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Abstract

A linearized formulation for the unsteady forces experienced by supercavitating bodies is developed in terms of their
added mass and damping coefficients.  The formulation is general, but is applied here using an axisymmetric base
flow.  Expressions for the added mass, damping and restoring tensors are derived in a form suitable for
incorporation in a numerical “flight” simulation tool for supercavitating vehicles.  Disk and conical cavitating bodies
are investigated.  It is found that the added mass in surge can actually be negative for small values of the reduced
frequency. The physical interpretation of this phenomenon is provided.

1 Introduction

A fully wetted body moving in an unsteady manner in an inviscid fluid experiences an inertial force due to the
acceleration of the fluid by the body. That force is generally referred to as the added mass force since it can be
expressed as the product of a coefficient with units of mass and the acceleration of the body.  Also, since
independent mass coefficients exist for each direction of acceleration, one may define an added mass tensor that in
turn depends only on the body geometry.  The added mass tensor may then be used in the equations of motion of the
body, which can be used in the design of guidance and control algorithms.

Current interest in the development of supercavitating high-speed vehicles has led to the development of
guidance and control algorithms for supercavitating bodies (Kirschner, et al, 2001).  However, memory effects
complicate computation of the hydrodynamic coefficients when part of the body is enveloped by a gas-filled cavity.
The added mass tensor for fully wetted bodies is independent of the motion history of the body, and incorporating
the added mass effects in the equations of motion is simple.   In contrast, for supercavitating bodies, the shape and
extent of the cavity depends on the history of the body motion.  It follows that the forces experienced by a
supercavitating vehicle undergoing unsteady motion should also depend on the history of the body motion.

In this work, we seek to quantify the forces experienced by supercavitating non-lifting bodies in an unsteady,
irrotational flow of an inviscid and incompressible fluid.  By defining an added mass tensor for supercavitating
vehicles, we hope to find a simple and accurate approach to including unsteady inertial forces in their equations of
motion.  Our approach is to formulate the unsteady problem as a perturbation of a steady basis flow, and to solve for
the unsteady flow in the frequency domain.  This approach bears great similarity to that taken in previous works in
solving the problem of ship motions in a seaway.  For that reason, the formulation presented here closely follows
two seminal works on that subject: Timman and Newman (1962) and Ogilvie and Tuck (1969).

2 Formulation

Consider a supercavitating body, such as the one shown in figure 1, undergoing nominally steady forward motion
with velocity U0 in the negative x direction.  We seek expressions for the added mass and damping forces
experienced by the body in response to unsteady motions, which will be assumed to be small relative to the forward
speed. We will formulate the boundary value problem using a Cartesian coordinate system ( , , )x x y z=r

 fixed on
the vehicle.  The fluid is assumed to be inviscid and incompressible and the flow irrotational, so that the flow field
may be written as the gradient of a potential, ( , )x tΦ r

, which satisfies Laplace’s equation:
2 0∇ Φ = . (1)

The fluid velocity consists of an unsteady perturbation superposed on a steady mean flow.  Accordingly, the velocity
potential is decomposed into a steady mean velocity potential and an unsteady perturbation potential:

0( , ) ( ) ( , )x t x x tfΦ = Φ +r r r
. (2)

2.1 Kinematic Boundary Condition

If the body and cavity surface is represented by the function ( , )F x t
r

, then the exact potential flow kinematic
boundary condition to be satisfied on the surface is:

0( ) 0DF F F
Dt t

f∂= + ∇ Φ + ⋅∇ =∂ .  (3)
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Figure 1 Notional sketch of a supercavitating vehicle.

