2H, Ar CH), 7.03 (d, J = 8.4 Hz, 2H, Ar CH), 

7.03-7.01 (m, 1H, Ar CH), 5.76 (s, 1H, CH), 5.23 (d, J = 7.3 Hz, 1H, CH), 4.21 (d, J = 7.4 Hz, 1H, 

CH), 2.49 (s, 3H, CH3), 2.35 (t, J = 7.2 Hz, 2H, CH2), 1.62-1.52 (m, 2H, CH2), 1.43-1.37 (m, 2H, 

CH2), 1.32-1.22 (m, 6H, 3 × CH2), 0.89-0.84 (m, 3H, CH3). 13C NMR (75.5 MHz, CDCl3): &C 

174.1 (quat. C), 173.2 (quat. C), 171.4 (quat. C), 166.4 (quat. C), 152.7 (quat. C), 152.0 (quat. C), 

147.2 (quat. C), 144.5 (CH), 138.0 (quat. C), 135.0 (quat. C), 134.3 (quat. C), 132.8 (CH), 132.7 

(CH), 131.7 (quat. C), 129.7 (CH), 129.6 (CH), 129.0 (CH), 128.4 (CH), 126.1 (CH), 121.2 (CH), 

119.3 (quat. C), 116.6 (CH), 115.0 (CH), 90.4 (quat. C), 79.8 (quat. C), 77.5 (CH), 69.6 (CH), 56.0 

(CH), 31.9 (CH2), 29.9 (CH2), 29.1 (CH2), 29.0 (CH2), 22.8 (CH2), 22.0 (CH3), 19.6 (CH2), 14.2 
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(CH3). MS (ES+) m/z 671 (100%, [M+H]+), 308 (12%). HRMS (ES+) calc. for C40H39N4O6 

671.2870, found 671.2864.

Template cis-106

In an NMR tube, maleimide 100 (4.92 mg, 16.0 µmol) in CDCl3 (400 µL) was combined with a 

solution of nitrone 71 (6.03 mg, 16.0 µmol) in CDCl3 (400 µmol). After 48 hours at 0 ºC, the 

reaction showed complete conversion of the starting materials and proved sufficiently pure 

for characterisation of the cis-isomer (cis/trans = 1.5:1). 1H NMR (300.1 MHz, CDCl3): &H 10.95 

(s, 1H, NH), 8.34 (s, 1H, Ar CH), 7.97 (d, J = 8.7 Hz, 2H, Ar CH), 7.53 (d, J = 8.2 Hz, 1H, Ar 

CH), 7.39 (d, J = 8.2 Hz, 2H, Ar CH), 7.28 (d, J = 8.9 Hz, 2H, Ar CH), 7.22 (d, J = 8.2 Hz, 2H, Ar 

CH), 7.13 (d, J = 8.6 Hz, 2H, Ar CH), 6.98 (d, J = 8.8 Hz, 2H, Ar CH), 6.97-6.95 (m, 1H, Ar CH), 

5.07 (d, J = 8.0 Hz, 1H, CH), 4.96 (d, J = 9.2 Hz, 1H, CH), 4.13 (dd, J = 9.2, 8.0 Hz, 1H, CH), 

3.67 (d, J = 16.7 Hz, 1H, CH’H’’), 3.62 (d, J = 16.9 Hz, 1H, CH’H’’), 2.43 (s, 3H, CH3), 2.36 (t, J 

= 7.0 Hz, 2H, CH2), 1.61-1.52 (m, 2H, CH2), 1.45-1.38 (m, 2H, CH2), 1.31-1.23 (m, 6H, 3 × CH2), 

0.90-0.83 (m, 3H, CH3). 13C NMR (75.5 MHz, CDCl3): &C 176.4 (quat. C), 172.6 (quat. C), 170.8 

(quat. C), 166.0 (quat. C), 152.9 (quat. C), 151.5 (quat. C), 147.4 (quat. C), 144.2 (CH), 135.2 

(quat. C), 134.3 (quat. C), 134.2 (quat. C), 133.2 (quat. C), 132.4 (CH), 130.6 (CH), 129.0 (CH), 

127.9 (CH), 125.9 (CH), 121.2 (CH), 120.5 (quat. C ), 117.2 (CH), 116.5 (CH), 90.7 (quat. C), 79.9 

(quat. C), 77.3 (CH), 72.2 (CH), 54.5 (CH), 40.5 (CH2), 31.9 (CH2), 29.1 (CH2), 29.0 (CH2), 28.9 

(CH2), 22.8 (CH2), 21.9 (CH3), 19.6 (CH2), 14.2 (CH3). MS (ES+) m/z 685 (15%, [M+H]+), 308 

(100%), 200 (4%). HRMS (ES+) calc. for C41H41N4O6 685.3026, found 685.3026.
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Synthesis of N-(6-methylpyridin-2-yl)-4-nitrobenzamide 110

4-Nitrobenzoyl chloride (5.57 g, 30.0 mmol) in dry DCM (100 mL) was slowly reacted with a 

solution of 6-methylpyridin-2-amine (9.73 g, 90.0 mmol) in dry DCM (100 mL) at 0 °C. The 

reaction mixture was stirred overnight while warming up to room temperature. After 

quenching with H2O (100 mL), the aqueous layer was extracted into DCM (3 x 80 mL). The 

combined organic layers were dried over MgSO4, filtered and the solvent was evaporated to 

yield a yellow solid that was further purified by column chromatography (SiO2; Hex:EtOAc, 

3:2) to furnish a white powder (7.50 g, 97%). M.p.: 132.0 - 133.8 °C (lit.[193] 130.0 – 132.0 ºC). 1H 

NMR (400.1 MHz, CDCl3): &H 8.53 (bs, 1H, NH), 8.35 (d, J = 8.9 Hz, 2H, Ar CH), 8.16 (d, J = 

8.2 Hz, 1H, Ar CH), 8.10 (d, J = 8.2 Hz, 2H, Ar CH), 7.68 (dd, J = 8.2, 7.5 Hz, 1H, Ar CH), 7.00 

(d, J = 7.5 Hz, 1H, Ar CH), 2.49 (s, 3H, CH3). 13C NMR (75.5 MHz, CDCl3): &C 163.6 (quat. C), 

157.1 (quat. C), 150.3 (quat. C), 150.0 (quat. C), 139.9 (quat. C), 139.0 (CH), 128.5 (CH), 124.0 

(CH), 120.2 (CH), 111.2 (CH), 23.9 (CH3). MS (ES+) m/z 256 (100%, [M+H]+).

Synthesis of 4-amino-N-(6-methylpyridin-2-yl)benzamide 45

N-(6-methylpyridin-2-yl)-4-nitrobenzamide 110 (7.00 g, 27.2 mmol) was dissolved in a 5:1 

THF/MeOH mixture (150 mL). Palladium (350 mg, 10% on carbon, dry) was added carefully. 

The solution was purged with hydrogen and kept under a hydrogen atmosphere overnight 

using hydrogen filled balloons. The following day, the solution was filtered through celite 

and concentrated in vacuo to yield the desired product (6.11 g, 99%). M.p.: 166.8 - 168.2 °C (lit.
[193] 169.0 - 170.0 ºC). 1H NMR (400.1 MHz, CDCl3): &H 10.05 (bs, 1H, NH), 7.97 (d, J = 8.3 Hz, 

1H, Ar CH), 7.78 (d, J = 8.7 Hz, 2H, Ar CH), 7.66 (dd, J = 8.3, 7.4 Hz, 1H, Ar CH), 6.95 (d, J = 

7.4 Hz, 1H, Ar CH), 6.56 (d, J = 8.7 Hz, 2H, Ar CH), 5.80 (bs, 2H, NH), 2.42 (s, CH3). 13C NMR 

(100.6 MHz, CDCl3): &C 165.5 (quat. C), 156.3 (quat. C), 152.5 (quat. C), 152.1 (quat. C), 138.1 

(CH), 129.8 (CH), 120.2 (quat. C), 118.3 (CH), 112.5 (CH), 111.4 (CH), 23.6 (CH3). MS (ES+) m/

z 250 (100%, [M+Na]+).
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4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-N-(6-methylpyridin-2-yl)benzamide 66

4-amino-N-(6-methylpyridin-2-yl)benzamide 45 (5.45 g, 24.0 mmol) was dissolved in acetic 

acid (200 mL) and reacted with maleic anhyride (2.35 g, 24.0 mmol) to give a cloudy solution 

which was kept at room temperature for 2 hours, refluxed for 3 hours and stirred at room 

temperature overnight. The following day, the mixture was again refluxed for another 2 

hours. Removal of the solvent yielded a crude product which was purified by column 

chromatography (SiO2; DCM:AcOH, 19:1) to give pure product (5.31 g, 72%). M.p.: 239.9 - 

241.1 °C (lit.[193] >239 ºC decomp.). 1H NMR (400.1 MHz, d6-DMSO): &H 10.81 (s, 1H, NH), 

8.13 (d, J = 8.7 Hz, 2H, Ar CH), 8.02 (d, J = 8.2 Hz, 1H, Ar CH), 7.73 (dd, J = 8.2, 7.4 Hz, 1H, Ar 

CH), 7.49 (d, J = 8.7 Hz, 2H, Ar CH), 7.23 (s, 2H, 2 × CH), 7.04 (d, J = 7.4 Hz, 1H, Ar CH), 2.46 

(s, 3H, CH3). 13C NMR (100.6 MHz, d6-DMSO): &C 169.7 (quat. C), 165.2 (quat. C), 156.6 (quat. 

C), 151.5 (quat. C), 138.4 (CH), 134.9 (CH), 134.6 (quat. C), 133.0 (quat. C), 128.7 (CH), 126.0 

(CH), 119.2 (CH), 111.7 (CH), 23.6 (CH3). MS (ES+) m/z 308 (100%, [M+H]+).

Template trans-102

In an NMR tube, maleimide 66  (4.92 mg, 16.0 µmol) in CDCl3 (400 µL) was combined with a 

solution of nitrone 70 (5.81 mg, 16.0 µmol) in CDCl3 (400 µmol). After 48 hours at 0 ºC, the 

reaction showed complete conversion of the starting materials and proved sufficiently pure 

for characterisation (trans/cis > 15:1). 1H NMR (400.1 MHz, CDCl3): &H 11.71 (s, 1H, NH), 8.37 

(d, J = 8.3 Hz, 1H, Ar CH), 8.16 (s, 1H, Ar CH), 8.12 (d, J = 8.5 Hz, 2H, Ar CH), 8.06 (d, J = 7.8 

Hz, 1H, Ar CH), 7.76 (t, J = 8.0 Hz, 1H, Ar CH), 7.62 (d, J = 7.7 Hz, 1H, Ar CH), 7.44 (t, J = 7.7 

Hz, 1H, Ar CH), 7.27 (d, J = 8.7 Hz, 2H, Ar CH), 7.04 (d, J = 8.9 Hz, 2H, Ar CH), 7.00 (d, J = 8.9 

Hz, 2H, Ar CH), 6.99 (d, J = 7.2 Hz, 1H, Ar CH), 5.74 (s, 1H, CH), 5.18 (d, J = 7.4 Hz, 1H, CH), 
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4.19 (d, J = 7.3 Hz, 1H, CH), 2.58 (s, 3H, CH3), 2.35 (t, J = 7.2 Hz, 2H, CH2), 1.60-1.53 (m, 2H, 

CH2), 1.42-1.37 (m, 2H, CH2), 1.33-1.20 (m, 6H, 3 × CH2), 0.89-0.82 (m, 3H, CH3). 13C NMR 

(100.6 MHz, CDCl3): &C 174.2 (quat. C), 173.2 (quat. C), 171.1 (quat. C), 166.4 (quat. C), 155.9 

(quat. C), 151.9 (quat. C), 147.2 (quat. C), 140.6 (CH), 138.0 (quat. C), 135.1 (quat. C), 134.2 

(quat. C), 132.8 (CH), 132.7 (CH), 131.4 (quat. C), 129.9 (CH), 129.6 (CH), 128.9 (CH), 128.4 

(CH), 125.9 (CH), 120.0 (CH), 119.2 (quat. C), 114.9 (CH), 113.3 (CH), 90.4 (quat. C), 79.8 (quat. 

C), 77.6 (CH), 69.5 (CH), 56.0 (CH), 31.8 (CH2), 29.1 (CH2), 29.0 (CH2), 28.9 (CH2), 22.8 (CH2), 

22.2 (CH3), 19.5 (CH2), 14.2 (CH3). MS (ES–) m/z 669 (100%, [M–H]–). HRMS (ES–) calc. for 

C40H37N4O6 669.2713, found 669.2725.

Template cis-105

In an NMR tube, maleimide 66  (4.92 mg, 16.0 µmol) in CDCl3 (400 µL) was combined with a 

solution of nitrone 71 (6.03 mg, 16.0 µmol) in CDCl3 (400 µmol). After 48 hours at 0 ºC, the 

reaction showed complete conversion of the starting materials and proved sufficiently pure 

for characterisation of the cis-isomer (cis/trans = 2.5:1). 1H NMR (300.1 MHz, CDCl3): &H 10.97 

(s, 1H, NH), 8.22 (d, J = 8.4 Hz, 1H, Ar CH), 7.93 (d, J = 8.6 Hz, 2H, Ar CH), 7.70 (t, J = 8.0 Hz, 

1H, Ar CH), 7.38 (d, J = 8.2 Hz, 1H, Ar CH), 7.26 (d, J = 8.7 Hz, 2H, Ar CH), 7.20 (d, J = 8.2 Hz, 

2H, Ar CH), 7.13 (d, J = 8.7 Hz, 2H, Ar CH), 6.97 (d, J = 8.8 Hz, 2H, Ar CH), 6.94 (d, J = 8.3 Hz, 

2H, Ar CH), 5.02 (d, J = 8.0 Hz, 1H, CH), 4.94 (d, J = 9.2 Hz, 1H, CH), 4.12 (dd, J = 8.9, 8.3 Hz, 

1H, CH), 3.65 (d, J = 4.4 Hz, 2H, CH), 2.45 (s, 3H, CH3), 2.36 (t, J = 7.0 Hz, 2H, CH2), 1.60-1.53 

(m, 2H, CH2), 1.42-1.37 (m, 2H, CH2), 1.33-1.20 (m, 6H, 3 × CH2), 0.89-0.82 (m, 3H, CH3). 13C 

NMR (75.5 MHz, CDCl3): &C 176.5 (quat. C), 172.7 (quat. C), 170.9 (quat. C), 166.1 (quat. C), 

155.9 (quat. C), 151.4 (quat. C), 147.4 (quat. C), 140.4 (CH), 135.1 (quat. C), 134.2 (quat. C), 

134.1 (quat. C), 133.2 (quat. C), 132.4 (CH), 130.5 (CH), 129.0 (CH), 127.9 (CH), 125.9 (CH), 

120.5 (quat. C), 120.0 (CH), 117.3 (CH), 113.2 (CH), 90.8 (quat. C), 79.9 (quat. C), 77.2 (CH), 

72.2 (CH), 54.5 (CH), 40.4 (CH2), 31.9 (CH2), 29.0 (CH2), 29.0 (CH2), 28.9 (CH2), 22.8 (CH2), 
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22.3 (CH3), 19.6 (CH2), 14.2 (CH3). MS (ES+) m/z 685 (50%, [M+H]+), 308 (100%). HRMS (ES+) 

calc. for C41H41N4O6 685.3026, found 685.3041.

Synthesis of 2-(4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)phenyl)ethanoic acid 33

2-(4-aminophenyl)ethanoic acid (13.6 g, 90.0 mmol) and maleic anhydride (8.83 g, 90.0 mmol) 

were dissolved in acetic acid (350 mL). The reaction mixture was stirred at room temperature 

for 5 hours, refluxed for 3 hours and kept to stir overnight at room temperature. Following, 

the solvent was removed in vacuo and the crude residue was purified using a short silica 

column with 5% acetic acid in DCM as eluent. The obtained crude product was recrystallised 

in hot chloroform to obtain a bright yellow solid (16.2 g, 70%). M.p.: 152.4 - 154.4 °C (lit.[221]

151.7 - 153.1 °C). 1H NMR (400.1 MHz, CDCl3): &H 7.41 (d, J = 8.6 Hz, 2H, Ar CH), 7.33 (d, J = 

8.6 Hz, 2H, Ar CH), 6.85 (s, 2H, 2 × CH), 3.69 (s, 2H, CH2). 13C NMR (75.5 MHz, d6-DMSO): 

&C 172.5 (quat. C), 169.9 (quat. C), 134.7 (quat. C), 134.6 (CH), 130.0 (quat. C), 129.9 (CH), 

126.6 (CH), 40.1 (CH2). MS (ES+) m/z 231 (10%, [M+H]), 186 (100%).

Synthesis of methyl 2-(4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)phenyl)ethanoate 57

2-(4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)phenyl) ethanoic acid (1.15 g, 4.97 mmol) was 

dissolved in DMF (20 mL) and methyl iodide (1.14 g, 8.00 mmol) was added carefully. 

Caesium carbonate (0.81 g, 2.50 mmol) was added and the reaction mixture was stirred for 

16 hours under nitrogen and absence of light. The following day, the reaction was quenched 

with H2O (50 mL) and extracted into EtOAc (3 x 50 mL). The combined organic fractions 

were washed with 3M HCl and ice water, dried over MgSO4, filtered and solvent was 

removed in vacuo. The crude product was further purified by column chromatography (SiO2; 

Hex:EtOAc, 1:2) to furnish the desired methyl ester (682 mg, 56%). M.p.: 88.0 - 88.7 °C (lit.[197] 

86.7 - 87.6 ºC). 1H NMR (300.1 MHz, CDCl3): &H 7.39 (d, J = 8.5 Hz, 2H, Ar CH), 7.30 (d, J = 8.5 

Hz, 2H, Ar CH), 6.85 (s, 2H, 2 × CH), 3.70 (s, 3H, CH3), 3.65 (s, 2H, CH2). 13C NMR (100.6 

MHz, d6-DMSO): &C 171.5 (quat. C), 170.0 (quat. C), 134.7 (CH), 134.0 (quat. C), 130.3 (quat. 
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C), 129.9 (CH), 126.7 (CH), 51.8 (CH3), 39.7 (CH2). MS (ES+) m/z 245 (40%, [M+H]+), 186 

(100%).

2-(3-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)phenyl)acetic acid 120

3-aminophenylacetic acid 178 (5.00 g, 33.1 mmol) and maleic anhydride 126 (3.20 g, 32.7 

mmol) was dissolved in glacial acetic acid (200 mL). The solution was stirred at room 

temperature under nitrogen for 12 h, followed by heating to reflux for further 5 h. The 

solvent was removed in vacuo and the residue was purified on silica gel chromatography 

column (hexane:EtOAc, 3:1) affording the desired product as a yellow solid which was 

recrystallised from DCM (3.53 g, 46%). M.p.: 114.3 - 115.0 °C. 1H NMR (300.1 MHz, d6-

DMSO): &H 12.46 (s, 1H, C(O)OH), 7.46-7.41 (m, 1H, Ar CH), 7.32-7.28 (m, 1H, Ar CH), 

7.24-7.20 (m, 2H, Ar CH), 7.16 (s, 2H, 2 × CH), 3.63 (s, 2H, CH2). 13C NMR (75.5 MHz, d6-

DMSO): &C 172.8 (quat. C), 170.3 (quat. C), 136.3 (quat. C), 135.0 (CH), 131.8 (quat. C), 129.3 

(CH), 129.1 (CH), 128.0 (CH), 125.5 (CH), 40.7 (CH2). MS (CI+): m/z 231 (15%, [M+H]+), 214 

(15%), 186 (100%). HRMS (CI+) calc. for C12H9NO4 231.0532, found 231.0540.

