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Abstract

A preconditioned, homogenous, multiphase, Reynolds Averaged Navier-Stokes model with mass transfer is
presented. Liquid, vapor, and noncondensable gas phases are included. The model is preconditioned in order to
obtain good convergence and accuracy regardless of phasic density ratio or flow velocity. Both incompressible and
finite-acoustic-speed models are presented. Engineering relevant validative and demonstrative unsteady and
transient two and three-dimensional results are given. Transients due to unsteady cavitating flow including shock
waves are captured. In modeling axisymmetric cavitators at zero angle-of-attack with 3-D unsteady RANS,
significant asymmetric flow features are obtained. In comparison with axisymmetric unsteady RANS, capture of
these features leads to improved agreement with experimental data. Conditions when such modeling is not necessary
are also demonstrated and identified.

1 Introduction

The ability to properly model multiphase flows has significant potential engineering benefit. In particular, sheet
cavitation may occur in submerged high speed vehicles as well as pumps, propellers, nozzles, and numerous other
venues. Traditionally, cavitation has had negative implications associated with damage and/or noise. However, for
high speed submerged vehicles, the reduction in drag associated with a natural or ventilated supercavity has great
potential benefit. Cavitation modeling remains a difficult task, and only recently have full three-dimensional, multi-
phase, Reynolds-Averaged, Navier-Stokes (RANS) tools reached the level of utility that they might be applied for
engineering purposes. Previously, Kunz et al. (2000) have developed and demonstrated a model capable of
representing multiphase homogeneous mixture flows. Venkateswaran et al. (2001) adapted this development to
finite-acoustic-speed multiphase compressible flow. In the current paper, the models of Kunz et al. (200) and
Venkateswaran et al. (2001) are applied to engineering relevant flows. This will serve to further demonstrate and
validate the capabilities of the multiphase RANS model.

Non-equilibrium mass transfer modeling is employed to capture liquid and vapor phasic exchange. The
computational model, designated UNCLE-M, can handle buoyancy effects and the presence/interaction of
condensable and non-condensable fields. This level of modeling complexity represents the state-of-the-art in CFD
analysis of cavitation. The restrictions in range of applicability associated with inviscid flow, slender body theory
and other simplifying assumptions are not present. In particular, the code can plausibly address the physics
associated with high-speed maneuvers, body-cavity interactions and viscous effects such as flow separation.

The principal interest here is in modeling flow fields dominated by attached cavities. These are presumed to be
sheet cavities amenable to a homogeneous approach. In other words, it is presumed that nonequilibrium interface
dynamics are of negligible magnitude. In addition, for the configurations considered, interface curvatures are very
small, thus the effect of surface tension is not incorporated.

In previous work (Kunz et al. 1999), the fidelity of UNCLE-M has been demonstrated for steady and unsteady
fluid flows. In the work presented here, UNCLE-M will be applied to several configurations. Some of these
configurations represent experimentally documented test cases. For others, the result demonstrates a capability to
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capture a known, but rarely captured physical phenomenon. Model results will be presented for ventilated, vaporous,
and combined ventilation and vaporous cavitation. Both steady (averaged) and unsteady behavior of the flow will be
presented and compared with data. In addition, interesting unsteady numerical results will be presented in a field
form for comparison with photographic data. Some of the most intriguing results are due to the fundamentally three-
dimensional nature of turbulent multiphase flow. By comparison of the numerical, measured, and well understood,
demonstrative results, reliability and capabilities of the numerical and physical modeling may be understood.

One of the complicating phenomena associated with underwater multiphase flows is the presence and effect of
compressibility in a flow that is largely incompressible. For many applications, such as flow around a hydrofoil, this
is due to the decrease, relative to any pure constituent phase, in acoustic speed for a multiphase mixture. Then
velocities normally associated with subsonic, incompressible flows result in supersonic conditions and associated
strong wave formations such as unsteady shocks (Arndt et al. 2000). To directly model flows containing shocks, a
suitable representation of compressible flow is necessary. Also, in these flows, liquid vapor mass transfer is
important. The goal here is to present, demonstrate and validate a three-dimensional, RANS based multiphase
method capable of capturing the density ratios, Reynolds Numbers, Mach Numbers, and relevant flow features such
as shocks and overall inherent and forced unsteadiness associated with these flows.

