INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA



Área Departamental de Engenharia Mecânica ISEL



# Determinação da curva de Resistência à fractura em materiais metálicos "Curva R"

Adriano Jorge Santos Balhana (Licenciado em Engenharia Mecânica)

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Orientadores:

António Correia da Cruz Afonso Leite Manuel Gomes

Júri:

Presidente: Doutor João Manuel Ferreira Calado

Vogais: Doutor Luís Felipe Galrão Reis

Doutor Manuel Gomes

Fevereiro de 2017



INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

Área Departamental de Engenharia Mecânica

# Determinação da curva de Resistência à fractura em materiais metálicos "Curva R"

Adriano Jorge Santos Balhana (Licenciado em Engenharia Mecânica)

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Orientadores:

António Correia da Cruz Afonso Leite Manuel Gomes

Júri:

Presidente: Doutor Manuel Ferreira Calado

Vogais: Doutor Luís Felipe Galrão Reis Doutor Manuel Gomes

Fevereiro de 2017

"O sucesso não é definitivo, o fracasso não é fatal: É a coragem de continuar que conta"

Winston Churchill

### Agradecimentos

Em primeiro lugar quero agradecer à minha família. Aos meus pais Fernanda Balhana e Carlos Balhana pelo seu apoio, que permitiu que eu realizasse a licenciatura e o Mestrado em engenharia Mecânica. Quero também agradecer aos meus avós, Vasco Santos, Ana Santos, Zulmira Balhana e Manuel Balhana pelo apoio moral que sempre me prestaram desde o início do meu precurso académico. Em último, mas não menos importante, à minha irmã Sara Balhana e ao seus dois filhos, Jorge e Ricardo pelo apoio e paciência disponibilizaram.

Agradeço aos meus Orientadores, António Correia da Cruz, Manuel Gomes e Afonso Leite, que em primeiro lugar disponibilizaram o tema do trabalho aqui apresentado e pelo apoio e orientação prestada ao longo da realização do mesmo.

Agradeço ao ISQ, em particular ao LabMat, pela disponibilidade dos seus meios materiais e técnicos que permitiram a realização deste trabalho. Quero agradecer em particular aos seguintes membros do Labmat pelo apoio moral e técnico que me dispensaram e também pelos momentos de boa disposição. Por ordem alfabética: Adilson Andrade, Ana Catarina Duarte, Bruno Silva, Elisabete Vaz, Felipe Nascimento, Inês Barroso, Joana Gonçalves, João Nabais, José Nunes, Luis Nunes, Sérgio Reis e Sónia Augusto.

Finalmente quero agradecer a todos os meus amigos que me ajudaram de modo directo ou indirecto na realização do presente trabalho, pois fizeram parte de um dos momentos mais importantes da minha vida e por isso nunca devem ser esquecidos. Em particular e por ordem alfabética: André Curado, André Oliveira, Bárbara Brito, Emanuel Delgado, Filipa Tancredo, Gilberto Neto, Inês Soares, João Diniz, João Reis, João Soares, João Tiago, João Vicente, Mafalda Viegas, Mário Martina, Nuno Guerreiro, Pedro Gaspar, Rita Sanches, Rita Soares, Sara Fernandez, Sara Tomar e Tiago Almeida

A todos, Muito Obrigado

#### Glossário

- *a* Tamanho de fenda
- $a_0$  Tamanho de fenda inicial
- $a_b$ -Tamanho de fenda corrigido com o arrombamento
- $a_{eff}$  Tamanho de fenda efectivo
- $A_{pl}$  Área plástica no diagrama de força deslocamento
- b Ligamento não fendido
- B Espessura do provete
- C Compliance ou complacência elástica
- E Módulo de Young (ou elasticidade)

F – Força aplicada

 $f\left(\frac{a}{W}\right)$  – Factor de forma

J – Integral J

 $J_{IC}$  – Valor do integral J (independente do tamanho) correspondente a iniciação da propagação estável de fenda para o modo I de propagação de fenda.

 $J_Q$  – Valor do integral J correspondente a iniciação da propagação estável de fenda para o modo I de propagação de fenda.

Jel – Componente elástica do Integral J

 $J_{pl}$  – Componente plástica do Integral J

K - Factor de intensidade de tensões elásticas

Keff – Factor de intensidade de tensões efectivo

 $K_{IC}$  – Valor do factor de intensidade (independente das dimensões) de tensões correspondente à propagação instável de fenda para o modo I de propagação de fenda.

 $K_Q$  - Valor do factor de intensidade de tensões correspondente à propagação instável de fenda para o modo I de propagação de fenda.

- *L* Comprimento do provete
- $P_n$  Força Normalizada
- R Resistência à fractura de um material metálico
- S Distância entre apoios no dispositivo de flexão (Vão)
- $U_{\gamma}$  Energia de superfície
- $U_{\gamma P}$  –Trabalho de deformação plástica
- V Deslocamento
- V<sub>pl</sub> Componente plástica do deslocamento
- $v_{pl}'$  Componente plástica do deslocamento normalizado
- W Altura do provete
- $W_d$  Densidade de energia de deformação
- $\nu$  Coeficiente de *Poisson*
- $\Delta a$  Variação do comprimento de fenda
- $\eta_{pl}$  Factor eta plástico
- $\gamma_{pl}$  Factor gamma plástico
- $\sigma_{YS}$  Tensão de cedência
- $\sigma_{uts}$  Tensão de rotura
- $\sigma_Y$  Tensão de escorregamento (*flow stress*)

## Acrónimos

- ASTM American Society of Testing Materials
- BSi British Standards institute
- BOAC British Overseas Airways Company
- C(T) Compact Tension
- CCT Center Cracked Tensile Panels
- CMOD Crack Mouth Opening Displacement (Deslocamento da abertura da boca da fenda)
- COD Crack Opening Displacement (deslocamento da abertura da fenda)
- CTOA Crack Tipopening Angle (Angulo de abertura da ponta da fenda)
- CTOD Crack Tipopening Displacement (Deslocamento da abertura da ponta da fenda)
- DENT Double Edge Notch Tension
- DC(T) Disk Shaped Compact Tension Specimen (
- ESIS European Structural Integrity Society
- FPZ Fracture Process Zone (Zona do processo de fractura)
- ISO International Standardization Organization
- LLD LoadLineDisplacement (deslocamento ao longo da linha de carga)
- M(T) Middle Crack Tension Panel
- MFLE Mecânica da Fractura Linear Elástica
- MFEP Mecânica da Fractura Elasto Plástica
- SENB Single Edge Notch Bending
- SENT Single Edge Notch Tension

## Resumo

No presente trabalho foi abordado a determinação da curva de resistência à fractura ("Curva R"), em materiais metálicos, através dos métodos de curva de resistência e de normalização descritos na ASTM E 1820.

O método de curva de resistência consiste na obtenção da curva de resistência à fractura (expressa em integral J ou CTOD), através de uma única amostra de material, recorrendo à técnica de *elastic compliance*.

O método normalização consiste na obtenção da curva de resistência (expressa em integral J) directamente do diagrama de força deslocamento, e da medição do comprimento inicial e final da fenda na superfície de fractura.

Foram ensaiados dois conjuntos de provetes (6+8) de dois materiais metálicos distintos. Dois provetes de cada conjunto foram ensaiados através do método de normalização. Os restantes foram submetidos ao método de curva de resistência, através do ensaio desenvolvido no software Wavematrix baseado no procedimento da ASTM E 1820. Foram confrontados os resultados entre cada um dos métodos dentro de cada material e ainda foram comparadas as curvas de resistência entre os dois materiais metálicos. Com as curvas de resistência obtidas foram ainda aplicados os procedimentos do anexo A9 da ASTM E 1820 para se obterem os valores de iniciação à fractura J<sub>IC</sub>.

Palavras chave: Resistência à fractura, Ensaios de Fractura, Materiais Metálicos, ASTM E 1820, Curva de Resistência, Integral J, J<sub>IC</sub>

## Abstract

In the present work, a study is made about the experimental determination of the fracture resistance curve (R curve) of metallic materials, through the methods: resistance curve and normalization, present on ASTM E 1820.

The resistance curve method consists in obtaining the "R curve" (Expressed in integral J or CTOD) through a single specimen.Within this method, the elastic compliance technique was used to obtain crack extension values.

The normalization method consists in obtaining the resistance curve (expressed in integral J) directly from the force vs displacement diagram and the initial and final crack lengths, measured at the fracture surface.

Two sets of specimens (6+8) of two metallic materials were tested. Two specimens from each set were submitted to the normalization method, while the remaining were studied with the resistance curve method, developed in the Instron Wavematrix software based on the procedure of ASTM E 1820. Within each material, the respective resistance curves were compared using both methods. The procedures of Annex A9 of ASTM E 1820 were also applied to obtain the fracture initiation values,  $J_{IC}$ .

Keywords: Fracture Toughness, Fracture Testing, ASTM E 1820, Resistance Curve, Metallic Materials, J Integral,  $J_{IC}$ 

# Índice

| 1                           | Int | roduç                 | ção                                                                       | 1  |
|-----------------------------|-----|-----------------------|---------------------------------------------------------------------------|----|
|                             | 1.1 | Mo                    | tivações/Enquadramento                                                    | 1  |
|                             | 1.2 | Obj                   | jectivos                                                                  | 3  |
|                             | 1.3 | Me                    | todologia                                                                 | 4  |
| 2                           | Int | roduç                 | ção Teórica                                                               | 5  |
|                             | 2.1 | Est                   | ado da arte                                                               | 5  |
|                             | 2.1 | .2                    | Primórdios da Mecânica da fractura                                        | 8  |
|                             | 2.1 | .3                    | O desenvolvimento da mecânica da fractura linear elástica1                | 0  |
|                             | 2.1 | .4                    | O desenvolvimento da mecânica da fractura elásto-plástica1                | 0  |
|                             | 2.1 | .5                    | As tendências da mecânica da fractura e as suas outras abordagens1        | 2  |
|                             | 2.2 | Cor                   | nceitos da Mecânica da fractura1                                          | 4  |
|                             | 2.2 | .1                    | Mecânica da fractura linear elástica (MFLE)1                              | 4  |
|                             | 2.2 | .2                    | Factor de intensidade de tensões elásticas-"K" 1                          | 7  |
|                             | 2.2 | .3                    | Plasticidade da ponta da fenda e o significado da tensão plana ou extensã | 0  |
|                             | pla | na na                 | a mecânica da fractura                                                    | 0  |
|                             | 2.2 | .4                    | Os valores críticos de "K" e "G"2                                         | 4  |
|                             | 2.2 | .5                    | A determinação experimental dos valores críticos para o estado d          | le |
| deformação plana <i>KIc</i> |     | ação plana <i>KIc</i> | 8                                                                         |    |
|                             | 2.2 | .6                    | Limitações da MFLE                                                        | 1  |
|                             | 2.2 | .7                    | Mecânica da fractura elasto-plástica3                                     | 2  |
|                             | 2.2 | .8                    | Crack Tip Opening Displacement (CTOD)                                     | 2  |
|                             | 2.2 | .9                    | Integral J                                                                | 3  |
|                             | 2.2 | .10                   | Determinação experimental dos $\delta C$ e <i>JIC</i>                     | 6  |
| 3                           | Cu  | rva d                 | e Resistência3                                                            | 9  |
|                             | 3.1 | 0 c                   | conceito                                                                  | 9  |
|                             | 3.2 | Noi                   | rmalização e o problema da transferibilidade4                             | 5  |
|                             | 3.3 | Cui                   | rva "Kr"4                                                                 | 9  |

