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Abstract

The capture mechanics of cavitation nuclei by a Gaussian Vortex is explored. The capture process is examined
by both Direct Numerical Simulation of the Navier Stokes equations and a Particle Tracking model. We
also investigate the parameters that effect the capture and bubble growth process, and finally we compare
the results of the two approaches. The DNS results show that the shape of the bubbles can be significantly
distorted as they are captured by a vortex. This distortion can lead to the creation of lift forces that shorten
the capture time of the bubbles. The capture times computed with the two methods varied over less than
an order of magnitude for most cases, and this suggests that one might derive and average capture time.
The exact results of the particle tracking models can vary widely depending on the selected values of the lift
and drag coefficients and nominal Weber number of the captured nucleus. For model scale flows, the Weber
number may vary from 1 to 100. Thus, it is possible that a particle-tracking model should have variable lift
and drag coefficients that better take into account the estimated instantaneous bubble deformation. The
drag coefficient by Haberman and Morton (1953) yielded a trajectory that was closer to the DNS trajectory
than when using the drag coefficient given by Clift et al.(1978). It was determined that the lift coefficients
given by Dandy and Dwyer (1990) and Auton et al. (1988) yielded capture times that were much bigger
than the DNS results and that lift coefficient between the those given by Saffman (1965) and Dandy and
Dwyer (1990) would give results that are closer to the DNS results.

1 Introduction

Device such as propellers and axial pumps can exhibit Tip Vortex Cavitation or Tip Leakage Vortex Cavita-
tion. Tip vortices occur at the termination of lifting surfaces, and small bubbles (nuclei) can be captured by
the strong vortex. If the pressure falls below vapor pressure within the vortex core, the bubbles may cavi-
tate. The interaction and growth of small bubbles with a concentrated vortex has been examined by several
researchers. For example, Sridhar and Katz (1999) studied the effect of an entrained bubble in a vortex-ring
using particle imaging velocimetry. They showed that often the entrained bubble can substantially change
the structure of the vortex. Chahine (1990), (1994) studied how bubbles are captured and deformed by a
vortex. Hsiao et al. (1999) examined the capture of cavitation nucleus by a tip vortex using employing both
a RANS flow field simulation and a particle tracking model. Models of vortex cavitation often use the spher-
ical Rayleigh-Plesset equation to describe the dynamics of the cavitating bubbles. This approach assumes
that the dynamic of the bubble keeps a spherical symmetry during the growth and the collapse. Therefore
the bubble lift and the drag coefficients are determined using empirical equation for spherical body. How-
ever, the cavitation bubble can be deformed by the vortex as it grows, losing its spherical shape. This will
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change the effective lift and drag coefficients of the bubble. Direct Numerical Simulation of the cavitating
bubble can be used to examine this effect and to determine the extent to which deforming cavitation bubbles
depart from particle tracking models. In the present work, the interaction between a vortex and a deform-
ing cavitation bubble will be examined using a Direct Numerical Simulation (DNS) Front Tracking Model
for multiphase flows. These bubbles have either a constant or variable gas pressure with changing bubble
volume. Validations cases have been run with variations in spatial resolution and preliminary comparisons
have been made with a simple particle tracking model. The simulations have shown significant difference in
the trajectory, capture time and growth rate of the bubble between DNS an Particle Tracking. Different lift
and drag coefficients have been used in order to determine which give closest trajectory and capture time to
the DNS .