Nomenclature

2 Model Equations

For the purposes of analysis and development of appropriate preconditioning, theoretical development of the
underlying differential model has been presented previously (Kunz 2000 and Venkateswaran 2001). Here, the
governing model equations solved for three-phase flow resemble the equations employed in single-phase multi-
component reacting-gas-mixture flows. Both the incompressible and finite-acoustic-speed compressible constituent
phase form of the equations are applied here. In the finite-acoustic-speed formulation of the three-phase equations,
each constituent phase is governed by a linear state relation between density and pressure. This corresponds to a

Cf mass transfer model constants physical time, mean flow time scale,
time step

Cd drag coefficient U velocity magnitude

ventilation flow coefficient y+ dimensionless wall distance

c sonic velocity � volume fraction
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constant acoustic speed for each isolated constituent phase but a mixture sound speed dependent on c
make-up and local pressure. Similarly to the previous presentations, here, the equations for each formula
solved in an absolutely conservative fashion. A standard high Reynolds number form of the k��� two-equation
model with wall functions provides turbulence closure. The eigenvalues of the associated systems a
preconditioning forms have been previously discussed and lead to good convergence and accuracy at a
density ratios and flow velocities. Therefore, the model equations are not presented here.

In the finite-acoustic-speed model, the density of each constituent is linearly dependent on pressu
linearized compressibility is based on a constant constituent phasic speed of sound. This is sufficient to res
correct isothermal sound speed for the homogeneous mixture as a function of the constituent volume fractio
correct mixture sound speed is clearly represented in the eigenvalues of the inviscid flux Jacobians. In fact, a
known, analysis of the flux Jacobians is a proper method for deriving the acoustic speed, and the r
expression is given in Equation 1. From this equation, the dramatic effect of sound speed attenuation due to
flows may be seen. This is presented in Figure 1 for a representative liquid vapor mixture.

     (1)

Additional Physical Modeling
The finite rate mass transfer model equations solved here have been described previously (e.g. Kun

The mass transfer terms appear in the continuity relations pertaining to conservation of liquid and vap

transformation of liquid to vapor,  is modeled as being proportional to the product of the liquid volume fr
and the difference between the computational cell pressure and the vapor pressure. This model is similar to
used by Merkle et al. (1998) for both evaporation and condensation. For transformation of vapor to liq

simplified form of the Ginzburg-Landau potential is used for the mass transfer rate . The terms them
represent either a source or sink in the continuity relations. Recall that in the present approach, there are a n
continuity relations equal to the number of phases, and, in an absolutely conservative formulation, either 
mixture volume may be conserved variables. Relations for liquid destruction and liquid production are gi
Equation 2. 

(2)

Cf is an empirical constant. Both mass transfer rates are nondimensionalized with respect to a mean fl

scale. For all work presented here,  and Cf = 105. These values were arrived at by an investigation of aver
attached cavity lengths over ogives and comparison with experimental results of Rouse and McNown (1
demonstration of the comparison and sensitivity to the values of the constants are given in Figure 2.      

3 Numerical Method

The described model equations are solved in the UNCLE-M code. This code has its origins as the UNCL
developed for incompressible flows at Mississippi State University (Taylor et al. 1995). Later this cod
extended to multiphase mixtures, substantially revised, and named UNCLE-M (Kunz 2000). The code is stru
multi-block, implicit and parallel with upwind flux-difference splitting for the spatial discretization and Ga
Seidel relaxation for the inversion of the implicit operator. Primitive variable (MUSCL) interpolation with 
Albada limiting was applied to retain higher order accuracy in flow fields containing physical discontinuitie
keeping with the finding of Kunz (2000), only those source terms associated with vapor production were lin
for inclusion in the implicit linear system left-hand-side. Terms associated with liquid production were tr
explicitly and under-relaxed with a factor of 0.1. At each pseudo-time step, the turbulence transport equatio
solved subsequent to solution of the mean flow equations. During this investigation, attention was given
necessity of temporal and spatial discretization independence. As a requirement, to accommodate the us
functions, for regions of attached liquid flow, fine-grid near-wall points were established at locations yie
10<y+<100. Further details regarding the numerical method are available in Kunz (2000).
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4 Results

Model results are presented capturing unsteady and transient flows. Two-dimensional, axisymmetric, an
three-dimensional cases have been included. It is the intention here to resolve the physics necessary to r
flowfield during partial or super cavitation. Each of these cases represents a relatively complex time-dep
engineering flow and illustrates the utility of the method for a variety of two and three phase flows with and w
mass transfer. In each case, the density ratio of the liquid phase to the gaseous phases is three or more
magnitude. Some of these cases are presented in comparison to experimentally obtained data. Therefo
results serve to further validate for the modeling method. This validation has been previously initiated (Kunz
Kunz 1999, and Lindau 2000).