The position of the surface may be defined as the sum of the steady mean position, 0 0 0 0( , , )x x y z=r
, and a small

unsteady displacement:

0 ( , )x x x tx= +
rr r

. (4)

Using this definition, the time derivative and gradient of F may be written as follows:

0x

F F
t t

x∂ ∂=− ⋅∇∂ ∂

r

0 0 0 0

ˆˆ ˆ
x x x xF F i F j F k F

x y z
x x x∂ ∂ ∂∇ = ∇ − ⋅∇ − ⋅∇ − ⋅∇∂ ∂ ∂

r r r

where the subscript “x0” denotes that the gradient operator is to be evaluated on the mean position of the body, with

0x x=r r
.   The unit vectors in the 0 0 0,  and x y z coordinate directions are ˆˆ ˆ,  and i j k , respectively.  Substituting these

expressions in equation (3), the kinematic boundary condition becomes:

0 0 0 0 00
ˆˆ ˆ( ) 0x x x x xF F i F j F k F

t x y z
x x x xf

 ∂ ∂ ∂ ∂  − ⋅∇ + ∇ Φ + ⋅ ∇ − ⋅∇ − ⋅∇ − ⋅∇ = ∂ ∂ ∂ ∂   

r r r r
(5)

Equation (5) applies on the exact body surface ( , )F x t
r

.  This expression may be linearized under the assumption
that the unsteady displacement amplitudes, the perturbation potential and its spatial derivatives are all small.  Using
a Taylor expansion for the velocity field

0 0 0 0

2
0 0 0( ) ( ) ( )x x x x Of x f x∇ Φ + = ∇ Φ + ⋅∇ ∇ Φ + ∇ +

r
(6)

we may recast equation (5) as follows:

( )0 0 0 0 0 0 0 0 0

2
0 0

ˆˆ ˆ( ) ( ) 0x x x x x x x x xF F i F j F k F O
t x y z
x x x xx f x

 ∂ ∂ ∂ ∂  − ⋅∇ + ∇ Φ + ⋅∇ ∇ Φ +∇ ⋅ ∇ − ⋅∇ − ⋅∇ − ⋅∇ + = ∂ ∂ ∂ ∂   

r r r rr
.

(7)
Rearranging terms, the unsteady components of equation (7) become:

( )0 0 0 0 0 0 0 0

2
0 0( ) ( )x x x x x x x xF F F O

t
xf x x x∂∇ ⋅∇ = ⋅∇ + ∇ Φ ⋅∇ − ⋅∇ ∇ Φ ⋅∇ +∂

r r r
. (8)

Noting that 
0x F∇ is normal to the body/cavity surface, equation (8) reduces to

( )0 0 0 00 0
ˆ ˆ( )x x x xn n

n t
f x x x∂ ∂= ⋅ + ∇ Φ ⋅∇ − ⋅∇ ∇ Φ ⋅∂ ∂

r r r
. (9)

Equation (9) is the linearized kinematic boundary condition to be applied on the mean body/cavity surface.

We now consider only the wetted portion of the boundary and assume that its motion is associated with rigid-
body motion of the vehicle.  The displacement amplitude may be expressed as the sum of a rigid body translation,

x
r
T , and rotation, Rx

r
:

0T R xx x x= + ×
r r r r

. (10)

Decomposing the perturbation potential into a sum of components proportional to complex harmonic displacement
amplitudes,
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0( ) i t
j j x e wf z j= r

, (11)

where summation over repeated indices is implied and where the magnitudes of the complex amplitudes are

1 2 3

4 5 6

( , , )

( , , ) ,

T

R

z z z x
z z z x

=
=

r
r (12)

and substituting in equation (9) yields:

0( )j
j j

x
i n m

n

j w∂ = +∂

r
. (13)

In (13), the generalized normal and so-called “m-terms” are given by (Ogilvie and Tuck, 1969):
( )
( )
( ) ( )
( ) ( )

0 0

0 0

1 2 3

4 5 6 0

1 2 3 0 0

4 5 6 0 0 0

ˆ, ,

ˆ, ,

ˆ, , ( )

ˆ, , ( ) .

x x

x x

n n n n

n n n x n

m m m n x

m m m n x x

=
= ×

= − ⋅∇ ∇ Φ
= − ⋅ ∇ ×∇ Φ

r
r

r r
(14)

Equation (13) is the linearized kinematic boundary condition to be applied on the wetted portion of the body for
each mode of oscillation, j=1,..,6.

