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The simplest spectral turbulence model is based on a spectral eddy viscosity. The first spectral eddy
viscosity model was developed by Heisenberg (1948). Spectral eddy viscosity, v.(k|k.,t) is defined as:
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Spectral eddy viscosity is a function of the wave number k, cut-off wave number k., and time ¢t. Spectral
energy transfer is denoted with T, (k|k.,t) and E(k,t) is spectral energy density. Here, it is implicitly assumed
that the spectral eddy viscosity depends only on the spectral energy density and its transfer.

André and Lesieur (1977) have recognized the importance of helicity in modulating energy transfer from
large to small scales in high Reynolds number isotropic turbulence. However, only recently has the role of
helicity in energy transfer been studied in greater detail e.g. Holm and Kerr (2002), Chen et al. (2003).

In order to correctly predict energy transfer in large eddy simulation of turbulent flows, the effect of
helicity on the spectral energy transfer must be accounted for in subgrid turbulence models. We therefore
develop a two-parameter spectral model that accounts for the helicity effects in homogeneous incompressible
turbulent flow. In such a flow, Fourier transforms of velocity and vorticity span locally two-dimensional
space perpendicular to a wave vector k. Velocity and vorticity vectors in Fourier space form a complete
basis that can be used to represent the Fourier transform of the divergence-free projection of the nonlinear
term and its components. We use the velocity-vorticity basis to develop a two-parameter spectral model.
By using the evolution equations for the two invariants of three-dimensional Euler equations, kinetic energy
and helicity, and assuming that the flow is isotropic and has reached statistical equilibrium, we derive two
equations for two unknown closure parameters. We finally arrive at a system of two algebraic equations with
two unknowns represented by two model parameters.

The incompressible Navier-Stokes equations in Fourier space are

i ] ) = <G ) - & )
Here, ff (k)+ (? (k) represents the divergence-free projection of the Fourier transform of the nonlinear term.
Both resolved, éf, and subgrid, C? (k), components are divergence free and therefore perpendicular to the
local wave vector k.

The Fourier transform of the vorticity vector is @; = i €jmnkmtn,. Notice now that vector pairs
[R(G;), S (@;)] and [S(4;), R ()] represent two orthogonal bases for a complex two-dimensional space
locally perpendicular to the wave vector k.

The subgrid component of the nonlinear term can be expressed as a linear combination of basis vectors
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Here, coefficients a, b, ¢, and d are real and depend on the wave vector, k, and possibly time, t.

We now assume that the turbulence flow under consideration is isotropic and that a(k),b(k), c(k) and
d(k) are functions of the wave number magnitude only. Due to the realizability condition, which requires
that both spectral energy density and spectral helicity density are real-valued functions, parameters b(k)
and c(k) must vanish. Using the evolution equations for the spherically-integrated spectral densities and
assuming that the statistical equilibrium has been reached, the two equations above can be solved for closure
parameters a(k) and d(k)
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Figure 1: Spectral eddy viscosity, v.(k|k.,t), model parameter d(k|ke,t).
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Here, H is the spectral helicity density, while 7}~ and T} are resolved and subgrid helicity transfer functions,
respectively. Similarly, 7 and T are resolved and subgrid energy transfer functions.

While the one-parameter spectral eddy viscosity (Heisenberg, 1948) is not sufficient to model the subgrid
component ¢;” of the nonlinear term in the momentum equation, the two-parameter model is complete.
Various statistical theories of turbulence have been used to determine spectral eddy viscosity defined by
Heisenberg (1948). Kraichnan (1976) used the test field method and predicted a so called “cusp” in spectral
eddy viscosity at the wave number cut-off. The existence of such a cusp was also confirmed using direct
numerical simulation (DNS) of Navier-Stokes equations by Domaradzki et al. (1993). For comparison to the
spectral eddy viscosity, we compute parameters a(k) and d(k) of the proposed spectral turbulence model
using the results of DNS. We filtered DNS results obtained at 256 grid-point resolution using a wave cut-off
filter with cut-off wave number k. = 48 and computed the subgrid transfer of energy and helicity in addition
to energy and helicity spectra. Spectral eddy viscosity v, (k|ke,t), and two model parameters corresponding
to the new proposed spectral turbulence model are given in figures below 1, 2, and 3. The new two-parameter
model is complete and does not exhibit the “cusp.”
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