Cavitating Flow in a Venturi
Stutz and Reboud (1997) and Reboud et al. (1998) have performed detailed unsteady, flowfield measu

of vaporous cavitating flow in the two-dimensional Venturi section of a water tunnel. The test section ca
significant physics found on the suction side in a blade passage. Thus their experiment and the current mod
represent partially cavitating flow in a turbomachinery-like environment. In Figure 3, the average and
fluctuating portions of the liquid volume fraction is presented based on the modeled flow. This figure ser

Figure 1: Homogeneous isothermal liquid-vapor mixture sound speed versus vapor volume fraction. Liquid so
speed, 1500m/s. Pure vapor sound speed 429m/s. Pure liquid density 1000kg/m3. Pure vapor density 0.025kg/m3. 
From Equation 1.

Figure 2: Comparison of effect of rate constants (Equation 2) and experimental data (Rouse and McNown 19
naturally cavitating flow over a hemispherical head and cylindrical afterbody. Steady, incompressible constitu
phase (infinite sound speed) model results.
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illustrate the geometry of the modeled test section as well as the results obtained during modeling. The tes
had a height at the throat equal to 43.7 mm and a constant width equal to 44 mm. The nominal cavity le
comparison here was 80 mm in the horizontal direction. The experiments were conducted at Reynolds n
based on cavity length from 4.3x105 to 2.1x106 and at a range of cavitation numbers, based on the upstream pre
and velocity, from 0.6 to 0.75. It may be seen from the figure that although there is a high degree of unstead
the region of the cavitating flow, this unsteadiness is confined to the test section area. This is consistent 
commentary of Reboud et al. (1998).  

In Figure 4, the current computational results are presented with the experimental data of Reboud et al
It is apparent that the unsteady model results are in reasonable agreement with the experiments. In the figu
have been plotted at the five measurement stations used in the experiments. Each of these stations is g
horizontal position. The experimental cavity was initiated due to the suction peak on the lower surface of th
of the test section, a reference position of x=0. Based upon these results, the relative closeness of the 
experimental cavities was judged reasonable. In part (a) of the figure, the mean vapor volume fraction is p
the five axial stations. Considering the great difficulty in capturing flow detail in an unsteady two-phase flo
level of agreement shown is again, reasonable. Clearly the model tends to over estimate the void 
particularly at the forward region of the cavity, at x=22.5mm. However, the average quantities are in ex
agreement at the tail end. Similarly reasonable agreement is demonstrated with the unsteady portion of t
void fraction, part (b). Here the error is greater in the closure region, at x=60mm and x=80mm. Consider
difficulty of modeling in the closure region, this level of agreement is also reasonable. In part (c), the averag
velocity is given at the five measurement stations. It should be noted that, by application of a two-phase 
Stokes model based on a barotropic state law, Reboud et al. (1998) were able to obtain similarly good ag
with the experimental data.  

The finite-acoustic-speed form of UNCLE-M was also applied to this two-dimensional cavitation tu
experiment. In Figure 5, a particularly interesting result is shown. At four points in time, the evolution of a 
cavity collapse has been illustrated. At each time step shown, in the upper portion of the figure, the liquid 
fraction is shown. Here the capabilities of the finite-acoustic-speed model to tackle problems associate
cavitation damage have been demonstrated. During the initial transient, prior to establishment of a cavity cyc
the incompressible and finite-acoustic-speed forms of UNCLE-M exhibited a high degree of unsteadiness an
cavity pinching. However, in the incompressible model, the collapse of the pinched cavity does not lea
significant overpressure. As has been discussed, the finite-acoustic-speed model has the physical mech
translate a cavity collapse into a nonlinear pressure wave that rapidly coalesces into a shock. It h
demonstrated previously (Venkateswaran 2001) that the finite-acoustic-speed model contains the proper
needed to correctly track unsteady two-phase shock waves. Here the physical mechanism to evolve the coll
cavity and subsequent shock wave formation and evolution has been shown.   