|   | 3.3.1<br>plana |       | Factores que influenciam a curva de resistência nas condições de tens 54 |             |
|---|----------------|-------|--------------------------------------------------------------------------|-------------|
| 2 | 84             | Cu    | rva " IR"                                                                | 57          |
|   | .4             | Cui   |                                                                          | J/          |
|   | 3.4            | .1    | 59                                                                       | )-plasticas |
| 4 | Ob             | tençã | ão da curva de resistência à fractura – Caso estudo                      | 61          |
| 2 | 4.1            | Ver   | rificação e selecção do material de ensaio                               | 61          |
| ۷ | 4.2            | Ob    | tenção das propriedades mecânicas do material                            | 65          |
|   | 4.2            | .1    | Ensaios de impacto (EN ISO 148)                                          | 65          |
|   | 4.2            | .2    | Composição química, Dureza e microestrutura                              | 69          |
|   | 4.2            | .3    | Ensaio de tracção (EN ISO 6892)                                          | 71          |
| Z | 4.3            | Sel   | ecção da curva "R"                                                       | 72          |
| Z | 1.4            | Equ   | uipamentos de ensaio                                                     | 74          |
|   | 4.4            | .1    | Máquinas de ensaio e fadiga                                              | 74          |
|   | 4.4            | .2    | Dispositivos                                                             | 75          |
|   | 4.4            | .3    | Extensómetro                                                             | 77          |
| Z | 4.5            | Ver   | rificação dimensional dos provetes                                       | 78          |
|   | 4.5            | .1    | Requisitos dimensionais do provete e entalhe da ASTM E1820               | 78          |
|   | 4.5            | .2    | Verificação dos requisitos dimensionais                                  | 80          |
| ۷ | 1.6            | Pré   | -fissuração dos provetes                                                 |             |
|   | 4.6            | .1    | Requisitos da ASTM E 1820                                                |             |
|   | 4.6            | .2    | Controlo do processo de pré fissuração                                   |             |
| Z | 4.7            | Ens   | saio – Procedimento da curva de resistência                              | 95          |
| Z | 4.8            | Mé    | todo desenvolvido                                                        |             |
| Z | 4.9            | Pro   | cessamento de dados e obtenção da curva de resistência                   | 100         |
|   | 4.9            | .1    | Cálculo do comprimento de fenda                                          | 101         |
|   | 4.9            | .2    | Cálculo do Integral J                                                    | 102         |
|   | 4.9            | .3    | Condições iniciais do cálculo                                            |             |

|   | 4.10     | Medição óptica do tamanho de fenda na superfície de fractura106         |  |
|---|----------|-------------------------------------------------------------------------|--|
|   | 4.11     | Método de normalização109                                               |  |
|   | 4.12     | Obtenção do JIC                                                         |  |
| 5 | Res      | ultados - Tratamento, verificação e interpretação117                    |  |
|   | 5.1      | Verificação dos ensaios referentes ao método de curva de resistência119 |  |
|   | 5.2      | Curvas de Resistência                                                   |  |
|   | 5.3      | Medição óptica e previsão do tamanho de fenda 124                       |  |
|   | 5.4      | <i>JQ</i> - Valor de iniciação à fractura                               |  |
| 6 | Cor      | nclusões                                                                |  |
|   | 6.1      | Sugestões para estudos posteriores                                      |  |
| 7 | Bib      | liografia136                                                            |  |
| 8 | Ane      | exos                                                                    |  |
|   | 8.1      | Anexo A – Lista de provetes originais                                   |  |
|   | 8.2      | Anexo B – Verificação do extensómetro145                                |  |
|   | 8.3      | Anexo C – Registo da pré-fissuração147                                  |  |
|   | 8.4      | Anexo D – Exemplo do calculo da curva de resistência164                 |  |
|   | 8.5      | Anexo E - Registo da medição do comprimento de fenda na superfície de   |  |
|   | fractura |                                                                         |  |
|   | 8.6      | Anexo F – Método de normalização                                        |  |
|   | 8.7      | Anexo G – Obtenção do J <sub>IC</sub>                                   |  |

# Índice de Figuras

| Figura 1-Fractura Frágil do casco de um dos navios Liberty [4]6                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figura 2 - Modos de propagação de fenda [14]14                                                                                                                                 |
| Figura 3 - Referencial utilizado por Irwin para o desenvolvimento da equação que representa as tensões na proximidade da fenda [12]17                                          |
| Figura 4 - Princípio da sobreposição [9]19                                                                                                                                     |
| Figura 5 - Zona plástica da fenda segundo o modelo de Irwin [9]20                                                                                                              |
| Figura 6 - Zona plástica da fenda segundo os critério de Von Mises para o modo I (a), II<br>(b) e III (c) [12]                                                                 |
| Figura 7 - Representação tridimensional da zona plástica na ponta da fenda [9]22                                                                                               |
| Figura 8 - Influência da espessura no tamanho da zona plástica [9]                                                                                                             |
| Figura 9 - Critério energético para o estado de deformação plana [9]25                                                                                                         |
| Figura 10 - Critério energético para o estado de tensão plana [9]26                                                                                                            |
| Figura 11 - Variação dos valores de "K" critico com a variação da espessura. [12]27                                                                                            |
| Figura 12- Requisitos dimensionais para o provete Senb segundo ASTM E399 [12]28                                                                                                |
| Figura 13 - Requisitos dimensionais para o provete compacttension segundo ASTM E 399 [12]                                                                                      |
| Figura 14 - Requisitos dos entalhes para a determinação do K <sub>IC</sub> segundo ASTM E399 [18]                                                                              |
| Figura 15- Zona plástica e as dimensões do provete [19]                                                                                                                        |
| Figura 16 - Conceito do CTOD [20]                                                                                                                                              |
| Figura 17 - Material elástico não linear vs Material elasto-plastico [4]                                                                                                       |
| Figura 18 - Integral de contorno à volta da ponta da fenda [13]                                                                                                                |
| Figura 19 - Modelo de articulação plástica e diagrama de F vs CMOD [9]37                                                                                                       |
| Figura 20 - Obtenção do J <sub>IC</sub> [25]                                                                                                                                   |
| Figura 21 – Sobreposições de curvas de carga com a curva de resistência do material (a)<br>Diagrama de força deslocamento que gera a curva de resistência com o ponto de carga |
| máxima referenciado.(b) [28]40                                                                                                                                                 |

| Figura 22 - Previsão do comportamento à fractura através da curva de resistência [9] 41                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figura 23 - Influência do constrangimento da zona plástica na ponta da fenda na curva "R"<br>[30]                                                                                                               |
| Figura 24 - Influência do parâmetro slenderness e do expoente de endurecimento [31] 44                                                                                                                          |
| Figura 25 - Influência das cargas biaxiais e das cargas de flexão [31]44                                                                                                                                        |
| Figura 26 - Influência da posição angular na frente de fenda e do rácio entre carga aplicada                                                                                                                    |
| e carga de cedência [31]44                                                                                                                                                                                      |
| Figura 27 - Curvas de resistência à fractura para diferentes relações de a/w [33]46                                                                                                                             |
| Figura 28 - Método desenvolvido por Zhu e Chao48                                                                                                                                                                |
| Figura 29 - Provetes utilizados para a determinação da curva "Kr" [36]50                                                                                                                                        |
| Figura 30 – a) Representação esquemática da zona onde ocorre encurvadura [9] -<br>b)Dispositivo anti encurvadura para uma placa com fenda central [9] - c)Dispositivo anti-<br>encurvadura do provete C(T) [31] |
| Figura 31 - Efeito da encurvadura e fricção no diagrama F-Deslocamento [36] 53                                                                                                                                  |
| Figura 32 – Estudos efectuados em placas finas onde identificou a influência, na resistência                                                                                                                    |
| à fractura, do tipo de carregamento em materiais diferentes [28]                                                                                                                                                |
| Figura 33 - Efeito do ligamento combinado [28] com esforços de tração a) e flexão b) 55                                                                                                                         |
| Figura 34 - Curvas de resistência de diversos materiais metálicos [28]60                                                                                                                                        |
| Figura 35 - Material disponível para ensaio61                                                                                                                                                                   |
| Figura 36 - Provete de material base                                                                                                                                                                            |
| Figura 37- Provete proveniente de chapa soldada                                                                                                                                                                 |
| Figura 38 - Dimensões de referência do provete de flexão em três pontos                                                                                                                                         |
| Figura 39 - Provetes de tração e de Impacto de Charpy65                                                                                                                                                         |
| Figura 40 - Provete de Impacto de Charpy Tipo A65                                                                                                                                                               |
| Figura 41- Resultados do ensaio de Impacto66                                                                                                                                                                    |
| Figura 42 - Ductilidade domaterial em função da variação de temperatura                                                                                                                                         |
| Figura 43 - Expansão lateral                                                                                                                                                                                    |
| Figura 44 - Compilação dos ensaios de impacto                                                                                                                                                                   |

| Figura 45 - Micrografias obtidas através de microscópio óptico (500 X)7                     | 0        |
|---------------------------------------------------------------------------------------------|----------|
| Figura 46 - Instron 8502 e respectiva consola7                                              | 4        |
| Figura 47 - Instron 8204 com o comando e computador de controlo7                            | 4        |
| Figura 48 – a)- Dispositivo de flexão b)- Requsitos dimensionais do dispositivo             | 5        |
| Figura 49 - Extensómetro de palhetas Instron 10/47                                          | 7        |
| Figura 50 - Requisitos dimensionais do provete SENB [40]7                                   | 8        |
| Figura 51 - Tipos de entalhe [40]7                                                          | 9        |
| Figura 52 - Requisitos dimensionais dos entalhes em "V" e estreito [40]7                    | 9        |
| Figura 53 - Entalhe em V                                                                    | 2        |
| Figura 54 - Entalhe em escada                                                               | 2        |
| Figura 55- Forças no ciclo de fadiga9                                                       | 1        |
| Figura 56 - Método desenvolvido no WaveMatrix9                                              | 6        |
| Figura 57- Relação entre o deslocamento vertical e a abertura da boca da fenda (B=1,5mm<br> | 1)<br>19 |
| Figura 58 - Diagrama força vs deslocamento do ensaio de um provete SENB utilizando          | 0        |
| método de curva de resistência10                                                            | 0        |
| Figura 59 - Exemplo de uma Curva de Resistência10                                           | 5        |
| Figura 60 - Superfície de Fractura de um provete ensaiado: a)-Entalhe, b)-Pré-fenda d       | le       |
| fadiga c)- Fenda dúctil d)-Fenda de fadiga posterior ao ensaio e)- Fractura frágil provocad | la       |
| a baixa temperatura                                                                         | 6        |
| Figura 61 - Representação da medição óptica dos comprimentos de fenda inicial e final 10    | 7        |
| Figura 62 - Diagrama Força vs deslocamento Normalizado 11                                   | 0        |
| Figura 63 - Obtenção do a0q11                                                               | 2        |
| Figura 64 - Curva de resistência restringida para obtenção do Jic11                         | 3        |
| Figura 65 - Delimitação da região de dados válidos11                                        | 4        |
| Figura 66 - Diagrama reduzido F vs V amostra - 21711                                        | 7        |
| Figura 67 - Diagrama de F vs deslocamneto reduzido amostra - 213 11                         | 8        |
| Figura 68 - Curvas de resistência: Amostra 217 12                                           | 1        |

| Figura 69 - Curvas de resistência: Amostra 213                                                                             | 122      |
|----------------------------------------------------------------------------------------------------------------------------|----------|
| Figura 70 - Comparação entre as amostras 213 e 217                                                                         | 123      |
| Figura 71 - Erro da previsão - Amostra 217                                                                                 | 125      |
| Figura 72 - Frente de fenda sujeita a "Tunelling effect" (a) e b) medição dos p contorno das respectivas frentes de fenda. | ontos de |
| Figura 73 - Erro da previsão - amostra 213                                                                                 | 127      |
| Figura 74 - JQ M. Curva de Resistência vs M normalização - Amostra 217                                                     | 129      |
| Figura 75 - JQ Influência do comprimento de fenda relativo - Amostra 217                                                   | 130      |
| Figura 76 - JQ M. Curva de Resistência vs M. Normalização - Amostra 213                                                    | 131      |
| Figura 77 - JQ: Influência do comprimento de fenda relativo - Amostra 213                                                  | 131      |