2 Numerical Method

The numerical method used in this study to compute the Navier-Stokes equations is a Direct Numerical
Simulation (DNS) front- tracking method for multiphase flows developed by Unverdi and Tryggvason (1992)
and improved by Esmaeeli and Tryggvason (1998, 1999). The fluids inside and outside the bubbles are taken
to be Newtonian and the flow is incompressible and isothermal, so that the densities and viscosities are
constant within each phase. The unsteady, viscous, incompressible Navier-Stokes equations are solved by a
finite-difference approximation on a fixed staggered grid, while the interface between the bubbles and fluid
were explicitly represented by a separate, unstructured grid that moves through the stationary one. The front
(interface) keeps the density and viscosity discontinuities sharp and also provides means for calculation of the
surface tension forces. A numerical method based on the Marker-And-Cell method developed by Harlow and
Welch (1965) is used to solve the unsteady Navier-Stokes equations over the entire computational domain.
This “one-field” formulation, which computes both the properties within the bubbles and in the ambient
fluid, is used in conjunction with a linked list of markers that is used to explicitly track the position of the
fluid interfaces. A single Navier-Stokes equation with variable density, p and viscosity, p is solved for the
entire domain. The momentum equation and the conservation of mass for an incompressible system can be
written in conservative form as:

65% :V-puu—Vp+pg+V-u(Vu+VTu)+/ oknd(z —xz¢)dA (1)
A

V-u=0 (2)

where u denotes the velocity vector, p the pressure, g the gravity acceleration field, o the surface tension, k
is the curvature for two-dimensional flow and twice the mean curvature of the interface for three-dimensional
flows, m is the unit vector normal to the front, dA is the area element on the front, 6(z — z¢) is a delta-
function which is zero everywhere except at the interface where x = x¢, x is the point at which the equation
is evaluated, and z; is a point on the front. The last term of the momentum equation is the surface
tension, which is added as a body force concentrated at the interface and the integration is over the bubble
surface. Both fluids are assumed to be incompressible, so the Navier-Stokes equations are supplemented by
the incompressibility condition, Equation 2. The front tracking code has been modified to accommodate
cavitation. For the cavitation problem, the equations for the conservation of mass and momentum are solved
on a regular, fixed grid in both two- and three-dimensional coordinates. Again, the numerical scheme used
is a conservative second-order accurate, centered difference scheme for spatial variables, and explicit second-
order time integration. The numerical treatment of cavitation is discussed here. Two cavitation models were
used. The first one assumes that the pressure of the fluid within the bubble is constant and equal to the
fluid vapor pressure:

Pinside = Pvap (3)

In the numerical scheme, this is accomplished in the solution of the pressure field. The second cavitation
model allows for variable pressure inside the bubble, the pressure depending on the volume of the bubble as
follows:
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v
I)inside = Pvap + Pgas,ivo (4)

where Pinside is the pressure inside the bubble, P,,; is the water vapor pressure, Py, ; is the initial partial
pressure of the non-condensable gases, V4 is the initial volume of the bubble, and V is the volume of
the bubble. Here, it is assumed that the non-condensable gases follow an isothermal expansion. In the
cavitation problems, additional pressure boundary conditions are assigned along one or more sides of the
computational domain. For the collapse of a bubble in an unbounded fluid, constant pressure boundary
conditions are assigned on all six sides of the 3-D domain. For the collapse of a bubble near a wall, constant
pressure boundary conditions are assigned on the top of the domain. For growth and collapse of bubbles in
concentrated vortices constant pressure boundary conditions are assigned along the outer edges of the vortex
and periodic boundary conditions along the axis of the vortex.

3 Particle Tracking Model

It is often desired to estimate when cavitation inception might occur through the examination of the otherwise
known cavitating flow field. For example, numerical simulations of the non-cavitating flow may be used to
find the region of the lowest pressures. A further refinement is to place nuclei in the flow as Lagrangian
traces and allow them to be convected into regions of low pressure. The dynamics of the particles can then
be calculated assuming that their presence in the flow does not significantly alter the non-cavitating flow.
These are often called “one-way coupled” particle tracking models. The effect of the flow on a bubble or
particle can be determined through the equation of motion for the particle. By considering all forces acting
on a spherical particle, the equation of motion (Maxey and Riley, 1983) of a particle of mass m,, and velocity
up in a gravity field g is written as:
du