1-nitro-4-(oct-1-ynyl)benzene 130[222]

1-iodo-4-nitrobenzene (3.74 g, 15.0 mmol) was suspended in Et3N (100 mL). 

Triphenylphosphine (421 mg, 1.61 mmol), copper iodide (245 mg, 1.29 mmol) and dichlorobis

(triphenylphosphine)-palladium (563 mg, 800  µmol) were added and the mixture was 

degassed with argon for 30 min. 1-Octyne (2.20 g, 20.0 mmol) was added via syringe under a 

protective argon atmosphere and the mixture was stirred overnight. The occurring brown 

solution was filtered through celite, concentrated and purified by column chromatography 

over silica using hexane as eluent to obtain the desired product as a dark yellow liquid (3.82 

g, 83%).1H NMR (400.1 MHz, CDCl3): &H 8.15 (d, J = 9.0 Hz, 2H, Ar CH), 7.51 (d, J = 9.0 Hz, 

2H, Ar CH), 2.44 (t, J = 7.1 Hz, 2H, CH2), 1.66-1.58 (m, 2H, CH2), 1.49-1.42 (m, 2H, CH2), 
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1.35-1.31 (m, 4H, 2 × CH2), 0.93-0.89 (m, 3H, CH3). 13C NMR (75.5 MHz, CDCl3): &C 146.7 

(quat. C), 132.4 (CH), 131.4 (quat. C), 123.6 (CH), 97.0 (quat. C), 79.4 (quat. C), 31.5 (CH2), 28.8 

(CH2), 28.5 (CH2), 22.7 (CH2), 19.7 (CH2), 14.2 (CH3). MS (ES+): m/z 254 ([M+Na]+, 100%). 

HRMS (ES+) calc. for C14H17NO2Na [M+] 254.1157, found 254.1158.

N-(4-(oct-1-ynyl)phenyl)hydroxylamine

1-nitro-4-(oct-1-ynyl)benzene 130 (925 mg, 4.00 mmol) was dissolved in THF (20 mL). 

Rhodium (200 mg, 5 wt.-% on carbon, wet) and hydrazine monohydrate (206 mg, 4.12 mmol) 

were added and the reaction was followed by tlc (Hex:EtOAc, 1:1). After completion, the 

solution was filtered through celite and concentrated in vacuo to obtain the desired 

intermediate product as a dark brown liquid, which was directly used in the next step 

without further purification. 1H NMR (300.1 MHz, CDCl3): &H 7.32 (d, J = 8.6 Hz, 2H, Ar CH), 

6.91 (d, J = 8.6 Hz, 2H, Ar CH), 2.38 (t, J = 7.0 Hz, 2H, CH2), 1.65-1.57 (m, 2H, CH2), 1.49-1.42 

(m, 2H, CH2), 1.38-1.26 (m, 4H, 2 × CH2), 0.93-0.88 (m, 3H, CH3).

4-formylbenzoyl chloride[223]

4-formylbenzoic acid (5 g, 33.3 mmol) was suspended in a mixture of thionyl chloride (10 

mL) and toluene (80 mL). The reaction was refluxed at 110 ºC overnight to form a clear 

solution. Removing all solvents in vacuo yielded the desired product as a grey solid that was 

used directly without further purification (5.45 g, 97%). The obtained spectra is in accordance 

with the literature. 1H NMR (300.1 MHz, CDCl3): &H 10.14 (s, 1H, C(O)H), 8.27 (d, J = 8.6 Hz, 

2H, Ar CH), 8.01 (d, J = 8.7 Hz, 2H, Ar CH).
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4-formyl-N-(pyridin-2-yl)benzamide 135

2-aminopyridine (600 mg, 6.38 mmol) was dissolved in a mixture of pyridine (15 mL) and 

dry DCM (15 mL). Neat DMAP (77.9 mg, 638 µmol) was added and the solution was cooled 

to –30 ºC. 4-formylbenzoyl chloride (900 mg, 5.34 mmol) in dry DCM (15 mL) was added 

slowly over two hours. The reaction mixture was stirred overnight allowing to warm to 

room temperature before it was reduced to dryness in vacuo. The residue was redissolved in 

DCM (30 mL) and extracted with saturated aqueous NaHCO3 solution (2 x 30 mL). The 

organic fraction was dried over MgSO4, filtered and concentrated. The crude product was 

purified by column chromatography (SiO2, 3:1 Hexanes/EtOAc) to give the desired product 

as a white solid (884 mg, 73%). M.p.: 154.4 - 154.9 ºC. 1H NMR (300.1 MHz, CDCl3): &H 10.10 

(s, 1H, C(O)H), 9.14 (s, 1H, NH), 8.38 (dt, J = 8.4, 1.0 Hz, 1H, Ar CH), 8.18 (ddd, J = 4.9, 1.9, 

0.9 Hz, 2H, Ar CH), 8.08 (d, J = 8.2 Hz, 2H, Ar CH), 7.98 (d, J = 8.2 Hz, 2H, Ar CH), 7.77 (ddd, 

J = 8.4, 7.4, 1.9 Hz, 1H, Ar CH), 7.07 (ddd, J = 7.4, 4.9, 1.0 Hz, 1H, Ar CH). 13C NMR (75.5 

MHz, CDCl3): &C 191.5 (C(O)H), 164.9 (quat. C), 151.4 (quat. C), 148.0 (CH), 139.5 (quat. C), 

138.8 (CH) , 138.7 (quat. C), 130.1 (CH), 128.1 (CH), 120.5 (CH), 114.6 (CH). MS (ES–) m/z 225 

(100%, [M–H]–). HRMS (ES+) calc. for C13H11N2O2 227.0821, found 227.0818.

(Z)-4-(oct-1-ynyl)-N-(4-(pyridin-2-ylcarbamoyl)benzylidene)aniline oxide 119

N-(4-(oct-1-ynyl)phenyl) hydroxylamine (217 mg, 1.00 mmol) was dissolved in EtOH (5 mL) 

and 4-formyl-N-(pyridin-2-yl)benzamide (150 mg, 663 µmol) was added neat. The solution 

was left to stand in the dark overnight before the precipitate was filtered to give the desired 

product as a light yellow solid (159 mg, 56%). M.p.: 159.5 - 159.9 ºC. 1H NMR (300.1 MHz, 

CDCl3): &H 8.80 (s, 1H, NH), 8.51 (d, J = 8.5 Hz, 2H, Ar CH), 8.42 (dt, J = 8.4, 1.0 Hz, 1H, Ar 

CH), 8.31 (ddd, J = 5.0, 1.9, 0.9 Hz, 1H, Ar CH), 8.04 (d, J = 8.5 Hz, 2H, Ar CH), 8.01 (s, 1H, 

CH), 7.79 (ddd, J = 8.4, 7.4, 1.9 Hz, 1H, Ar CH), 7.73 (d, J = 8.8 Hz, 2H, Ar CH), 7.50 (d, J = 8.8 

Hz, 2H, Ar CH), 7.11 (ddd, J = 7.4, 5.0, 1.0 Hz, 1H, Ar CH), 2.43 (t, J = 7.1 Hz, 2H, CH2), 
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1.67-1.58 (m, 2H, CH2), 1.51-1.41 (m, 2H, CH2), 1.40-1.28 (m, 4H, 2 × CH2), 0.95-0.87 (m, 3H, 

CH3). 13C NMR (75.5 MHz, CDCl3): &C 164.8 (quat. C), 151.5 (quat. C), 147.8 (CH), 147.7 (quat. 

C), 138.9 (CH), 135.6 (quat. C), 134.1 (quat. C), 133.3 (CH), 132.5 (CH), 129.3 (CH), 127.7 (CH), 

126.8 (quat. C), 121.7 (CH), 120.3 (CH), 114.5 (CH), 93.7 (quat. C), 79.6 (quat. C), 31.5 (CH2), 

28.8 (CH2), 28.7 (CH2), 22.7 (CH2), 19.6 (CH2), 14.2 (CH3). MS (ES+) m/z 873 (80%), 448 (100%, 

[M+Na]+). HRMS (ES+) calc. for C27H27N3O2Na 448.2001, found 448.1996.

Template trans-124

In an NMR tube, nitrone 119 (8.50 mg, 16.0 µmol) in CDCl3 (400 µL) was combined with a 

solution of maleimide 33  (4.62 mg, 16.0 µmol). After 48 hours at 0 ºC, the reaction showed 

complete conversion of the starting materials and proved sufficiently pure for 

characterisation (trans/cis > 30:1). 1H NMR (400.1 MHz, CDCl3): &H 11.13 (s, 1H, NH), 8.60 (d, 

J = 8.5 Hz, 1H, Ar CH), 8.16 (d, J = 4.4 Hz, 1H, Ar CH), 7.97 (d, J = 8.2 Hz, 2H, Ar CH), 7.88 (t, 

J = 7.8 Hz, 1H, Ar CH), 7.43 (d, J = 8.1 Hz, 2H, Ar CH), 7.33 (d, J = 8.2 Hz, 2H, Ar CH), 7.30 (d, 

J = 8.6 Hz, 2H, Ar CH), 7.16 (t, J = 6.1 Hz, 1H, Ar CH), 7.10 (d, J = 8.5 Hz, 2H, Ar CH), 6.71 (d, 

J = 8.1 Hz, 2H, Ar CH), 5.78 (s, 1H, CH), 4.99 (d, J = 7.3 Hz, 1H, CH), 3.94 (d, J = 7.3 Hz, 1H, 

CH), 3.74 (s, 2H, CH2), 2.37 (t, J = 7.0 Hz, 2H, CH2), 1.63-1.50 (m, 2H, CH2), 1.48-1.36 (m, 2H, 

CH2), 1.35-1.18 (m, 4H, 2 × CH2), 0.94-0.84 (m, 3H, CH3). 13C NMR (100.6 MHz, CDCl3): &C 

177.0 (quat. C), 174.6 (quat. C), 173.2 (quat. C), 166.5 (quat. C), 152.2 (quat. C), 147.9 (quat. C), 

145.1 (CH), 142.4 (quat. C), 140.5 (CH), 135.6 (quat. C), 133.7 (quat. C), 132.8 (CH), 130.9 (CH), 

130.0 (quat. C), 129.0 (CH), 126.8 (CH), 126.2 (CH), 119.9 (CH), 119.0 (quat. C), 116.2 (CH), 

114.5 (CH), 90.1 (quat. C), 80.0 (quat. C), 77.5 (CH), 68.9 (CH), 57.1 (CH), 40.2 (CH2), 31.5 

(CH2), 28.9 (CH2), 28.8 (CH2), 22.7 (CH2), 19.6 (CH2), 14.2 (CH3). MS (ES+) m/z 657 (100%, [M

+H]+). HRMS (ES+) calc. for C39H37N4O6 657.2713, found 657.2730.
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Template cis-128

In an NMR tube, nitrone 119 (8.50 mg, 16.0 µmol) in CDCl3 (400 µL) was combined with a 

solution of maleimide 120 (4.62 mg, 16.0 µmol). After 48 hours at 0 ºC, the reaction showed 

complete conversion of the starting materials and proved sufficiently pure for 

characterisation (cis/trans > 50:1). 1H NMR (300.1 MHz, CDCl3): &H 11.39 (s, 1H, NH), 8.45 (d, 

J = 8.5 Hz, 1H, Ar CH), 8.16 (ddd, J = 5.2, 1.9, 0.9 Hz, 1H, Ar CH), 8.01 (d, J = 8.5 Hz, 2H, Ar 

CH), 7.87 (ddd, J = 8.5, 7.4, 1.9 Hz, 1H, Ar CH), 7.64 (d, J = 8.3 Hz, 2H, Ar CH), 7.54 (s, 1H, Ar 

CH), 7.35 (t, J = 7.8 Hz, 1H, Ar CH), 7.27 (d, J = 8.9 Hz, 2H, Ar CH), 7.20-7.12 (m, 3H, Ar CH), 

6.99 (d, J = 8.9 Hz, 2H, Ar CH), 5.32 (d, J = 7.8 Hz, 1H, CH), 4.99 (d, J = 9.7 Hz, 1H, CH), 4.14 

(dd, J = 9.7, 7.8 Hz, 1H, CH), 3.79 (d, J = 18.1 Hz, 1H, CH’H’’), 3.72 (d, J = 18.1 Hz, 1H, 

CH’H’’), 2.36 (t, J = 7.0 Hz, 2H, CH2), 1.62-1.52 (m, 2H, CH2), 1.48-1.36 (m, 2H, CH2), 1.35-1.24 

(m, 4H, 2 × CH2), 0.93-0.85 (m, 3H, CH3). 13C NMR (75.5 MHz, CDCl3): &C 176.5 (quat. C), 

173.5 (quat. C), 171.0 (quat. C), 167.3 (quat. C), 152.2 (quat. C), 146.3 (quat. C), 145.4 (CH), 

140.3 (CH), 139.0 (quat. C), 135.5 (quat. C), 135.2 (quat. C), 132.2 (CH), 131.3 (quat. C), 130.1 

(CH), 129.5 (CH), 129.0 (CH), 127.2 (CH), 126.8 (CH), 124.3 (CH), 120.3 (quat. C), 119.9 (CH), 

118.0 (CH), 116.2 (CH), 90.6 (quat. C), 80.1 (quat. C), 77.2 (CH), 70.3 (CH), 54.8 (CH), 38.9 

(CH2), 31.5 (CH2), 28.9 (CH2), 28.7 (CH2), 22.7 (CH2), 19.6 (CH2), 14.2 (CH3). MS (ES–) m/z 656 

(7%), 655 (100%, [M+H]+). HRMS (ES+) calc. for C39H35N4O6 655.2557, found 655.2545.
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4-formyl-N-(4-methylpyridin-2-yl)benzamide 134

4-methyl-2-aminopyridine (690 mg, 6.38 mmol) was dissolved in a mixture of pyridine (15 

mL) and dry DCM (15 mL). Neat DMAP (77.9 mg, 638 µmol) was added and the solution 

was cooled to -30 ºC. 4-formylbenzoyl chloride (900 mg, 5.34 mmol) in dry DCM (15 mL) was 

added slowly over two hours. The reaction mixture was stirred overnight allowing to warm 

to room temperature before it was reduced to dryness in vacuo. The residue was redissolved 

in DCM (30 mL) and extracted with saturated aqueous NaHCO3 solution (2 x 30 mL). The 

organic fraction was dried over MgSO4, filtered and concentrated. The crude product was 

purified by column chromatography (SiO2, 3:1 Hexanes/EtOAc) to give the desired product 

as a white solid (925 mg, 72%). M.p.: 147.3 - 148.0 ºC. 1H NMR (300.1 MHz, CDCl3): &H 10.09 

(s, 1H, C(O)H), 9.25 (s, 1H, NH), 8.23 (dt, J = 1.5, 0.7 Hz, 1H, Ar CH), 8.07 (d, J = 8.2 Hz, 2H, 

Ar CH), 8.00-7.98 (m, 1H, Ar CH), 7.98 (d, J = 8.2 Hz, 2H, Ar CH), 6.88 (ddd, J = 5.1, 1.5, 0.7 

Hz, 1H, Ar CH), 2.40 (s, 3H, CH3). 13C NMR (75.5 MHz, CDCl3): & 191.5 (C(O)H), 164.9 (quat. 

C), 151.5 (quat. C), 150.4 (quat. C), 147.5 (CH), 139.7 (quat. C), 138.7 (quat. C), 130.1 (CH), 

128.1 (CH), 121.6 (CH), 115.1 (CH), 21.6 (CH3). MS (ES+) m/z 295 (100%), 263 (34%, [M+Na]+). 

HRMS (ES+) calc. for C14H13N2O2 241.0977, found 241.0974.

(Z)-N-(4-(4-methylpyridin-2-ylcarbamoyl)benzylidene)-4-(oct-1-ynyl)aniline oxide 118

N-(4-(oct-1-ynyl)phenyl) hydroxylamine (217 mg, 1.00 mmol) was dissolved in EtOH (5 mL) 

and 4-formyl-N-(4-methylpyridin-2-yl)benzamide (150 mg, 624 µmol) was added neat. The 

solution was left to stand in the dark overnight before the precipitate was filtered to give the 

desired product as a light yellow solid (177 mg, 65%). 1H NMR (300.1 MHz, CDCl3): &H 8.79 

(s, 1H, NH), 8.51 (d, J = 8.4 Hz, 2H, Ar CH), 8.27 (dt, J = 1.5, 0.7 Hz, 1H, Ar CH), 8.15 (dd, J = 

5.1, 0.5 Hz, 1H, Ar CH), 8.04 (d, J = 8.6 Hz, 2H, Ar CH), 8.01 (s, 1H, CH), 7.73 (d, J = 8.8 Hz, 
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2H, Ar CH), 7.50 (d, J = 8.8 Hz, 2H, Ar CH), 6.93 (ddd, J = 5.1, 1.5, 0.6 Hz, 1H, Ar CH), 2.43 (t, 

J = 7.1 Hz, 2H, Ar CH), 2.43 (s, 3H, CH3), 1.67-1.58 (m, 2H, CH2), 1.51-1.41 (m, 2H, CH2), 

1.38-1.31 (m, 4H, 2 × CH2), 0.94-0.89 (m, 3H, CH3). 13C NMR (75.5 MHz, CDCl3): &C 164.8 

(quat. C), 151.4 (quat. C), 150.6 (quat. C), 147.7 (quat. C), 147.3 (CH), 135.7 (quat. C), 134.1 

(quat. C), 133.3 (CH), 132.5 (CH), 129.3 (CH), 127.7 (CH), 126.8 (quat. C), 121.7 (CH), 121.5 

(CH), 115.0 (CH), 93.7 (quat. C), 79.5 (quat. C), 31.5 (CH2), 28.8 (CH2), 28.7 (CH2), 22.7 (CH2), 

21.7 (CH3), 19.6 (CH2), 14.2 (CH3). MS (ES+) m/z 901 (12%), 462 (100%, [M+Na]+). HRMS (ES

+) calc. for C28H30N3O2 440.2338, found 440.2344.

Template trans-123

In an NMR tube, nitrone 118 (8.78 mg, 16.0 µmol) in CDCl3 (400 µL) was combined with a 

solution of maleimide 33  (4.62 mg, 16.0 µmol). After 48 hours at 0 ºC, the reaction showed 

complete conversion of the starting materials and proved sufficiently pure for 

characterisation (trans/cis > 30:1). 1H NMR (300.1 MHz, CDCl3): &H 11.16 (s, 1H, NH), 8.45 (s, 

1H, Ar CH), 8.02 (d, J = 5.5 Hz, 1H, Ar CH), 7.97 (d, J = 8.3 Hz, 2H, Ar CH), 7.43 (d, J = 8.3 Hz, 

2H, Ar CH), 7.34 (d, J = 8.3 Hz, 2H, Ar CH), 7.30 (d, J = 8.8 Hz, 2H, Ar CH), 7.11 (d, J = 8.8 Hz, 

2H, Ar CH), 6.99 (d, J = 4.9 Hz, 1H, Ar CH), 6.71 (d, J = 8.3 Hz, 2H, Ar CH), 5.78 (s, 1H, CH), 

5.00 (d, J = 7.4 Hz, 1H, CH), 3.95 (d, J = 7.4 Hz, 1H, CH), 3.75 (s, 2H, CH2), 2.46 (s, 3H, CH3), 

2.36 (t, J = 7.0 Hz, 2H, CH2), 1.63-1.51 (m, 2H, CH2), 1.47-1.37 (m, 2H, CH2), 1.35-1.18 (m, 4H, 

2 × CH2), 0.92-0.85 (m, 3H, CH3). 13C NMR (75.5 MHz, CDCl3): &C 177.1 (quat. C), 174.6 (quat. 