Ventilated Axisymmetric Cavity Flow
Stinebring et al. (1979 and 1983) have performed steady and unsteady flow measurements of ventilate

flow over a conical head and cylinder. Here, the model results based on three different ventilation flow ra
compared to data. In their experiments, a 45o cone and cylindrical afterbody were assembled with six ventilat
ports. The ports were 0.635 mm in diameter and were installed, at equal circumferential intervals, just dow
of the corner joining the cone and cylinder. Flow of noncondensable gas through these ports was precisely c
and relevant cavity data were recorded with several methods described by Stinebring et al. (1979 and
Experimental results obtained at Reynolds numbers, based on model diameter, from 230,000 to 390,0
compared to the computational model. For the model, the Reynolds number was 136,000 and the po
modeled by inserting noncondensable gas, perpendicular to the free stream over a region of 0.635 mm
extent, just downstream of the corner joining the cone and cylinder. Due to the fully turbulent nature 
computational model and the domination of the flowfield by the separated two-phase region, it is suspected
discrepancy in Reynolds numbers should have little effect on the overall results

Figure 3: Computational result. Unsteady, naturally cavitating, two-dimensional flow. ReL=7.1x105 (based on 
cavity length). Modeling of a two-dimensional cavitation tunnel. Reported in Stutz and Reboud (1997).
a) Mean liquid volume fraction. Red=1. Blue=0.
b) RMS fluctuating component of liquid volume fraction. Red=0.5. Blue=0.

a) b)
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Figure 6 contains illustrative results from the modeled ventilated cavity flow over the cone and cylinde
ventilation flow rate is given, nondimensionally, in terms of a flow coefficient, CQ. Contours of modeled liquid
volume fraction are shown with selected streamlines. Red indicates pure liquid, and blue indicates pure 
illustrated by the streamlines, the gas cavity is dominated by recirculating flow. This flow tends to periodicall
gas downstream. This ejection concurs with periodic modulation of the cavity shape. As may also be see
figure, the outer boundary of the cavity is also concurrent with a streamline. Hence the profile drag of the o
modulated at the same frequency. This modulation occurs at a frequency similar to the rate observed for v
cavities. The frequency of cavity modulation is at a rate determined by the mean length of the cavity. For flow
ogives at zero angle of attack and moderate cavitation numbers, this mean length is determined by th
pressure which is equivalently represented as the cavitation number (Stinebring and Holl 1979). Thus, th
frequency is roughly independent of whether the cavity is vaporous or ventilated. However, for a given ca
number, the dominant periodic motion of ventilated cavities is less prominent than during vaporous cavit
(Stinebring et al. 1983). 

Figure 7 (a) contains a comparison the modeled and measured cavitation numbers for given ventilati
coefficients. The cavity number, �, is determined by the average minimum pressure in the cavity downstream o
injector. In the model and in the experiments, the cavity pressure, pc, was found approximately one model radiu
downstream of the port. This serves to illustrate a difference between the modeled flow which is truly axisym
and the actual flow which is most appropriately described as periodic. Fortunately, in the discussion 
experiments (Stinebring and Holl 1979) it was noted that the cavity length should be well correlated w
cavitation number. This relation is shown in Figure 7 (b). Here the model cavity pressure has been presen
cavitation number and compared with measurements from Stinebring and Holl (1979). As is clear in the figu
model results agree with the measurements, and comparison of other physical phenomena is made 
cavitation number rather than ventilation flow rate.  

In Figure 8, a portion of the drag history, defined as the integrated axial pressure force normalized by 
stream dynamic head (May 1975), from modeled flow over a ventilated cone and cylinder at ventilation flow 
CQ=0.05 (�=0.26) is shown. Here the rather complex model cycle is illustrated over an approximate perio
cycle is more easily discerned by comparison of the drag history to the evolving flowfield in Figure 9. He
same model cycle is presented with contours of liquid volume fraction around the region of the cavity flow.   

