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Abstract 

An experimental investigation was made to clarify the characteristics of oscillating 

cavitation on a flat plate hydrofoil in a water tunnel.  Dynamic behavior of oscillating cavitation is 

discussed from the unsteady pressure measurements at the upstream of the blade and the visual 

observations of cavitation phenomena using high-speed video recording.  It was found that the 

mean cavity length characterizes the fundamental characteristics of cavity oscillation.  The cavity 

oscillations are categorized into two types, i.e. the transitional cavity oscillation and the partial 

cavity oscillation. 

 

1. Intoroduction 

If the cavity length of partial cavitation on a hydrofoil extends beyond 75 % of chord 

length, oscillating cavitation with change of cavity volume occurs.  This kind of oscillating 

cavitation has been recognized as a transitional process between the partial cavitation and 

supercavitation, standing on theoretical results obtained by steady-linear analysis of Geurst (1959, 

1960).  This is herein called �transitional cavity oscillation�.  This transitional cavity oscillation 

brought to attention by Wade and Acosta in 1966 has been studied by many researchers such as 

Kamono et al.(1992), Kuwako et al.(1993) and Matsudaira et al.(1995). However, these 

investigations were the only fragmentary examples, leaving the systematic understanding of 

oscillating characteristics to be clarified. 

On the other hand, for the case of cavity length less than 75 % chord, another type of 

cavity oscillation has been observed by Kubota et al.(1986), Kamono et al.(1992), Le et al.(1992) 

and Kawanami et al.(1998).  In the present paper, we call it �the partial cavity oscillation�.  It is 

reported by Tanimura et al.(1995) that the oscillating partial cavity forms a re-entrant jet during its 

collapse, followed by a release of vortex cavity toward the downstream periodically.  However, 

only few attempts have been made to date to clarify the similarity or difference of the oscillating 



 

 

characteristic, between the transitional cavity oscillation and the partial cavity oscillation.   

For the understanding of the phenomena, it is important to distinguish between the local 

flow instability around hydrofoil and the system instability, which is often associated with the 

change of total cavity volume.  In traditional investigations, the cavitation number σ is recognized 

as one of the most important parameters to characterize the steady or unsteady cavitation phenomena.  

In the case of cavitation on a hydrofoil, the angle of attack α is also an important parameter.  It is 

wall-known that the steady cavity length is determined by σ/2α based on the linear analysis.  

Recently, Watanabe et al.(1998) have shown theoretically that the characteristics of unsteady 

cavitation depends on the value of σ/2α.  Kjeldsen et al.(1998), Pham et al. (1998) attempted to 

correlate the experimental results on unsteady cavitation with σ/2α. 

In the present study, we attempt to categorize the above mentioned oscillating cavitations 

on a flat plate hydrofoil according to the non-dimensional cavity length based on the hydrofoil chord.  

The relationship between the characteristics of oscillation and type of cavitation (i.e. sheet cavitation 

and cloud cavitation) is discussed from the high-speed flow observations and fluctuating pressure 

measurements.  The influence of the water tunnel system on the oscillating characteristics is also 

discussed.  Furthermore, re-entrant jets were observed by means of dye injection and their effects 

on transitional cavity oscillation are discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

    
    

Fig. 2  Test section 

       (C=70[mm],Ld=373[mm],672[mm],903[mm])   

Fig. 1 Experimental apparatus. 

Fig. 3 Foil shape.  (Chord C=70[mm], Span B=70[mm])  



 

 

2. Experimental Method 

Experimental apparatus is shown in Figure 1.  Tank volume is 2.2 [m3] and 70-80 percent 

of the volume is filled with deairated tap water.  A three bladed inducer is used as the recirculating 

pump at the flow rate coefficient of Φ=0.1 which is larger than the design flow coefficient of 

Φ=0.078.  It was confirmed by preliminary experiments that the operating conditions is out of range 

of flow instability produced by the inducer pump system, such as rotating cavitation or surge 

throughout the present experiments.  The experiment was carried out at the inlet pressure of 

p=12[kPa], and the cavitation number was controlled by changing the flow velocity in a range of 

U=2.0～4.5[m/s], by adjusting the rotational speed of the recirculating inducer pump.  The effects 

of the difference of the Reynolds number on the fundamental characteristics of cavity oscillation 

were not identified.  Figure 2 shows the test section of water tunnel.  A nozzle with the cross 

section area ratio of 4.65 was placed upstream of the hydrofoil.  The distance between the nozzle 

and hydrofoil was changed to examine the system dependence of the cavity oscillations. Flat plate 

hydrofoil with chord length 70[mm] and span 70[mm] was employed in present experiment.  The 

shape of the hydrofoil is shown in Figure 3.  The angle of attack is defined as the angle between 

main flow and suction surface (the side with flat surface) of the blade.  Mean flow velocity and 

pressure fluctuation were measured by an electromagnetic flow meter and a pressure transducer, 

respectively.  The behavior of cavity on the hydrofoil was observed by a high-speed video 

recording system (NAC HSV-500) with a strobe lighting system.  Framing rate 250 [fps] was used.  