C), 173.2 (quat. C), 166.5 (quat. C), 152.7 (quat. C), 151.9 (quat. C), 147.9 (quat. C), 144.4 (CH), 

142.3 (quat. C), 135.7 (quat. C), 133.8 (quat. C), 132.8 (CH), 130.9 (CH), 129.9 (quat. C), 129.0 

(CH), 126.8 (CH), 126.2 (CH), 121.1 (CH), 119.0 (quat. C), 116.6 (CH), 114.5 (CH), 90.1 (quat. 

C), 80.0 (quat. C), 77.4 (CH), 68.9 (CH), 57.1 (CH), 40.3 (CH2), 31.5 (CH2), 28.94 (CH2), 28.77 
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(CH2), 22.7 (CH2), 21.9 (CH3), 19.6 (CH2), 14.2 (CH3). MS (ES+) m/z 671 (100%, [M+H]+). 

HRMS (ES+) calc. for C40H39N4O6 671.2870, found 671.2869.

Template cis-127

In an NMR tube, nitrone 118 (8.78 mg, 16.0 µmol) in CDCl3 (400 µL) was combined with a 

solution of maleimide 120 (4.62 mg, 16.0 µmol). After 48 hours at 0 ºC, the reaction showed 

complete conversion of the starting materials and proved sufficiently pure for 

characterisation (cis/trans > 50:1). 1H NMR (300.1 MHz, CDCl3): &H 11.39 (s, 1H, NH), 8.29 (s, 

1H, Ar CH), 8.00 (d, J = 8.3 Hz, 2H, Ar CH), 8.00 (d, J = 6.5 Hz, 1H, Ar CH), 7.63 (d, J = 8.3 Hz, 

2H, Ar CH), 7.54 (s, 1H, Ar CH), 7.35 (t, J = 7.8 Hz, 1H, Ar CH), 7.27 (d, J = 8.9 Hz, 2H, Ar 

CH), 7.18 (d, J = 7.7 Hz, 1H, Ar CH), 7.15 (d, J = 7.8 Hz, 1H, Ar CH), 7.00 (d, J = 8.8 Hz, 2H, Ar 

CH), 6.97 (d, J = 6.5 Hz, 1H, Ar CH), 5.32 (d, J = 7.8 Hz, 1H, CH), 4.99 (d, J = 9.7 Hz, 1H, CH), 

4.13 (dd, J = 9.7, 7.8 Hz, 1H, CH), 3.78 (d, J = 17.8 Hz, 1H, CH’H’’), 3.70 (d, J = 17.8 Hz, 1H, 

CH’H’’), 2.45 (s, 3H, CH3), 2.36 (t, J = 7.0 Hz, 2H, CH2), 1.62-1.52 (m, 2H, CH2), 1.47-1.37 (m, 

2H, CH2), 1.36-1.27 (m, 4H, 2 × CH2), 0.92-0.85 (m, 3H, CH3). 13C NMR (75.5 MHz, CDCl3): &C 

176.7 (quat. C), 173.5 (quat. C), 171.0 (quat. C), 167.3 (quat. C), 152.4 (quat. C), 151.9 (quat. C), 

146.3 (quat. C), 144.7 (CH), 139.0 (quat. C), 135.6 (quat. C), 135.4 (quat. C), 132.3 (CH), 131.3 

(quat. C), 130.1 (CH), 129.5 (CH), 129.0 (CH), 127.1 (CH), 126.8 (CH), 124.3 (CH), 121.1 (CH), 

120.3 (quat. C), 118.0 (CH), 116.5 (CH), 90.6 (quat. C), 80.1 (quat. C), 77.3 (CH), 70.3 (CH), 54.8 

(CH), 39.0 (CH2), 31.5 (CH2), 28.9 (CH2), 28.7 (CH2), 22.7 (CH2), 21.9 (CH3), 19.6 (CH2), 14.2 

(CH3). MS (ES+) m/z 671 (100%, [M+H]+), 273 (10%), 241 (7%). HRMS (ES+) calc. for 

C40H39N4O6 671.2870, found 671.2870.
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Synthesis of 4-(chloromethyl)-N-(6-methylpyridin-2-yl)benzamide

6-methylpyridin-2-amine (6.17 g, 57.0 mmol) in dry DCM (75 mL) was slowly reacted with a 

solution of 4-(chloromethyl)benzoyl chloride (4.90 g, 25.9 mmol) in dry DCM (75 mL) at 0 °C. 

The reaction was left to stir for 6 hours at room temperature before being quenched with 

H2O (100 mL). The organic layer was washed with 1M HCl (75 mL) and the combined 

aqueous layer was extracted with DCM (3 x 75 mL). The combined organic layers were dried 

over MgSO4, filtered and reduced in vacuo to yield pure product (6.71 g, 99%). M.p.: 125.5 - 

126.4 °C. 1H NMR (400.1 MHz, CDCl3): &H 11.02 (s, 1H, NH), 8.58 (d, J = 8.6 Hz, 1H, Ar CH), 

8.19 (d, J = 8.5 Hz, 2H, Ar CH), 7.97 (dd, J = 8.6, 7.6 Hz, 1H, Ar CH), 7.55 (d, J = 8.5 Hz, 2H, Ar 

CH), 7.09 (d, J = 7.6 Hz, 1H, Ar CH), 4.62 (s, 2H, CH2), 2.68 (s, 3H, CH3). 13C NMR (75.5 MHz, 

d6-DMSO): &C 165.4 (quat. C), 152.9 (quat. C), 149.0 (quat. C), 143.6 (CH), 142.4 (quat. C), 

132.5 (quat. C), 129.0 (CH), 128.6 (CH), 120.4 (CH), 113.2 (CH), 45.2 (CH2), 20.9 (CH3).

Synthesis of 4-formyl-N-(6-methylpyridin-2-yl)benzamide 133

4-(chloromethyl)-N-(6-methylpyridin-2-yl)benzamide (3.00 g, 11.5 mmol) was dissolved in a 

1:1 mixture of EtOH/H2O (40 mL) and hexamethylenetetramine (4.80 g, 34.2 mmol) was 

added. The suspension was heated to reflux for 4 hours. Concentrated HCl (5 mL) was 

added and the solution was refluxed for another 0.5 hour. H2O (100 mL) was added and the 

solution was extracted with DCM (3 x 100 mL). The combined organic layers were washed 

with brine, dried over MgSO4, filtered and concentrated in vacuo to give sufficiently pure 

product (2.76 g, 99%). M.p.: 225.3 - 227.0 °C. 1H NMR (400.1 MHz, CDCl3): &H 12.49 (s, 1H, 

NH), 10.13 (s, 1H, C(O)H), 8.81 (d, J = 8.8 Hz, 1H, Ar CH), 8.50 (d, J = 8.5 Hz, 2H, Ar CH), 

8.18 (dd, J = 8.8, 7.7 Hz, 1H, Ar CH), 8.07 (d, J = 8.5Hz, 2H, Ar CH), 7.23 (d, J = 7.7 Hz, 1H, Ar 

CH), 2.83 (s, 3H, CH3). 13C NMR (100.6 MHz, d6-DMSO): &C 192.9 (C(O)H), 165.1 (quat. C), 

153.5 (quat. C), 149.1 (quat. C), 143.1 (CH), 138.7 (quat. C), 137.8 (quat. C), 129.5 (CH), 128.9 

(CH), 120.5 (CH), 113.2 (CH), 21.3 (CH3).
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(Z)-N-(4-(6-methylpyridin-2-ylcarbamoyl)benzylidene)-4-(oct-1-ynyl)aniline oxide 117

N-(4-(oct-1-ynyl)phenyl) hydroxylamine (217 mg, 1.00 mmol) was dissolved in EtOH (5 mL) 

and 4-formyl-N-(6-methylpyridin-2-yl)benzamide 133  (150 mg, 624 µmol) was added neat. 

The solution was left to stand in the dark overnight before the precipitate was filtered to give 

the desired product as a light yellow solid (195 mg, 71%). M.p. 155.5 - 155.9 ºC. 1H NMR 

(300.1 MHz, CDCl3): &H 8.67 (s, 1H, NH), 8.50 (d, J = 8.4 Hz, 2H, Ar CH), 8.21 (d, J = 8.2 Hz, 

1H, Ar CH), 8.04 (d, J = 8.6 Hz, 2H, Ar CH), 8.01 (s, 1H, CH), 7.73 (d, J = 8.8 Hz, 2H, Ar CH), 

7.68 (dd, J = 8.1, 7.7 Hz, 1H, Ar CH), 7.50 (d, J = 8.8 Hz, 2H, Ar CH), 6.96 (d, J = 7.3 Hz, 1H, Ar 

CH), 2.50 (s, 3H, CH3), 2.43 (t, J = 7.1 Hz, 2H, CH2), 1.67-1.58 (m, 2H, CH2), 1.49-1.41 (m, 2H, 

CH2), 1.36-1.31 (m, 4H, 2 × CH2), 0.94-0.89 (m, 3H, CH3). 13C NMR (75.5 MHz, CDCl3): &C 

164.8 (quat. C), 156.9 (quat. C), 150.7 (quat. C), 147.7 (quat. C), 139.2 (CH), 135.7 (quat. C), 

134.0 (quat. C), 133.3 (CH), 132.5 (CH), 129.2 (CH), 127.7 (CH), 126.8 (quat. C), 121.7 (CH), 

119.8 (CH), 111.3 (CH), 93.7 (quat. C), 79.6 (quat. C), 31.5 (CH2), 28.8 (CH2), 28.7 (CH2), 24.0 

(CH3), 22.7 (CH2), 19.6 (CH2), 14.2 (CH3). MS (ES+) m/z 901 (15%), 462 (100%, [M+Na]+). 

HRMS (ES+) calc. for C28H30N3O2 440.2338, found 440.2335.

Template trans-122

In an NMR tube, nitrone 117 (8.78 mg, 16.0 µmol) in CDCl3 (400 µL) was combined with a 

solution of maleimide 33  (4.62 mg, 16.0 µmol). After 48 hours at 0 ºC, the reaction showed 
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complete conversion of the starting materials and proved sufficiently pure for 

characterisation (trans/cis > 30:1). 1H NMR (300.1 MHz, CDCl3): &H 11.10 (s, 1H, NH), 8.38 (d, 

J = 8.4 Hz, 1H, Ar CH), 7.92 (d, J = 8.4 Hz, 2H, Ar CH), 7.75 (t, J = 8.0 Hz, 1H, Ar CH), 7.39 (d, 

J = 8.4 Hz, 2H, Ar CH), 7.32 (d, J = 8.4 Hz, 2H, Ar CH), 7.29 (d, J = 8.8 Hz, 2H, Ar CH), 7.10 (d, 

J = 8.8 Hz, 2H, Ar CH), 6.97 (d, J = 7.5 Hz, 1H, Ar CH), 6.71 (d, J = 8.3 Hz, 2H, Ar CH), 5.74 (s, 

1H, CH), 4.97 (d, J = 7.4 Hz, 1H, CH), 3.90 (d, J = 7.4 Hz, 1H, CH), 3.74 (s, 2H, CH2), 2.50 (s, 

3H, CH3), 2.37 (t, J = 7.0 Hz, 2H, CH2), 1.62-1.51 (m, 2H, CH2), 1.46-1.38 (m, 2H, CH2), 

1.37-1.18 (m, 4H, 2 × CH2), 0.92-0.85 (m, 3H, CH3). 13C NMR (75.5 MHz, CDCl3): &C 176.8 

(quat. C), 174.7 (quat. C), 173.2 (quat. C), 166.6 (quat. C), 155.8 (quat. C), 151.8 (quat. C), 147.9 

(quat. C), 142.3 (quat. C), 140.6 (CH), 135.6 (quat. C), 133.9 (quat. C), 132.8 (CH), 130.8 (CH), 

129.9 (quat. C), 129.0 (CH), 126.7 (CH), 126.2 (CH), 120.0 (CH), 119.0 (quat. C), 114.5 (CH), 

113.4 (CH), 90.1 (quat. C), 80.0 (quat. C), 77.4 (CH), 68.9 (CH), 57.2 (CH), 40.3 (CH2), 31.5 

(CH2), 28.9 (CH2), 28.8 (CH2), 22.7 (CH2), 22.2 (CH3), 19.6 (CH2), 14.2 (CH3). MS (ES+) m/z 671 

(100%, [M+H]+). HRMS (ES+) calc. for C40H39N4O6 671.2870, found 671.2863.

Template cis-126

In an NMR tube, nitrone 117 (8.78 mg, 16.0 µmol) in CDCl3 (400 µL) was combined with a 

solution of maleimide 120 (4.62 mg, 16.0 µmol). After 48 hours at 0 ºC, the reaction showed 

complete conversion of the starting materials and proved sufficiently pure for 

characterisation (cis/trans > 50:1). 1H NMR (300.1 MHz, CDCl3): &H 11.32 (s, 1H, NH), 8.24 (d, 

J = 8.3 Hz, 1H, Ar CH), 8.00 (d, J = 8.5 Hz, 2H, Ar CH), 7.74 (dd, J = 8.3, 7.6 Hz, 1H, Ar CH), 

7.63 (d, J = 8.3 Hz, 2H, Ar CH), 7.46 (s, 1H, Ar CH), 7.35 (t, J = 7.9 Hz, 1H, Ar CH), 7.26 (d, J = 

8.9 Hz, 2H, Ar CH), 7.20 (d, J = 9.0 Hz, 1H, Ar CH), 7.15 (d, J = 8.1 Hz, 1H, Ar CH), 6.99 (d, J = 

8.9 Hz, 2H, Ar CH), 6.96 (d, J = 7.6 Hz, 1H, Ar CH), 5.32 (d, J = 7.8 Hz, 1H, CH), 5.00 (d, J = 

9.7 Hz, 1H, CH), 4.14 (dd, J = 9.8, 7.8 Hz, 1H, CH), 3.78 (d, J = 17.8 Hz, 1H, CH’H’’), 3.73 (d, J 
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= 17.8 Hz, 1H, CH’H’’), 2.49 (s, 3H, CH3), 2.36 (t, J = 7.0 Hz, 2H, CH2), 1.62-1.52 (m, 2H, CH2), 

1.47-1.37 (m, 2H, CH2), 1.33-1.25 (m, 4H, 2 × CH2), 0.91-0.86 (m, 3H, CH3). 13C NMR (75.5 

MHz, CDCl3): &C 176.4 (quat. C), 173.4 (quat. C), 171.0 (quat. C), 167.2 (quat. C), 155.9 (quat. 

C), 151.7 (quat. C), 146.3 (quat. C), 140.4 (CH), 138.9 (quat. C), 135.6 (quat. C), 135.2 (quat. C), 

132.2 (CH), 131.3 (quat. C), 130.0 (CH), 129.5 (CH), 129.0 (CH), 127.1 (CH), 126.7 (CH), 124.2 

(CH), 120.2 (quat. C), 119.9 (CH), 117.9 (CH), 113.3 (CH), 90.6 (quat. C), 80.1 (quat. C), 77.4 

(CH), 70.3 (CH) 54.7 (CH), 39.0 (CH2), 31.5 (CH2), 28.9 (CH2), 28.7 (CH2), 22.7 (CH2), 22.2 

(CH3), 19.6 (CH2), 14.2 (CH3). MS (ES+) m/z 671 (100%, [M+H]+), 440 (18%), 241 (4%). HRMS 

(ES+) calc. for C40H39N4O6 671.2870, found 671.2863.

N-(4,6-dimethylpyridin-2-yl)-4-formylbenzamide 132[59]

4-formylbenzoyl chloride (1.39 g, 8.25 mmol) was dissolved in dry DCM (15 mL) and 

triethylamine (1.01 g, 10.0 mmol) was added dropwise at 0 ºC. A solution of 4,6-dimethyl-2-

aminopyridine (1.22 g, 10.0 mmol) in dry DCM (15 mL) was added slowly over 2 hours and 

the reaction was left to stir overnight allowing to warm to room temperature. The mixture 

was then diluted with DCM (25 mL), extracted with saturated aqueous NH4Cl solution (2 x 

30 mL), the organic fraction was furthermore washed with saturated aqueous NaHCO3 

solution (2 x 30 mL) and H2O (2 x 30 mL), dried over MgSO4, filtered and concentrated in 

vacuo. The crude material was purified by column chromatography (SiO2, Hexanes/EtOAc 

3:1) to yield the desired product as a white solid (1.83 g, 87%). M.p.: 130.3 - 131.0 ºC. 1H NMR 

(300.1 MHz, CDCl3): &H 10.09 (s, 1H, C(O)H), 8.79 (s, 1H, NH), 8.06 (d, J = 8.2 Hz, 2H, Ar CH), 

8.02 (s, 1H, Ar CH), 7.98 (d, J = 8.2 Hz, 2H, Ar CH), 6.78 (s, 1H, Ar CH), 2.38 (s, 3H, CH3), 2.36 

(s, 3H, CH3). 13C NMR (75.5 MHz, CDCl3): &C 191.5 (C(O)H), 164.6 (quat. C), 156.6 (quat. C), 

150.6 (quat. C), 150.5 (quat. C), 139.7 (quat. C), 138.7 (quat. C), 130.1 (CH), 128.0 (CH), 121.2 

(CH), 112.0 (CH), 23.8 (CH3), 21.5 (CH3). MS (ES–) m/z 253 (100%, [M–H]–).

N N
H

O

O

H

297



(Z)-N-(4-(4,6-dimethylpyridin-2-ylcarbamoyl)benzylidene)-4-(oct-1-ynyl)aniline oxide 116

N-(4-(oct-1-ynyl)phenyl) hydroxylamine (217 mg, 1.00 mmol) was dissolved in EtOH (5 mL) 

and 4-formyl-N-(4,6-dimethylpyridin-2-yl) benzamide (150 mg, 590 µmol) was added neat. 

The solution was left to stand in the dark overnight before the precipitate was filtered to give 

the desired product as a light yellow solid (202 mg, 75%). M.p.: 157.0 - 158.0 ºC. 1H NMR 

(300.1 MHz, CDCl3): &H 8.53 (s, 1H, NH), 8.50 (d, J = 8.4 Hz, 2H, Ar CH), 8.04 (s, 1H, Ar CH), 

8.02 (d, J = 8.8 Hz, 2H, Ar CH), 8.00 (s, 1H, CH), 7.73 (d, J = 8.8 Hz, 2H, Ar CH), 7.50 (d, J = 

8.8 Hz, 2H, Ar CH), 6.79 (s, 1H, Ar CH), 2.43 (s, 3H, CH3), 2.43 (t, J = 7.1 Hz, 2H, CH2), 2.37 (s, 

3H, CH3), 1.68-1.57 (m, 2H, CH2), 1.53-1.40 (m, 2H, CH2), 1.38-1.29 (m, 4H, 2 × CH2), 0.94-0.88 

(m, 3H, CH3). 13C NMR (75.5 MHz, CDCl3): & 164.7 (quat. C), 156.7 (quat. C), 150.8 (quat. C), 

150.4 (quat. C), 147.7 (quat. C), 135.9 (quat. C), 133.9 (quat. C), 133.3 (CH), 132.5 (CH), 129.2 

(CH), 127.6 (CH), 126.8 (quat. C), 121.7 (CH), 121.0 (CH), 111.8 (CH), 93.7 (quat. C), 79.6 

(quat. C), 31.5 (CH2), 28.8 (CH2), 28.7 (CH2), 24.0 (CH3), 22.7 (CH2), 21.5 (CH3), 19.6 (CH2), 

14.2 (CH3). MS (ES+) m/z 929 (50%), 476 (100%), 454 (100%, [M+H]+). HRMS (ES+) calc. for 

C29H32N3O2 454.2495, found 454.2489.