Figure 4: Comparison of modeled, unsteady cavitating flow to measurements at five horizontal stations (Reb
al. 1998). y-vertical distance from wall. x-horizontal distance downstream of throat.

a) Mean vapor volume fraction (�v). 
b) Fluctuating RMS vapor volume fraction.
(Solid line indicates �v=0. Dashed line indicates �v=0.5.)

c) Mean horizontal velocity. 
d) Fluctuating RMS horizontal velocity.
(Horizontal bars at stations indicate relative scale of a 12m/s velocity, the approximate free stream).
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In Figure 9, the oscillatory behavior of the cavity flow is well illustrated. The coloring has been adjusted
that a liquid volume fraction value greater than 0.5 is flooded red, and values of zero are dark blue. T
differences of volume fraction within the cavity is shown in greater detail, and the complete cavity cycle m
discerned. It is notable, as illustrated in Figure 8, that the cycle is made up of multiple local maxima in profil
This fits with the previously mentioned experimental observation regarding the lack of prominence of a do
frequency during ventilated cavitation. Thus the cycle is complex and not readily obtained from zero-dime
information such as drag history. The complete cycle, in the figures, is denoted by the first and last loc
minima shown. By carefully stepping through time history snapshots such as shown in Figure 9, and com
these to the drag history, it was possible to determine the appropriate definition of the period.  

In Figure 10, modeled and measured cavity cycling frequency is compared for ventilated flow over the 
head and cylinder. Here the experimental results (Stinebring et al. 1983) over a range of cavitation numbe
three free-stream values of velocity are compared to the modeled flow. The modeled flow is given at three ca
numbers, 0.2, 0.26, and 0.28. The agreement with data at the lowest cavitation number (highest dimen

Figure 5: Finite Acoustic Speed Model. Flow during collapse of a pinched cavity. Liquid volume fraction: Re

�l=1. Blue �l=0. Pressure: Red, . Blue, .

Figure 6: Snapshots of unsteady, modeled ventilated cavity flow over a conical head and cylinder. Contour
liquid volume fraction and selected streamlines. Red=1. Blue=0.
a) CQ=0.039.
b) CQ=0.05.
c) CQ=0.078. (To better illustrate the cavity flow, (c) is presented in a reduced size relative to (a) and (b).)
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ventilation rate) is excellent. At the higher cavitation numbers, there is a small divergence of modeled resu
the measurements. However the proper trends are well captured. In addition, at lower ventilation flow ra
spacing of the ventilation ports and other important length scales become larger relative to the cavity length.
is suspected that unmodeled three-dimensional effects on cavity behavior will be more significant at
ventilation flow rates.  

Fully Three-Dimensional Naturally Cavitating Flow
Turbulent, naturally cavitating flow over axisymmetric bodies is known to be a highly nonlinear and 

dimensional event. This is clearly illustrated in Figure 11. Here, a photograph during water tunnel testing of 
cavitator at zero angle-of-attack, ��0.35, and Red�150,000 is shown in part (a) to be compared and contraste
the model result in part (b). To obtain the model result, turbulent vaporous cavitating flow over a blunt cavita
modeled. � was set to 0.4 and Red was 148,000. An appropriate high Reynolds number grid with approximately
million nodes was used. The snapshot of part (b) represents a physical time slice taken after a clear mod

Figure 7: Comparison of modeled and measured (Stinebring and Holl 1979) ventilated cavity flow over a con
head and cylinder. 
a) Cavity pressure, �, versus ventilation rate, CQ. b) Cavity pressure, �, versus cavity length L/d.

Figure 8: Profile drag, Cd, history spanning an approximate model cycle. Dimensionless time, tU∞/d. Modeled 
ventilated cavity flow over a conical head and cylinder. CQ=0.05.
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cycle had been established. In the figure, an isosurface at �l=0.5 has been presented with selected streamlines, 
the surface of the cylinder has been colored by volume fraction. The streamlines are merely suggestive (but helpfu
as they have been generated based on instantaneous velocity vectors. Clearly in neither the model resu
photograph is the flowfield in and around the cavity axisymmetric. It is suspected that physical, chaotic, d
interdependencies are responsible. For instance, there is little likelihood of obtaining purely axisymmetric con
in even the most well controlled environments. Even the identification of all factors necessary to be control
difficult task. This is compounded by the influence of highly nonlinear turbulent flow dominated by phase tran
etc. It is not suggested that, in obtaining the result of Figure 11 (b), the exact causal mechanism of th
dimensional and unsteady flow has been reproduced. Rather it is suggested that via an adequate level of m
the real flow has been well captured. Positive understanding of the causal mechanisms is a subject fo
research.   

Here a striking example of the divergence of three-dimensional and axisymmetric modeling is given. A 
of the results obtained by three-dimensional modeling of vaporous cavitation over a blunt ogive at zero a
attack are presented in Figure 11 (b) and Figure 13. These results appear to agree with both significant q
and quantitative experimental observations. As in the experiment, the modeled reentrant flow has been obs

Figure 9: Modeled ventilated cavity cycle. CQ=0.05. Liquid volume fraction contours. Red>0.5. Blue=0. Time give
in dimensionless units, tU∞/d.