In the present paper, cavity length L is defined as distance from the leading edge to end of 

continuously distributed cavity which is estimated from the high-speed video picture. 

 

3. Inlet Pressure Fluctuation 

Figure 4 shows the power spectrums of the inlet pressure fluctuation for various 

normalized cavity length Lc*=Lc/C, where Lc is the mean cavity length, C the chord length.  

Figures 4 (a) and (b) are typical results at angle of attack α=1.5 [deg] and 5 [deg], respectively.  

Before discussing the characteristics of cavity oscillation, a few remarks should be made concerning 

the type of cavitation.  Several examples of photographs will be shown in next section.  When the 

angle of attack is α=1.5 [deg], sheet cavitation was observed for any cavity length.  In the case of 

α=5 [deg], both sheet and cloud cavitation are observed for longer cavities but only cloud cavities 

are observed for shorter cavities.  In the present paper, it is categorized as the sheet cavitation if it 

appears some part of the cavity.  The characteristics of cavity oscillation are represented by the 

non-dimensional amplitude of the inlet pressure fluctuation Ap*, and the Strouhal number Stb based 

on the hydrofoil chord C.  In both Figures 4 (a) and (b), the frequency components caused by the 

transitional cavity oscillation can be seen at Stb=0.13 under the condition that non-dimensional 

cavity length Lc* is around unity (cf. (1) or (2) in Fig.4 (a) and (b)). It will be shown in the next 



 

 

 

 

section that the frequency of inlet pressure fluctuation agrees with the frequency of cavity length 

oscillation.  On the other hand, in spectrums (4) - (6), the pressure fluctuation with broadband 

frequency caused by the partial cavity oscillation can be observed for shorter cavities.  The peak 

frequency shown by the arrows are considered as the representative frequency and is used in the 

following discussions.  We notice that the magnitude at the peak increases with increasing 

non-dimensional cavity length Lc*.  Furthermore, Strouhal number Stb for α=1.5 [deg] is smaller 

than that for α=5 [deg].  In the case of the transitional cavity oscillation, we cannot identify the 

fundamental difference between α=1.5 [deg] and 5 [deg] from (1) and (2).  Thus the Strouhal 

number for the transitional cavity oscillation is independence of angle of attack.   

 In Figures 5 and 6, the relations between the non-dimensional cavity length Lc* and 

Strouhal number measured with various distance between the nozzle and hydrofoil are shown to 

examine the effect of the system on the characteristics of cavity oscillation.  Figure 5 is for α=1.5 

[deg] and Figure 6 α=5 [deg] where (a) shows Strouhal number Stb based on chord length and (b) 

represents Stc based on mean cavity length.  In Figure 6, experimental data by other researchers are 

also plotted to compare with the present result.  Figure 5 (a) and Figure 6 (a) show that the Strouhal 

number Stb is nearly constant over 0.75<Lc*<1.2 and independent on the angle of attack and inlet 

conduit length including the data by other researchers.  Therefore we can say that Stb of transitional 

cavity oscillation is not largely affected by the cavity length, angle of attack, shape of hydrofoil and 

(a) α=1.5[deg], σ=0.42~0.80, Ld=373[mm] (b) α=5[deg], σ=0.84~1.54, Ld=373[mm] 

Fig. 4 Power spectrums of inlet pressure fluctuation. 



 

 

experimental equipment system.  Let us consider the partial cavity oscillation.  For the partial 

cavity oscillation with Lc*<0.75, Strouhal number Stb based on the chord length increases with 

decreasing non-dimensional cavity length Lc*.  For α=5 [deg] (see Figure 6(a)), with cloud 

cavitation,  Stb for identical Lc* decreases approximately in inverse proportion to Ld  where Ld 

is the distance from the nozzle to the leading edge of hydrofoil.  This tendency is in agreement with 

an analytical result obtained by a 1-D flow model, which assumes that the pressure fluctuation near 

the leading edge is caused by the inertia of the fluid in the inlet conduit, associated with the cavity 

volume change.  For α=5 [deg], the effect of Ld/C is not evident.  The difference between α=5 

[deg] and α=1.5 [deg] may be associated with the difference of type of cavitation cloud type for α=5 

[deg] and sheet type for α=1.5 [deg]. 