Template trans-121

In an NMR tube, nitrone 116 (9.06 mg, 16.0 µmol) in CDCl3 (400 µL) was combined with a 

solution of maleimide 33  (4.62 mg, 16.0 µmol). After 48 hours at 0 ºC, the reaction showed 
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complete conversion of the starting materials and proved sufficiently pure for 

characterisation (trans/cis > 30:1). 1H NMR (300.1 MHz, CDCl3): &H 11.20 (s, 1H, NH), 8.24 (s, 

1H, Ar CH), 7.91 (d, J = 8.3 Hz, 2H, Ar CH), 7.38 (d, J = 8.3 Hz, 2H, Ar CH), 7.30 (d, J = 8.2 Hz, 

2H, Ar CH), 7.29 (d, J = 8.7 Hz, 2H, Ar CH), 7.09 (d, J = 8.8 Hz, 2H, Ar CH), 6.80 (s, 1H, Ar 

CH), 6.70 (d, J = 8.3 Hz, 2H, Ar CH), 5.73 (s, 1H, CH), 4.95 (d, J = 7.4 Hz, 1H, CH), 3.89 (d, J = 

7.4 Hz, 1H, CH), 3.70 (s, 2H, CH2), 2.44 (s, 3H, CH3), 2.40 (s, 3H, CH3), 2.35 (t, J = 7.1 Hz, 2H, 

CH2), 1.62-1.51 (m, 2H, CH2), 1.46-1.38 (m, 2H, CH2), 1.37-1.18 (m, 4H, 2 × CH2), 0.92-0.85 (m, 

3H, CH3). 13C NMR (75.5 MHz, CDCl3): &C 177.0 (quat. C), 174.7 (quat. C), 173.2 (quat. C), 

166.6 (quat. C), 154.9 (quat. C), 152.7 (quat. C), 151.5 (quat. C), 147.9 (quat. C), 142.3 (quat. C), 

135.9 (quat. C), 133.9 (quat. C), 132.8 (CH), 130.8 (CH), 129.9 (quat. C), 129.0 (CH), 126.7 (CH), 

126.1 (CH), 121.2 (CH), 119.0 (quat. C), 114.5 (CH), 113.9 (CH), 90.1 (quat. C), 80.0 (quat. C), 

77.4 (CH), 68.9 (CH), 57.2 (CH), 40.5 (CH2), 31.5 (CH2), 28.9 (CH2), 28.8 (CH2), 22.7 (CH2), 21.7 

(2 x CH3), 19.6 (CH2), 14.2 (CH3). MS (ES+) m/z 685 (100%, [M+H]+). HRMS (ES+) calc. for 

C41H41N4O6 685.3026, found 685.3036.

Template cis-125

In an NMR tube, nitrone 116 (9.06 mg, 16.0 µmol) in CDCl3 (400 µL) was combined with a 

solution of maleimide 120 (4.62 mg, 16.0 µmol). After 48 hours at 0 ºC, the reaction showed 

complete conversion of the starting materials and proved sufficiently pure for 

characterisation (cis/trans > 50:1). 1H NMR (400.1 MHz, CDCl3): &H 11.37 (s, 1H, NH), 8.08 (s, 

1H, Ar CH), 8.00 (d, J = 8.4 Hz, 2H, Ar CH), 7.63 (d, J = 8.3 Hz, 2H, Ar CH), 7.46 (s, 1H, Ar 

CH), 7.35 (d, J = 7.8 Hz, 1H, Ar CH), 7.27 (d, J = 8.8 Hz, 2H, Ar CH), 7.19 (d, J = 7.6 Hz, 1H, Ar 

CH), 7.15 (d, J = 7.6 Hz, 1H, Ar CH), 6.99 (d, J = 8.8 Hz, 2H, Ar CH), 6.79 (s, 1H, Ar CH), 5.32 

(d, J = 7.8 Hz, 1H, CH), 5.00 (d, J = 7.8 Hz, 1H, CH), 4.13 (dd, J = 9.7, 7.8 Hz, 1H, CH), 3.77 (d, 

J = 17.8 Hz, 1H, CH’H’’), 3.71 (d, J = 17.8 Hz, 1H, CH’H’’), 2.44 (s, 3H, CH3), 2.39 (s, 3H, CH3), 
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2.36 (t, J = 7.1 Hz, 2H, CH2), 1.60-1.53 (m, 2H, CH2), 1.46-1.38 (m, 2H, CH2), 1.34-1.27 (m, 4H, 

2 × CH3), 0.91-0.86 (m, 3H, CH3). 13C NMR (100.6 MHz, CDCl3): &C 176.6 (quat. C), 173.4 

(quat. C), 171.0 (quat. C), 167.3 (quat. C), 155.1 (quat. C), 152.5 (quat. C), 151.4 (quat. C), 146.4 

(quat. C), 138.9 (quat. C), 135.7 (quat. C), 135.4 (quat. C), 132.2 (CH), 131.2 (quat. C), 130.0 

(CH), 129.5 (CH), 129.0 (CH), 127.1 (CH), 126.8 (CH), 124.2 (CH), 121.1 (CH), 120.2 (quat. C), 

117.8 (CH), 113.8 (CH), 90.5 (quat. C), 80.1 (quat. C), 77.4 (CH), 70.3 (CH) 54.7 (CH), 39.2 

(CH2), 31.5 (CH2), 28.9 (CH2), 28.7 (CH2), 22.7 (CH2), 21.9 (CH3), 21.7 (CH3), 19.6 (CH2), 14.2 

(CH3). MS (ES+) m/z 685 (100%, [M+H]+). HRMS (ES+) calc. for C41H41N4O6 685.3026, found 

685.3019.

Synthesis of 2-fluoro-4-nitro-1-(oct-1-yn-1-yl)benzene 144

1-bromo-2-fluoro-4-nitrobenzene (1.32 mg, 6.00 mmol) was suspended in Et3N (60  mL). 

Triphenylphosphine (168 mg, 644 µmol), copper iodide (98.0 mg, 516 µmol) and dichlorobis

(triphenylphosphine)palladium (225 mg, 320 µmol) were added and the mixture was 

degassed with argon for 30 min. 1-Octyne (992 mg, 9.00 mmol) was added via syringe under 

a protective argon atmosphere and the mixture was stirred for two days at 85 ºC. After 

cooling to room temperature, the brown solution was filtered through celite, concentrated 

and purified by column chromatography over silica using hexane as eluent to obtain the 

desired product as a dark yellow liquid (1.41 g, 94%). 1H NMR (400.1 MHz, CDCl3): &H 7.97 

(ddd, J = 8.5, 2.3, 0.8 Hz, 1H, Ar CH), 7.93 (dd, J = 8.8, 2.2 Hz, 1H, Ar CH), 7.53 (dd, J = 8.5, 7.0 

Hz, 1H, Ar CH), 2.49 (t, J = 7.1 Hz, 2H, CH2), 1.67-1.60 (m, 2H, CH2), 1.50-1.43 (m, 2H, CH2), 

1.35-1.30 (m, 4H, 2 × CH2), 0.92-0.89 (m, 3H, CH3). 13C NMR (100.6 MHz, CDCl3): & 162.4 (d, J 

= 254.7 Hz, quat. C), 147.3 (d, J = 8.2 Hz, quat. C), 134.0 (d, J = 2.0 Hz, CH), 120.1 (d, J = 16.4 

Hz, quat. C), 119.2 (d, J = 3.7 Hz, CH), 111.4 (d, J = 26.4 Hz, CH), 102.5 (d, J = 3.6 Hz, quat. C), 

73.0 (quat. C), 31.4 (CH2), 28.7 (CH2), 28.4 (CH2), 22.7 (CH2), 19.9 (CH2), 14.2 (CH3). 19F NMR 

(376.5 MHz, CDCl3): &F -107.3. MS (ES+) m/z 250 (100%, [M+H]+), 251 (15%). HRMS (ES+) 

calc. for C14H17NO2F 250.1243, found 250.1242.
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Synthesis of N-(3-fluoro-4-(oct-1-yn-1-yl)phenyl)hydroxylamine 145

2-fluoro-4-nitro-1-(oct-1-yn-1-yl)benzene (498 mg, 2.00 mmol) was dissolved in THF (20 mL). 

Rhodium (50 mg, 5 wt.-% on carbon, wet) and hydrazine monohydrate (129 mg, 2.58 mmol) 

were added and the reaction was followed by tlc (Hex:EtOAc, 3:2). After completion, the 

solution was filtered through celite and concentrated in vacuo to obtain the desired 

intermediate product as a dark brown liquid, which was directly used in the next step 

without further purification. 1H NMR (400.1 MHz, CDCl3): &H 7.26 (d, J = 8.1 Hz, 1H, Ar CH), 

6.80 (s, 1H, N(OH)H), 6.75 (dd, J = 11.0, 2.1 Hz, 1H, Ar CH), 6.62 (dd, J = 8.4, 2.1 Hz, 1H, Ar 

CH), 5.17 (d, J = 2.2 Hz, 1H, N(H)OH), 2.42 (t, J = 7.1 Hz, 2H, CH2), 1.62 (m, 2H, CH2), 

1.49-1.42 (m, 2H, CH2), 1.32 (m, 4H, 2 × CH2), 0.90 (m, 3H, CH3). 19F NMR (376.5 MHz, 

CDCl3): &F -110.2.

Synthesis of (Z)-N-(3-carboxybenzylidene)-3-fluoro-4-(oct-1-yn-1-yl)aniline oxide 141

Crude N-(3-fluoro-4-(oct-1-yn-1-yl)phenyl)hydroxyl-amine (2.00 mmol) was dissolved in 

EtOH (10 mL) and 3-carboxybenzaldehyde (270 mg, 1.80 mmol) was added neat. The 

solution was left to stand in the freezer for three days. The occurring precipitate was filtered, 

washed with copious amounts of hexanes to yield the desired compound as a white solid 

(289 mg, 44% over two steps). M.p.: 185.4 - 185.8 °C. 1H NMR (300.1 MHz, d6-DMSO): &H 9.10 

(s, 1H, Ar CH), 8.75 (s, 1H, CH), 8.70 (d, J = 8.1 Hz, 1H, Ar CH), 8.05 (dt, J = 7.8, 1.4 Hz, 1H, 

Ar CH), 7.97 (dd, J = 10.4, 2.2 Hz, 1H, Ar CH), 7.84 (dd, J = 8.5, 2.3 Hz, 1H, Ar CH), 7.64 (t, J = 

8.0 Hz, 2H, Ar CH), 2.50 (t, J = 6.9 Hz, 2H, CH2), 1.61-1.51 (m, 2H, CH2), 1.48-1.37 (m, 2H, 

CH2), 1.35-1.24 (m, 4H, 2 × CH2), 0.90-0.85 (m, 3H, CH3). 13C NMR (75.5 MHz, d6-DMSO): & 

166.9 (quat. C), 161.6 (d, J = 249.4 Hz, quat. C), 148.2 (d, J = 8.6 Hz, quat. C), 133.7 (d, J = 1.8 

Hz, CH), 133.6 (CH), 132.9 (CH), 131.4 (CH), 131.08 (quat. C), 131.05 (quat. C), 130.1 (CH), 

128.9 (CH), 117.5 (d, J = 3.4 Hz, CH), 113.1 (d, J = 16.3 Hz, quat. C), 109.4 (d, J = 26.3 Hz, CH), 

98.6 (d, J = 3.2 Hz, quat. C), 73.1 (quat. C), 30.7 (CH2), 27.9 (CH2), 27.8 (CH2), 22.0 (CH2), 18.9 
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(CH2), 13.9 (CH3). 19F NMR (282 MHz, d6-DMSO): &F -109.9. MS (ES–) m/z 366 (100%, [M–

H]–). HRMS (ES+) calc. for C22H21NO3F 366.1505, found 366.1515.

Template trans-161

In an NMR tube, maleimide 66  (4.92 mg, 16.0 µmol) in CDCl3 (400 µL) was combined with a 

solution of nitrone 141 (5.86 mg, 16.0 µmol) in CDCl3 (400 µmol). After 48 hours at 0 ºC, the 

reaction showed complete conversion of the starting materials and proved sufficiently pure 

for characterisation (trans/cis > 15:1). 1H NMR (400.1 MHz, d6-DMSO): &H 10.86 (s, 1H, NH), 

8.12 (s, 1H, Ar CH), 8.05 (d, J = 8.5 Hz, 2H, Ar CH), 8.00 (d, J = 8.2 Hz, 1H, Ar CH), 7.91 (d, J = 

7.7 Hz, 1H, Ar CH), 7.77 (d, J = 8.0 Hz, 1H, Ar CH), 7.73 (t, J = 7.9 Hz, 1H, Ar CH), 7.56 (t, J = 

7.7 Hz, 1H, Ar CH), 7.33 (t, J = 8.3 Hz, 1H, Ar CH), 7.15 (dd, J = 11.8, 2.1 Hz, 1H, Ar CH), 7.04 

(d, J = 7.9 Hz, 2H, Ar CH), 6.91 (d, J = 8.5 Hz, 2H, Ar CH), 6.10 (s, 1H, CH), 5.49 (d, J = 7.3 Hz, 

1H, CH), 4.20 (d, J = 7.4 Hz, 1H, CH), 2.45 (s, 3H, CH3), 2.41 (t, J = 6.9 Hz, 2H, CH2), 1.55-1.46 

(m, 2H, CH2), 1.43-1.34 (m, 2H, CH2), 1.26-1.20 (m, 4H, 2 × CH2), 0.84-0.78 (m, 3H, CH3). 13C 

NMR (100.6 MHz, d6-DMSO): &C 173.8 (quat. C), 172.7 (quat. C), 166.8 (quat. C), 166.1 (d, J = 

203.6 Hz, quat. C), 163.6 (quat. C), 156.5 (quat. C), 151.4 (quat. C), 149.8 (d, J = 9.6 Hz, quat. 

C), 139.0 (quat. C), 138.5 (CH), 134.4 (quat. C), 134.1 (quat. C), 133.9 (d, J = 1.9 Hz, CH), 131.4 

(CH), 131.1 (quat. C), 129.1 (CH), 128.9 (CH), 128.7 (CH), 128.0 (CH), 125.8 (CH), 119.2 (CH), 

111.6 (CH), 110.6 (d, J = 2.1 Hz, CH), 105.0 (d, J = 16.1 Hz, quat. C), 102.0 (d, J = 26.9 Hz, CH), 

95.1 (d, J = 2.8 Hz, quat. C), 77.9 (CH), 73.4 (quat. C), 67.9 (CH), 56.4 (CH), 30.7 (CH2), 28.0 

(CH2), 27.8 (CH2), 23.5 (CH3), 22.0 (CH2), 18.8 (CH2), 13.8 (CH3). 19F NMR (375.5 MHz, d6-

DMSO): &F -110.3. MS (ES+) m/z 675 (40%, [M+H]+), 308 (100%). HRMS (ES+) calc. for 

C39H36N4O6F 675.2619, found 675.2643.
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(Z)-N-(4-(carboxymethyl)benzylidene)-3-fluoro-4-(oct-1-yn-1-yl)aniline oxide 142

Crude N-(3-fluoro-4-(oct-1-yn-1-yl)phenyl)hydroxyl-amine (2.00 mmol) was dissolved in 

EtOH (10 mL) and 2-(4-formylphenyl)acetic acid (295 mg, 1.80 mmol) was added neat. The 

solution was left to stand in the freezer for three days. The occurring precipitate was filtered, 

washed with copious amounts of hexanes to yield the desired compound as a yellow solid 

(330 mg, 48% over two steps). M.p.: 159.9 - 160.3 °C. 1H NMR (400.1 MHz, CDCl3): &H 8.26 (d, 

J = 8.3 Hz, 2H, Ar CH), 7.93 (s, 1H, CH), 7.58 (dd, J = 9.5, 1.6 Hz, 1H, Ar CH), 7.51-7.44 (m, 

2H, Ar CH), 7.33 (d, J = 8.3 Hz, 2H, Ar CH), 3.63 (s, 2H, CH2), 2.47 (t, J = 7.1 Hz, 2H, CH2), 

1.74-1.57 (m, 2H, CH2), 1.54-1.41 (m, 2H, CH2), 1.41-1.28 (m, 4H, 2 × CH2), 0.99-0.82 (m, 3H, 

CH3). 13C NMR (100.6 MHz, CDCl3): &C 174.7 (quat. C), 162.7 (d, J = 253.0 Hz, quat. C), 148.1 

(d, J = 8.4 Hz, quat. C), 138.1 (quat. C), 136.6 (CH), 133.9 (d, J = 2.2 Hz, CH), 130.1 (CH), 129.8 

(CH), 128.9 (quat. C), 117.0 (d, J = 3.6 Hz, CH), 115.0 (d, J = 16.3 Hz, quat. C), 110.0 (d, J = 26.2 

Hz, CH), 99.0 (d, J = 3.2 Hz, quat. C), 73.1 (quat. C), 41.5 (CH2), 31.5 (CH2), 28.7 (CH2), 28.5 

(CH2), 22.7 (CH2), 19.8 (CH2), 14.2 (CH3). MS (ES+) m/z 763 (15%), 404 (33%), 382 (100%, [M

+H]+). HRMS (ES+) calc. for C23H25NO3F 382.1818, found 382.1813.

(Z)-4-fluoro-N-(4-(6-methylpyridin-2-ylcarbamoyl)benzylidene)aniline oxide 55

1-Fluoro-4-nitrobenzene (1.13 g, 8.00 mmol) was dissolved in EtOH (40 mL) and H2O 

(12  mL). Bismuth trichloride (505 mg, 1.60  mmol) was added and potassium borohydride 

(518 mg, 9.60 mmol) was slowly added over a period of 5 minutes. After complete addition, 

the reaction mixture was stirred for 15 minutes, neutralised with 0.5M HCl and extracted 

into Et2O (2 x 40 mL). The combined organic layers were washed with brine, dried over 

MgSO4, filtered and the volume was reduced in vacuo. The crude product was dissolved in 

EtOH (15 mL) and reacted with 4-formyl-N-(6-methylpyridin-2-yl)benzamide (1.44 g, 6.00 

mmol) in EtOH (15 mL). The solution was stirred overnight and kept in the freezer for 
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another night. Filtration of the occurring precipitate yielded pure product (964 mg, 46%). 

M.p.: 219.9 - 221.0 °C (lit.[197] 217.2 – 218.3 ºC). 1H NMR (300.1 MHz, CDCl3): &H 8.60 (s, 1H, 

NH), 8.49 (d, J = 8.5 Hz, 2H, Ar CH), 8.19 (d, J = 8.2 Hz, 1H, Ar CH), 8.03 (d, J = 8.6 Hz, 2H, 

Ar CH), 7.97 (s, 1H, CH), 7.83-7.78 (m, 2H, Ar CH), 7.67 (t, J = 7.9 Hz, 1H, Ar CH), 7.22-7.16 

(m, 2H, Ar CH), 6.96 (d, J = 7.5 Hz, 1H, Ar CH), 2.49 (s, 3H, CH3). 13C NMR (75.5 MHz, 

CDCl3): &C 164.6 (quat. C), 163.5 (d, J = 251.5 Hz, quat. C), 157.1 (quat. C), 150.7 (quat. C), 

145.3 (d, J = 3.1 Hz, quat. C), 139.0 (CH), 135.9 (quat. C), 133.9 (quat. C), 133.4 (CH), 129.2 

(CH), 127.7 (CH), 123.9 (d, J = 8.9 Hz, CH), 119.8 (CH), 116.3 (d, J = 23.3 Hz, CH), 111.2 (CH), 

24.1 (CH3). 19F NMR (CDCl3, 376.5 MHz) = &F -110.1. MS (ES+) m/z 372 (100%, [M+Na]+).