Figure 10: Comparison of modeled and measured (Stinebring et al. 1983) ventilated cavity flow over a conica
and cylinder. Cavity cycling frequency versus cavity pressure.
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follow a helical pattern. This helical flow revolves around the circumference of the cylinder. This revolut
driven by a complex reentrant flow. The flow emanates from the high pressure region downstream of the
This high pressure region is situated at the aft end of the azimuthal section of the cavity of greatest axial ext
area of the surface of the cylinder contains the stagnation point of an imaginary streampath. This streampath follows
the outer edge of the cavity along that azimuthal sector. It is recalled again that the cavitation number of flo
axisymmetric bodies is highly correlated with mean cavity length. Thus, at that instant in time, this streampat
a cavity profile representing an instantaneous minimum cavitation number. A maximum instantaneous ca
number is similarly related to the axial streampath outlining the cavity of minimum axial extent. The c
cavitation number lies between this minimum and maximum. The reentrant flow tends to move away fro
stagnation region. During its initial formation, due perhaps to turbulent fluctuations, the reentrant flow was in
driven and then moved permanently in a helical path. At the same time the helical path was establishe
aspects of the flow tended to cause a cavity cycle that is largely axial. This axial cycle fits the typical observa
reentrant flow (Stinebring et al. 1979, 1983, and May 1975). This axial motion is observable in the snapshot
also well captured by the profile drag coefficient history given in Figure 12. Here the drag history has been
over a model cycle as defined by the three-dimensional flow. Clearly the zero-dimensional drag coeffic
insufficient, by itself, to provide the true model cycle. However by examination of Figure 12 in conjunction
Figure 13, snapshots of the three-dimensional flowfield, it is possible to deduce the model cycle. The axia
may be nearly modeled, in a linearized simplification, as superimposed on the previously discussed circum
motion. The circumferential motion is not divisible precisely by an integer number of axial periods. In fact the
cycle is not regular and has a poorly defined amplitude. Therefore, this cavity cycle is appropriately descr
nonlinear and quasi-periodic.        

Due to the observed helical (not symmetric) nature of the reentrant region, it was necessary, experimen
use high speed movies to determine the period cavity cycling (Stinebring 1975, 1983, and pe
communications). Generally two consecutive observed cycles were required to determine the reported cyc
would then coincide with the cycle determined by a complete revolution of the reentrant jet. This is the
reported in three-dimensional model results of Figure 14. Here the model results from the current three-dim
modeling are compared with previous two-dimensional results (Lindau 2000) and experimental obser
(Stinebring 1983).    

Three-Dimensional Supercavitating Transient
The authors are also interested in the hydrodynamic performance of supercavitating vehicles in maneu

particular interest are predicted transient forces and moments, as well as transient cavity behavior, wh
important in the design of vehicle control systems and gas ventilation schemes.

In Figure 15 we present a set of preliminary prescribed motion results for a notional supercavitating v
Figure 15 (a) illustrates a view of the geometry, which has a relatively blunt cavitator and three annular ven
ports with aft oriented gas deflectors. A cavity gas ventilation rate is prescribed that is sufficient to enshro
entire vehicle during steady flight. A gas propellant flow rate is also specified at the exhaust nozzle. F
analysis, the gas flow is assumed incompressible. A prescribed pitch-up-pitch-down maneuver is specif
Figure 15 (i). A non-dimensional timestep of ∆t/tref = .09473 was specified, where tref = Lvehicle/U∞. A 1,218,536
vertex grid was used. The simulation was run on 48 processors of a Cray T3E. Figure 15 (b) through (h
several snapshots of the evolving cavity during the maneuver, as designated by isosurfaces of liquid volume

Figure 11: Blunt cavitator at zero angle-of-attack:
a) In water tunnel at ��0.35. (Stinebring 1976)
b) Model result from UNCLE-M at ��0.4. Isosurface (translucent) at �l=0.5. Selected (instantaneous) streamline

Surface of cylinder colored by �l. Red=liquid. Blue=vapor.

a) b)
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Figure 12: Profile drag, Cd, history spanning an approximate model cycle. Dimensionless time, tU∞/d. Modeled 

vaporous cavity flow over a blunt cylinder, ��0.275.