2.2 Dynamic Boundary Condition

To derive the linearized dynamic boundary condition, we start with the following form of Bernoulli’s equation:

( ) 21 1
02 2

( , ) ( , ) ( , ) c

x t x t x t p p U
t

r r r∞
∂Φ + ∇Φ ⋅∇Φ = − +∂

r r r
(15)

where p∞ and cp are the pressure at infinity and in the cavity, respectively, and where buoyant effects are ignored.
Inserting the decomposition of the total potential given in equation (2) and the Taylor expansion of its gradient from
equation (6), this becomes:

( ) ( )0 0 0 0 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0

2
0

( , )2 ( ) ( ( )) ( , ) ( ) ( ( )) ( , )

                                                   (1 )

x x x x x x x x

x t x x x t x x x t
t

U

f x f x f

s

∂ + ∇ Φ + ⋅∇ ∇ Φ +∇ ⋅ ∇ Φ + ⋅∇ ∇ Φ + ∇∂
= +

r r rr r r r r r
   (16)

where the cavitation number is defined as follows:

21
02

cp p

U
σ

ρ
∞ −

= .

Keeping only terms linear in x , equation (16) reduces to

( )0 0 0 0 0 0 0

20
0 0 0 0 0 0 0 0 0 0 0 0

( , )
2 ( ) ( ) 2 ( ) ( , ) 2 ( ) ( ( )) (1 )x x x x x x x

x t
x x x x t x x U

t
f f x s∂ +∇ Φ ∇ Φ + ∇ Φ ∇ + ∇ Φ ∇ ∇ Φ = +∂

r rr r r r r ri i i i   (17)

The steady potential, 0 0( )xΦ r
, is assumed to satisfy the steady dynamic boundary condition:

0 0

2
0 0 0 0 0( ) ( ) (1 )x xx x U s∇ Φ ⋅∇ Φ = +r r

on the cavity (18)

so that equation (17) yields

( )( )0 0 0 0 0

0
0 0 0 0 0 0

( , ) ( ) ( , ) ( ) 0x x x x x

x t x x t x
t

f f x∂ + ∇ Φ ⋅∇ + ∇ Φ ⋅ ⋅∇ ∇ Φ =∂
r rr r r

(19)

The last term on the left-hand-side of equation (19) may be evaluated as follows:

( ) ( ) ( )0 0 0 0 0 0 0 0 0

1
0 0 0 0 0 02( ) ( ) 0x x x x x x x x xx x x∇ Φ ⋅ ⋅∇ ∇ Φ = ⋅ ∇ ∇ Φ ⋅∇ Φ = ⋅∇ ∇ Φ ⋅∇ Φ =

r r r
. (20)

This term vanishes on SC because the last bracketed term of (20) is constant, as defined in equation (18).

Substituting the decomposition of the perturbation potential, equation (11), in equation (19) and making use of
equation (20) results in the following linearized dynamic boundary condition:

0 0 0 0( ) ( ) ( ) 0    on the cavity,  1,...,6 j ji x x x jwj j+∇Φ ⋅ ∇ = =r r r
. (21)

Equation (21) will be applied on the steady mean cavity surface, SC.
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2.3 Cavity Termination

The need for a termination model arises from the inconsistency inherent in forcing a constant-pressure streamline to
end at a stagnation point.  In this effort, a re-entrant jet cavity termination model is employed, as shown in figure 2.
This termination model was originally devised by Efros (1946) and Kreisel (1946).  Details of the numerical
implementation in the boundary element method may be found in Uhlman (2001).