Template trans-59b[197]

Maleimide 33 (13.9 mg, 48.0 µmol) in CDCl3 (1.20 mL) was combined with a solution of 

nitrone 55 (20.9 mg, 48.0 µmol) in CDCl3 (1.20 mL). After 48 hours at room temperature the 

solvent was removed, the remaining solid was washed intensively with hexanes, dried and 

was found to be sufficiently pure for characterisation (trans/cis > 50:1). 1H NMR (400.1 MHz, 

CDCl3): &H 11.11 (s, 1H, NH), 8.37 (d, J = 8.4 Hz, 1H, Ar CH), 7.91 (d, J = 8.5 Hz, 2H, Ar CH), 

7.75 (dd, J = 8.4, 7.6 Hz, 1H, Ar CH), 7.36 (dd, J = 8.2, 5.9 Hz, 4H, 2 × Ar CH), 7.15-7.11 (m, 

2H, Ar CH), 6.99-6.94 (m, 3H, Ar CH), 6.83 (d, J = 8.5 Hz, 2H, Ar CH), 5.67 (s, 1H, CH), 5.00 

(d, J = 7.3 Hz, 1H, CH), 3.92 (d, J = 7.6 Hz, 1H, CH), 3.76 (s, 2H, CH2), 2.51 (s, 3H, CH3). 13C 

NMR (75.5 MHz, d6-DMSO): &C 174.3 (quat. C), 173.2 (quat. C), 172.4 (quat. C), 165.4 (quat. 

C), 157.9 (d, J = 238.9 Hz, quat. C), 156.6 (quat. C), 151.5 (quat. C), 145.0 (d, J = 2.2 Hz, quat. 

C), 142.5 (quat. C), 138.4 (CH), 135.8 (quat. C), 133.6 (quat. C), 129.9 (CH), 129.9 (quat. C), 

128.3 (CH), 127.1 (CH), 126.0 (CH), 119.1 (CH), 116.3 (d, J = 7.7 Hz, CH), 115.6 (d, J = 22.5 Hz, 

CH), 111.7 (CH), 77.7 (CH), 68.5 (CH), 56.4 (CH), 39.7 (CH2), 23.6 (CH3). 19F NMR (CDCl3, 

376.5 MHz) = &F -122.1. MS (ES+) m/z 581 (100%, [M+H]+).
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Template trans-69

A solution of maleimide 66  (103 mg, 500 µmol) and nitrone 55  (125 mg, 500 µmol) in CHCl3 

(8  mL) was stirred for three days at room temperature in the absence of light. After 

evaporation of the solvent, the crude mixture of isomers was purified by column 

chromatography (SiO2; Hex:EtOAc, 3:1) to give pure trans-isomer product (115 mg, 50%). 1H 

NMR (400.1 MHz, CDCl3): &H 8.71 (s, 1H, NH), 8.67 (s, 1H, NH), 8.16 (t, J = 8.0 Hz, 2H, Ar 

CH), 7.97-7.93 (m, 4H, Ar CH), 7.67-7.61 (m, 4H, Ar CH), 7.11-7.06 (m, 2H, Ar CH), 6.99-6.91 

(m, 6H, Ar CH), 5.68 (s, 1H, CH), 5.17 (d, J = 7.6 Hz, 1H, CH), 4.05 (d, J = 7.6 Hz, 1H, CH), 

2.46 (s, 3H, CH3), 2.45 (s, 3H, CH3). 13C NMR (100.6 MHz, CDCl3): &C 173.5 (quat. C), 172.0 

(quat. C), 165.0 (quat. C), 164.5 (quat. C), 159.1 (d, J = 243.5 Hz, quat. C), 157.1 (quat. C), 157.0 

(quat. C), 150.8 (quat. C), 150.7 (quat. C), 144.2 (d, J = 2.7 Hz, quat. C), 142.1 (quat. C), 139.1 

(CH), 139.0 (CH), 134.9 (quat. C), 134.5 (quat. C), 134.1 (quat. C), 128.2 (CH), 128.1 (CH), 127.4 

(CH), 126.2 (CH), 119.8 (d, J = 6.2 Hz, CH), 116.7 (CH), 116.7 (CH), 116.2 (d, J = 22.6 Hz, CH), 

111.2 (CH), 111.2 (CH), 77.1 (CH), 70.3 (CH), 57.3 (CH), 24.0 (CH3, 2C). 19F NMR (376.5 MHz, 

CDCl3): &F -120.3. MS (ES+) m/z 657 (100%, [M+H]+). HRMS (ES+) calc. for C37H30N6O5F 

657.2262, found 657.2260.

Synthesis of 2-fluoro-4-nitro-1-(octyloxy)benzene 158[224]

2-fluoro-4-nitrophenol (5.00 g, 31.8 mmol) was dissolved in acetone (250 mL). To this mixture 

was then added neat K2CO3 (8.81 g, 63.6 mmol) and bromooctane (6.59 mL, 38.2 mmol) via 

syringe. The solution was refluxed at 60 ºC overnight while kept under a nitrogen 

atmosphere. After cooling to room temperature, the solution was poured into water 
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(300 mL), acidified with 3M HCl until disappearance of the yellow colour and extracted into 

DCM (3 x 100 mL). The combined organic layers were dried over MgSO4, filtered and 

concentrated. The residue was redissolved in hexanes and all solids were filtered off. The 

resulting solution was concentrated and the obtained oil was purified by column 

chromatography (Hex:EtOAc, 20:1) to yield the desired product as a light yellow liquid 

(7.04 g, 82%). 1H NMR (300.1 MHz, CDCl3): &H 8.03 (ddd, J = 9.0, 2.7, 1.4 Hz, 1H, Ar CH), 7.97 

(dd, J = 10.7, 2.7 Hz, 1H, Ar CH), 7.01 (t, J = 8.5 Hz, 1H, Ar CH), 4.12 (t, J = 6.6 Hz, 2H, CH2), 

1.91-1.80 (m, 2H, CH2), 1.52-1.42 (m, 2H, CH2), 1.38-1.23 (m, 8H, 4 × CH2), 0.90-0.86 (m, 3H, 

CH3). 13C NMR (75.5 MHz, CDCl3): & 153.2 (d, J = 10.6 Hz, quat. C), 151.5 (d, J = 251.3 Hz, 

quat. C), 140.7 (d, J = 7.2 Hz, quat. C), 121.0 (d, J = 3.4 Hz, CH), 113.0 (d, J = 2.4 Hz, CH), 112.4 

(d, J = 22.9 Hz, CH), 70.1 (CH2), 31.9 (CH2), 29.4 (CH2), 29.3 (CH2), 29.0 (CH2), 25.9 (CH2), 22.8 

(CH2), 14.2 (CH3). 19F NMR (282 MHz, CDCl3): & -131.0. MS (ES+) m/z 292 (100%, [M+Na]+).

Synthesis of 3-fluoro-4-(octyloxy)aniline 155

2-fluoro-4-nitro-1-(octyloxy)benzene (700 mg, 2.60 mmol) was dissolved in EtOH (30 mL). 

Palladium (70 mg, 10 wt.-% on carbon, dry) was added carefully. The solution was purged 

with hydrogen and kept under a hydrogen atmosphere overnight using hydrogen filled 

balloons. The following day, the solution was filtered through celite and concentrated in 

vacuo to yield the desired product in sufficient quality for further conversion. 1H NMR (400.1 

MHz, CDCl3): &H 6.79 (t, J = 8.9 Hz, 1H, Ar CH), 6.46 (dd, J = 12.6, 2.7 Hz, 1H, Ar CH), 6.37 

(ddd, J = 8.6, 2.7, 1.3 Hz, 1H, Ar CH), 3.93 (t, J = 6.7 Hz, 2H, CH2), 3.56 (s, 2H, 2 × NH), 

1.80-1.69 (m, 2H, CH2), 1.47-1.40 (m, 2H, CH2), 1.36-1.24 (m, 8H, 4 × CH2), 0.91-0.84 (m, 3H, 

CH3). 19F NMR (282 MHz, CDCl3): &F -133.2.

Synthesis of (E)-3-(((3-fluoro-4-(octyloxy)phenyl)imino)methyl)benzoic acid 151

Crude 3-fluoro-4-(octyloxy)aniline (264 mg, 1.10 mmol) was dissolved in a minimum amount 

of EtOH (4 mL). 3-carboxybenzaldehyde (166 mg, 1.10 mmol) was added neat and the 
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solution was sonicated and left to stand in the dark overnight. The resulting precipitate was 

filtered, washed with hexanes and dried to give the desired imine as a white solid (245 mg, 

60% over two steps). M.p.: 143.0 - 143.5 °C. 1H NMR (400.1 MHz, CDCl3): &H 8.59 (s, 1H, CH), 

8.53 (s, 1H, Ar CH), 8.23-8.19 (m, 2H, Ar CH), 7.60 (t, J = 7.7 Hz, 1H, Ar CH), 7.11 (dd, J = 12.2, 

2.4 Hz, 1H, Ar CH), 7.05 (dd, J = 9.0, 2.2 Hz, 1H, Ar CH), 6.99 (t, J = 8.6 Hz, 1H, Ar CH), 4.06 

(t, J = 6.6 Hz, 2H, CH2), 1.83-1.79 (m, 2H, CH2), 1.53-1.46 (m, 2H, CH2), 1.38-1.30 (m, 8H, 4 × 

CH2), 0.92-0.86 (m, 3H, CH3). 13C NMR (75.5 MHz, CDCl3): &C 171.4 (quat. C), 157.9 (CH), 

153.1 (d, J = 247.1 Hz, quat. C), 146.3 (d, J = 11.1 Hz, quat. C), 144.4 (d, J = 7.2 Hz, quat. C), 

136.7 (quat. C), 133.4 (CH), 132.9 (CH), 131.0 (CH), 130.2 (quat. C), 129.2 (CH), 117.5 (d, J = 3.2 

Hz, CH), 115.2 (d, J = 2.8 Hz, CH), 109.3 (d, J = 19.5 Hz, CH), 69.9 (CH2), 32.0 (CH2), 29.5 

(CH2), 29.4 (CH2), 29.4 (CH2), 26.1 (CH2), 22.8 (CH2), 14.25 (CH3). 19F NMR (282 MHz, CDCl3): 

& -133.4. MS (ES+) m/z 372 (100%, [M+H]+). HRMS (ES+) calc. for C22H27NO3F 372.1975, 

found 372.1974.

Synthesis of (E)-2-(4-(((3-fluoro-4-(octyloxy)phenyl)imino)methyl)phenyl)acetic acid 152

Crude 3-fluoro-4-(octyloxy)aniline (264 mg, 1.10 mmol) was dissolved in a minimum amount 

of EtOH (4 mL). 2-(4-formylphenyl)acetic acid (166 mg, 1.10 mmol) was added neat and the 

solution was sonicated and left to stand in the dark overnight. The resulting precipitate was 

filtered, washed with hexanes and dried to give the desired imine as a white solid (223 mg, 

53% over two steps). M.p.: 130.8 - 131.5 °C. 1H NMR (400.1 MHz, CDCl3): &H 8.46 (s, 1H, CH), 

7.88 (d, J = 8.1 Hz, 2H, Ar CH), 7.42 (d, J = 8.1 Hz, 2H, Ar CH), 7.09 (dd, J = 6.1, 2.1 Hz, 1H, Ar 

CH), 7.05-6.98 (m, 2H, Ar CH), 4.07 (t, J = 6.6 Hz, 2H, CH2), 3.75 (s, 2H, CH2), 1.90-1.81 (m, 

2H, CH2), 1.55-1.45 (m, 2H, CH2), 1.41-1.32 (m, 8H, 4 × CH2), 0.94-0.89 (m, 3H, CH3). 13C 

NMR (75.5 MHz, CDCl3): &C 176.7 (quat. C), 159.1 (CH), 153.0 (d, J = 246.9 Hz, quat. C), 146.0 

(d, J = 11.1 Hz, quat. C), 144.9 (d, J = 7.1 Hz, quat. C), 136.9 (quat. C), 135.24 (quat. C), 130.0 

(CH), 129.2 (CH), 117.3 (d, J = 3.2 Hz, CH), 115.3 (d, J = 2.8 Hz, CH), 109.2 (d, J = 19.6 Hz, 

CH), 70.0 (CH2), 41.2 (CH2), 32.0 (CH2), 29.5 (CH2), 29.4 (CH2), 29.4 (CH2), 26.1 (CH2), 22.8 

(CH2), 14.2 (CH3). 19F NMR (282 MHz, CDCl3): &F -133.5. MS (ES+) m/z 386 (100%, [M+H]+). 

HRMS (ES+) calc. for C23H29NO3F 386.2131, found 386.2129.
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Synthesis of (Z)-3-fluoro-N-(4-fluorobenzylidene)-4-(oct-1-yn-1-yl)aniline oxide 150

Crude N-(3-fluoro-4-(oct-1-yn-1-yl)phenyl)hydroxyl-amine (2.00 mmol) was dissolved in 

EtOH (10 mL) and 4-fluorobenzaldehyde (223 mg, 1.80 mmol) was added neat. The solution 

was left to stand in the freezer for three days. The occurring precipitate was filtered, washed 

with copious amounts of hexanes to yield the desired compound as a white solid (376 mg, 

61% over two steps). M.p.: 99.1 - 99.5 °C. 1H NMR (300.1 MHz, CDCl3): &H 8.44 (dd, J = 8.9, 

5.6 Hz, 2H, Ar CH), 7.90 (s, 1H, CH), 7.60-7.56 (m, 1H, Ar CH), 7.52-7.45 (m, 2H, Ar CH), 7.17 

(d, J = 8.7 Hz, 2H, Ar CH), 2.47 (t, J = 7.0 Hz, 2H, CH2), 1.68-1.59 (m, 2H, CH2), 1.51-1.42 (m, 

2H, CH2), 1.37-1.30 (m, 4H, 2 × CH2), 0.92-0.87 (m, J = 7.6 Hz, 3H, CH3). 13C NMR (75.5 MHz, 

CDCl3): &C 164.2 (d, J = 254.5 Hz, quat. C), 162.9 (d, J = 253.1 Hz, quat. C), 148.5 (d, J = 8.2 Hz, 

quat. C), 133.9 (d, J = 2.2 Hz, CH), 133.5 (s, CH), 131.7 (d, J = 8.4 Hz, CH), 126.9 (d, J = 3.3 Hz, 

quat. C), 116.8 (d, J = 3.7 Hz, CH), 116.1 (d, J = 21.9 Hz, CH), 114.9 (d, J = 16.4 Hz, quat. C), 

109.8 (d, J = 26.1 Hz, CH), 99.0 (d, J = 3.4 Hz, quat. C), 73.1 (quat. C), 31.5 (CH2), 28.7 (CH2), 

28.5 (CH2), 22.7 (CH2), 19.8 (CH2), 14.18 (CH3). 19F NMR (282 MHz, CDCl3): &F -106.3, -108.2. 

MS (ES+) m/z 364 (100%, [M+Na]+), 365 (8%), 705 (28%). HRMS (ES+) calc. for C21H21NOF2Na 

364.1489, found 364.1484.

Template trans-146

In an NMR tube, maleimide 72  (5.94 mg, 16.0 µmol) in CDCl3 (400 µL) was combined with a 

solution of nitrone 141 (5.87 mg, 16.0 µmol) in CDCl3 (400 µL). After 48 hours at 0 ºC, the 

reaction showed complete conversion. Removal of the solvent provided sufficiently pure 

material (trans/cis > 25:1). 1H NMR (300.1 MHz, CDCl3): &H 11.90 (s, 1H, NH), 8.25 (s, 1H, Ar 
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CH), 8.17 (d, J = 8.7 Hz, 2H, Ar CH), 8.15 (s, 1H, Ar CH), 8.06 (d, J = 7.8 Hz, 1H, Ar CH), 7.58 

(d, J = 7.9 Hz, 1H, Ar CH), 7.43 (t, J = 7.7 Hz, 1H, Ar CH), 7.22 (d, J = 8.0 Hz, 1H, Ar CH), 7.18 

(d, J = 8.6 Hz, 2H, Ar CH), 6.84-6.76 (m, 3H, Ar CH), 5.65 (s, 1H, CH), 5.22 (d, J = 7.3 Hz, 1H, 

CH), 4.21 (d, J = 7.4 Hz, 1H, CH), 2.56 (s, 3H, CH3), 2.42 (s, 3H, CH3), 2.39 (t, J = 7.1 Hz, 2H, 

CH2), 1.63-1.53 (m, 2H, CH2), 1.46-1.39 (m, 2H, CH2), 1.34-1.25 (m, 4H, 2 × CH2), 0.89-0.85 (m, 

3H, CH3). 13C NMR (75.5 MHz, CDCl3): &C 173.9 (quat. C), 173.0 (quat. C), 171.3 (quat. C), 

166.5 (quat. C), 163.2 (d, J = 250.9 Hz, quat. C), 155.0 (quat. C), 152.9 (quat. C), 151.5 (quat. C), 

148.5 (d, J = 8.6 Hz, quat. C), 137.2 (quat. C), 135.2 (quat. C), 134.2 (d, J = 2.5 Hz, CH), 134.2 

(quat. C), 132.7 (CH), 132.0 (quat. C), 129.9 (CH), 129.8 (CH), 128.9 (CH), 128.4 (CH), 125.7 

(CH), 121.3 (CH), 114.0 (CH), 110.7 (d, J = 2.4 Hz, CH), 107.3 (d, J = 16.3 Hz, quat. C), 103.1 (d, 

J = 26.3 Hz, CH), 95.6 (d, J = 3.0 Hz, quat. C), 77.4 (CH), 73.3 (quat. C), 69.8 (CH), 56.0 (CH), 

31.5 (CH2), 28.7 (CH2), 28.7 (CH2), 22.7 (CH2), 21.8 (2 × CH3), 19.8 (CH2), 14.2 (CH3). 19F NMR 

(282 MHz, CDCl3): &F -108.8. MS (ES+) m/z 689 (90%, [M+H]+), 322 (100%). HRMS (ES+) calc. 

for C40H38N4O6F 689.2775, found 689.2789.

AB product cis-148

In an NMR tube, maleimide 72  (5.14 mg, 16.0 µmol) in CDCl3 (400 µL) was combined with a 

solution of nitrone 142 (6.09 mg, 16.0 µmol) in CDCl3 (400 µmol). After 48 hours at 0 ºC, the 

reaction showed complete conversion of the starting materials and the cis-isomer could be 

characterised (cis/trans = 3:1). 1H NMR (400.1 MHz, CDCl3): &H 10.81 (s, 1H, NH), 8.00 (s, 1H, 

Ar CH), 7.81 (d, J = 8.4 Hz, 2H, Ar CH), 7.31 (d, J = 8.0 Hz, 2H, Ar CH), 7.16-7.12 (m, 3H, Ar 

CH), 7.01 (d, J = 8.3 Hz, 2H, Ar CH), 6.78 (dd, J = 10.9, 1.9 Hz, 1H, Ar CH), 6.70 (s, 1H, Ar 

CH), 6.62 (dd, J = 8.5, 1.8 Hz, 1H, Ar CH), 5.08 (d, J = 8.0 Hz, 1H, CH), 4.95 (d, J = 8.9 Hz, 1H, 

CH), 4.08 (t, J = 8.7 Hz, 1H, CH), 3.56 (s, 2H, CH2), 2.33 (s, 3H, CH3), 2.33 (t, J = 4.7 Hz, 2H, 

CH2), 2.30 (s, 3H, CH3), 1.63-1.53 (m, 2H, CH2), 1.46-1.39 (m, 2H, CH2), 1.34-1.25 (m, 4H, 2 × 

CH2), 0.89-0.85 (m, 3H, CH3). 13C NMR (100.6 MHz, CDCl3): &C 176.5 (quat. C), 172.1 (quat. 
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C), 170.5 (quat. C), 166.3 (quat. C), 163.0 (d, J = 250.8 Hz, quat. C), 155.1 (quat. C), 152.5 (quat. 