Figure 13: Snapshots of modeled vaporous cavitation. �=0.275. Translucent isosurface at �l=0.5. Surface of 
cylinder colored by pressure.
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= 0.5. A three-field simulation was carried out. Vaporous cavitation occurs upstream of the first gas de
Clearly evident is the significant perturbation in the cavity for this maneuver. Indeed, the cavity intersects th
at t/tref = 47.4. Also, natural cavitation near the leading edge is not sufficient to keep the first injection
unwetted. Figure 15 (i) shows the predicted lift history for the vehicle during the maneuver, as well as the pre
angle-of-attack.

5 Summary and Conclusions

A model formulation for the computation of multi-phase mixture flows with appropriate preconditioning result
an inviscid system, with well conditioned eigenvalues, independent of density ratio, has been applied. In this
designated UNCLE-M, flows are assumed to be in homogeneous equilibrium, and each phase is represe
separate species with an attendant equation of state. In the computational implementation, the model allo
rate mass transfer to take place between a liquid and vapor phase, and maintains an additional phas
representation of a noncondensable gas.

Results have been given demonstrating capabilities of the computational model. Complex two-dimen
three-dimensional, and unsteady representative and validative flows have been examined. Supportive expe
results have been included, and detailed discussion of the modeled flow features has been given. The differe
computational form as well as the solution of the fully three-dimensional, three-phase model with mass tran
been presented.

The validative results include modeled vaporous cavity flow in a Venturi section previously reported by
and Reboud (1997) and Reboud et al. (1998), modeled ventilated cavity flow over a conical forebody and c
previously reported by Stinebring et al. (1979 and 1983), and modeled vaporous cavitating flow over a
cylinder previously reported by Stinebring et al. (1983). In each of these cases the flow was unsteady, comp
almost certainly three-dimensional. In the case of the Venturi (Reboud et al. 1998), two-dimensional mode
were good considering the complex unsteady nature of the flow and the high level of detail provided 
experimental results. However, the transverse (not modeled) dimension of the test section was 44 mm w
height was 43.7 mm. Based on other modeling and experimental evidence offered here, it is suspected th
dimensional modeling of such a Venturi section would be useful.

In the case of the flow over axisymmetric bodies at zero angle of attack, it is significant that the axisym
modeling of ventilated cavitation is apparently sufficient while the model results for vaporous cavitation sho
Figure 14 and reported (Lindau 2000) are not. A suspect cause for this difference is fairly straightforward
tested, ventilated, conical cavitator, ventilation ports were installed at six circumferentially distributed loca
equidistant apart, just aft of the corner joining the cone to the cylinder. Thus the ventilation ports would t
continuously feed the cavity in a symmetric manner. It is likely, even in the presence of strong flow nonline
that this arrangement would have tended to reinforce symmetry. In addition compared to the blunt cyli
cavitator, the lower drag conical head would be likely to produce a less violent, more symmetric flow in the
closure region. As is clear from the experimental evidence given in Figure 11, vaporous cavitation over blunt

Figure 14: Cavity cycling frequency versus cavitation number. Vaporous cavitation over blunt cylinder. Compa
of experimental (Stinebring et al. 1983), model axisymmetric, and model three-dimensional results.

0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

σ

S
tr

Water Tunnel
Axisymmetric
3−D

S
tr

(fd
/U

�
)



CAV2001:sessionB4.005 13

 objects
quency

ting 
at moderate cavity numbers tends to be asymmetric. This would have been particularly true for higher drag
at higher cavitation numbers. This is demonstrated in Figure 14, where the axisymmetric model cycle fre
tends to diverge from the experimental data as cavitation number is increased.

Figure 15: Elements of 3-D unsteady simulation of prescribed maneuver of a notional high speed supercavita
vehicle. 
a) View of geometry.
b)-h) Cavity surface shape vs. time as indicated by isosurface of �l= 0.5. 
i) Prescribed angle-of-attack and lift history vs. time.
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Success with geometrically simple validative results suggest that the modeling method may be applied to more
complicated design level tasks with confidence. This has been demonstrated here in the case of a three-phase model
of a supercavitating vehicle undergoing a transient maneuver. With future application of the newly formulated fully
compressible model (Lindau 2001) planned for complex geometries, it is suspected that UNCLE-M will be a useful
tool for supercavitating design efforts.
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