2.4 Boundary Integral Equation

The perturbation potential satisfies Green’s third identity:

( ) ( )2 ( , ) ( , ) ( , ) ( , ) ( , ) 0
S

x t y t G x y G x y y t dS
n n

pf f f ∂ ∂ + − = ∂ ∂ ∫∫r r r r r r rÒ (22)

where the Green’s function, G,  is given by
1

( , )G x y
x y

= −
r r r r (23)

and where the field point, x
r

, lies on the boundary.  Substituting the decomposition (11) and noting that the complex
amplitudes, jz , have no spatial dependence, we find that each complex potential, jj , satisfies

( ) ( ) ( )( , )2 ( , ) 0j
j j

S

yG x yx y G x y dS
n n

jpj j
 ∂∂ + − = ∂ ∂  

∫∫
rr rr r r rÒ . (24)

The boundary conditions to be satisfied are the kinematic boundary condition (equation (13)), which defines the
source distribution j nj∂ ∂ on the wetted portion of the body, and the dynamic boundary condition (equation (21))

which defines the dipole distribution jj on the cavity.   Inserting the boundary conditions in (24) and rearranging

the terms so that the known quantities are on the right-hand-side, we arrive at the following expression:

{ }( )( , ) ( , )2 ( ) ( , ) ( )
BW C C J BW

j
j j j j j

S S S S S

yG x y G x yy dS G x y dS y dS i n m GdS
n n n

ϕ
πϕ ϕ ϕ ω

+

∂∂ ∂+ − + = +
∂ ∂ ∂∫∫ ∫∫ ∫∫ ∫∫

rr r r rr r r r
. (25)

Here, the wetted body surface is SBW , the cavity surface is SC and the jet face is SJ, as shown in figure 2.

2.5 Hydrodynamic Coefficients

Once the source and dipole distributions have been computed, the forces may be found by integrating the pressure
over the wetted surface

( )

( ) ( , )

B

i i

S t

F t p x t n dS= ∫∫ r
. (26)

In (26), ( )BS t  is the exact surface of the body.  The unsteady pressure on ( )BS t  may be written

( ) ( ) ( )1
0 02

( , ) ( , ) ( ) ( , ) ( ) ( , )p x t x t x x t x x t
t

r f r f f∂= − − ∇ Φ + ⋅∇ Φ +∂
r r r r r r

. (27)

If we again introduce the intermediate coordinate system, 0x
r

, as in (4), equation (27) may be linearized for smallξ
as follows:

( ) ( )0 0 0 0 0
1

0 0 0 0 0 0 0 0 02( , ) ( , ) ( ) ( , ) ( ) ( )x x x x xp x t x t x x t x x
t

r f r f rx∂=− − ∇ Φ ⋅∇ − ⋅∇ ∇ Φ ⋅∇ Φ∂
rr r r r r r

.   (28)

For the remainder of this paper, there will be no need to distinguish between the coordinates x
r

and 0x
r

.  It will be
implicitly assumed that all quantities are defined relative to the steady mean coordinate system.

Inserting the decomposition (11) in (28) and the resulting expression in (26) then yields the following
expression for the force (Nakos and Sclavounos, 1990):

( ) ( ){ }2Re i t
i j i j ij ijF t e a i b cw x w w = − −   (29)

where
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0

0
2

Re
B

j
ij j i

k kS

a i ndS
x x

jr wjw
   ∂∂Φ   =− +   ∂ ∂    
∫∫        (30)

0

0Im
B

j
ij j i

k kS

b i ndS
x x

jr wjw
   ∂∂Φ   = +   ∂ ∂    
∫∫    (31)

0

0 01Re
2

B

ij k i
k k kS j

c ndS
x x x

r x
    ∂Φ ∂Φ ∂   = ⋅     ∂ ∂ ∂      
∫∫    (32)

In equation (29), the force is written as a sum of added mass (aij), damping (bij) and restoring force (cij) tensors. The
surface 

0BS is the steady mean body surface.