C), 151.2 (quat. C), 149.2 (d, J = 8.9 Hz, quat. C), 135.5 (quat. C), 134.5 (quat. C), 134.4 (quat. 

C), 134.0 (d, J = 2.8 Hz, CH), 133.9 (quat. C), 132.8 (quat. C), 130.6 (CH), 128.9 (CH), 127.8 

(CH), 125.7 (CH), 121.2 (CH), 113.6 (CH), 112.3 (d, J = 3.0 Hz, CH), 108.4 (d, J = 16.2 Hz, quat. 

C), 104.5 (d, J = 26.2 Hz, CH), 96.0 (d, J = 3.2 Hz, quat. C), 77.4 (CH), 72.0 (CH), 54.4 (CH), 

40.6 (CH2), 31.5 (CH2), 28.7 (CH2), 28.7 (CH2), 22.7 (CH2), 22.0 (CH3), 21.7 (CH3), 19.8 (CH2), 

14.2 (CH3). 19F NMR (375.5 MHz, CDCl3): &F -108.9. MS (ES+) m/z 703 (25%, [M+H]+), 322 

(100%). HRMS (ES+) calc. for C41H40N4O6F 703.2932, found 703.2947.

Template trans-147

In an NMR tube, maleimide 74  (5.94 mg, 16.0 µmol) in CDCl3 (400 µL) was combined with a 

solution of nitrone 141 (5.86 mg, 16.0 µmol) in CDCl3 (400 µL). After 48 hours at 0 ºC, the 

reaction showed complete conversion. Removal of the solvent provided sufficiently pure 

cycloadduct (trans/cis > 30:1). 1H NMR (400.1 MHz, d6-DMSO): &H 10.83 (s, 1H, NH), 8.73 (s, 

1H, Ar CH), 8.16 (s, 1H, Ar CH), 8.12-8.09 (m, 2H, Ar CH), 7.98-7.92 (m, 3H, Ar CH), 7.81 (d, J 

= 8.0 Hz, 1H, Ar CH), 7.58 (t, J = 7.7 Hz, 1H, Ar CH), 7.41 (t, J = 8.3 Hz, 1H, Ar CH), 7.24 (dd, 

J = 11.8, 2.2 Hz, 1H, Ar CH), 7.13 (dd, J = 8.6, 2.2 Hz, 1H, Ar CH), 7.08 (dd, J = 8.7, 1.9 Hz, 1H, 

Ar CH), 7.01 (s, 1H, Ar CH), 6.90 (s, 1H, Ar CH), 6.17 (s, 1H, CH), 5.52 (d, J = 7.3 Hz, 1H, CH), 

4.26 (d, J = 7.3 Hz, 1H, CH), 2.46 (t, J = 7.0 Hz, 2H, CH2), 2.42 (s, 3H, CH3), 2.33 (s, 3H, CH3), 

1.58-1.48 (m, 2H, CH2), 1.45-1.38 (m, 2H, CH2), 1.31-1.21 (m, 4H, 2 × CH2), 0.88-0.80 (m, 3H, 

CH3). 13C NMR (100.6 MHz, d6-DMSO): &C 174.1 (quat. C), 172.9 (quat. C), 167.1 (quat. C), 

165.6 (quat. C), 162.3 (d, J = 247.7 Hz, quat. C), 156.2 (quat. C), 151.6 (quat. C), 150.2 (d, J = 9.5 

Hz, quat. C), 149.0 (quat. C), 139.1 (quat. C), 134.0 (d, J = 1.9 Hz, CH), 133.7 (quat. C), 132.5 

(quat. C), 131.4 (quat. C), 131.3 (CH), 131.1 (quat. C), 130.6 (quat. C), 130.2 (CH), 129.1 (CH), 

128.8 (CH), 128.5 (CH), 127.9 (CH), 127.8 (CH), 125.5 (CH), 124.7 (CH), 124.5 (CH), 120.1 

(CH), 112.1 (CH), 110.6 (d, J = 2.9 Hz, CH), 105.1 (d, J = 16.2 Hz, quat. C), 102.0 (d, J = 26.9 Hz, 

quat. C), 95.3 (d, J = 2.8 Hz, quat. C), 78.2 (CH), 73.4 (quat. C), 68.0 (CH), 56.4 (CH), 30.8 
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(CH2), 28.1 (CH2), 27.9 (CH2), 23.4 (CH3), 22.0 (CH2), 20.9 (CH3), 18.8 (CH2), 13.8 (CH3). 19F 

NMR (282 MHz, CDCl3): &F -108.6. HRMS (MALDI) calc. for C44H40N4O6F 739.2926, found 

739.2632.

Template trans-149

In an NMR tube, maleimide 74  (5.94 mg, 16.0 µmol) in CDCl3 (400 µL) was combined with a 

solution of nitrone 142 (6.09 mg, 16.0 µmol) in CDCl3 (400 µL). After 48 hours at 0 ºC, the 

reaction showed complete conversion of the starting materials and proved sufficiently pure 

for characterisation (trans/cis > 20:1). 1H NMR (300.1 MHz, CDCl3): &H 11.28 (s, 1H, NH), 8.58 

(s, 1H, Ar CH), 8.29 (s, 1H, Ar CH), 8.11 (dd, J = 8.6, 1.4 Hz, 1H, Ar CH), 7.85 (d, J = 8.5 Hz, 

1H, Ar CH), 7.46 (t, J = 8.8 Hz, 1H, Ar CH), 7.32-7.21 (m, 1H, Ar CH), 7.30 (d, J = 8.4 Hz, 2H, 

Ar CH), 7.22 (d, J = 8.3 Hz, 2H, Ar CH), 7.01-6.92 (m, 3H, Ar CH), 6.86 (dd, J = 8.5, 2.1 Hz, 1H, 

Ar CH), 6.82 (s, 1H, Ar CH), 5.65 (s, 1H, CH), 5.05 (d, J = 7.4 Hz, 1H, CH), 3.92 (d, J = 7.4 Hz, 

1H, CH), 3.75 (s, 2H, CH2), 2.49 (s, 3H, CH3), 2.45 (t, J = 7.2 Hz, 2H, CH2), 2.42 (s, 3H, CH3), 

1.68-1.57 (m, 2H, CH2), 1.52-1.42 (m, 2H, CH2), 1.34-1.25 (m, 4H, 2 × CH2), 0.91-0.84 (m, 3H, 

CH3). 13C NMR (100.6 MHz, d6-DMSO): &C 174.4 (quat. C), 173.1 (quat. C), 172.6 (quat. C), 

165.6 (quat. C), 162.3 (d, J = 247.6 Hz, quat. C), 156.1 (quat. C), 151.5 (quat. C), 150.2 (d, J = 9.6 

Hz, quat. C), 149.3 (quat. C), 136.8 (quat. C), 134.9 (quat. C), 134.0 (d, J = 1.9 Hz, CH), 133.8 

(quat. C), 132.5 (quat. C), 131.5 (quat. C), 130.6 (quat. C), 130.1 (CH), 129.7 (CH), 128.5 (CH), 

127.9 (CH), 127.0 (CH), 125.5 (CH), 124.9 (CH), 124.6 (CH), 120.2 (CH), 112.2 (CH), 110.6 (d, J 

= 2.4 Hz, CH), 104.9 (d, J = 16.1 Hz, quat. C), 102.0 (d, J = 26.9 Hz, CH), 95.2 (d, J = 2.8 Hz, 

quat. C), 78.1 (CH), 73.5 (quat. C), 68.2 (CH), 56.3 (CH), 40.3 (CH2), 30.8 (CH2), 28.1 (CH2), 

27.9 (CH2), 23.3 (CH3), 22.0 (CH2), 20.9 (CH3), 18.8 (CH2), 13.9 (CH3). 19F NMR (375.5 MHz, 

d6-DMSO): &F -110.2. HRMS (MALDI) calc. for C45H42N4O6F 753.3083, found 753.3088.
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Appendix

A1. Examples of saturation curves
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A2. SimFit scripts

A2.1 Example for a bimolecular reaction
*=================================================================
* Benzene Maleimide + Control Nitrone
*=================================================================
* Bimolecular Model - trans and cis product
*=================================================================
* rate constant for trans: 1.77E-4 ; cis: 6.97E-5 ; R = 7.5%
*=================================================================

DIM (2)

* Bimolecular routes to TRANS

REACTION (A + B --> TRANS) CONSTANT (1, 1.72E-6, 1, 1, 1000)

* Bimolecular routes to CIS

REACTION (A + B --> CIS) CONSTANT (2, 0.61E-6, 2, 1, 1000)

REACTION (COMPILE)

REACTION (SHOW)
CONSTANT (SHOW)

DEFINE (1, TRANS, P, 1) SCALE (3,1)
DEFINE (2, CIS, P, 4) SCALE (3,1)

SELECT (TRANS, CIS)

READ (BIMOLECULAR)
REACTION (DOC)
CONSTANT (DOC)

TIME (SEC)
WIN (0, 60000, 20000, 200, 0, 3e-3, 5e-3, 1e-4)

ASSIGN (OBS, TRANS = TRANS)
ASSIGN (OBS, CIS = CIS)
ASSIGN (SPEC, A = #10e-3)
ASSIGN (SPEC, B = #10e-3)

CHOOSE (EXP1)

INTEG (STIFF, 1E-9, 1, 0.075, 100, 50)

PLOT (OBS, RES)

*Optimise rate constants using simplex

SIMPLEX (PLOT)
SIMPLEX (PLOT)
SIMPLEX (PLOT)
SIMPLEX (PLOT)
SIMPLEX (PLOT)

PLOT (OBS, RES)
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A2.2 Example for a self-replicating reaction
*=============================================
* Carboxy Nitrone + Dimethyl Benzene
*=============================================
*
* Replication Model including all bimolecular
*
* Cis   = --
* Trans = SR
*
*=============================================
* 
* A = Benzene Maleimide
* C = Carboxy Nitrone
*
* Best Fit ( R = 1.62 %)
* k1 = 1.556E-02 
* k2 = 3.363E-01
* 33 = 70
*
*=============================================

DIM (2)

* Bimolecular routes to TRANS
REACTION (A + C --> TRANS )            CONSTANT ( 1, 2.23E-4, 0)

* Bimolecular routes to CIS
REACTION (A + C --> CIS   )            CONSTANT ( 2, 1.14E-4, 0)

* Formation of binary complexes
REACTION (A + TRANS  ==> ATRANS  )     CONSTANT ( 3, 1E9, 0) CONSTANT ( 4, 2.50E+5, 0)
REACTION (C + TRANS  ==> CTRANS  )     CONSTANT ( 5, 1E9, 0) CONSTANT ( 6, 2.50E+5, 0)
REACTION (A + CTRANS ==> ACTRANS )     CONSTANT ( 7, 1E9, 0) CONSTANT ( 8, 2.50E+5, 0)
REACTION (C + ATRANS ==> ACTRANS )     CONSTANT ( 9, 1E9, 0) CONSTANT (10, 2.50E+5, 0)
REACTION (A + CIS    ==> ACIS    )     CONSTANT (11, 1E9, 0) CONSTANT (12, 2.50E+5, 0)
REACTION (C + CIS    ==> CCIS    )     CONSTANT (13, 1E9, 0) CONSTANT (14, 2.50E+5, 0)
REACTION (A + CCIS   ==> ACCIS   )     CONSTANT (15, 1E9, 0) CONSTANT (16, 2.50E+5, 0)
REACTION (C + ACIS   ==> ACCIS   )     CONSTANT (17, 1E9, 0) CONSTANT (18, 2.50E+5, 0)
 
* Ternary complex reaction

REACTION (ACTRANS       --> TRANSTRANS )   CONSTANT (19, 2E-4, 1, 1, 1000)

* Product duplexes - only [TRANS*TRANS] is stable beyond one Pyr*COOH association

REACTION (TRANS + TRANS ==> TRANSTRANS )   CONSTANT (20, 1E9, 0) CONSTANT (21, 1E+1, 2, 1, 
100000)
REACTION (CIS  + CIS    ==> CISCIS     )   CONSTANT (22, 1E9, 0) CONSTANT (23, 2.50E+5, 0)
REACTION (TRANS + CIS   ==> TRANSCIS   )   CONSTANT (24, 1E9, 0) CONSTANT (25, 2.50E+5, 0)

* AB reaction gives CIS

REACTION (A + C          ==> AC)     CONSTANT (26, 1E9, 0) CONSTANT (27, 2.50E+5, 0) 

*Bimolecular Reactions of Complexes

REACTION (ACIS + C       --> TRANS + CIS        )          CONSTANT (28, 2.23E-4, 0)
REACTION (CCIS + A       --> TRANS + CIS        )          CONSTANT (29, 2.23E-4, 0)
REACTION (ATRANS + C     --> TRANS + TRANS      )          CONSTANT (30, 2.23E-4, 0)
REACTION (CTRANS + A     --> TRANS + TRANS      )          CONSTANT (31, 2.23E-4, 0)

REACTION (AC + A         --> TRANS + A          )          CONSTANT (32, 2.23E-4, 0)
REACTION (AC + C         --> TRANS + C          )          CONSTANT (33, 2.23E-4, 0)
REACTION (AC + AC        --> TRANS + A + C      )          CONSTANT (34, 2.23E-4, 0)

REACTION (ACIS  + CCIS    --> TRANS + CIS  + CIS    )      CONSTANT (35, 2.23E-4, 0)
REACTION (ACIS  + CTRANS  --> TRANS + TRANS + CIS   )      CONSTANT (36, 2.23E-4, 0)
REACTION (ATRANS + CCIS   --> TRANS + TRANS + CIS   )      CONSTANT (37, 2.23E-4, 0)
REACTION (ATRANS + CTRANS --> TRANS + TRANS + TRANS )      CONSTANT (38, 2.23E-4, 0)

314



REACTION (ACIS  + C       --> CIS + CIS          )         CONSTANT (39, 1.14E-4, 0)
REACTION (CCIS  + A       --> CIS + CIS          )         CONSTANT (40, 1.14E-4, 0)
REACTION (ATRANS + C      --> CIS + TRANS        )         CONSTANT (41, 1.14E-4, 0)
REACTION (CTRANS + A      --> CIS + TRANS        )         CONSTANT (42, 1.14E-4, 0)

REACTION (AC + A          --> CIS + A             )        CONSTANT (43, 1.14E-4, 0)
REACTION (AC + C          --> CIS + C             )        CONSTANT (44, 1.14E-4, 0)
REACTION (AC + AC         --> CIS + A + C         )        CONSTANT (45, 1.14E-4, 0)

REACTION (ACIS  + CCIS    --> CIS + CIS  + CIS    )        CONSTANT (46, 1.14E-4, 0)
REACTION (ACIS  + CTRANS  --> CIS + TRANS + CIS   )        CONSTANT (47, 1.14E-4, 0)
REACTION (ATRANS + CCIS   --> CIS + TRANS + CIS   )        CONSTANT (48, 1.14E-4, 0)
REACTION (ATRANS + CTRANS --> CIS + TRANS + TRANS )        CONSTANT (49, 1.14E-4, 0)

REACTION (AC + ACIS       --> TRANS + A + CIS     )        CONSTANT (50, 2.23E-4, 0)
REACTION (AC + CCIS       --> TRANS + C + CIS     )        CONSTANT (51, 2.23E-4, 0)
REACTION (AC + ATRANS     --> TRANS + A + TRANS   )        CONSTANT (52, 2.23E-4, 0)
REACTION (AC + CTRANS     --> TRANS + C + TRANS   )        CONSTANT (53, 2.23E-4, 0)

REACTION (AC + ACIS       --> CIS  + A + CIS     )         CONSTANT (54, 1.14E-4, 0)
REACTION (AC + CCIS       --> CIS  + C + CIS     )         CONSTANT (55, 1.14E-4, 0)
REACTION (AC + ATRANS     --> CIS  + A + TRANS   )         CONSTANT (56, 1.14E-4, 0)
REACTION (AC + CTRANS     --> CIS  + C + TRANS   )         CONSTANT (57, 1.14E-4, 0)

REACTION (ACCIS  + A      --> CIS  + A + TRANS   )         CONSTANT (58, 2.23E-4, 0)
REACTION (ACCIS  + C      --> CIS  + C + TRANS   )         CONSTANT (59, 2.23E-4, 0)
REACTION (ACTRANS + A     --> TRANS + A + TRANS  )         CONSTANT (60, 2.23E-4, 0)
REACTION (ACTRANS + C     --> TRANS + C + TRANS  )         CONSTANT (61, 2.23E-4, 0)

REACTION (ACCIS  + A      --> CIS  + A + CIS     )         CONSTANT (62, 1.14E-4, 0)
REACTION (ACCIS  + C      --> CIS  + C + CIS     )         CONSTANT (63, 1.14E-4, 0)
REACTION (ACTRANS + A     --> TRANS + A + CIS    )         CONSTANT (64, 2.23E-4, 0)
REACTION (ACTRANS + C     --> TRANS + C + CIS    )         CONSTANT (65, 2.23E-4, 0)

REACTION (AC + ACCIS      --> CIS  + A + C + CIS    )      CONSTANT (66, 1.14E-4, 0)
REACTION (AC + ACCIS      --> TRANS + A + C + CIS   )      CONSTANT (67, 2.23E-4, 0)
REACTION (AC + ACTRANS    --> CIS  + A + C + TRANS  )      CONSTANT (68, 1.14E-4, 0)
REACTION (AC + ACTRANS    --> TRANS + A + C + TRANS )      CONSTANT (69, 2.23E-4, 0)

REACTION (COMPILE)

REACTION (SHOW)
CONSTANT (SHOW)

DEFINE   (1, TRANS, P, 1) SCALE (3,1)
DEFINE   (2, CIS , P, 4) SCALE (3,1) 

SELECT   (TRANS, CIS)

READ     (BENZCAR)
REACTION (DOC)
CONSTANT (DOC)

TIME     (SEC)
WIN      (0, 80000, 20000, 200, 0, 10E-3, 2E-3, 1E-4)

ASSIGN   (OBS,  TRANS = TRANS + ATRANS + CTRANS + ACTRANS + 2 TRANSTRANS + TRANSCIS)
ASSIGN   (OBS,  CIS   = CIS  + ACIS  + CCIS  + ACCIS  + 2 CISCIS   + TRANSCIS)
ASSIGN   (SPEC, A     = #10e-3 )
ASSIGN   (SPEC, C     = #10e-3 )

CHOOSE   (EXP1)

INTEG    (STIFF, 1E-9, 4, 0.05, 200, 100)

PLOT     (OBS, RES)

* 10 rounds of Simplex optimizer without screen
* update

OPAR     (1E16)
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SIMPLEX  (PLOT)
SIMPLEX  (PLOT)
SIMPLEX  (PLOT)
SIMPLEX  (PLOT)
NEWTON   (PLOT)

PLOT     (FILE)
PLOT     (SPEC)

*SCAN     (1.02, 20, 20)
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A2.3 Script for the reaction of maleimide 72 with 71
*=============================================
* Phenylacetic Nitrone + Dimethyl Benzene
*=============================================
* Replication Model including all bimolecular
*
* Cis   = AB
* Trans = SR
*
*=============================================
* 
* A = Benzene Maleimide
* P = Phenylacetic Nitrone
*
* Best Fit ( R = 4.56 % )
*
* k1 = 5.0936 E -3
* k2 = 29.33
* k3 = 6.4765 E -5
*
*=============================================

DIM (3)

* Bimolecular routes to TRANS
REACTION (A + P --> TRANS )            CONSTANT ( 1, 1.84E-4, 0)

* Bimolecular routes to CIS
REACTION (A + P --> CIS   )            CONSTANT ( 2, 1.03E-4, 0)