# Índice de Tabelas

| Tabela 1 - Ligamento minímo para a determinação do KIC                                           | 30            |
|--------------------------------------------------------------------------------------------------|---------------|
| Tabela 2 - Dimensões dos provetes selecionados                                                   | 62            |
| Tabela 3 - Composição Química dos materiais metálicos                                            | 69            |
| Tabela 4 - Dureza Vickers                                                                        | 69            |
| Tabela 5 - Resultados dos ensaios de tracção                                                     | 71            |
| Tabela 6 - Dimensões dos rolos do dispositivo de flexão                                          | 76            |
| Tabela 7 - Características do Extensómetro                                                       | 77            |
| Tabela 8 - Verificação dimensional dos provetes – amostra 213                                    | 80            |
| Tabela 9 - Verificação dimensional dos provetes - Amostra 217                                    | 81            |
| Tabela 10 - Verificação dos entalhes em escada - Amostra 213                                     | 83            |
| Tabela 11 - Verificação dos entalhes estreitos - Amostra 217                                     | 83            |
| Tabela 12 - Planeamento da amostra 213                                                           | 88            |
| Tabela 13 - Planeamento da amostra 217                                                           | 89            |
| Tabela 14 - Parâmetros de ensaio para as séries 213 e217                                         | 98            |
| Tabela 15 - Expressões de cálculo do deslocamento no passo 5                                     | 99            |
| Tabela 16 - Verificação dos ensaios efectuados através do método de curva de resistê amostra 217 | encia,<br>119 |
| Tabela 17 - Verificação dos ensaios efectuados através do método de curva de resistê amostra 213 | ència,<br>120 |
| Tabela 18 - Verificação da medição directa e indirecta do comprimento de fenda - Am<br>217       | 10stra<br>124 |
| Tabela 19 - Verificação da medição directa e indirecta do comprimento de fenda - Am<br>213       | 10stra<br>126 |
| Tabela 20 - Verificação da aplicabilidade do método de normalização - Amostras 217               | e213          |
|                                                                                                  | 127           |

## 1 Introdução

## 1.1 Motivações/Enquadramento

A revolução industrial marca o início da disseminação da utilização maciça dos materiais metálicos no desenvolvimento da sociedade humana. A partir desse momento os materiais metálicos passaram a ser o material de eleição para todo o tipo de aplicações de engenharia.

O sucesso dos metais, em utilizações de engenharia, deve-se a sua capacidade de cumprir os requisitos de projecto, serviço e ainda de ser produzido de acordo com as dimensões e geometrias pretendidas. A capacidade dos materiais metálicos cumprir os requisitos pretendidos é determinada pelas suas propriedades físicas e mecânicas. Entende-se por propriedades físicas todas aquelas que possam ser obtidas por métodos que não dependem da aplicação de força, como por exemplo, massa volúmica, as propriedades magnéticas, eléctricas e térmica. As propriedades mecânicas estabelecem a relação entre as forças ou tensões que actuam no material e a resistência do mesmo à deformação e ruptura. Ao longo dos anos foram desenvolvidos testes que usam a aplicação de força para medir propriedades mecânicas dos materiais, como por exemplo, o módulo de elasticidade (Young), tensão de cedência e rotura, deformação elástica e plástica, dureza, resistência à fadiga e fractura. As propriedades mecânicas são dependentes da microestrutura (tamanho de grão, distribuição de fase, etc.), tipo de estrutura cristalina e da sua composição química [1].

Com a crescente utilização de componentes metálicos, os problemas associados a falha dos mesmos tomaram cada vez mais importância, devido também a perdas humanas associadas. A maioria das falhas estruturais está associada a algum tipo de defeito do material ou de *design* do componente. Estes são agravado por um dos diversos processos de crescimento de fenda (fadiga, fluência, corrosão sob tensão, fissuração a frio, no caso de soldaduras) e que quando atinge o tamanho crítico dá se a falha através da fractura do material. A fractura é essencialmente de dois tipos, frágil e dúctil. A fractura frágil é caracterizada por ser abrupta e ocorrer por clivagem. Este tipo de fractura está associado a materiais metálicos de alta resistência, sujeitos a fendas provenientes de processos de maquinagem, tratamentos térmicos, soldadura e fenómenos de fadiga. Em contraste, a fractura dúctil, apresenta evidentes sinais de deformação plástica, e está associada a

sobrecargas, provocadas devido a projecto deficiente ou por aplicação de cargas que excedem aquelas para o qual o componente foi concebido [2].

A mecânica da fractura é uma ferramenta que pode ser utilizada na análise "postmortem", dos componentes falhados, com o objectivo de encontrar as razões que contribuíram para a falha. Esta também pode ser utilizada no exame de componentes e estruturas em serviço, para averiguar a sua operacionalidade, e ainda no projecto segundo uma filosofia de "fail safe design". Os parâmetros que é possível quantificarem através da mecânica da fractura são a carga crítica do componente, o tamanho do defeito e a resistência do material à fractura, estes formam aquilo que se designa o triângulo da mecânica da fractura. O sucesso e a utilidade da aplicação da mecânica da fractura está fortemente dependente da forma com é aplicada e da precisão dos dados que são utilizados. O melhor exemplo disso é as propriedades à fractura dos materiais metálicos, estas são dependentes da geometria e do tamanho da amostra ensaiada. Este facto levou as agências de normalização a desenvolverem testes com requisitos dimensionais que resultam em propriedades à fractura representativas de um estado triaxial de tensões na ponta da fenda (que representa a situação mais desfavorável que é possível encontrar), podendo ser considerado conservadoras quando comparadas com a realidade existente no componente ou estrutura. A utilização das propriedades obtidas através de testes normalizados, em alguns casos, está associada a algum nível de imprecisão (dispersão). Devido a esta dispersão associada aos valores de resistência à fractura, em determinadas situações, e também o facto de estar aliada a conceitos e ensaios mais complexos, estas propriedades são relegadas para segundo plano e substituídas por exemplo por análise dados de energia obtidos através de ensaios de Charpy [3].

O presente trabalho recai sobre a determinação da curva de resistência à fractura dos materiais metálicos, também denominada de curva "R". Esta curva caracteriza a resistência do material metálico, no processo de fractura, com a propagação da fenda, e é considerada como sendo uma propriedade do material. A curva pode ser utilizada para a determinação dos valores de iniciação à fractura ( $J_{IC}$  ou  $\delta_{IC}$ ) ou ainda efectuar previsões do comportamento à fractura que uma determinada carga aplicada irá originar.

Neste trabalho desenvolveu-se um estudo sobre a obtenção da curva de resistência de através dos métodos da curva de resistência e de normalização contidos na ASTM E 1820, assim como, a obtenção do valor de iniciação à fractura,  $J_{IC}$ , pela norma anteriormente referida.

## 1.2 Objectivos

O principal objectivo deste trabalho foi para determinar a curva de resistência de um material metálico, através da aplicação dos procedimentos da ASTM E 1820. Identificar os problemas associados à aplicação dos mesmos, assim como, propor e abordar algumas das soluções.

Para atingir o objectivo definido foi necessário submeter amostras de material metálico, na forma de provetes de flexão em três pontos, também conhecidos por SENB, a uma rotina de ensaio criada para satisfazer os requisitos contidos na norma utilizada.

Com o auxílio de programas de cálculo (*Excel, Maple, Origin*) foram desenvolvidos processos de tratamento dos dados dos ensaios experimentais para a obtenção da curva de resistência e do valor de iniciação à fractura.

## 1.3 Metodologia

O ponto de partida para a abordagem ao tema foi a pesquisa de bibliografia e artigos científicos, relacionados com o objecto em estudo, e a análise de normas associadas.

No capítulo Um é efectuada a introdução ao tema, através das motivações que levaram ao desenvolvimento da dissertação, assim como, a definição dos objectivos e metodologia da dissertação.

No capítulo dois foi elaborada uma introdução teórica, onde consta um estado da arte sobre a mecânica da fractura os conceitos fundamentais da mesma.

A curva de resistência à fractura é abordada no capítulo três. Neste capítulo o conceito, normalização e os factores que influenciam a curva são abordados com base na pesquisa efectuada sobre o tema.

No quarto capítulo está descrito os passos efectuados para a correcta selecção da norma, com base em ensaios de tracção uniaxial e de Impacto. Neste capítulo é exposto o processo de preparação e ensaio dos provetes e também o processamento dos dados do ensaio para obtenção da curva de resistência.

No quinto capítulo são apresentados os resultados obtidos através do ensaio desenvolvido e a respectiva verificação com os requisitos normativos.

No sexto capítulo são apresentadas as conclusões sobre o trabalho desenvolvido e dos resultados obtidos, assim como sugestões para investigações futuras.

## 2 Introdução Teórica

## 2.1 Estado da arte

A preocupação com a falha das estruturas é uma temática que tem acompanhado a humanidade ao longo da sua evolução. Antes da revolução industrial a construção de estruturas estava limitada aos materiais que eram possíveis de extrair da natureza com maior facilidade (madeira e materiais de origem geológica) e aos poucos conhecimentos científicos existentes, no que diz respeito à resistência dos materiais e a estruturas. A utilização dos materiais metálicos até a revolução industrial ficou confinada a objectos e equipamentos de pequenas dimensões, devido principalmente à dificuldade de extracção e processamento dos mesmos.

Os desenvolvimentos tecnológicos e científicos verificados na revolução industrial proporcionaram a capacidade de extrair e processar materiais metálicos em maiores quantidades, o que levou à diversificação da utilização dos mesmos, como por exemplo na construção de reservatórios, caminhos-de-ferro, edifícios, pontes, etc. No entanto, algumas estruturas acabaram por ruir principalmente por dois motivos [4]:

- 1. Negligência durante o projecto, construção ou utilização
- Aplicação de um novo formato/modelo, processo de fabrico ou material o que levou a um resultado inesperado e indesejável

### 2.1.1.1 A problemática da fractura frágil

Com a massificação da produção do aço e consequente utilização do mesmo verificou-se a possibilidade de que o material poderia romper de modo frágil, ao contrário do que seria espectável, o que poderia ditar a falha catastrófica de estruturas e consequentemente conduzir a perdas materiais e humanas. O acidente mais antigo que se encontra registado devido a uma rotura frágil ocorreu em 1898 em Long Island nos EUA. Na altura os aços produzidos tinham uma temperatura de transição por volta dos 20° C, o que implicava que a fractura frágil era susceptível de ocorrer [5].

O fenómeno da rotura frágil dos materiais metálicos (principalmente dos aços) e sua necessidade de o controlar fez surgir em 1901 o primeiro ensaio de tenacidade padronizado, o ensaio de impacto de Charpy, que foi inicialmente desenvolvido por S.B Russell, em meados de 1890, e aprimorado por Georges Charpy [6].O ensaio visa

quantificar a tenacidade de um material, ou seja a energia que este é capaz de absorver antes de fracturar. O ensaio consiste em submeter um provete de material com um entalhe a uma carga de impacto aplicada por um pendulo. Os ensaios de impacto permitem obter valores de tenacidade que podem servir de comparação entre materiais [7]. Este ensaio contribuiu para a identificação do efeito da temperatura no comportamento mecânico dos materiais metálicos e permitiu desenvolver o conceito de temperatura de transição, temperatura abaixo da qual o material metálico apresenta uma fractura maioritariamente frágil.