DU
mpaz(mp_mf)9+ mef+FA+FD+FL+FH (5)

where mp is the mass of the fluid enclosed in the volume of the particle, Ur is the fluid velocity in the
absence of the particle at the center of the particle (the unperturbed velocity), is the total derivative and
represents the Lagrangian fluid acceleration. The forces exterded by the outer flow on the particle are: the
added-mass force Fs, the drag force Fp, the lift force Fr, and the Basset history force Frr. The above
equation of motion is valid for spherical particles and bubbles with radii that are smaller than the largest
scales of the flow. The equation of motion 5 describes the motion of a solid particle in the flow. To describe
the equation of motion of a bubble one may need to take into account the force due to the bubble volume
variation. By adding an additional term to consider the bubble volume variation and neglecting the Basset
history term, Equation 5 can be written as:

du DU
My = (my —myp)g + mg=2r + Fa+Fp + Fp + Fy (6)

where the additional term related to the bubble volume variation is given by Johnson and Hsieh (1966) as:

. dR
Fy =2nR?pp(Uy — Up) (7)
where R is the bubble radius. The added mass F4 is equal to one-half the mass of the displaced liquid
volume:

2
FA = §7TR3pF (8)

To determine the volume variation for a spherical bubble, the Rayleigh-Plesset equation given by Plesset
(1948) is used:

d’R 3 ,dR 1 Vo 20 4pdR
R—=+ (=)= =(P, Pusi——p— — — ——— 9
a2 + 2( dt ) p( vap + Lgas,i % p R R dt ) )
where P,qp is the liquid vapor pressure, Pyqs,; is the initial partial pressure of the non-condensable gases,

p is the ambient pressure, Vj is the initial volume of the bubble, V is the volume of the bubble, o is the
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surface tension, and p is the dynamic viscosity. Here, an isothermal expansion of the bubble is assumed and
the bubble is assumed to remain spherical.

4 (Gaussian Vortex

For the computations of bubbles in a Gaussian vortex, the flow is initialized with a Gaussian vortex of radius
r and strength I'. The Gaussian vortex, also known as Lamb-Oseen vortex (Lamb, 1932, Saffman, 1992) is
the simplest viscous vortex in which the initial vorticity is w(r,0) = 0 and the vorticity at a radius, r, and a
later time, t, is given by:

g =2
= v 1
@ 47r1/te ’ (10)
The tangential velocity around the axis is given by:
To -2
=—(1—-e=z 11
w= ol (1- %) (1)

where I is the vortex strength and v is the viscosity. This corresponds to an isolated vortex of strength T'g
concentrated on the z-axis at time 0. As time increases from 0 to oo, the velocity diminishes from I'g/(27r)
to 0. The circulation around a circle of radius r is given by:

2

F:/ w - 2rrdr = To(1 — e®7) (12)
0

The maximum tangential velocity, Uore, Occurs at the core radius, r.ore- The maximum velocity can be
written as:

r r
0 (1—e %) =(0.7147) —>

27T eore TTcore

Ucore = (13)
The tangential velocity profiles of a tip vortex generated by a three-dimensional foil were measured by Boulon
et al. (1999) using Laser Doppler Velocimetry for a Reynolds of 10® based on chord lenght. They found
that the vortex core radius, R.ore, was on the order of 2.5 mm and that the maximum core velocity, Ugore,
was on the order of 5 m/s. This yields a vortex strength of I' = 0.0785m?/s. In the simulations presented
here the core radius was chosen to be r.ore = 2.5 mm and the maximum tangential velocity Ugpre = 5
m/s. The position and size were non-dimensionalized by the length of the computational domain, L = 10
mm, the velocities were non-dimensionalized by 2U.or. = 10 m/s, and the time was non-dimensionalized by
t = L/2U,ore =0.001s. In this study, the Weber number was defined as:

D,U?
We = PLBY core (14)

40
The boundary conditions used in this study imposed a constant pressure on the boundary and allowed for
inflow or outflow as the bubble changes its volume. A Reynolds number associated with the vortical flow is

defined as:

Re — DCOT‘CUCOTC (15)
14
where D, is the diameter of the viscous core and v is the kinematic viscosity. The cavitation number is

defined as:

P, - P
o= w (16)
3PYcore
where P, is the freestream pressure and p is the density. The freestream pressure is imposed on the boundary
of the computational domain.
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Figure 1: 1a Left: Collapse of a spherical bubble in an unbounded fluid. 1b Right: Collapse of a spherical
bubble near a wall. The surface bubble from time t/¢, = 0.0 to t/¢, = 1.25 is shown.

5 Validation Tests

In order to assess the accuracy of the implementation of the cavitation model in the Direct Numerical
Simulations (DNS) code, the collapse of a bubble in an unbounded fluid was computed and compared to the
analytical solution given by Rayleigh (1917). DNS computations of bubble collapse in an unbounded viscous
fluid were done in a three-dimensional domain with two different resolutions of 323 and 643 cells and the
results were compared with the analytical solution given by the Rayleigh-Plesset equation. The cavitation
model used assumed that the pressure inside the bubble was equal to the vapor pressure. Figure 1a shows
the dimensionless bubble volume, which is V/Vj, plotted vs. the dimensionless time, which is t/tg, for both
grid resolutions as well as the theoretical result. The theoretical result for the collapse of a bubble in an
inviscid fluid is also plotted in Figure 1a for comparison. As expected, the collapse of the bubble in a viscous
fluid has a reduced bubble collapsing rate than that in an inviscid fluid. For the simulations shown, the
length of the computational domain are twice the diameter of the initial bubble and the bubble was placed
in the center of the domain. The Reynolds number based on the collapse velocity is Re = 1, the Rayleigh
time is tg = 1.25, and the surface tension was neglected. Another test for determining the accuracy of the
implementation of the cavitation model in the DNS code was done by computing the collapse of a bubble
near a wall. When bubbles collapse near a wall, a jet of liquid, called the “re-entrant jet”, forms at the top
of the bubble (see, for example, Plesset and Chapman (1971), Mitchell and Hammitt (1973), Lauterborn
and Bolle (1975), and Blake et al. (1993)). Figure 1b shows the evolution of an initially spherical bubble
collapsing near a wall in an initially quiescent fluid. The bubble is shown at nine equal time intervals and
the figure clearly shows the re-entrant jet forming on the top of the bubble as time increases. The cavitation
model assumed that the pressure inside the bubble was equal to the vapor pressure.