* Formation of binary complexes
REACTION (A + TRANS  ==> ATRANS  )     CONSTANT ( 3, 1E9, 0) CONSTANT ( 4, 5.55E+5, 0)
REACTION (P + TRANS  ==> PTRANS  )     CONSTANT ( 5, 1E9, 0) CONSTANT ( 6, 5.55E+5, 0)
REACTION (A + PTRANS ==> APTRANS )     CONSTANT ( 7, 1E9, 0) CONSTANT ( 8, 5.55E+5, 0)
REACTION (P + ATRANS ==> APTRANS )     CONSTANT ( 9, 1E9, 0) CONSTANT (10, 5.55E+5, 0)
REACTION (A + CIS    ==> ACIS    )     CONSTANT (11, 1E9, 0) CONSTANT (12, 5.55E+5, 0)
REACTION (P + CIS    ==> PCIS    )     CONSTANT (13, 1E9, 0) CONSTANT (14, 5.55E+5, 0)
REACTION (A + PCIS   ==> APCIS   )     CONSTANT (15, 1E9, 0) CONSTANT (16, 5.55E+5, 0)
REACTION (P + ACIS   ==> APCIS   )     CONSTANT (17, 1E9, 0) CONSTANT (18, 5.55E+5, 0)
 
* Ternary complex reaction

REACTION (APTRANS       --> TRANSTRANS )   CONSTANT (19, 2E-4, 1, 1, 1000)

* Product duplexes - only [TRANS*TRANS] is stable beyond one Pyr*COOH association

REACTION (TRANS + TRANS ==> TRANSTRANS )   CONSTANT (20, 1E9, 0) CONSTANT (21, 1E+4, 2, 1, 
1000)
REACTION (CIS  + CIS    ==> CISCIS     )   CONSTANT (22, 1E9, 0) CONSTANT (23, 5.55E+5, 0)
REACTION (TRANS + CIS   ==> TRANSCIS   )   CONSTANT (24, 1E9, 0) CONSTANT (25, 5.55E+5, 0)

* AB reaction gives CIS

REACTION (A + P          ==> AP)     CONSTANT (26, 1E9, 0) CONSTANT (27, 5.55E+5, 0) 

*Bimolecular Reactions of Complexes

REACTION (ACIS + P       --> TRANS + CIS        )          CONSTANT (28, 1.84E-4, 0)
REACTION (PCIS + A       --> TRANS + CIS        )          CONSTANT (29, 1.84E-4, 0)
REACTION (ATRANS + P     --> TRANS + TRANS      )          CONSTANT (30, 1.84E-4, 0)
REACTION (PTRANS + A     --> TRANS + TRANS      )          CONSTANT (31, 1.84E-4, 0)

REACTION (AP + A         --> TRANS + A          )          CONSTANT (32, 1.84E-4, 0)
REACTION (AP + P         --> TRANS + P          )          CONSTANT (33, 1.84E-4, 0)
REACTION (AP + AP        --> TRANS + A + P      )          CONSTANT (34, 1.84E-4, 0)

REACTION (ACIS  + PCIS    --> TRANS + CIS  + CIS    )      CONSTANT (35, 1.84E-4, 0)
REACTION (ACIS  + PTRANS  --> TRANS + TRANS + CIS   )      CONSTANT (36, 1.84E-4, 0)
REACTION (ATRANS + PCIS   --> TRANS + TRANS + CIS   )      CONSTANT (37, 1.84E-4, 0)
REACTION (ATRANS + PTRANS --> TRANS + TRANS + TRANS )      CONSTANT (38, 1.84E-4, 0)
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REACTION (ACIS  + P       --> CIS + CIS          )         CONSTANT (39, 1.03E-4, 0)
REACTION (PCIS  + A       --> CIS + CIS          )         CONSTANT (40, 1.03E-4, 0)
REACTION (ATRANS + P      --> CIS + TRANS        )         CONSTANT (41, 1.03E-4, 0)
REACTION (PTRANS + A      --> CIS + TRANS        )         CONSTANT (42, 1.03E-4, 0)

REACTION (AP + A          --> CIS + A             )        CONSTANT (43, 1.03E-4, 0)
REACTION (AP + P          --> CIS + P             )        CONSTANT (44, 1.03E-4, 0)
REACTION (AP + AP         --> CIS + A + P         )        CONSTANT (45, 1.03E-4, 0)

REACTION (ACIS  + PCIS    --> CIS + CIS  + CIS    )        CONSTANT (46, 1.03E-4, 0)
REACTION (ACIS  + PTRANS  --> CIS + TRANS + CIS   )        CONSTANT (47, 1.03E-4, 0)
REACTION (ATRANS + PCIS   --> CIS + TRANS + CIS   )        CONSTANT (48, 1.03E-4, 0)
REACTION (ATRANS + PTRANS --> CIS + TRANS + TRANS )        CONSTANT (49, 1.03E-4, 0)

REACTION (AP + ACIS       --> TRANS + A + CIS     )        CONSTANT (50, 1.84E-4, 0)
REACTION (AP + PCIS       --> TRANS + P + CIS     )        CONSTANT (51, 1.84E-4, 0)
REACTION (AP + ATRANS     --> TRANS + A + TRANS   )        CONSTANT (52, 1.84E-4, 0)
REACTION (AP + PTRANS     --> TRANS + P + TRANS   )        CONSTANT (53, 1.84E-4, 0)

REACTION (AP + ACIS       --> CIS  + A + CIS     )         CONSTANT (54, 1.03E-4, 0)
REACTION (AP + PCIS       --> CIS  + P + CIS     )         CONSTANT (55, 1.03E-4, 0)
REACTION (AP + ATRANS     --> CIS  + A + TRANS   )         CONSTANT (56, 1.03E-4, 0)
REACTION (AP + PTRANS     --> CIS  + P + TRANS   )         CONSTANT (57, 1.03E-4, 0)

REACTION (APCIS  + A      --> CIS  + A + TRANS   )         CONSTANT (58, 1.84E-4, 0)
REACTION (APCIS  + P      --> CIS  + P + TRANS   )         CONSTANT (59, 1.84E-4, 0)
REACTION (APTRANS + A     --> TRANS + A + TRANS  )         CONSTANT (60, 1.84E-4, 0)
REACTION (APTRANS + P     --> TRANS + P + TRANS  )         CONSTANT (61, 1.84E-4, 0)

REACTION (APCIS  + A      --> CIS  + A + CIS     )         CONSTANT (62, 1.03E-4, 0)
REACTION (APCIS  + P      --> CIS  + P + CIS     )         CONSTANT (63, 1.03E-4, 0)
REACTION (APTRANS + A     --> TRANS + A + CIS    )         CONSTANT (64, 1.84E-4, 0)
REACTION (APTRANS + P     --> TRANS + P + CIS    )         CONSTANT (65, 1.84E-4, 0)

REACTION (AP + APCIS      --> CIS  + A + P + CIS    )      CONSTANT (66, 1.03E-4, 0)
REACTION (AP + APCIS      --> TRANS + A + P + CIS   )      CONSTANT (67, 1.84E-4, 0)
REACTION (AP + APTRANS    --> CIS  + A + P + TRANS  )      CONSTANT (68, 1.03E-4, 0)
REACTION (AP + APTRANS    --> TRANS + A + P + TRANS )      CONSTANT (69, 1.84E-4, 0)

REACTION (AP              --> CIS  )                       CONSTANT (70, 5.55E-3, 3, 1, 1000 )

REACTION (COMPILE)

REACTION (SHOW)
CONSTANT (SHOW)

DEFINE   (1, TRANS, P, 1) SCALE (3,1)
DEFINE   (2, CIS , P, 4) SCALE (3,1) 

SELECT   (TRANS, CIS)

READ     (BENZPAA)
REACTION (DOC)
CONSTANT (DOC)

TIME     (SEC)
WIN      (0, 60000, 20000, 200, 0, 7.5E-3, 2.5E-3, 1E-4)

ASSIGN   (OBS,  TRANS = TRANS + ATRANS + PTRANS + APTRANS + 2 TRANSTRANS + TRANSCIS)
ASSIGN   (OBS,  CIS   = CIS  + ACIS  + PCIS  + APCIS  + 2 CISCIS   + TRANSCIS)
ASSIGN   (SPEC, A     = #10e-3 )
ASSIGN   (SPEC, P     = #10e-3 )

CHOOSE   (EXP1)

INTEG    (STIFF, 1E-9, 4, 0.05, 200, 100)

PLOT     (OBS, RES)

* 10 rounds of Simplex optimizer without screen
* update
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OPAR     (1E16)

SIMPLEX  (PLOT)
SIMPLEX  (PLOT)
SIMPLEX  (PLOT)
SIMPLEX  (PLOT)
NEWTON   (PLOT)

PLOT     (FILE)

*SCAN     (1.02, 20, 20)
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A2.4 Script for the simulation of SR vs AB competition
*==========================================================
* Phenylacetic Nitrone + Carboxy Nitorne + Dimethyl Benzene
*==========================================================
* 
* A      = Benzene Maleimide
* C      = Carboxy Nitrone
* P      = Phenylacetic Nitrone
* TRANS  = SR - Phenylacetic
* CIS    = AB - Phenylacetic
* TRANSC = SR - Carboxy
* CISC   = -- - Carboxy
*
*==========================================================

MODE (ISOSIM)

* Bimolecular routes to TRANS and TRANSC
REACTION   (A   +   P   -->   TRANS        ,  1.84E-4       )
REACTION   (A   +   C   -->   TRANSC       ,  2.45E-4       )

* Bimolecular routes to CIS and CISC
REACTION   (A   +   P   -->   CIS          ,  1.03E-4       )
REACTION   (A   +   C   -->   CISC         ,  1.25E-4       )

* Formation of binary complexes
REACTION   (A   +   TRANS   ==>   ATRANS   ,  1E9, 5.55E+5  )
REACTION   (C   +   TRANS   ==>   CTRANS   ,  1E9, 2.50E+5  )
REACTION   (P   +   TRANS   ==>   PTRANS   ,  1E9, 5.55E+5  )

REACTION   (A   +   CIS     ==>   ACIS     ,  1E9, 5.55E+5  )
REACTION   (C   +   CIS     ==>   CCIS     ,  1E9, 2.50E+5  )
REACTION   (P   +   CIS     ==>   PCIS     ,  1E9, 5.55E+5  )

REACTION   (A   +   TRANSC  ==>   ATRANSC  ,  1E9, 2.50E+5  )
REACTION   (C   +   TRANSC  ==>   CTRANSC  ,  1E9, 2.50E+5  )
REACTION   (P   +   TRANSC  ==>   PTRANSC  ,  1E9, 5.55E+5  )

REACTION   (A   +   CISC    ==>   ACISC    ,  1E9, 2.50E+5  )
REACTION   (C   +   CISC    ==>   CCISC    ,  1E9, 2.50E+5  )
REACTION   (P   +   CISC    ==>   PCISC    ,  1E9, 5.55E+5  )

REACTION   (A   +   PTRANS  ==>   APTRANS  ,  1E9, 5.55E+5  )
REACTION   (A   +   CTRANS  ==>   ACTRANS  ,  1E9, 5.55E+5  )
REACTION   (P   +   ATRANS  ==>   APTRANS  ,  1E9, 5.55E+5  )
REACTION   (C   +   ATRANS  ==>   ACTRANS  ,  1E9, 2.50E+5  )

REACTION   (A   +   PCIS    ==>   APCIS    ,  1E9, 5.55E+5  )
REACTION   (A   +   CCIS    ==>   ACCIS    ,  1E9, 5.55E+5  )
REACTION   (P   +   ACIS    ==>   APCIS    ,  1E9, 5.55E+5  )
REACTION   (C   +   ACIS    ==>   ACCIS    ,  1E9, 2.50E+5  )

REACTION   (A   +   PTRANSC ==>  APTRANSC ,  1E9, 2.50E+5  )
REACTION   (A   +   CTRANSC ==>  ACTRANSC ,  1E9, 2.50E+5  )
REACTION   (P   +   ATRANSC ==>  APTRANSC ,  1E9, 5.55E+5  )
REACTION   (C   +   ATRANSC ==>  ACTRANSC ,  1E9, 2.50E+5  )

REACTION   (A   +   PCISC   ==>  APCISC   ,  1E9, 2.50E+5  )
REACTION   (A   +   CCISC   ==>  ACCISC   ,  1E9, 2.50E+5  )
REACTION   (P   +   ACISC   ==>  APCISC   ,  1E9, 5.55E+5  )
REACTION   (C   +   ACISC   ==>  ACCISC   ,  1E9, 2.50E+5  )

* Ternary complex reaction

REACTION   (APTRANS       -->    TRANSTRANS   ,   9.18E-4   )
REACTION   (ACTRANSC      -->    TRANSCTRANSC ,   1.15E-2   )

* AB reaction gives CIS

REACTION   (A   +    P    ==>    AP        ,  1E9, 5.55E+5  )
REACTION   (AP            -->    CIS       ,       7.65E-5  )
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* AB reaction gives unreactive AC complex

REACTION   (A   +    C    ==>    AC        ,  1E9, 2.50E+5 )

* Product duplexes - only [TRANS*TRANS] and [TRANSC*TRANSC] are stable beyond one Pyr*COOH 
association

REACTION   (TRANS   +  TRANS  ==> TRANSTRANS    ,  1E9, 1.02E+3 )

REACTION   (TRANS   +  CIS    ==> TRANSCIS      ,  1E9, 5.55E+5 )
REACTION   (TRANS   +  TRANSC ==> TRANSTRANSC   ,  1E9, 5.55E+5 )
REACTION   (TRANS   +  CISC   ==> TRANSCISC     ,  1E9, 5.55E+5 )

REACTION   (TRANSC  +  TRANSC ==> TRANSCTRANSC  ,  1E9, 2.86E-1 )

REACTION   (TRANSC  +  CIS    ==> TRANSCCIS     ,  1E9, 2.50E+5 )
REACTION   (TRANSC  +  CISC   ==> TRANSCCISC    ,  1E9, 2.50E+5 )

REACTION   (CIS     +  CIS    ==> CISCIS        ,  1E9, 5.55E+5 )
REACTION   (CIS     +  CISC   ==> CISCISC       ,  1E9, 5.55E+5 )
REACTION   (CISC    +  CISC   ==> CISCCISC      ,  1E9, 2.50E+5 )

* Bimolecular Reactions of Complexes

REACTION   (AP      +      A      -->      TRANS   +   A        ,    1.84E-4 )
REACTION   (AP      +      P      -->      TRANS   +   P        ,    1.84E-4 )
REACTION   (AP      +     AP      -->      TRANS   +   A  +  P  ,    1.84E-4 )

REACTION   (AP      +      A      -->      CIS     +   A        ,    1.03E-4 )
REACTION   (AP      +      P      -->      CIS     +   P        ,    1.03E-4 )
REACTION   (AP      +     AP      -->      CIS     +   A  +  P  ,    1.03E-4 )

REACTION   (AC      +      A      -->      TRANSC  +   A        ,    2.45E-4 )
REACTION   (AC      +      C      -->      TRANSC  +   C        ,    2.45E-4 )
REACTION   (AC      +     AC      -->      TRANSC  +   A  +  C  ,    2.45E-4 )

REACTION   (AC      +      A      -->      CISC    +   A        ,    1.25E-4 )
REACTION   (AC      +      C      -->      CISC    +   C        ,    1.25E-4 )
REACTION   (AC      +     AC      -->      CISC    +   A  +  C  ,    1.25E-4 )

REACTION   (AP      +      C      -->      TRANSC  +   P        ,    2.45E-4 )
REACTION   (AP      +     AC      -->      TRANSC  +   A  +  P  ,    2.45E-4 )

REACTION   (AP      +      C      -->      CISC    +   P        ,    1.25E-4 )
REACTION   (AP      +     AC      -->      CISC    +   A  +  P  ,    1.25E-4 )

REACTION   (AP      +    ATRANS   -->      TRANS   +   TRANS  +  A  ,  1.84E-4)
REACTION   (AP      +    CTRANS   -->      TRANS   +   TRANSC +  P  ,  2.45E-4)
REACTION   (AP      +    PTRANS   -->      TRANS   +   TRANS  +  P  ,  1.84E-4)

REACTION   (AP      +    ATRANS   -->      TRANS   +   CIS  +  A  ,  1.03E-4)
REACTION   (AP      +    CTRANS   -->      TRANS   +   CISC +  P  ,  1.25E-4)
REACTION   (AP      +    PTRANS   -->      TRANS   +   CIS  +  P  ,  1.03E-4)

REACTION   (AC      +    ATRANS   -->      TRANS   +   TRANSC  +  A  ,  2.45E-4)
REACTION   (AC      +    CTRANS   -->      TRANS   +   TRANSC  +  C  ,  2.45E-4)
REACTION   (AC      +    PTRANS   -->      TRANS   +   TRANS   +  C  ,  1.84E-4)

REACTION   (AC      +    ATRANS   -->      TRANS   +   CISC  +  A  ,  1.25E-4)
REACTION   (AC      +    CTRANS   -->      TRANS   +   CISC  +  C  ,  1.25E-4)
REACTION   (AC      +    PTRANS   -->      TRANS   +   CIS   +  C  ,  1.03E-4)

REACTION   (AP      +    ACIS     -->      CIS   +   TRANS  +  A  ,  1.84E-4)
REACTION   (AP      +    CCIS     -->      CIS   +   TRANSC +  P  ,  2.45E-4)
REACTION   (AP      +    PCIS     -->      CIS   +   TRANS  +  P  ,  1.84E-4)

REACTION   (AP      +    ACIS     -->      CIS   +   CIS  +  A  ,  1.03E-4)
REACTION   (AP      +    CCIS     -->      CIS   +   CISC +  P  ,  1.25E-4)
REACTION   (AP      +    PCIS     -->      CIS   +   CIS  +  P  ,  1.03E-4)

REACTION   (AC      +    ACIS     -->      CIS   +   TRANSC  +  A  ,  2.45E-4)
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REACTION   (AC      +    CCIS     -->      CIS   +   TRANSC  +  C  ,  2.45E-4)
REACTION   (AC      +    PCIS     -->      CIS   +   TRANS   +  C  ,  1.84E-4)

REACTION   (AC      +    ACIS     -->      CIS   +   CISC  +  A  ,  1.25E-4)
REACTION   (AC      +    CCIS     -->      CIS   +   CISC  +  C  ,  1.25E-4)
REACTION   (AC      +    PCIS     -->      CIS   +   CIS   +  C  ,  1.03E-4)

REACTION   (AP      +    ATRANSC  -->      TRANSC   +   TRANS  +  A  ,  1.84E-4)
REACTION   (AP      +    CTRANSC  -->      TRANSC   +   TRANSC +  P  ,  2.45E-4)
REACTION   (AP      +    PTRANSC  -->      TRANSC   +   TRANS  +  P  ,  1.84E-4)

REACTION   (AP      +    ATRANSC  -->      TRANSC   +   CIS  +  A  ,  1.03E-4)
REACTION   (AP      +    CTRANSC  -->      TRANSC   +   CISC +  P  ,  1.25E-4)
REACTION   (AP      +    PTRANSC  -->      TRANSC   +   CIS  +  P  ,  1.03E-4)

REACTION   (AC      +    ATRANSC  -->      TRANSC   +   TRANSC  +  A  ,  2.45E-4)
REACTION   (AC      +    CTRANSC  -->      TRANSC   +   TRANSC  +  C  ,  2.45E-4)
REACTION   (AC      +    PTRANSC  -->      TRANSC   +   TRANS   +  C  ,  1.84E-4)

REACTION   (AC      +    ATRANSC  -->      TRANSC   +   CISC  +  A  ,  1.25E-4)
REACTION   (AC      +    CTRANSC  -->      TRANSC   +   CISC  +  C  ,  1.25E-4)
REACTION   (AC      +    PTRANSC  -->      TRANSC   +   CIS   +  C  ,  1.03E-4)