Posteriormente ocorreu o famoso naufrágio do navio de passageiros RMS TITANIC (1912), de onde uma das conclusões retiradas da investigação foi que o aço utilizado na sua construção se tornava frágil a baixa temperatura o que pode ter contribuído para a ruptura do casco aquando a colisão com o *Iceberg* [8].

A segunda guerra mundial gerou a necessidade de uma produção em grande escala no menor tempo possível de estruturas e componentes metálicos, principalmente equipamentos bélicos. Nos Estados Unidos surgiu um programa inovador de construção de navios, que consistia na construção de navios com o casco inteiramente soldado, o que implicava uma redução significativa no tempo de produção comparando com a construção rebitada utilizada até ao momento. Os navios construídos através deste programa foram os navios da classe Liberty, e ficaram conhecidos não pela inovação do seu processo construtivo mas pela ocorrência de falhas catastróficas devido à ocorrência de fractura frágil em 700 navios (foram construídos 2400) dos quais 145 ficaram divididos em dois tal como se pode observar na Figura 1 [9].



Figura 1-Fractura Frágil do casco de um dos navios Liberty [4]

As investigações efectuadas encontraram três causas para a fractura dos navios. As fendas tinham origem no convés e nos cantos das escotilhas quadradas, onde existia concentração de tensões devido à geometria das mesmas. As soldaduras dos navios foram efectuadas por mão-de-obra que não era completamente especializada e por isso ficaram com fendas e tensões residuais, e ainda o aço utilizado na sua construção tinha pouca tenacidade segundo os ensaios de Charpy realizados. Uma vez que a construção era soldada não existiam obstáculos à propagação de fendas, ao contrário da construção rebitada, o que fazia com que estas se propagassem ao longo do casco do navio. Com o problema identificado foram tomadas medidas correctivas como o reforço nas bordas das escotilhas e ainda a instalação dos chamados *crackarresters* que consistia na colocação de placas de alta resistência rebitadas em certas partes do convés do navio [4].

Após a segunda guerra mundial a utilização dos materiais metálicos aumenta novamente, por um lado para a reconstrução da europa nomeadamente aço estrutural (baixo carbono) e também do aço de alta resistência essencialmente pela indústria aeronáutica e espacial. Os materiais de alta resistência foram desenvolvidos para minimizar a quantidade de material utilizado, poupando peso e recursos. Estes materiais aliados a novos métodos de determinação de tensões locais permitiram cumprir os objectivos de poupança de peso, no entanto, o factor segurança baixou devido a estas se encontrarem menos sobredimensionadas. Contudo estas estruturas tornaram – se mais sensíveis a defeitos que se encontrassem nas mesmas [9].

O desenvolvimento da mecânica da fractura após a segunda guerra mundial lançou uma nova luz na problemática da fractura frágil, no entanto, os acidentes devido à fractura frágil continuaram a acontecer. Por exemplo, o caso da falha dos Havilland Comet que ocorreram em diversos voos da BOAC, entre 1953-1954, devido a fenómenos de fadiga e concentração de tensões juntos de janelas e escotilhas com a forma quadrada. Em 1988 o avião que fazia a ligação entre Hilo e Honululu ficou sem parte da fuselagem durante o voo, e ainda o acidente ferroviário de Enshede, em 1998, onde a fractura frágil de uma roda devido a fenómenos de fadiga provocou um descarrilamento catastrófico.

#### 2.1.2 Primórdios da Mecânica da fractura

O estudo da falha dos materiais não começou com a revolução industrial mas sim no renascimento com Leonardo Da Vinci. Este efectuou experiências com fios metálicos de diferentes comprimentos traccionados com pesos, e verificou que os fios de maior comprimento eram os primeiros a partir. Isto aconteceria devido ao maior volume de material, existindo assim maior probabilidade de conter impurezas e imperfeições. A conclusão, chegada por Leonardo, é que as imperfeições do material determinavam a sua resistência.

Os resultados das experiencias de Leonardo Da Vinci apenas foram qualitativos. Os primeiros estudos com objectivos quantitativos foram efectuados por Inglis, que visava a determinação das tensões à volta de uma fenda com forma elíptica numa placa [10].

Griffith publicou em 1920, aproveitando os estudos de Inglis, um estudo onde relacionou quantivamente o tamanho do defeito (fenda) com a tensão a que ocorria a falha. Este último ainda tentou aplicar o seu modelo a materiais metálicos, no entanto, não foi bem sucedido pois estes não tem um comportamento inteiramente frágil como tem o vidro (material que utilizou nos seus estudos).

Uma vez que Griffith não conseguiu estabelecer uma ligação directa entre os seus estudos e os materiais metálicos, os seus estudos foram ignorados e a fractura frágil dos metais foi considerado um problema metalúrgico. Outros tentaram explicar o fenómeno, como por exemplo, Ludwik, em 1909, explicou o fenómeno de transição de comportamento dúctil para frágil, sugerindo que a força coesiva do material era pouco afectada pela temperatura, mas que para os aços com baixo teor em carbono a tensão de cedência aumentava com o decréscimo de temperatura e que por isso era mais fácil ao material romper fragilmente do que ceder. Orowan, em 1945, utilizou os conceitos de Ludwik para relacionar o entalhe com a temperatura de transição, sugerindo que o entalhe limitava a cedência e consequentemente aumentava a temperatura de transição. O mesmo Orowan, em 1933, já havia efectuado experiências com lâminas de mica e que concluiu que a redução de resistência do material era devido a presença de fendas no bordo das lâminas. Contudo como as suas experiências foram elaboradas num material de origem mineral, pouco influenciaram a corrente, que iria perdurar até 1960, de que a fractura frágil dos materiais metálicos era um problema metalúrgico. Assim sendo, o principal foco era a determinação da temperatura de transição, através do ensaio de impacto de Charpy, e de produção de materiais com a menor temperatura de transição possível. No entanto, no início da década de 40, o efeito do tamanho de fenda começou a ser estudado no *Navy Research Laboratories* em Washington por uma equipa liderada por G.R.Irwin [5].

#### 2.1.3 O desenvolvimento da mecânica da fractura linear elástica

Em 1956, G.R. Irwin conseguiu relacionar o trabalho de Griffith com os materiais metálicos, através do desenvolvimento do conceito de taxa de libertação de energia, "G". Este desenvolveu o conceito de taxa de libertação energia, efectuando uma análise energética ao trabalho de Griffith. O conceito provou ser de grande utilidade para a resolução de problemas de engenharia pois pela primeira vez, relacionava o tamanho de fenda com a energia, o que até então não tinha sido efectuado.

A contribuição de Irwin não acabou com o desenvolvimento do conceito de "G. Após a análise do trabalho Westergaard, publicado em 1938, relacionou a taxa de libertação de energia com as tensões existentes na ponta da fenda, e acabou por desenvolver o conceito de factor de intensidade de tensões, "K". Estes avanços na mecânica da fractura permitiram, em 1956, que Wells provasse que as falhas ocorridas no *Havilland Comet* ocorreram devido a fendas de fadiga que atingiram o tamanho crítico [4].

A mecânica da fractura linear elástica e os conceitos que nela vinculam, (Taxa de libertação de energia por unidade de espessura, "G", factor de intensidade de tensões "K", R energia necessária para a propagação de fenda) foram aplicados com grande sucesso noutras áreas, como por exemplo, na fadiga (lei de Paris), na corrosão sob tensão, no estudo dinâmico da fractura, na Fluência e na fractura Visco – elástica [5].

O conceito do factor de intensidade de tensões foi tão bem sucedido a descrever o estado de tensão na ponta de uma fenda, que também foi utilizado para descrever o estado de tensão presente em cantos e entalhes [11].

#### 2.1.4 O desenvolvimento da mecânica da fractura elásto-plástica

Após a uma colaboração com Irwin, no *Naval Research Laboratory*, Wells retorna ao *British Welding Research Association* onde tentou aplicar os conceitos da MFLE a aço de média resistência e baixo carbono, no entanto, acabou por concluir que os conceitos não eram compativeis para materiais com maior ducitilidade.

O modelo de Irwin propõe que existem tensões na proximidade da ponta da fenda, o que significa que existe uma tensão singular na ponta da fenda. Uma vez que os materiais metálicos têm tensão acima da qual o material plastifica (tensão de cedência) é de prever que na proximidade da ponta da fenda existirá uma zona plástica. Nesta zona a solução

elástica proposta da MFLE não pode ser aplicada, pois, o material não tem comportamento linear. Irwin considerou esta área plástica circular, e que fora da desta zona plástica, o campo de tensões que é representado pelo parâmetro "K" pode ser aplicado [12].

Nos materiais considerados de alta resistência, ou seja com elevada tensão de cedência e muito próxima da de rotura, a zona plástica na ponta da fenda é relativamente reduzida quando comparada com as dimensões dos espécimens ou componentes onde se insere. Estes materiais eram propícios para a aplicação dos conceitos da MFLE, no entanto na europa, ao contrário do que acontecia nos Estados Unidos, o interesse era principalmente nos aços de baixa liga onde o principal problema era temperatura de transição [5].

Nas de ligas de média e baixa resistência a zona plástica toma dimensões consideráveis, o que acaba por inviabilizar a utilização dos conceitos da MFLE. Ao se deparar com este problema, Wells observou que neste grupo de materiais que o deslocamento das faces da fenda com a deformação plástica era bastante pronunciado, o que lhe permitiria mais tarde desenvolver o primeiro parâmetro quantitativo da mecânica da fractura elasto-plástica o *Crack Tip Opening Displacement*, conhecido pelo acrónimo CTOD.

O CTOD procura caracterizar a capacidade do material deformar plasticamente antes da fractura, através da medição do deslocamento das duas faces da fenda existente [13]. O conceito de CTOD e a sua curva semi-empírica, desenvolvidos por Wells, foram vastamente utilizados na década de 70, no Reino Unido. Aqui um dos principais o focos industriais era a exploração petrolífera no mar do norte, onde eram utilizados materiais metálicos de comportamento dúctil na construção de plataformas de extracção e navios de transporte de petróleo [4].

O CTOD de Wells não é o único parâmetro disponível na MFEP. Em 1968 James Rice desenvolveu um parâmetro energético equivalente ao "G" de Irwin da MFLE, o integral "J". O integral J é um integral de uma linha arbitrária à volta da ponta da fenda, que caracteriza à taxa de libertação de energia em materiais com comportamento não linear. Rice, Rosegren, e também Hutchinson, independentemente, demonstraram que J caracteriza as condições na ponta da fenda de um material não linear elástico relacionando as tensões e extensões com o "J", dando origem as equações de singularidade de HRR. O integral "J" define as amplitudes destas tensões tal e qual o factor de intensidade de tensões caracteriza a singularidade linear elástica. No entanto, o conceito do integral J tem a limitação de só poder ser utilizado em pequenas propagações de fenda [4].

## 2.1.5 As tendências da mecânica da fractura e as suas outras abordagens.

Hoje em dia existe uma tendência para a continuação do estudo da fractura através das técnicas de elementos finitos com a confrontação dos mesmos com resultados experimentais ou vice-versa. Deste modo tenta-se melhorar ou encontrar novos modelos analíticos válidos, para auxiliar o dimensionamento na fase de projecto e para avaliar estruturas e equipamentos em serviço. Com esses mesmos modelos analíticos tenta-se reduzir a dependência dos ensaios destrutivos que comportam muitas vezes custos elevados.