Figure 5 (b) and Figure 6 (b) show the relation between non-dimensional cavity length Lc* and 

Strouhal number Stc based on cavity length.  In the case of sheet cavitation (all data in Figure 5 (b) 

and for the data with 0.75<Lc* in Figure 6 (b)), Stc distributes in a narrow range between 0.1 and 

0.2.  However Stc for the partial cavity oscillation with cloud cavitation (0<Lc*<0.75 in Figure 6  

  

 

                   

 

 

 

Fig. 5 Relation between cavity length and Sttrohal

number obtained by inlet pressure fluctuation

for smaller angle of attack. 

Fig. 6 Relation between cavity length and Sttrohal

number obtained by inlet pressure fluctuation

for larger angle of attack. 



 

end of cavity　 　

( )t=0.000sec(t/T0.00,Ut/C=0.00)ａ 　

( )t=0.144sec(t/T0.81,Ut/C=6.60)ｊ 　

( )t=0.128sec(t/T0.72,Ut/C=5.87)ｉ 　

( )t=0.112sec(t/T0.63,Ut/C=5.14)ｈ 　

( )t=0.064sec(t/T0.36,Ut/C=2.93)ｅ 　

( )t=0.048sec(t/T0.27,Ut/C=2.20)ｄ 　

( )t=0.032sec(t/T0.18,Ut/C=1.47)ｃ 　

( )t=0.096sec(t/T0.54,Ut/C=4.40ｇ ）( )t=0.016sec(t/T0.09,Ut/C=0.73)ｂ 　

( )t=0.080sec(t/T0.45,Ut/C=3.67)ｆ 　

 

 

 

end of cavity　 　

( )t=0.000sec(t/T0.00,Ut/C=0.00)ａ 　

( )t=0.024sec(t/T0.50,Ut/C=0.98)ｄ 　

( )t=0.016sec(t/T0.33,Ut/C=0.65)ｃ 　

( )t=0.008sec(t/T0.17,Ut/C=0.33)ｂ 　

( )t=0.032sec(t/T0.67,Ut/C=1.31)ｅ 　

( )t=0.056sec(t/T1.17,Ut/C=2.29)ｈ 　

( )t=0.048sec(t/T1.00,Ut/C=1.96ｇ ）

( )t=0.040sec(t/T0.84,Ut/C=1.63)ｆ 　

 

 

 

 

 

 

(b)) depends significantly on the inlet conduit 

length.  In the present experiment, it is noticed 

that values of Stc for cloud cavitation are 

generally greater than that for sheet cavitation.  

Similar results as shown in Figures 5 and 6 

have been obtained by Kjeldsen et al.(2000) for 

a NACA 0015 hydrofoil.  Major difference is 

that they observed more distinct partial cavity 

oscillations with discrete spectrum.  However, 

it would be more important to note the fact that 

the two types of cavity oscillations are 

observed with completely different hydrofoil 

shapes and in different systems. 

 

Fig. 7  Pictures of transitional cavity oscillation.  

( α =5[deg], σ =0.77, C=70[mm], U=3.21[m/s],

Ld=373[mm], Lc*≒1.0) 

Fig. 9  Pictures of transitional cavity oscillation. 

( α =5[deg], σ =1.18, C=70[mm], U=2.86[m/s], 

Ld=373[mm], Lc*≒0.5) 
 

 

 

Fig. 8 Change of cavity length and inlet pressure with

time in case of transitional cavity oscillation.   