REACTION   (AP      +    ACISC    -->      CISC   +   TRANS  +  A  ,  1.84E-4)
REACTION   (AP      +    CCISC    -->      CISC   +   TRANSC +  P  ,  2.45E-4)
REACTION   (AP      +    PCISC    -->      CISC   +   TRANS  +  P  ,  1.84E-4)

REACTION   (AP      +    ACISC    -->      CISC   +   CIS  +  A  ,  1.03E-4)
REACTION   (AP      +    CCISC    -->      CISC   +   CISC +  P  ,  1.25E-4)
REACTION   (AP      +    PCISC    -->      CISC   +   CIS  +  P  ,  1.03E-4)

REACTION   (AC      +    ACISC    -->      CISC   +   TRANSC  +  A  ,  2.45E-4)
REACTION   (AC      +    CCISC    -->      CISC   +   TRANSC  +  C  ,  2.45E-4)
REACTION   (AC      +    PCISC    -->      CISC   +   TRANS   +  C  ,  1.84E-4)

REACTION   (AC      +    ACISC    -->     CISC   +   CISC  +  A  ,  1.25E-4)
REACTION   (AC      +    CCISC    -->     CISC   +   CISC  +  C  ,  1.25E-4)
REACTION   (AC      +    PCISC    -->     CISC   +   CIS   +  C  ,  1.03E-4)

REACTION   (AP      +    APTRANS  -->     TRANS  +  TRANS  +  A   +  P  , 1.84E-4 )
REACTION   (AP      +    ACTRANS  -->     TRANS  +  TRANSC +  A   +  P  , 2.45E-4 )
REACTION   (AP      +    ACTRANS  -->     TRANS  +  TRANS  +  A   +  C  , 1.84E-4 )

REACTION   (AP      +    APTRANS  -->     TRANS  +  CIS  +  A   +  P  , 1.03E-4 )
REACTION   (AP      +    ACTRANS  -->     TRANS  +  CISC +  A   +  P  , 1.25E-4 )
REACTION   (AP      +    ACTRANS  -->     TRANS  +  CIS  +  A   +  C  , 1.03E-4 )

REACTION   (AC      +    APTRANS  -->     TRANS  +  TRANS  +  A   +  C  , 1.84E-4 )
REACTION   (AC      +    APTRANS  -->     TRANS  +  TRANSC +  A   +  P  , 2.45E-4 )
REACTION   (AC      +    ACTRANS  -->     TRANS  +  TRANSC  + A   +  C  , 2.45E-4 )

REACTION   (AC      +    APTRANS  -->     TRANS  +  CIS  +  A   +  P  , 1.03E-4 )
REACTION   (AC      +    APTRANS  -->     TRANS  +  CISC +  A   +  P  , 1.25E-4 )
REACTION   (AC      +    ACTRANS  -->     TRANS  +  CISC +  A   +  C  , 1.25E-4 )

REACTION   (AP      +    APCIS    -->     CIS  +  TRANS  +  A   +  P  , 1.84E-4 )
REACTION   (AP      +    ACCIS    -->     CIS  +  TRANSC +  A   +  P  , 2.45E-4 )
REACTION   (AP      +    ACCIS    -->     CIS  +  TRANS  +  A   +  C  , 1.84E-4 )

REACTION   (AP      +    APCIS    -->     CIS  +  CIS  +  A   +  P  , 1.03E-4 )
REACTION   (AP      +    ACCIS    -->     CIS  +  CISC +  A   +  P  , 1.25E-4 )
REACTION   (AP      +    ACCIS    -->     CIS  +  CIS  +  A   +  C  , 1.03E-4 )

REACTION   (AC      +    APCIS    -->     CIS  +  TRANS  +  A   +  C  , 1.84E-4 )
REACTION   (AC      +    APCIS    -->     CIS  +  TRANSC +  A   +  P  , 2.45E-4 )
REACTION   (AC      +    ACCIS    -->     CIS  +  TRANSC  + A   +  C  , 2.45E-4 )

REACTION   (AC      +    APCIS    -->     CIS  +  CIS  +  A   +  P  , 1.03E-4 )
REACTION   (AC      +    APCIS    -->     CIS  +  CISC +  A   +  P  , 1.25E-4 )
REACTION   (AC      +    ACCIS    -->     CIS  +  CISC +  A   +  C  , 1.25E-4 )

REACTION   (AP      +    APTRANSC -->     TRANSC  +  TRANS  +  A   +  P  , 1.84E-4 )
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REACTION   (AP      +    ACTRANSC -->     TRANSC  +  TRANSC +  A   +  P  , 2.45E-4 )
REACTION   (AP      +    ACTRANSC -->     TRANSC  +  TRANS  +  A   +  C  , 1.84E-4 )

REACTION   (AP      +    APTRANSC -->     TRANSC  +  CIS  +  A   +  P  , 1.03E-4 )
REACTION   (AP      +    ACTRANSC -->     TRANSC  +  CISC +  A   +  P  , 1.25E-4 )
REACTION   (AP      +    ACTRANSC -->     TRANSC  +  CIS  +  A   +  C  , 1.03E-4 )

REACTION   (AC      +    APTRANSC -->     TRANSC  +  TRANS  +  A   +  C  , 1.84E-4 )
REACTION   (AC      +    APTRANSC -->     TRANSC  +  TRANSC +  A   +  P  , 2.45E-4 )
REACTION   (AC      +    ACTRANSC -->     TRANSC  +  TRANSC  + A   +  C  , 2.45E-4 )

REACTION   (AC      +    APTRANSC -->     TRANSC  +  CIS  +  A   +  P  , 1.03E-4 )
REACTION   (AC      +    APTRANSC -->     TRANSC  +  CISC +  A   +  P  , 1.25E-4 )
REACTION   (AC      +    ACTRANSC -->     TRANSC  +  CISC +  A   +  C  , 1.25E-4 )

REACTION   (AP      +    APCISC   -->     CISC  +  TRANS  +  A   +  P  , 1.84E-4 )
REACTION   (AP      +    ACCISC   -->     CISC  +  TRANSC +  A   +  P  , 2.45E-4 )
REACTION   (AP      +    ACCISC   -->     CISC  +  TRANS  +  A   +  C  , 1.84E-4 )

REACTION   (AP      +    APCISC   -->     CISC  +  CIS  +  A   +  P  , 1.03E-4 )
REACTION   (AP      +    ACCISC   -->     CISC  +  CISC +  A   +  P  , 1.25E-4 )
REACTION   (AP      +    ACCISC   -->     CISC  +  CIS  +  A   +  C  , 1.03E-4 )

REACTION   (AC      +    APCISC   -->     CISC  +  TRANS  +  A   +  C  , 1.84E-4 )
REACTION   (AC      +    APCISC   -->     CISC  +  TRANSC +  A   +  P  , 2.45E-4 )
REACTION   (AC      +    ACCISC   -->     CISC  +  TRANSC  + A   +  C  , 2.45E-4 )

REACTION   (AC      +    APCISC   -->     CISC  +  CIS  +  A   +  P  , 1.03E-4 )
REACTION   (AC      +    APCISC   -->     CISC  +  CISC +  A   +  P  , 1.25E-4 )
REACTION   (AC      +    ACCISC   -->     CISC  +  CISC +  A   +  C  , 1.25E-4 )

REACTION   (CTRANS  +    A      -->     TRANSC + TRANS             , 2.45E-4 )
REACTION   (PTRANS  +    A      -->     TRANS  + TRANS             , 1.84E-4 )
REACTION   (ATRANS  +    C      -->     TRANSC + TRANS             , 2.45E-4 )
REACTION   (ATRANS  +    P      -->     TRANS  + TRANS             , 1.84E-4 )

REACTION   (CTRANS  +    A      -->     CISC + TRANS               , 1.25E-4 )
REACTION   (PTRANS  +    A      -->     CIS  + TRANS               , 1.03E-4 )
REACTION   (ATRANS  +    C      -->     CISC + TRANS               , 1.25E-4 )
REACTION   (ATRANS  +    P      -->     CIS  + TRANS               , 1.03E-4 )

REACTION   (CCIS  +    A        -->     TRANSC + CIS               , 2.45E-4 )
REACTION   (PCIS  +    A        -->     TRANS  + CIS               , 1.84E-4 )
REACTION   (ACIS  +    C        -->     TRANSC + CIS               , 2.45E-4 )
REACTION   (ACIS  +    P        -->     TRANS  + CIS               , 1.84E-4 )

REACTION   (CCIS  +    A        -->     CISC + CIS                 , 1.25E-4 )
REACTION   (PCIS  +    A        -->     CIS  + CIS                 , 1.03E-4 )
REACTION   (ACIS  +    C        -->     CISC + CIS                 , 1.25E-4 )
REACTION   (ACIS  +    P        -->     CIS  + CIS                 , 1.03E-4 )

REACTION   (CTRANSC  +    A     -->     TRANSC + TRANSC            , 2.45E-4 )
REACTION   (PTRANSC  +    A     -->     TRANS  + TRANSC            , 1.84E-4 )
REACTION   (ATRANSC  +    C     -->     TRANSC + TRANSC            , 2.45E-4 )
REACTION   (ATRANSC  +    P     -->     TRANS  + TRANSC            , 1.84E-4 )

REACTION   (CTRANSC  +    A      -->     CISC + TRANSC             , 1.25E-4 )
REACTION   (PTRANSC  +    A      -->     CIS  + TRANSC             , 1.03E-4 )
REACTION   (ATRANSC  +    C      -->     CISC + TRANSC             , 1.25E-4 )
REACTION   (ATRANSC  +    P      -->     CIS  + TRANSC             , 1.03E-4 )

REACTION   (CCISC  +    A      -->     TRANSC + CISC             , 2.45E-4 )
REACTION   (PCISC  +    A      -->     TRANS  + CISC             , 1.84E-4 )
REACTION   (ACISC  +    C      -->     TRANSC + CISC             , 2.45E-4 )
REACTION   (ACISC  +    P      -->     TRANS  + CISC             , 1.84E-4 )

REACTION   (CCISC  +    A      -->     CISC + CISC             , 1.25E-4 )
REACTION   (PCISC  +    A      -->     CIS  + CISC             , 1.03E-4 )
REACTION   (ACISC  +    C      -->     CISC + CISC             , 1.25E-4 )
REACTION   (ACISC  +    P      -->     CIS  + CISC             , 1.03E-4 )

REACTION   (APTRANS  +  A     -->    TRANS  +  TRANS  +  A     , 1.84E-4 )
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REACTION   (ACTRANS  +  A     -->    TRANS  +  TRANSC +  A     , 2.45E-4 )
REACTION   (APTRANS  +  C     -->    TRANS  +  TRANSC +  P     , 2.45E-4 )
REACTION   (ACTRANS  +  C     -->    TRANS  +  TRANSC +  C     , 2.45E-4 )
REACTION   (APTRANS  +  P     -->    TRANS  +  TRANS  +  P     , 1.84E-4 )
REACTION   (ACTRANS  +  P     -->    TRANS  +  TRANS  +  C     , 1.84E-4 )

REACTION   ( COMPILE )
REACTION   ( SHOW    )

INIT       (  A       , 0.01000 , 1)
INIT       (  C       , 0.01000 , 2)
INIT       (  P       , 0.01000 , 3)
INIT       (  CIS     , 0.00000 , 4)
INIT       (  TRANS   , 0.00000 , 5)
INIT       (  CISC    , 0.00000 , 6)
INIT       (  TRANSC  , 0.00000 , 7)

INTEG      (STIFF, 1E-9, 8, 0.05, 200, 100)

NUMPLOT    ( 100 )

TIME       ( SEC )

WIN        (0, 240000, 24000, 0.1, 0, 10E-3, 2E-3, 1E-4)

PLOT       (FILE)

PLOT

324



A2.5 Script for the reciprocal system between 
*=======================================================================
* Formation of Bisamido naphtha template from Naphtha Maleimide and Elef Nitrone
*=======================================================================
* Bimolecular Model - trans and cis product
*=======================================================================
*
* rate constant for trans:  1.31E-4; cis: 6.12E-5 ; R = 5.9%
*
*=======================================================================

DIM (2)

* Bimolecular routes to TRANS

REACTION (A + B --> TRANS) CONSTANT (1, 1.72E-6, 1, 1, 1000)

* Bimolecular routes to CIS

REACTION (A + B --> CIS) CONSTANT (2, 0.61E-6, 2, 1, 1000)

REACTION (COMPILE)

REACTION (SHOW)
CONSTANT (SHOW)

DEFINE (1, TRANS, P, 1) SCALE (3,1)
DEFINE (2, CIS, P, 4) SCALE (3,1)

SELECT (TRANS, CIS)

READ (BANT)
REACTION (DOC)
CONSTANT (DOC)

TIME (SEC)
WIN (0, 60000, 20000, 200, 0, 3e-3, 5e-3, 1e-4)

ASSIGN (OBS, TRANS = TRANS)
ASSIGN (OBS, CIS = CIS)
ASSIGN (SPEC, A = #10e-3)
ASSIGN (SPEC, B = #10e-3)

CHOOSE (EXP1)

INTEG (STIFF, 1E-9, 1, 0.075, 100, 50)

PLOT (OBS, RES)

*Optimise rate constants using simplex

SIMPLEX (PLOT)
SIMPLEX (PLOT)
SIMPLEX (PLOT)
SIMPLEX (PLOT)
SIMPLEX (PLOT)

PLOT (OBS, RES)
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A2.6 Simulation script for the recycling experiment in Figure 7.19
*========================================================
* Reciprocal and Self-Replicating Systems - 
* Simulation of Complete System
*
* A  = Amidopyridine Nitrone
* B  = Acid Maleimide
* C  = Acid Nitorne 
* D  = Amidopyridine Maleimide
* T1 = Reciprocal Replicator 1
* T2 = Reciprocal Replicator 2
* R1 = Self-Replicator 1
* R2 = Self-Replicator 2
*========================================================

MODE       ( ISOSIM )

*=================================================================
* Make the binary complexes and reactions
*=================================================================

REACTION (A  + B        ==> AB         , 1.00E9, 1.00E+6 ) 
REACTION (C  + D        ==> CD         , 1.00E9, 1.00E+6 ) 
REACTION (A  + C        ==> AC         , 1.00E9, 1.00E+6 ) 
REACTION (B  + D        ==> BD         , 1.00E9, 1.00E+6 )

REACTION (AB + A        --> R1 + A             , 5.00E-5 )
REACTION (AB + B        --> R1 + B             , 5.00E-5 )

REACTION (CD + C        --> R2 + C             , 5.00E-5 )
REACTION (CD + D        --> R2 + D             , 5.00E-5 )

REACTION (       2 AB   --> R1 + A + B         , 5.00E-5 )
REACTION (       2 CD   --> R2 + C + D         , 5.00E-5 )
REACTION (  AC   + BD   --> T2 + B + C         , 5.00E-5 )
REACTION (  AC   + BD   --> T1 + A + D         , 5.00E-5 )
REACTION (  AC   + BD   --> R1 + C + D         , 5.00E-5 )
REACTION (  AC   + BD   --> R2 + A + B         , 5.00E-5 )

REACTION (AC + B        --> T1 + A             , 5.00E-5 )
REACTION (AC + D        --> R2 + A             , 5.00E-5 )
REACTION (AC + B        --> R1 + C             , 5.00E-5 )
REACTION (AC + D        --> T2 + C             , 5.00E-5 )

REACTION (BD + C        --> T1 + D             , 5.00E-5 )
REACTION (BD + A        --> T2 + B             , 5.00E-5 )
REACTION (BD + C        --> R2 + B             , 5.00E-5 )
REACTION (BD + A        --> R1 + D             , 5.00E-5 )

*=================================================================
* Make the R1 Replicator
*=================================================================

REACTION (A + B         --> R1                 , 5.00E-5 )

REACTION (A  + R1       ==> AR1        , 1.00E9, 1.00E+6 )
REACTION (B  + R1       ==> BR1        , 1.00E9, 1.00E+6 )
REACTION (A  + BR1      ==> ABR1       , 1.00E9, 1.00E+6 )
REACTION (B  + AR1      ==> ABR1       , 1.00E9, 1.00E+6 )

REACTION (R1 + R1       ==> R1R1       , 1.00E9, 1.00E+3 )

REACTION (ABR1          --> R1R1               , 0.85E-3 )

*=================================================================
* Make the R2 Replicator
*=================================================================

REACTION (C + D         --> R2                 , 5.00E-5 )
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REACTION (C  + R2       ==> CR2        , 1.00E9, 1.00E+6 )
REACTION (D  + R2       ==> DR2        , 1.00E9, 1.00E+6 )
REACTION (C  + DR2      ==> CDR2       , 1.00E9, 1.00E+6 )
REACTION (D  + CR2      ==> CDR2       , 1.00E9, 1.00E+6 )

REACTION (R2 + R2       ==> R2R2       , 1.00E9, 1.00E+3 )

REACTION (CDR2          --> R2R2               , 1.00E-3 )

*=================================================================
* Make the T2 Reciprocal Replicator
*=================================================================

REACTION   ( A + D     --> T2                  , 4.00E-5 )

REACTION   ( A + T1    ==> AT1       , 1.00E+9 , 1.00E+6 )
REACTION   ( D + T1    ==> DT1       , 1.00E+9 , 1.00E+6 )
REACTION   ( A + AT1   ==> AAT1      , 1.00E+9 , 1.00E+6 )
REACTION   ( D + AT1   ==> ADT1      , 1.00E+9 , 1.00E+6 )
REACTION   ( A + DT1   ==> ADT1      , 1.00E+9 , 1.00E+6 )
REACTION   ( D + DT1   ==> DDT1      , 1.00E+9 , 1.00E+6 )

REACTION   ( ADT1      --> T1T2                , 1.05E-3 ) 

REACTION   ( A   + DT1 --> T1 + T2             , 4.00E-5 )
REACTION   ( DT1 + A   --> T1 + T2             , 4.00E-5 )

*=================================================================
* Make the T1 Reciprocal Replicator
*=================================================================

REACTION   ( B + C     --> T1                 , 4.00E-5  )

REACTION   ( C + T2    ==> CT2      , 1.00E+9 , 1.00E+6  )
REACTION   ( B + T2    ==> BT2      , 1.00E+9 , 1.00E+6  )
REACTION   ( C + CT2   ==> CCT2     , 1.00E+9 , 1.00E+6  )
REACTION   ( B + CT2   ==> BCT2     , 1.00E+9 , 1.00E+6  )
REACTION   ( C + BT2   ==> BCT2     , 1.00E+9 , 1.00E+6  )
REACTION   ( B + BT2   ==> BBT2     , 1.00E+9 , 1.00E+6  )

REACTION   ( BCT2      --> T1T2               , 1.35E-3  )

REACTION   ( C   + BT2 --> T1  + T2           , 4.00E-5  )
REACTION   ( CT2 + B   --> T1  + T2           , 4.00E-5  )

REACTION   ( T1  + T2  ==> T1T2     , 1.00E+9 , 1.00E+3  )

REACTION   ( COMPILE )
REACTION   ( SHOW    )

INIT       (  A      , 0.01000 , 1)
INIT       (  B      , 0.01000 , 2)
INIT       (  C      , 0.01000 , 3)
INIT       (  D      , 0.01000 , 4)
INIT       ( R1      , 0.00000 , 6)
INIT       ( R2      , 0.00000 , 7)
INIT       ( T1      , 0.00000 , 8)
INIT       ( T2      , 0.00000 , 9)

INTEG      (STIFF, 1E-9, 8, 0.05, 200, 200)

NUMPLOT    ( 100 )

TIME       ( SEC )

WIN        (0, 500000, 100000, 0.1, 0, 25E-3, 5E-3, 3E-4)

PLOT       (FILE)

PLOT
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