Apesar da MFLE e a MFEP serem as abordagens com mais sucesso, devido ao facto de os modelos formulados dependerem apenas de um parâmetro, estas têm limitações nomeadamente [5]:

- Só são aplicadas a defeitos tipo fenda ou entalhe
- A zona onde se desenvolve o processo de fractura é relativamente pequena, em relação as dimensões do espécimen ou componente
- E no caso da MFEP só pode ser aplicada a pequenas propagações de fenda.

Para suprimir as limitações acima mencionadas existem abordagens com dois ou mais parâmetros que efectivamente podem ultrapassar as dificuldades mas com a desvantagem de serem de um elevado grau de complexidade. Essas abordagens encontram-se sintetizadas no seguinte esquema.



Neste grupo encontramos abordagens que tentam modelar a zona de fractura, designada FPZ, *Fracture Process Zone*, onde se encontram os modelos de fenda fictícia e o modelo de fenda de banda (*Crack Band Model*). O pioneiro deste tipo de abordagem foi Banrenblatt, em 1962, que criou um modelo tendo por base o modelo de banda de cedência de Dugdale.

As teorias da deformação continua, que dizem que a tensão num ponto é dependente da extensão no ponto, são perfeitas a não ser que que o gradiente de extensões seja muito elevado. Flec et al, em 1994 efectuaram experiências com fios de cobre aplicando estas teorias.

A análise dinâmica molecular, os modelos atómicos mistos e métodos contínuos são tentativas de abordar o problema da fractura a partir de uma escala micro para uma escala macro, o que é exactamente o inversos das abordagens tradicionais da mecânica da fractura. No entanto, estes tipos de análises são efectuados através de simulações computacionais, que além de complexas requerem bastantes recursos informáticos. Apesar deste inconveniente os estudos desta vertente foram já iniciados. Abraham et al publicaram um estudo sobre a dinâmica da fractura através da dinâmica molecular em 1998 e Shenoy et al publicaram um artigo, em 1999, sobre a aplicação de elementos finitos a um modelo de mecânica à escala atómica quase continua.

#### 2.2 Conceitos da Mecânica da fractura

A análise de sistemas à fractura é efectuada de acordo com os três modos possíveis de propagação de fenda, que também que se podem ser designados como modos de falha. O primeiro, designado modo I é o modo de tração, o segundo modo, ou modo II, é o de corte no plano da fenda, e o por fim o modo III é modo de corte longitudinal. Na Figura 2 estão representados esquematicamente os três modos de falha referidos em cima [14].



Figura 2 - Modos de propagação de fenda [14]

Os conceitos de mecânica da fractura apresentados nesta dissertação referem-se ao modo I, uma vez que este é considerado como sendo o mais crítico, mas também porque os parâmetros dos modos II e III são deduzidos a partir do primeiro.

#### 2.2.1 Mecânica da fractura linear elástica (MFLE)

Os primeiros parâmetros utilizados para caracterizar os fenómenos de fractura, em materiais metálicos, foram "G", a taxa de libertação de energia, e "R", resistência à propagação da fenda. Estes conceitos foram adaptados por Irwin aos materiais metálicos, tendo por base a teoria de Griffith para materiais frágeis. O último deduz os conceitos através da decomposição das energias de um placa infinita com fenda central carregada remotamente com uma tensão remota  $\sigma$ , segundo a equação (1).

$$U = U_0 + U_a + U_{\gamma} - F$$
 (1)

A energia total da placa U corresponde a soma da energia da placa antes da introdução da fenda,  $U_0$  com a variação da energia elástica da placa causada pela introdução da fenda,

 $U_a$ , a variação da energia da superfície da placa devido a introdução da fenda,  $U_{\gamma}$ , menos o trabalho realizado pelo sistema de carregamento durante a introdução do fenda, F [12]. Na equação (2) está a dedução elaborada por Griffith, para a condição de propagação de

fenda.

$$\frac{dU}{da} < 0 \iff \frac{d(U_0 + U_a + U_\gamma - F)}{da} < 0 \iff \frac{d(U_a + U_\gamma - F)}{da} < 0 \iff \frac{d(U_a + U_\gamma - F)}{da} < 0 \iff -\frac{d(F - U_a)}{da} > \frac{dU_\gamma}{da} \iff -\frac{dU_P}{da} > \frac{dU_\gamma}{da}$$
(2)

Foi na última inequação que surge o conceito de "G" como sendo  $\frac{dU_P}{da}$ , ou seja a taxa de libertação de energia e  $\frac{dU_Y}{da}$  como a resistência a fenda do material "R".

A taxa de libertação de energia, "G", representa a energia libertada, por unidade de espessura durante o crescimento da fenda. Este parâmetro é habitualmente representado pela equação (3) [15].

$$G = -\frac{dU}{da} \tag{3}$$

Em que o numerador representa a variação de energia devido a propagação da fenda e o denominador representa o aumento de área, mais uma vez, devido ao avanço da fenda. Esta taxa de libertação de energia é a que está disponível para provocar o aumento de fenda, no entanto, isso só irá acontecer se for ultrapassada a resistência do material a fenda. Esta é representada pela energia por unidade de espessura necessária para a criação de uma nova área de superfície da fenda, designada pela letra "R". Em baixo encontra-se na equação (4) que define este parâmetro. [15].

$$R = \frac{dU_{\gamma}}{da} \tag{4}$$

O parâmetro "G" depende da geometria do corpo, das cargas que neste se encontram aplicadas e do tamanho de fenda."R" é a propriedade do material que representa a resistência à fractura. Estes dois parâmetros foram deduzidos para placas com fenda central onde é relativamente fácil efectuara análise energética e consequentemente determinar "R" experimentalmente a com esse mesmo tipo de placas. Quando a geometria do corpo deixa

de ser uma placa, a análise energética torna-se mais complexa, deixando de ser prática para a determinação da resistência à fractura do material.

#### 2.2.2 Factor de intensidade de tensões elásticas-"K"

Devido a dificuldade prática do uso dos parâmetros energéticos, para além do uso em placas, em 1950, Irwin desenvolveu o conceito de factor de intensidade de tensões, "K".

Da teoria linear elástica, Irwin, chegou à equação (5) que representa as tensões na proximidade da fenda elíptica, a semelhança da que está representada na Figura 3.



Figura 3 - Referencial utilizado por Irwin para o desenvolvimento da equação que representa as tensões na proximidade da fenda [12]

$$\sigma_{i,j} = \frac{K}{\sqrt{2\pi * r}} \cdot f_{i,j}(\theta) + (\dots)$$
(5)

Nesta equação r e  $\theta$  são as coordenadas cilíndricas de um ponto na proximidade da fenda e "K" é o valor que quantifica o campo de tensões elásticas na proximidade da fenda. Este foi denominado de factor de intensidade de tensões [12].

O desenvolvimento deste conceito permitiu superar as dificuldades existentes com os parâmetros energéticos. Isto foi possível através da equação (6) que quantifica o parâmetro "K" com base na tensão aplicada e no tamanho de fenda.

$$K = \sigma \sqrt{\pi a} \cdot f(\frac{a}{W}, \frac{b}{W}, \frac{L}{W}, etc)$$
(6)

Esta equação permite quantificar o factor de intensidade de tensões elástica na proximidade de uma fenda de tamanho, a, num componente arbitrário, ao qual está aplicada uma tensão remota,  $\sigma$ . O que permite que este parâmetro seja versátil é o chamado factor de forma, f, que é uma função dependente do tamanho da fenda e das características geométricas do corpo em estudo [12]. Os factores de forma estão amplamente estudados e estão disponíveis sob a forma de artigos e atlas de fractura e fadiga. Em baixo encontra-se uma

lista de fontes bibliográficas onde é possível encontrar várias soluções para o factor de intensidade de tensões "K".

- Kujaswski, D. 1991. "Estimations of stress Intensity Factors for small cracks at Notches" – Fatigue of engeneering Materials and Structures, Vol. 14, No 10, pp 953-965.
- Murakami, Y.1987. *Stress Intensity factors Handbook*, Pergamon Press, Oxford, UK.
- Rooke, D. P. e D. J. Cartwright, *Compendium of Stress Intensity Factors*, Her Majesty's Stationary Office, London.
- Newman, J.C., Jr, and I. S., Raju, "Stress-Intensity Factor Equations for Cracks in Three Dimensional Finite Bodies Subjected to Tension and Bending Loads", *Computational Methods in Mechanics of Fracture*, S. N. Alturi, ed., Elsevier Science Publishers, New York, NY.
- Raju I. S. e J. C., Newman, Jr. "Stress-Intensity Factor for internal and external surface cracks in cylindrical vessels", *Jnl. of Pressure vessel Technology*, ASME, Vol. 104 Nov. 1982, pp. 293-298.
- Raju I. S. e J. C., Newman, Jr. "Stress-Intensity Factor for circumferential surface cracks in pipes and rods under tension and bending loads", *Fracture Mechanics*, Seventeenth Volume, J. H. Underwood, et al, ed., ASTM STP 905, American Society for Testing Materials, West Conshohocken, PA.

Outra característica que confere versatilidade a este conceito é a possibilidade de se obter o valor do factor de intensidade de tensões de um sistema multiplamente carregado, através da sobreposição dos valores de "K" que cada carga provocaria se fosse aplicada isoladamente. Designa-se a isto o princípio da sobreposição e está representado esquematicamente através da Figura 4 [9].

$$K_{\mathrm{Ia}} = K_{\mathrm{Ib}} + K_{\mathrm{Id}} - K_{\mathrm{Ie}} \; .$$



Figura 4 - Princípio da sobreposição [9]

Além do factor de intensidade de tensões ser mais prático e versátil, é possível relaciona-lo com o parâmetro energético G através das equações (7) e (8).

$$G = \frac{K^2}{E}, Em \ tensão \ Plana \tag{7}$$

(

$$G = \frac{K^2}{E} (1 - \nu^2), Em \ deformação \ Plana \tag{8}$$
# 2.2.3 Plasticidade da ponta da fenda e o significado da tensão plana ou extensão plana na mecânica da fractura.

Através da análise das tensões na proximidade da fenda dada pela equação (5), se *r* tender para zero as tensões tendem para infinito. Os materiais metálicos têm como uma das suas características a deformação plástica acima da tensão de cedência, o que implica que existirá uma região de material plástico a volta da fenda. Esta zona foi designada como a zona plástica da ponta da fenda.

Irwin foi o primeiro a desenvolver um modelo para determinar a dimensão da zona plástica na ponta da fenda, considerando que esta zona teria uma forma circular e considerando um modelo elásto-plástico. Este último chegou à equação que exprime o tamanho da zona plástica da fenda, em função do estado de tensão na proximidade da fenda, tensão de cedência e por último o factor de intensidade de tensões. Na Figura 5 encontra-se representada a zona plástica de Irwin, e a equação (9) que define o raio da mesma.



Figura 5 - Zona plástica da fenda segundo o modelo de Irwin [9]

$$Ry = \frac{1}{\pi} \cdot \left(\frac{K_I^2}{\sigma_{YP}^2}\right) \tag{9}$$

Além do modelo desenvolvido por Irwin para a plasticidade da ponta da fenda, cujo objectivo era ter uma ideia do tamanho da zona plástica na ponta fenda, existe o modelo de Dugdale, que através do princípio da sobreposição e da derivação das funções de tensão obteve um resultado semelhante.

A abordagem de Irwin e Dugdale foi assumir uma forma circular e determinar o tamanho da zona plástica. Para a determinar a forma da zona plástica foi assumido um tamanho aproximado e foram aplicados os critérios de cedência de *Von Mises* ou *Tresca* para determinar a fronteira onde termina o material plástico [12]. Na Figura 6 encontra-se a representação da zonas plásticas segundo o critério de *Von Mises* para o modo I (a), assim como as zonas plásticas para os modos II (b) e III (c).