( α =5[deg], σ =0.77, C=70[mm], U=3.21[m/s],

Ld=373[mm]) 
 



 

 

4. Photographic Observation 

 Photographs of the transitional cavity oscillation for α=5 [deg], Lc*=1 are shown in 

Figure 7.  The arrows in the figures indicate the cavity trailing edge in each frame.  In this figure, 

the period of cavity oscillation agrees with the period of oscillation determined from the inlet 

pressure fluctuation.  We can observe the growth phase of cavity in (a) - (f) and the collapse phase 

in (f) � (j).  It can be seen that the sheet cavitation appears near the leading edge in (d) and (e), but 

it changes to cloud cavitation shortly and is separated from the main cavity and shed downstream in 

(h) and (i).  In this condition, the frequency of the cloud cavity shedding is equivalent to the 

frequency of cavity length change with time.  Figure8 shows the change of cavity length and inlet 

pressure with time for transitional cavity oscillation.  (a) is cavity length and (b) inlet pressure 

change.  In Figure 8 (a),  (a) to (j) in the figure shows the instant of time corresponding to Figure 7 

(a) to (j).  Non-dimensional pressure fluctuation is defined as P�*=P�/(ρU2/2) where ρ is the 

density and P� is pressure fluctuation component.  We notice that the phase of the cavity length 

fluctuation differs by π as compared with that of inlet pressure fluctuation.  From this figure or 

Figure 4, it is also seen that the period of transitional cavity oscillation is almost identical for each 

cycle. 

 Figure 9 shows typical pictures of the partial cavity oscillation for α=5 [deg], Lc*=0.5.  

Since cloud cavitation starts from leading edge of hydrofoil in this situation, the pictures are not 

clear.  Cloud cavity is shed in the collapse phase of the cavity on the blade.  Figure10 shows the 

cavity length and inlet pressure change corresponding to the pictures shown in Figure 9.  It is seen 

that the period of oscillation changes significantly for each cycle as compared with the transitional 

cavity oscillation.  This is the reason for the broadband spectrum of inlet pressure fluctuation.  This 

figure shows that the cavity oscillation correlates with the inlet pressure fluctuation even in the case 

of partial cavity oscillation with broadband spectrum and smaller magnitude.  Therefore, the inlet 

pressure fluctuation measurement is appropriate to evaluate the characteristics of both the 

transitional cavity oscillation and the partial cavity oscillation.  The behavior of the partial cavity 

oscillation with sheet cavitation for α=1.5 [deg], Lc*=0.5 is shown in Figure 11.  We can recognize 

the re-entrant jet toward leading edge of hydrofoil in (d) and (e). 

 

 

5. Observation of Re-enrant Jet 

 Tanimura et al.(1995) introduced three proposed mechanisms to explain cavity 

oscillations, i.e. re-entrant jet, surface wave and impinging jet.  They attempted to control the 

re-entrant jet by a bar attached on hydrofoil experimentally.  It is reported that the pressure 

fluctuation resulting from the partial cavity oscillation is suppressed by the bar.  However no 

studies have ever been made to explain the relation between the transitional cavity oscillation and 



 

re-entrant jet.  We present the observation of re-entrant jet on hydrofoil by means of dye injection 

for the case of transitional cavity oscillation to discuss about the effect of a bar on the characteristics 

of oscillating cavitation.  The bar which has square cross section 3[mm]×3[mm] is attached at 

1/3C from leading edge.  Figure 12 is the behavior of the re-entrant jet on a hydrofoil without a bar 

and Figure 13 is for the case of hydrofoil with a bar.  We can observe the region colored by the dye 

injected near the trailing edge migrate toward upstream in these figures.  This shows that the 

re-entrant jet appears also for the transitional cavity oscillation at the collapse phase of cavity.   

Without a bar, as shown in Figure 12, dye reaches the leading edge.  With a bar, as shown in Figure 

13, the re-entrant jet is stopped by the bar.  A cloud of cavity is shed after the re-entrant jet collides 

with the bar.  Figure 14 (a) shows the typical observation of the cavity shed from the location of the 

bar.  In Figure 14 (b), the locations of re-entrant jet and shed cavity are plotted against time.  This 

figure clearly shows that the cloud of cavity is shed each time the re-entrant jet reaches the leading 

edge or the bar.  However, the period of cavity shedding is not affected by the existence of the bar. 

Figure 15 and 16 are power spectrums of inlet pressure fluctuation for the case. with and without a 

bar.  The spectrum in not substantially affected by the existence of the bar.  These results lead to 

the conclusion that the transitional cavity oscillation is not controlled by the re-entrant jet and the 

associated cavity shedding although they do appear associated with the cavity oscillation.  The 

present results suggest that the re-entrant appears as a result of transitional cavity oscillation rather  

   

( )t=0.000sec(t/T0.00,Ut/C=0.00)ａ 　

( )t=0.032sec(t/T0.32,Ut/C=1.59)ｃ 　

( )t=0.016sec(t/T0.16,Ut/C=0.79)ｂ 　 ( )t=0.064sec(t/T0.63,Ut/C=3.17)ｅ 　

( )t=0.048sec(t/T0.48,Ut/C=2.38)ｄ 　

( )t=0.800sec(t/T0.79,Ut/C=3.97)ｆ 　

end of cavity　 　 re-entrant jet　

Fig. 11  Photographic observation of partial cavity

oscillation. (α =1.5[deg], σ =0.68, C=70[mm],

U=3.47[m/s], Ld=373[mm], Lc*≒0.5) 
 

 

 

 

Fig. 10 Change of cavity length and inlet pressure

with time in case of transitional cavity oscillation.  

