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Abstract 
The behavior of cavitation bubbles in a starting submerged water jet discharging from a circular nozzle is studied by a 
simple photography technique in a moderately low range of jet exit velocity. A number of small spherical bubbles are 
initially generated in a starting vortex formed at the jet tip and often connected circumferentially with each other in the 
form similar to a vortex ring. Nearly axisymmetric lumps of disconnected bubbles are also observed frequently. By 
analyzing photographic data acquired from the side and end view pictures of the ring-like bubbles, their average properties, 
such as trajectory, geometry and size, are evaluated. 
 
1. Introduction 
  It is well known that the cavitation inception occurs when cavitation nuclei in a liquid are exposed to a sufficiently low 

pressure, comparable with the vapor pressure of the liquid, to cause their unstable and explosive growth (Arndt 1981; 

Brennen 1995). 

  In submerged water jets where the mean static pressure is generally much higher than vapor pressure, the onset of 

cavitation is believed to take place in low pressure regions produced by vortical structures. Observations by Ooi(1985) and 

Gopalan et al.(1999) show that the cavitation inception in initially laminar jets does not occur in the cores of rolled-up 

vortices but in the cores of secondary vortices which are formed randomly. This suggests that the investigations of the 

generation process of bubbles are quite difficult in turbulent regions in jets. One of the approaches to circumvent the 

difficulty would be to deal with cavitating jet flows, where well-organized vortices are formed either periodically or 

reproducibly, such as in a self-excited jet (Chahine & Genoux 1983). 
In the present work, we employ an impulsively-started jet, where a starting vortex of the jet should produce nearly 

axisymmetric low pressure. This low pressure may lead to the formation of ring-like cavitation bubbles in the near field of 

the jet. We shall study the behavior of such ring-like cavities. 
 
2. Experimental setup and conditions 
The experimental apparatus consists of a closed water reservoir connected to an air compressor, a water reservoir opened to 

the atmosphere, and a 15mm-diameter circular pipe connecting the two reservoirs, as shown in Fig.1. Water flow is 

operated by an electromagnetic valve and discharged into a still water from an orifice-type nozzle with the exit diameter of 
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5mm. A piezoelectric pressure transducer with the resonance frequency of about 300kHz is mounted in the pipe at 65mm 

upstream the nozzle exit.  
The output signal of the transducer is used to measure the transient pressure change of water in the pipe, as well as to 

detect the onset of flow and to trigger a light source for photography. The light source is a flash light with the nominal 

lightening duration of 0.0002 ms which is short enough for individual cavitation bubbles to be captured as still images in 

pictures under the present test conditions. Flow observations are made by two cameras; one is located just downstream and 

above the nozzle exit, and the other is outside the open reservoir and facing to the nozzle exit section. 

  Experiments were performed for the gauge pressure level, pg , of the closed water reservoir in the range 0.3 - 0.5MPa, 

and the cross-sectional mean velocity, Uj, at the nozzle exit in the range 15.3 - 19.5m/s. The corresponding Reynolds 

numbers based on Uj and orifice diameter D(=5mm) are (7.5 -10)x105. Tap water was used without any treatment for 

degassing, so that the dissolved air content would be in a nearly saturated condition. Water temperature was kept 20±3 C 

throughout the experiments.  
   Figure 2 shows an example of the pressure transducer signal, where p* indicates the difference in water pressure 

across the nozzle, and the origin in time t is arbitrary. The mechanism of the electromagnetic valve used is such that as 

electric current is supplied, a subsidiary valve(called “pilot valve”) opens first and a small amount of water discharges, and 

thereafter a main valve starts to open. Owing to this mechanism, p* shows first a bump and then a sharp rise, followed by a 

gradual increase to the maximum. Because the bump was found to appear reproducibly prior to the onset of the main flow, 

we used it as the trigger signal of flashing the light and also as the temporal origin in the results to be presented.  
 
3. Results 
   We visualized first starting vortices using dye-marked water. Soon after the flow was initiated, a mushroom-shaped 

concentration of dye was observed at the jet tip. When pg >0.4MPa, the mush-room-shaped structure was followed by 

another large concentration of dye. These concentrations are both associated with starting vortices; that is, the leading one 

is due to the pilot valve opening and the second one to the main valve opening. 

   Similar observations, repeatedly made by reducing the amount of dye, showed that  spherical bubbles appear mostly 

in the leading and the second dye-concentrated regions, and tend to be aligned in the azimuthal direction to take a form 

similar to a ring. This suggests that the cavitation inception does occur inside the starting vortices. In later stages of jet 

development, smaller bubbles were found to be formed behind the starting vortices; some were in groups and the others 

were randomly distributed in the jet shear layer. In what follows, results obtained at pg = 0.5MPa will be presented, with 

primarily focusing on the behavior of ring-like lumps of bubbles. 