Figura 6 - Zona plástica da fenda segundo os critério de Von Mises para o modo I (a), II (b) e III (c) [12]

Na mecânica da fractura é muitas vezes mencionado o estado de tensão plana e deformação plana. Estes termos estão ligados à definição que se encontra na mecânica dos sólidos, no entanto, na mecânica da fractura estes termos têm um significado mais restritivo. Na mecânica da fractura as respectivas designações não caracterizam o estado de tensão ou extensão em todo o corpo, mas sim da zona plástica da ponta da fenda. Devido ao grande gradiente de tensões perto da ponta da fenda a zona plástica é constrangida pelo material elástico em seu redor. Se a zona plástica é pequena comparada com o comprimento da frente de fenda, considera-se que a fenda se encontra num estado de deformação plana. Num estado de tensão plana, o que acontece é que as tensões lineares elásticas a volta da zona plástica da fenda não são suficientes para constranger o material plástico em todas as direcções do espaço, como consequência o material plástico fica constrangido apenas em duas direcções [16].

No interior da placa existe a condição de deformação plana, pois o material no interior da placa está constrangido em todas as direcções pelo material adjacente. À superfície da placa vamos ter um estado tensão plana, pois não existe constrangimento devido à superfície livre. À medida que nos aproximamos do interior, o material vai ser gradualmente constrangido até atingir o estado de deformação plana. Na Figura 7 está representada a zona plástica da fenda em três dimensões [9].



Figura 7 - Representação tridimensional da zona plástica na ponta da fenda [9]

Então num corpo com fenda passante, vai sempre existir dois estados de tensão na zona plástica da fenda, tensão plana junto à superfície e deformação plana no interior. A zona plástica atinge a sua maior dimensão no plano da superfície livre e a sua menor dimensão no interior onde se verifica o estado da deformação plana.

Na Figura 8 em baixo encontra-se representada a variação da zona plástica ao longo da espessura crescente.



D1~D2~D3

Figura 8 - Influência da espessura no tamanho da zona plástica [9]

O estado de tensão da zona plástica na ponta da fenda é muitas vezes associado ao tamanho da mesma e também ao comportamento á fractura do material. Isto acontece de tal modo que é comum encontrar na literatura termos como *Plane Strain fracture toughness* ou *Plane stress fracture toughness*, em que o primeiro está associado a testes com provetes de espessura elevada e o segundo associado a provetes de espessura fina. Também se associa o estado de deformação plana a uma zona plástica reduzida e a fenómenos de fractura frágil, enquanto o estado de tensão plana é associado a grandes zonas plásticas e fractura dúctil.

Esta abordagem bidimensional, apesar de prevalecer em grande parte da literatura da especialidade, é simplista e pode se tornar totalmente incorrecta. Em primeiro lugar porque não existe correspondência directa entre o tamanho da zona plástica e a existência ou ausência do estado de deformação plana (apenas se sabe a relação entre o tamanho das respectivas zonas plásticas). Em segundo lugar já foi verificado que existe o estado de deformação plana mesmo quando existe uma grande zona plástica (inclusivé também em casos de plastificação da secção), o que significa apenas que nos casos em que a zona plástica da ponta da fenda é de grande dimensão apenas não se pode aplicar os conceitos da MFLE, no entanto, não invalida a utilização dos conceitos da MFEP. Em terceiro lugar, o estado de tensão plana apenas se verifica na superfície do provete, muito raramente sendo predominante a não ser quando o provete é efectivamente de uma espessura bastante fina [17].

Uma vez que muita da literatura associada ao tema utiliza este tipo de expressões, estas continuarão a ser utilizadas no presente documento. No entanto, quando se menciona o estado de tensão plana, está-se a designar um estado em que não predomina a condição de deformação plana e não a existência de um estado de tensão plana.

## 2.2.4 Os valores críticos de "K" e "G"

Através do balanço energético, Griffith, chegou a condição energética necessária para que houvesse propagação instável de fenda representada pela equação (10).

$$-\frac{dU_P}{da} > \frac{dU_{\gamma}}{da} \tag{10}$$

Em que  $\frac{dU_P}{da}$  é variação da energia potencial da placa e  $\frac{dU_Y}{da}$  é a variação da energia de superfície.

Irwin e Orowan, de forma independente, verificaram que a energia necessária para o crescimento da fenda num material metálico era muito maior que apenas a energia de superfície. Isto deve-se à existência da zona de deformação plástica na ponta da fenda, que durante a propagação da mesma, parte da energia é gasta na formação de uma nova zona plástica na ponta da fenda propagante [9]. Assim sendo Irwin modifica a teoria de Griffith adaptando "R" a esta nova perspectiva, adicionando o trabalho de deformação plástica,  $U_{\gamma P}$ , à energia de superfície da placa. Na equação (11), em baixo, encontra-se expresso "R" em como soma da energia de superfície  $U_{\gamma}$  com do trabalho de deformação plástica  $U_{\gamma P}$ .

$$R = 2 \cdot (U_{\gamma} + U_{\gamma P}) \tag{11}$$

O trabalho de deformação plástica  $U_{\gamma P}$  pode ser interpretado como a energia necessária para plastificar o material que se encontra na proximidade da ponta da fenda, o que torna dependente da ductilidade do material. Os materiais metálicos apresentam um diversificado tipo de comportamentos, dependendo da sua composição e microestrutura, tratamentos térmicos, mecânicos e temperatura. Estes podem ir de um comportamento quase perfeitamente frágil até um quase perfeitamente dúctil. Dependendo então das propriedades do metal e do respectivo estado de tensão na ponta da fenda. As parcelas de "R" variam originando diferentes comportamentos à fractura.

Os materiais metálicos de comportamento frágil necessitam de pouca energia para criar uma nova zona plástica na ponta da fenda, uma vez que esta tem dificuldade em se desenvolver fora das proximidades da fenda. A energia de superfície é constante seja qual for o estado de tensão na ponta da fenda. Quando existir igualdade entre "G" e "R" e se o material se encontrar num estado predominantemente de deformação plana,(estado em que a zona plástica toma a menor dimensão) irá ocorrer a propagação instável de fenda, à semelhança dos materiais perfeitamente frágeis. Neste caso é comum se considerar a parcela do trabalho plástico desprezável face a energia de superfície.

Os valores de "G" e "K" críticos neste caso são constantes (são designados de  $G_{IC}$  e  $K_{IC}$  respectivamente), e independentes da carga aplicada, sempre que se atingir o valor crítico para um dado material vai existir propagação instável da fenda. Na Figura 9 está representada graficamente o critério energético para o estado de deformação plana.



Figura 9 - Critério energético para o estado de deformação plana [9]

Se o material anterior não estiver sujeito a um estado predominantemente de deformação plana, comportamento à fractura estará sujeito à influência da zona plástica de transição. O que implicará maior energia despendida para criar uma nova zona plástica com o avanço da fenda. Neste caso o trabalho de deformação plástica deixa de ser desprezável. Ao contrário do que acontece com a energia de superfície,  $U_{\gamma}$ , o trabalho de deformação plástica, varia com a progressão da fenda o que significa que "R" deixa de ser constante. Isto vai significar que o comportamento à fractura destes materiais não será descrito por um valor pontual, mas sim por uma curva, designada "Curva R".

Na Figura 10 está representado esquematicamente o parâmetro energético para o caso de tensão plana comparando com o caso da deformação plana.



Figura 10 - Critério energético para o estado de tensão plana [9]

Nos casos de tensão plana, em que a resistência à fractura é definida pela curva "R" podemos obter dois comportamentos possíveis:

- 1. Propagação estável de fenda quando existe igualdade entre "G" e "R"
- 2. Propagação instável de fenda quando existe não só igualdade entre "G" e "R" mas também quando existe tangência da recta de "G" com a curva "R" ou seja  $\frac{\partial G}{\partial a} = \frac{\partial R}{\partial a}$

Estes dois comportamentos podem acontecer isoladamente ou primeiro ocorre a propagação estável e quando se atinge o tamanho crítico de fenda (onde vai existir  $\frac{\partial G}{\partial a} = \frac{\partial R}{\partial a}$ ) a fenda propagará instavelmente.

O ponto crítico para o qual acontece a fractura instável é um valor superior ao que se verifica no estado de deformação plana, e que varia com a aproximação ou distanciação a este estado.

Como já foi referido os valores de "G" e "K" que levam à fractura instável no estado de deformação plana e tensão plana são diferentes, no entanto, neste último os valores críticos variam mesmo dentro do próprio estado de tensão plana. A Figura 11 demonstra esquematicamente a variação dos valores críticos de "K" em função da variação da espessura.



Figura 11 - Variação dos valores de "K" critico com a variação da espessura. [12]

O aumento da espessura provoca uma diminuição do valor crítico até que se entre no estado de deformação plana onde o valor se torna constante.

De acordo com o que foi dito no final do subcapítulo anterior, esta tendência não reflecte a transição do estado de deformação plana para deformação plana, mas sim a diferença de contribuições de dois mecanismos de fractura diferentes, nomeadamente fractura dúctil e clivagem (fractura frágil). Em métodos de teste recentes é aconselhado a utilização de *sidegrooves* com o intuito de eliminar a influência da zona plástica junto a superfície, com o intuito de se medir apenas a resistência à fractura da zona afectada pelo estado de deformação plana [17].

# 2.2.5 A determinação experimental dos valores críticos para o estado de deformação plana ( $K_{Ic}$ )

A partir de um determinado valor de espessura entramos no estado deformação plana, onde vamos obter os valores mais baixos do factor de intensidade de tensões "K". Este valor é denominado de  $K_{IC}$  e pode ser considerado uma propriedade do material, no entanto não deixa de ser dependente da temperatura e da velocidade de carregamento [12].

A obtenção desta propriedade do material encontra-se hoje em dia normalizada através de diversos institutos de normalização, no entanto, à que destacar a primeira e a aquela que é a base das restantes, a ASTM E 399.

Esta norma cobre a determinação do  $K_{IC}$  de materiais metálicos com comportamento predominantemente linear elástico e em deformação. A determinação do  $K_{IC}$  através desta norma caracteriza a resistência à fractura de um material num ambiente neutro e na presença de uma fenda sujeita essencialmente a tensões linear elásticas e um severo constrangimento, de modo a que o estado de tensão na proximidade da ponta da fenda se aproxime o mais possível de deformação plana. E que a zona plástica na proximidade da fenda seja pequena comparada com o tamanho da fenda, a espessura da amostra e do ligamento á frente da fenda [18].

Os provetes mais utilizados para a obtenção do  $K_{IC}$  são o provetes de flexão em três pontos (*SENB*) e o de tracção (*Compact Tension*). No entanto, existem mais dois tipos de provetes que também são susceptíveis de serem utilizados. Nas Figura 12 e Figura 13 encontra-se representado os provetes *SENB* e *Compact Tension* respectivamente.



Figura 12- Requisitos dimensionais para o provete Senb segundo ASTM E399 [12]



Figura 13 - Requisitos dimensionais para o provete compacttension segundo ASTM E 399 [12]

A fenda é simulada através de um entalhe mecânico e de uma fenda de fadiga a partir do mesmo. É possível escolher entre três tipos de entalhes, o entalhe Chevron, entalhe simples, e o entalhe com furo no final. Na Figura 14 estão representados os três tipos de entalhes referidos anteriormente.