6 DNS Results with Variable pressure inside the bubble

A more realistic cavitation model is the one in which the pressure inside the bubble is not constant but
varies with the bubble volume, according to Equation 4. The pressure inside the bubble is composed of the
vapor pressure and the partial pressure of the gases. While the vapor pressure remains constant, the partial
pressure of the gases decreases as the bubble volume increases and its effect on the bubble diminishes as the
bubble grows. This cavitation model is more realistic because bubbles contain non-condensable gases too,
and it is the presence of the non-condensable gases that maintains pressure equilibrium in the bubble before
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it is captured by the vortex. DNS of a cavitating bubble with various Weber numbers and cavitation numbers
were performed using this updated cavitation model. The pressure inside the bubble was initially set such
that the bubble was in pressure equilibrium at the start of the computation. Figures 2a and 2b present the
effect of the bubble and core diameter ratio on the growth of the bubble. In Figure 2a, the ratio Do/ Dy is
8 and in Figure 2b, the ratio In both figures the Weber number was 24, the cavitation number was 0.5, and
results are shown at dimensionless time. As expected, the bubble with a higher initial diameter grows to a
larger volume than the bubble with a smaller initial diameter. Figures 3a, 3b, and 3c show front, top, and
side view images of a bubble with D.yre/Dp =4, We = 24, and o = 0.5 at time ¢/(L/2U ore) = 1.2. It can
be observed that the bubble does not keep its initial spherical shape but tends to elongate along the axis of
the vortex, eventually filling the vortex. Figures 4a shows the effect of the Weber number on the growth,
respect of a bubble with D.yre/Dy = 8, /L = 0.2, D¢ore/L = 0.5. For a cavitation number of 0.5, the
bubble grows as it gets trapped by the vortex, and the bubble with the highest Weber number, which implies
the smallest surface tension, grows more rapidly than the bubbles with smaller Weber numbers. Figures 4b
and 4c show a comparison between the two bubble/core diameter ratios used, D¢ore/Dpy = 8 and 4, for a
bubble with Weber number of 24. For a cavitating number of 0.5, both bubbles grow and the growth rate of
the bubble with D_y../Dp = 4 is much faster than the growth rate of the bubble with D.,../Dp = 8. Table
(a) shows the bubble capture time for the bubbles that grow as they are trapped by the vortex. The bubbles
have a core diameter to bubble diameter ratio D,../Dpy = 8 and an initial position of x/L=0.2. The capture
time for cavitating bubble is defined based on the bubble volume. The bubbles with Dope/Dp = 8 have
an initial volume of 0.0127% of the computational domain volume at time 0. These bubbles are considered
to be captured by the vortex when their volume reaches 800 times the initial bubble volume. The bubbles
with Deope/Dp = 4 have an initial volume of 0.102% of the computational domain volume at time 0. These
bubbles are considered to be captured by the vortex when their volume reaches 70 times the initial bubble
volume. These capture criteria were chosen because by the time the bubbles reach the specified volume their
diameter is almost equal to the diameter of the vortex. Table (b) shows similar results for bubbles with a
core diameter to bubble diameter ratio D ore/Dp = 4 and x/L=0.2.

Table a. Bubble capture time for D.ope/Dp = 8, x/L=0.2.

We | o | t/(T/2 Usore)
234 | 0.1 1.0
23.4 | 0.17 1.1
234 | 0.5 1.3
93.6 | 0.5 1.26
12 0.5 1.33

Table b. Bubble capture time for D or./Dp = 4, x/L=0.2.

We | o | t/(L/2 Uecore)
187 | 0.5 0.97
187 | 0.1 1.43
24 | 0.5 1.02
24 1 1.53

7 Comparison between DNS and PT for Cavitating Bubbles

The DNS results for the trajectory and growth rate of the cavitating cavitating bubble as it gets trapped by
the vortex were compared to the particle-tracking model, Equation 7, that includes the force term that deals
with the bubble volume variation. The bubble volume was computed by integrating the Rayleigh-Plesset
Equation 9. Figure 5a shows a comparison between the DNS results and the particle-tracking (PT) model for
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Figure 2: Bubble growth 2a Left: D.ore/Dp = 8. 2b Right: D.ore/Dy = 4. For both figures: x/L=0.2,
We =24,0 = 0.5, Deore/L = 0.5 t/(L/2U ore) = 1.2. Red corresponds to a dimensionless vorticity value of
8 and blue to a value of 0.