   Some side-view pictures taken at different stages of jet development are shown in Figs. 3(a-d). We have confirmed 

from many close-up pictures that most of ring-like lumps of bubbles consist of a number of small and nearly spherical 

bubbles, and the shapes of lumps resemble rosaries or circular chains of beads, rather than azimuthally uniform rings. Ring- 
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like lumps of disconnected bubbles were also observed frequently(see, for example, Fig.3c). Bubbles at the jet tip were 

even smaller and often isolated due to the comparatively weak circulation of the leading vortex caused by the pilot-valve 

opening. For convenience of description, the ring-like lump of bubbles, including disconnected ones, will be hereafter 

referred to as "bubble ring". 
   Figures 4 shows the streamwise position of bubble rings as a function of time, where the leading and the second 

bubble rings are shown by triangles and circles, respectively. The leading and the second bubble rings move downstream 

with distictly different velocities; the former travels slower at roughly 4m/s and the latter at 10m/s in x/D <8. When two 

bubble rings are successively formed, the second bubble ring catches up and interacts with the leading one at around x/D 

=6(see, for example, Fig.3d).  

  Observations of end-view pictures showed that almost all the bubble rings seldom maintain the axisymmetric shape as 

convected downstream, and often undergo a wavy deformation, probably reflecting the occurrence of the azimuthal 

instabillity of a vortex ring(Widnall & Sullivan 1973). The bubble rings were found to persist downstream up to x/D =15 - 

20, but it was not clear to what extent they could survive, because of the increasing distortion and diffusion of bubble rings 

further downstream. 
Figures 5(a,b) show the streamwise variations of the average diameter Dr and thickness dr of bubble rings, which were 

evaluated from the side- and/or end-view pictures. The diameter Dr, which is initially close to the orifice diameter, 

increases with x in accordance with the vortex ring growth. The thickness of bubble rings appears to reach its maximum at 

x/D =3-4, followed by a gradual decrease with increasing x. From Dr and dr, we calculated the approximate volume Vr of 

bubble ring, with assuming its geometry to be a torus. The result is shown in Fig.6, where Vr is represented in a logarithmic 

scale. The volume exhibits a rapid increase up to about x/D =3, beyond which it does not increases any further, in contrast 

to the continuous increase of the bubble ring diameter. 

Figure 7 shows the average diameter, di , of individual bubbles forming a bubble ring. The typical size of bubbles 

contained in the bubble ring exhibits an abrupt increase soon after its formation, followed by a gradual decrease.  

These results indicate that outside the formation region, the evolution of bubble rings is not much affected by the 

dissolved air in water surrounding the jet flow. In particular, the approximately constant values of Vr and di in x/D >5 

suggest that no significant air entrainment occurs beyond the jet potential core during the evolution of bubble rings. 
 
4. Conclusions 
   Cavitation bubbles in a starting water jet were studied in a moderately low range of jet exit speed. The reproducible 

nature of the starting jet helped us to observe the behavior of bubbles by a simple photography technique. The main results 

are summarized as follows. 

(1) In early stages of jet development, cavitation bubbles are mostly generated inside the starting vortices and connected 

with each other in the form of a ring. 
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(2) Once formed, the bubble rings travel downstream with the starting vortices and often survive beyond 20 times the 

nozzle diameter. 

(3) The average size of the individual bubbles forming the bubble rings quickly increases in the vicinity of nozzle and then 

gradually decreases as they travel downstream. 

(4) In later stages of jet development, isolated bubbles are formed behind the starting vortices; some are in groups and 

others are randomly distributed in the jet shear layer. 
 

  The authors would like to thank Mr.Yutaka Nozaki for his help in constructing experimental facilities and devices.  
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        (1) Closed water tank  (2) Water reservoir  (3) Air compressor  (4) Pressure gauge 
        (5) Water supply  (6) Electromagnetic valve  (7) Pressure sensor/ transducer 
        (8) Orifice-type nozzle  (9) Camera  (10) Flash light  (11) Pulse circuit 

                       Figure 1. Schematic of experimental setup. 
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               Figure 2.  An example of pressure transducer signal; pg =0.5MPa. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
              Figure 3.  Four examples showing bubble rings. Flow is from left to right. 
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                 Figure 4.  Streamwise position of bubble rings as a function of time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            Figure 5.  Diameter and thickness of bubble rings; (a) diameter, (b) thickness. 
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                         Figure 6.  Approximate volume of bubble rings. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                 Figure 7.  Average diameter of individual bubbles in bubble rings. 
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