Cavitator, SBW

Cavity, SC

Reentrant 
  jet face, SJ

x
y

z

Figure 2 Cut-away sketch of a supercavitating cone showing the various surface definitions.

3 Numerical Implementation for an Axisymmetric Basis Flow

To this point, we have formulated the problem in terms of a general steady basis flow.  To demonstrate the method,
we now define our steady basis flow to be that of an axisymmetric cavitator with a reentrant jet cavity termination,
as shown in figure 2.  The axisymmetric flow is computed numerically via a low-order boundary element method
(Uhlman, 2001).   In the numerical solution of the basis flow, the cavity length is assumed to be known, and the
cavitation number is determined as part of the solution.  An iterative method is used to determine the cavity shape
that satisfies the kinematic and dynamic boundary conditions.  For further details of the method, the reader is
referred to Uhlman (2001).  For the remainder of the present paper, we limit our discussion to surge motions only.
Heave and pitch motions have also been investigated, but will not be discussed here.

3.1 Boundary value problem

Noting that for an axisymmetric base problem we have

0
0 0ˆ ˆ1s se U e

s
s∂Φ∇Φ = = +∂ (33)

where s  and ˆ
se are the arclength and unit vector along a meridian, we find that the dynamic boundary condition on

SC (equation (21)) becomes:

0 1 0  on  j
j Ci U S

s

jwj s ∂+ + =∂ . (34)

Equation (34) may be integrated to yield
( )

0 j

i s
j e gj j −= (35)

where

( )0
0

( )
1

s s s
U

wg
s

= −
+

(36)

and where 0ϕ is the value of jϕ at 0s s= .  For convenience, we will drop the subscript j, with the understanding that

j=1 for the remainder of the paper.  The dynamic boundary condition on the jet cross-section is
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0 0  on  Ji S
n n

jwj ∂Φ ∂+ =∂ ∂ . (37)

Noting that, on the jet cross section, 0 0 1n U s∂Φ ∂ = + , equation (37) becomes

( )
0

0 1
Ji si

e
n U

gj w js
−∂ = −∂ +

(38)

where Js is the arclength along the cavity to the edge of the jet cross section and. where we’ve assumed that

sj∂ ∂ is zero on the jet face.

On the wetted part of the body, SBW, Green’s third identity becomes:

{ }
( )

( )
02

1

J

BW C C J J BW

i s
i s

S S S S S S

G G ikeds Gds e ds Gds i n m Gds
n n n d

γ
γϕπϕ ϕ ϕ ω

σ

−
−

+

 ∂ ∂ ∂ + − + + = + ∂ ∂ ∂ +  
∫ ∫ ∫ ∫ ∫ (39)

and on the cavity

{ }
( )

( ) ( )
0 02

1

J

BW C C J J BW

i s
i s i s

S S S S S S

G G ikee ds Gds e ds Gds i n m Gds
n n n d

γ
γ γϕπϕ ϕ ϕ ω

σ

−
− −

+

 ∂ ∂ ∂ + − + + = + ∂ ∂ ∂ +  
∫ ∫ ∫ ∫ ∫   (40)

where d is the body diameter at the cavity detachment location and where we have defined the reduced frequency,

0
dk U

w= .

3.2 Results

In this section, we present added mass and damping results for the circular disk, a conical cavitator with various
half-angles, and a roundnose conical cavitator.  For the present paper, we consider only surge motions.  Results for
heave and pitch motions will be presented in a separate publication.

Figure 3 shows the convergence of the added mass for a roundnose conical cavitator in surge with increasing
number of panels. The shape of the cavitator is shown in figure 3a and the convergence is shown in figure 3b.  The
total number of panels used to discretize the boundary is NBOD+NCAV+NJET, where NBOD is the number of
panels on the cavitator, NCAV is the number of panels representing the cavity, and NJET is the number of panels
representing the jet face.  The steady cavity length is five cavitator base diameters, corresponding to a cavitation
number of 0.19s ≈ . The corresponding convergence of the cavitation number is also shown in the figure.