the case of a bubble with D.yp./Dy = 8, We = 23.4, Deore/L = 0.5, 0 = 0.5, t = 1.07. The PT model does
not include a lift force in this computation. Figure 5b shows the bubble volume growth rate for the DNS and
the PT model results. It can be observed that the PT model yields a higher bubble growth rate than the
DNS. One drawback of the PT model is that the bubble is considered to be spherical and as shown above
(see Figures 3a,3b, and 3c) the bubble does not remain spherical during the capture process but elongates
along the vortex axis. The calculation of the ambient pressure, p in Equation 9, is important for the PT
model. In Figure 6a it is shown how the bubble volume growth rate varies depending on how the pressure
outside the bubble is computed. When computing the pressure, p, by averaging the pressure at the surface
of the bubble we obtain a better agreement with DNS results compared to using the value of the pressure
in the center of the bubble. The best agreement is obtained when using 4 or 8 points on the bubble surface
for averaging. By using 14 points no improvement is achieved. Figure 6a provides a comparison between the
DNS result and the PT model for different lift coefficients in the PT model. For this simulation ¢ = 0.5,
Diore/Dy = 8, We = 234, x/L = 0.2, Deore /L = 0.5, and time=0.88. The drag coefficient by Haberman and
Morton (1953) was used. It can be observed that neither trajectory computed with the PT model agrees well
with the DNS result. Figure 7a shows the same trajectory at a later time. Figure 7b presents the bubble
volume growth rate for the simulations shown in Figure 7a and it can be noticed that the PT model predicts
a much slower bubble volume growth rate than the DNS result. This difference emphasizes the fact that the
PT model assumes that the bubble remains spherical while in the DNS results it was shown that the bubble
actually deforms as it interacts with the vortex and elongates along the axis of the vortex.

8 Conclusions

The DNS results show that the shape of the bubbles can be significantly distorted as they are captured by
a vortex. This distortion can lead to the creation of lift forces that shorten the capture time of the bubbles.
Consequently, it is difficult to know precisely what lift coefficients should be selected for the particle-tracking
models. On the model scale, the diameter of a vortex core will be on the order of 1mm, and the tangential
velocity will be on the order 10 m/s. This yields a Reynolds number on the order of 10* for flows water. This
is similar to the computed Reynolds number examined above. The bubbles computed had core diameter on
the order of 100 um. The nuclei actually range from 1 to 100 gym. Thus, these results are applicable to for
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Figure 3: 3a Left: Front view of a bubble trapped in a vortex. 3b Center: Top view of a bubble trapped in a
vortex. 3c Right: Side view of a bubble trapped in a vortex. For x/L=0.2, W, =24, 0 = 0.5, Doore/L = 0.5
t/(L/2Ucore) = 1.2. Red corresponds to a dimensionless vorticity value of 8 and blue to a value of 0.

the largest nuclei. A nucleus with diameter of 100 ym would represent a Weber number of about 350 for a
clean bubble of air in water. This suggest that larger bubbles on the model scale may experience the larger
deformations observed here. Conversely, a 1 pym diameter bubble would have a Weber number of about 3.5.
The simulations were conducted for a vortex that is similar to a laboratory scale vortex with core size on
the order of 1Imm and tangential velocity on the order of 10 m/s. At full scale, the vortical flow may consist
of a vortex with a 10 mm diameter core. Thus, the core/diameter ratio would become much larger (100 to
10000). It is therefore possible that the bubble capture mechanisms at full scale can be very different. The
capture times varied over less than an order of magnitude for most cases, and this suggests that one might
derive and average capture time of the PT models. The results of the PT model with different choices of the
lift and drag coefficients, and more comparisons are needed to choose the best values of these parameters.
The results of the particle tracking models can vary widely depending on the selected values of the lift and
drag coefficients and nominal Weber number of the captured nucleus. For model scale flows, the Weber
number may vary from 1 to 100. Thus, it is possible that a particle-tracking model should have variable lift
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Figure 4: Growth of a Bubble in a Vortex (D.ore/L = 0.5, x/L=0.2, : 4a Left: D.ore/Dp =8, 0 = 0.5. 4b
Center: D.ore/Dy = 4. 4c Right: Diore/Dp = 8,Dcore/Dp = 8,0 = 0.5

and drag coefficients that better take into account the estimated instantaneous bubble deformation. The
drag coefficient by Haberman and Morton (1953) yielded a trajectory that was closer to the DNS trajectory
than when using the drag coefficient given by Clift et al.(1978). It was determined that the lift coefficients
given by Dandy and Dwyer (1990) and Auton et al. (1988) yielded capture times that were much bigger
than the DNS results and that lift coefficient between the those given by Saffman (1965) and Dandy and
Dwyer (1990) would give results that are closer to the DNS results.
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