Figura 14 - Requisitos dos entalhes para a determinação do K<sub>IC</sub> segundo ASTM E399 [18]

Os provetes têm requisitos que devem ser cumpridos após a execução do ensaio, para se poder confirmar a aplicabilidade da MFLE e validar a utilização do conceito "K". Os requisitos não passam da comparação das medidas geométricas do provete com uma estimativa do tamanho da zona plástica. A equação (12) valida o  $K_Q$ , como sendo  $K_{IC}$ , em função das dimensões do provete.

$$a, B, (W-a) \ge 2.5 \cdot \left(\frac{K_Q}{\sigma_{Ys}}\right)^2$$
 (12)

Isto levanta a questão de que apenas podemos saber se o ensaio é válido após a sua realização o que nem sempre é conveniente, no entanto, a norma propõe um ligamento mínimo em função do rácio  $\frac{\sigma_{Ys}}{E}$  (deformação à cedência) na tentativa de minimizar este inconveniente. Na Tabela 1 em baixo está representado o tamanho do ligamento em função da relação acima mencionada.

| $\frac{\sigma_{Ys}}{E}$ | ( <i>W</i> – <i>a</i> )<br>[ <i>mm</i> ] |
|-------------------------|------------------------------------------|
| 0.0050 a 0.0057         | 76                                       |
|                         | , 0                                      |
| 0,0057 a 0,0062         | 64                                       |
| 0,0062 a 0,0065         | 51                                       |
| 0,0065 a 0,0068         | 44                                       |
| 0,0068 a 0,0071         | 38                                       |
| 0,0071 a 0,0075         | 32                                       |
| 0,0075 a 0,0080         | 25                                       |
| 0,0080 a 0,0085         | 19                                       |
| 0,0085 a 0,01           | 13                                       |
| Superior a 0,01         | 6.4                                      |

Tabela 1 - Ligamento minímo para a determinação do KIC [18]

Os valores de  $K_{IC}$  para materiais metálicos podem variar devido a diversos factores, entre eles constam a direcção de propagação da fenda (anisotropia ,por exemplo provocada por um processo de laminagem), tratamento térmico, temperatura entre outros. Como tal as condições em que o  $K_{IC}$  foi obtido devem ser especificadas [9].

#### 2.2.6 Limitações da MFLE

Para a MFLE ser válida a zona plástica tem de ser pequena o suficiente para que na região à volta da mesma seja possível aplicar as equações do campo de tensões elásticas "K". Mesmo em estados de tensão plana, onde se verifica um aumento da zona plástica, a zona dominada pelo "K" deve ser bastante superior para que se possa considerar que este campo de tensões elásticas caracterize correctamente a severidade da fenda apesar da ocorrência da plasticidade. No entanto se a zona plástica for de grande dimensão o comportamento à fractura não poderá ser caracterizado pelos conceitos da MFLE. Na prática compara-se a dimensão da zona plástica com a distância da ponta da fenda até aos limites físicos do elemento onde está inserida [19]. Na Figura 15 está representado esquematicamente a comparação de diferentes zonas plásticas com as dimensões dos provetes onde estão inseridas.



Figura 15- Zona plástica e as dimensões do provete [19]

A verificação efectuada na imagem mais a esquerda é idêntica a que é necessária efectuar para se verificar a validade do ensaio do  $K_{IC}$ . No entanto apenas podemos comparar o tamanho da zona plástica se tivermos valores de "K", o que nem sempre se torna prático.

Existe possibilidade de se verificar a aplicabilidade dos conceitos da MFLE através do quociente entre o módulo de Young e a tensão de cedência  $(\frac{E}{\sigma_{Ys}})$ . Os conceitos da MFLE poderão ser aplicados caso o valor deste quociente seja inferior a 200, para propriedades obtidas à temperatura ambiente [9]. Este cociente é em tudo idêntico ao apresentado na ASTM E399 que define a espessura mínima necessária dos provetes do ensaio do  $K_{IC}$ , com a diferença que o parâmetro é inverso.

#### 2.2.7 Mecânica da fractura elasto-plástica

Com o aumento da ductilidade do material a zona plástica da fenda toma dimensões cada vez maiores, o que torna conceitos da MFLE inadequados para caracterizar correctamente a magnitude do campo de tensões na proximidade da fenda, devido à não linearidade do campo de tensões no material plástico. O aumento da plasticidade provoca uma mudança no comportamento à fractura, nomeadamente a ocorrência de crescimento estável de fenda a anteceder, ou não, a propagação instável de fenda.

A fractura elasto-plástica aplica-se a materiais que exibem um comportamento não linear independente do tempo (deformação plástica). Os parâmetros utilizados com mais sucesso são o *Crack Tip Opening Displacement (CTOD)*, e o integral "J", estes parâmetros tem a capacidade de definir a resistência a fractura mesmo existindo uma grande plasticidade na ponta da fenda [4].

#### 2.2.8 Crack Tip Opening Displacement (CTOD)

O CTOD é o parâmetro de tenacidade à fractura mais utilizado na indústria petrolífera e do gás. O parâmetro foi desenvolvido por Allan Wells no TWI, em 1961, em alternativa aos parâmetros da MFLE, que não descreviam correctamente o comportamento á fractura dos materiais mais dúcteis. O CTOD pode ser considerado como a abertura das faces da fenda deformada na posição da fenda original. Na Figura 16 está representada esquematicamente o conceito do CTOD.



Figura 16 - Conceito do CTOD [20]

O parâmetro foi normalizado pela primeira vez em 1979, na forma da BS 5762 em que adoptava o modelo de articulação plástica para calcular o CTOD através do deslocamento da abertura da boca da fenda (*crack mouth open displacement-CMOD*).

A mesma metodologia foi adoptada noutros testes normalizados como ASTM E 1290 e ISO 12135. O parâmetro tem sido utilizado com sucesso na avaliação de falhas de estruturas soldadas, em particular nas indústrias do gás e do petróleo. Em 2002 a ASTM efectuou a revisão da E 1290 e propôs o cálculo do CTOD a partir do parâmetro "J", em detrimento da utilização do modelo de articulação plástica [21].

Este conceito de abertura da ponta da fenda foi primeiro desenvolvido por Dugdale e Irwin que chegaram a expressões semelhantes de forma independente. Estas expressões tornam compatível o conceito de CTOD com a MFLE num regime linear elástico, no entanto este não se limita a gama a qual a MFLE é aplicável, uma vez que a plasticidade da ponta da fenda está inerente ao mesmo [12]. Nas equações (13) e (14), estão representados o CTOD de Dugdale e Irwin em função do factor de intensidade de tensões num regime linear elástico.

$$\delta_{Dugdale} = \frac{K_I^2}{E \cdot \sigma_{ys}} \tag{13}$$

$$\delta_{Irwin} = \frac{4}{\pi} \cdot \frac{K_I^2}{E \cdot \sigma_{ys}} \tag{14}$$

A abordagem de quantificar a tenacidade à fractura a partir do CTOD foi elaborada por Wells no TWI, onde se acabou por desenvolver a curva de projecto do CTOD (*CTOD design Curve*) com o intuído de fornecer um método rápido e simples de se obter o tamanho de fenda admissível para estruturas soldadas sujeitas as cargas de projecto. Actualmente o CTOD continua a ser vastamente utilizado para se realizar a avaliação de danos em estruturas soldadas, principalmente na indústrias do gás e do petróleo onde a utilização do parâmetro para o efeito já foi implementada à várias décadas. Recentemente este parâmetro tem vindo a ser utilizado no estudo da fractura com constrangimento reduzido (*low constrain*) através da utilização de provetes *SENT* (*Single Edge Notch Tracion*), numa tentativa de obter valores de tenacidade a fractura que se adeqúem as condições de constrangimento de fendas que se encontram em tubos soldados [20].

#### 2.2.9 Integral J

O integral J desenvolvido por James Rice tem sido utilizado com grande sucesso para caracterizar o comportamento à fractura de materiais que saem claramente fora da zona de validade de MFLE. Rice desenvolveu o integral "J" considerando um corpo homogéneo de material elástico, linear ou não linear, com uma fenda e sujeito a um campo de deformações. Idealizando as deformações elasto-plásticas como sendo elásticas não lineares torna o conceito apto para ser utilizado em materiais metálicos elasto-plásticos [22].

A resposta de um material elástico não linear é igual à resposta de um material elastoplástico quando carregados, no entanto, a sua resposta difere no momento do descarregamento [4]. Na Figura 17 representado esquematicamente o comportamento dos dois tipos de materiais referidos anteriormente.



Figura 17 - Material elástico não linear vs Material elasto-plastico [4]

O integral J desenvolvido por Rice é um integral de contorno  $\Gamma$  que envolve a ponta da fenda, que é definido analiticamente pela equação (15).



Figura 18 - Integral de contorno à volta da ponta da fenda [13]

$$J = \int_{\Gamma} \left( W_d \, dy - T \cdot \frac{du}{dx} ds \right) \tag{15}$$

Onde "T" é o vector de tracção, "u" é o deslocamento e "ds" é o elemento de contorno de  $\Gamma$  e "W" é a densidade de energia de deformação dos pontos do contorno dado pela equação (16).

$$W_d(\varepsilon) = \int_0^{\varepsilon} \sigma_{i,j} \, d\varepsilon_{i,j} \tag{16}$$

Onde  $\varepsilon$  é o tensor de deformação infinitesimal.

Apesar de a formulação matemática ser de alguma complexidade o seu significado físico é simples. O integral "J" representa a taxa de libertação de energia para um material elástico (linear ou não), ou seja, é o equivalente ao conceito de "G" [14]. Uma vez que o conceito é aplicado a materiais elásticos, Rice, demonstrou que existe igualdade entre "J" e "G" quando o material é linear elástico.

Além de parâmetro energético da MFEP, o integral "J" pode também ser considerado um factor de intensidade de tensões não lineares elásticas. Este pode ser utilizado para caracterizar as tensões e deformações na proximidade da ponta da fenda de um material elasto-plástico. Esta utilização do integral "J" foi desenvolvida por Huctchinson e também de forma de independente por Rice e Rosengren [12]. Este campo de tensões controlado por "J" à semelhança de do campo controlado por "K" da MFLE, tem na ponta da fenda uma zona inelástica, o que implica que essa zona não pode estar sujeita ao campo de tensões controlado por "J", como tal essa zona inelástica deve ser pequena em comparação com o tamanho da zona controlada por "J".

O conceito do integral "J" também tem limitações que delimitam a sua aplicação. Como foi dito anteriormente um material elástico não linear é apenas idêntico ao material elasto-plástico quando estão a sofrer um carregamento, o que significa que o integral "J" para ser considerado válido, para materiais elasto-plástico se não sofrer descarregamento. Isto implica que o conceito apenas deve ser utilizado para fendas estacionárias ou em que a propagação de fenda seja muito pequena. Outra desvantagem é que "J" não representa aquilo que se designa na literatura, *Crack driving Force*, para materiais elasto-plásticos mas apenas para materiais elásticos não lineares [23].

### 2.2.10 Determinação experimental dos $\delta_C$ e $J_{IC}$

A fractura de materiais metálicos de comportamento dúctil está associada á grande plasticidade na ponta da fenda e a ocorrência de propagação estável de fenda, que por sua vez leva ao desenvolvimento de um comportamento à fractura caracterizado por curvas de resistência. Estas curvas são pouco cómodas de trabalhar do ponto de vista da avaliação da integridade estrutural de componentes ou estruturas. Para esse efeito é desejável ter valores pontuais de tenacidade à fractura que caracterizem sumariamente o comportamento de fractura dúctil [24]. No caso do CTOD este é designado de  $\delta_c$ , se for o valor para o qual ocorre a instabilidade ou  $\delta_{IC}$  se for o valor de iniciação à fractura dúctil. No caso do integral "J" também se pode retirar o valor para a ocorrência da instabilidade  $J_c$  mas o mais usual é o valor é o valor de iniciação à fractura dúctil  $J_{IC}$ .