( α =5[deg], σ =1.18, C=70[mm], U=2.86[m/s],

Ld=373[mm]) 
 



 

 

than being the cause of it.  By the way, Watanabe et al. (2000) shows that a linear time marching 

analysis using a closed cavity model without re-entrant jet can predict the frequencies of partial and 

transitional cavity oscillation. 
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t/T=0
t=0[s]

ａ

( )
t/T=0.0408
t=0.008[s]

ｂ

( )
t/T=0.0816
t=0.016[s]

ｃ

( )
t/T=0.1224
t=0.024[s]

ｄ

( )
t/T=0.204
t=0.040[s]

ｆ

( )
t/T=0.1632
t=0.032[s]

ｅ

  

:Ire-entrant        : dye injection  

( )
t/T=0
t=0[s]

ａ

( )
t/T=0.0428
t=0.008[s]

ｂ

( )
t/T=0.0856
t=0.016[s]

ｃ

( )
t/T=0.12 4
t=0.024[s]

ｄ
８

( )
t/T=0.1712
t=0.032[s]

ｅ

( )
t/T=0.214
t=0.040[s]

ｆ

:Ire-entrant        : dye injection:Ibar

 
Fig. 12 Observation of re-entrant jet on foil

without bar. 

(α=3.8[deg], σ=0.88, U=3.50[m/s],

Ld=373[mm],  Lc*≒1.0) 

Fig. 13 Observation of re-entrant jet on foil

without bar. 

(α=3.8[deg], σ=0.80, U=3.59[m/s],

Ld=373[mm],  Lc*≒1.0) 



 

 

 

 

 

 

 

 

 

 

 

 

 

    
    

    
    
    
6. Conclution 

 An experimental study was made to clarify the characteristics of oscillating cavitation on a 

flat plate hydrofoil in a water tunnel.  The following conclusions can be drawn. 

(1) The oscillating cavitations can be grouped into two types: the transitional cavity oscillation and 

the partial cavity oscillation. They mainly depend on the mean cavity length.  The transitional 

cavity oscillation occurs when non-dimensional cavity length is in range of 0.75<Lc*<1.2.  For 

transitional cavity oscillations, the Strouhal number Stb Strouhal number Stb based on the 

chordlength of transitional cavity oscillation is nearly contant over the range of the cavity length 

(0.75<Lc*<1.2), and is not affected by the angle of attack, shape of hydrofoil and experimental 

system.  For non-dimensional cavity length less than 0.75, partial cavity oscillation is observed.  

Strouhal number Stb of partial cavity oscillation increases with decreasing cavity length.   

(2) When the angle of attack is small, sheet cavitation appears.  In this situation, Strouhal number 

Stb does not largely depend on the inlet conduit length.  On the other hand, cloud cavitation is 

observed under the condition with larger angle of attack.  In the case of cloud cavitation, the 

Strouhal number Stb depends on the inlet conduit length. 

(b)  

(a)  

Fig. 14 Location of re-entrant jet and shed cavity.  

Fig. 15 Power spectrums of inlet pressure fluctuation

in case of foil without bar. 

( α =3.8[deg], σ =1.00, C=90[mm],

U=3.50[m/s], Ld=373[mm],  Lc*≒1.0)

Fig. 16 Power spectrums of inlet pressure fluctuation

in case of foil without bar. 

( α =3.8[deg], σ =1.00, C=90[mm],

U=3.59[m/s], Ld=373[mm],  Lc*≒1.0)



 

 

(3) For the case of transitional cavity oscillations,  re-entrant jet was observed using dye injection, 

with and without a bar on the foil to stop the re-entrant jet. It was found for both cases that the 

re-entrant jet is associated with cavity shedding.  Even if we stop the reentrant jet by the bar, both 

frequency and the magnitude of oscillation did not change. From this observation, re-entrant jet is 

not the cause of transitional cavity oscillation but a result of cavity oscillation. 
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