Figure 4 shows the surge added mass and damping for the circular disk as a function of reduced frequency.  As
expected, the added mass asymptotes to a value close to half the theoretical value for the fully wetted disk at high
reduced frequency.  A surprising aspect of the result presented in figure 3 is the fact that the added mass takes on
negative values for a range of reduced frequencies for k � 3.  This result will be discussed in Section 3.3.

Figure 5 shows the added mass and damping for conical cavitators with half-angles of 30º, 45º and 60º, as well
the results for the circular disk (e.g., 90º cone).  The steady cavity length for each case is L/d=5, and the
corresponding cavitation numbers are 0.183, 0.217 0.241, and 0.268,  respectively.  Note that, similar to the results
for the disk, the added mass is negative for small reduced frequencies. However, as the half-angle increases, the
level of the negative added mass decreases. For clarity, the added mass has been multiplied by the ratio k2/1+k2 in
figure 5.

3.3 Discussion

As shown in figure 4, the added mass in surge can take on negative values over a range of reduced frequencies.  This
result is surprising, since it implies that the added mass force can reinforce the motion of the body.  The result is also
important, since the occurrence of negative added mass can effect the stability of a high speed supercavitating
vehicle.

The physical explanation of the phenomena is as follows.  When the cavitator moves in oscillatory surge,
vorticity is shed at the base of the cavitator with every half-cycle of motion.  The vorticity is then advected along the
cavity boundary and out of the fluid domain via the reentrant jet.  At any given moment, each element of shed
vorticity on the cavity boundary induces an axial velocity at the cavitator in a direction that either opposes or
coincides with the direction of motion of the cavitator.  The axial velocity induced by the vorticity shed during the
current half-cycle of motion coincides with the direction of motion. For motions with low reduced frequency, the
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most recent element of shed vorticity contributes most of the induced velocity. Therefore, the net induced velocity
contributes to the acceleration of the fluid, and therefore results in a negative added mass.  However, for motions
with high reduced frequencies, the shed vortices are more closely spaced so that the net induced axial velocity over
the cavitator is greatly reduced.  At high reduced frequencies there is no net induced axial velocity and the added
mass is positive as expected.

It should be noted that an analogous phenomena occurs for fully-wetted hydrofoils undergoing small oscillatory
heave motions.  In that case, the shed vorticity is advected along the wake of the foil and induces a net vertical
velocity in the direction of motion.  This behavior is evident in the classical Theodorsen linear theory for unsteady
hydrofoil motion (see e.g., Newman, 1986).

4 Conclusions

A method for computing the force coefficients for supercavitating bodies has been described.  The method assumes
harmonic oscillations and solves a linearized boundary value problem in the frequency domain for small
perturbations to a steady basis flow.  The method has been demonstrated for unsteady surge of axisymmetric
cavitators. The numerical solution has been found to converge with increasing number of panels.    It has been found
that the added mass of the circular disk asymptotes to approximately half the theoretical value for fully wetted disks
at high reduced frequencies.  At low reduced frequencies, however, the added mass is actually negative.  The
physical explanation for this phenomenon was provided.

In future development of the method, we will include heave and pitch motions for axisymmetric flows, we will
study the impact of the results on the stability of supercavitating bodies, and the method will be implemented for
non-axisymmetric flows, including flows with lift.
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Figure 3. Convergence of surge added mass at k=10 and cavitation number for a roundnose conical cavitator with
L/d=5.0 and NBOD=10, 20, 40, 80 and 160.  The adjacent table shows the corresponding values of NCAV, NJET.
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Figure 5. Added mass and damping as a function of reduced frequency and cone half-angle for a conical cavitator.
The cavity length is held fixed at L/d=5.