O  $\delta_c$  é a abertura da boca da fenda máxima para a qual ocorre a instabilidade. Os primeiros ensaios normalizados para a determinação do CTOD crítico (BS 7448-1991 e ASTM 1290-89). Estes eram efectuados no provete de flexão de três pontos (SENB) instrumentado com um extensómetro de palhetas (conhecido como *clip gage*) para a medição do CMOD (*crack mouth opening displacement*), que será relacionado com o CTOD através do modelo de articulação plástica. Durante o teste o output do extensómetro é relacionado com a carga aplicada, efectuando um registo de força versus CMOD, através do qual através do qual se obtém o valor máximo de força e o respectivo CMOD e consequentemente o valor de CTOD [9]. Na Figura 19 está representado esquematicamente o modelo de articulação plástica e o digrama de força vs CMOD do ensaio do CTOD.



Figura 19 - Modelo de articulação plástica e diagrama de F vs CMOD [9]

O modelo de articulação plástica foi abandonado pela ASTM E1290, em 2002, que passou a efectuar o cálculo do CTOD baseado no integral "J". Esta mudança está relacionada com o facto que os valores de CTOD obtidos através do modelo de articulação plástica, demostraram ser dependentes do tamanho de fenda para relações de  $\frac{a}{W}$  inferiores a 0,45 e também serem dependentes do encruamento. O CTOD baseado no integral "J" apenas é dependente do primeiro, como tal, além de terem sido adoptado um modelo baseado no integral "J" foi também definido intervalo de tamanhos de fenda para as quais são válidas (0,45 <  $\frac{a}{W}$  < 0,7) [25].

A ASTM E1290 foi retirada em 2013, no entanto, o procedimento normalizado para a obtenção do  $\delta_C$  e  $\delta_{IC}$  encontra-se na ASTM E 1820. O método de obtenção destas propriedades é baseado na análise gráfica de uma curva de resistência do tipo  $\delta$ -a, de modo idêntico ao que acontece com a obtenção do  $J_{IC}$  e  $J_C$ .

O  $J_{IC}$  é o valor de integral "J" em que se inicia o processo de fractura dúctil do material, e a sua obtenção foi normalizada pela primeira vez através da ASTM E 813, esta foi sendo actualizado sucessivamente para E 1152, E 1737 e até ser incorporada na ASTM E 1820 onde se encontra actualmente.

A determinação do  $J_{IC}$  é realizada através da aplicação do anexo A9, da ASTM E 1820, que através da analise gráfica de uma curva de resistência do tipo J-a, vai delinear a zona de dados válidos e retirar um valor  $J_Q$ . Esse valor  $J_Q$  só será efectivamente o valor de  $J_{IC}$  se passar as condições de validação descritas nesse mesmo anexo [25]. Na Figura 20 está representado uma curva de resistência usada para a obtenção do  $J_{IC}$ .



Figura 20 - Obtenção do J<sub>IC</sub> [25]

# 3 Curva de Resistência

### 3.1 O conceito

Os componentes metálicos de estruturas e equipamentos podem apresentar dois comportamentos distintos à fractura:

- 1. Propagação instável de fenda.
- 2. Propagação estável de fenda seguida de propagação instável.

O comportamento à fractura dos materiais metálicos vai ser definido essencialmente pelas suas propriedades mecânicas e pela natureza do carregamento (cargas estáticas ou dinâmicas).

Considerando apenas o caso de aplicação da carga de forma estática, apenas irá depender da natureza do material. Como já foi referido no capítulo anterior, materiais metálicos com elevados módulos de Young, tensão de cedência e de rotura, vão apresentar pouca plasticidade na ponta da fenda, e consequentemente irão exibir um comportamento à fractura do primeiro tipo, designado também de fractura frágil. Este tipo de comportamento é facilmente caracterizado através de único valor crítico ( $G_{IC}$ ,  $K_{IC}$ , $\delta_{IC}$ ), que caracteriza o ponto de instabilidade.

No caso dos materiais metálicos que apresentam evidentes sinais de plasticidade, denominados de comportamento dúctil, irão apresentar elevada plasticidade na ponta da fenda, apresentam um comportamento à fractura do segundo tipo, também denominado de fractura dúctil. Nos materiais em que ocorre fractura dúctil o comportamento à fractura não é correctamente caracterizado se for apenas descrito através de um único valor pontual. Este tipo comportamento pode ser quantificado através de curvas de resistência, também denominadas Curva "R" [26].

A Curva "R" é a representação da energia total dissipada no processo de fractura dúctil em função da variação do tamanho de fenda. Esta representação da resistência do material é representada não só por parâmetros energéticos como "G"e "J" mas também através de parâmetros equivalentes como "K" e "CTOD" [27].

A energia necessária para a propagação da fenda, em fractura dúctil, é representada pelo trabalho necessário para criação de uma nova zona plástica somada com o trabalho requerido para a iniciação (crescimento e coalescência do micro vazios à frente da fenda)

[9]. Em baixo está representada a equação que define "R" em função do trabalho plástico e da energia de superfície (energia necessária para a iniciação).

$$R = 2\left(\gamma_P + \gamma_s\right) \tag{17}$$

Este registo da resistência do material é utilizado na previsão do possível comportamento à fractura de componentes com formas arbitrárias, assim como, a condição crítica de carga (força, pressão, momento), deformação e tamanho de fenda para o qual ocorre a inciação e propagação do processo de fractura [28]. Em suma, a curva de resistência pode ser utilizada para efectuar a avaliação de parâmetros críticos como  $G_C$ ,  $K_C$ ,  $\delta_C$  ou os parâmetros de iniciação à fractura  $J_{IC}$  e  $\delta_{IC}$ . As curvas de resistência, sendo o registo da resistência à fractura do material, permitem efectuar a previsão do efeito que uma determinada carga originará. Na Figura 21 está representada a utilização ca curva de resistência como referência para a previsão de falha de um componente.



Figura 21 – Sobreposições de curvas de carga com a curva de resistência do material (a) Diagrama de força deslocamento que gera a curva de resistência com o ponto de carga máxima referenciado.(b) [28]

O comportamento à fractura de materiais caracterizados pela curva de resistência pode variar em função das condições de carregamento a que o componente está sujeito. Estes comportamentos podem ser previstos através da intersecção de uma recta (ou curva) representativa do parâmetro ("G","K","J") com a curva de resistência.

A condição necessária para o crescimento de fenda é G = R, tal e qual a que acontece para os materiais de comportamento frágil em deformação plana. No entanto, esta condição em materiais dúcteis, e ou em tensão plana, apenas é suficiente para provocar a propagação estável da fenda. Durante esta propagação estável, "R" aumenta, pelo que é necessário um aumento de carga (que consequentemente provoca um aumento de "G"), para manter o crescimento estável de fenda, caso contrário a fenda pára de propagar. A condição para a ocorrência de instabilidade é não só a igualdade entre "G" e "R", mas também, a igualdade entre as respectivas derivadas em ordem ao tamanho de fenda ( $\frac{\partial G}{\partial a} = \frac{\partial R}{\partial a}$ ). Esta condição é representada graficamente pela tangência entre a recta representativa da carga e a curva de resistência [9].

O aumento da resistência do material pode ser explicado pelo consumo da energia na formação de uma nova zona plástica na ponta da fenda. Em materiais metálicos de comportamento dúctil esta zona é de maior dimensão, o que implica um maior gasto de energia na sua formação, ficando menos energia disponível para o crescimento da físico da fenda.

Na Figura 22 está representada esquematicamente uma curva "R" sobreposta com rectas representativas de diferentes carregamentos para um tamanho de fenda inicial genérico " $a_i$ ".



Figura 22 - Previsão do comportamento à fractura através da curva de resistência [9]

Em cima estão representados os possíveis comportamentos à fractura passiveis de serem representados pela curva de resistência. Daqui é possível identificar 3 situações distintas:

- 1. Início de propagação estável de fenda com uma tensão remota " $\sigma_i$ ", continuação da propagação estável devido ao aumento da tensão até " $\sigma_c$ " passando por " $\sigma_2$ ", propagação instável de fenda no momento em que se atinge " $\sigma_c$ ".
- Ocorrência apenas de propagação estável de fenda se a tensão apenas variar ou estiver compreendida entre "σ<sub>i</sub>" e "σ<sub>2</sub>"
- Ocorrência de propagação instável de imediato se a tensão aplica for igual ou superior a "σ<sub>c</sub>".

Pode-se considerar que existem dois tipos de curvas de resistência. Uma associada à ocorrência de fractura dúctil dentro dos limites da MFLE, designada de "Kr", e outra associada às condições elasto plásticas da MFEP, nomeada "Jr" [29].

Idealmente a curva "R" representaria a resistência à fractura do material independentemente do tamanho de fenda, geometria e tamanho do componente. No entanto, o que se verifica é que estes factores podem influenciar o comportamento à fractura do material e consequentemente a curva de resistência que o representa. A dependência da curva R com estes factores leva a que possa haver um problema de transferibilidade dos resultados obtidos em laboratório para as estruturas [28].

O comportamento à fractura representado pela curva de resistência, em fractura dúctil, à semelhança do que acontece na fractura frágil, é dependente do estado de tensão que se verifica na ponta da fenda. Isto torna a curva "R" dependente de todos os factores que intrevêm no constrangimento da fenda.

O efeito do constrangimento da ponta da fenda em metais de comportamento dúctil é substancialmente diferente daquele que se verifica nos metais de comportamento frágil. Nestes últimos, tal como foi referido no capítulo 2, o elevado constrangimento da ponta leva a formação do estado de deformação plana e consequentemente ao acontecimento de fractura frágil. No entanto, nestes materiais quando o constrangimento deixa de ser suficiente para que se esteja no estado de deformação plana passa a acontecer o fenómeno de fractura dúctil. Nos materiais metálicos dúcteis, o estado de deformação plana não é sinónimo de fractura frágil, pelo contrário, o material continua a apresentar fractura dúctil devido ao elevado tamanho da zona plástica, quando comparado com a zona plástica em deformação plana de um material de comportamento frágil. Fora do estado de deformação plana a resistência à fractura do material dúctil tende a aumentar com a diminuição do constrangimento e consequente aproximação do estado de tensão plana. O efeito do

constrangimento da ponta da fenda no comportamento à fractura está ilustrado esquematicamente na Figura 23.



Figura 23 - Influência do constrangimento da zona plástica na ponta da fenda na curva "R" [30]

O estado de deformação plana irá gerar a curva de resistência mais conservadora existente para um dado material. Esta curva define o limite inferior em termos de comportamento à fractura do material, e é independente do tamanho do provete. Devido a este facto, os ensaios normalizados, que visam a obtenção da curva de resistência, estão direccionados para a aquisição desta curva representativa do estado de deformação plana. Como tal, asseguram através de requisitos geométricos e dimensionais que o estado de tensão na ponta da fenda seja deformação plana.Tendo de ter se em atenção a quem apesar da curva R ser independente em termos dimensionais, não é independente em termos de geometria [31].

O constrangimento do material plástico na ponta da fenda, que é responsável pelo respectivo estado de tensão, depende da forma da fenda (e da sua localização face as fronteiras externas), da espessura do material, do carregamento (tracção ou flexão), da magnitude da carga aplicada e das propriedades do material (expoente de encruamento, tensão de cedência, modulo de Young) [32]. Estas dependências foram verificadas através de análise numérica (elementos finitos) por Newman et al (1994) [32] e experimentalmente por Schwalbe et al (1999) [28]. Este último ainda relacionou o constrangimento da ponta a fenda com com a esbeltez do provete designando essa relação de *Slenderness*, que é o quociente entre o ligamento não fendido e a espessura. Em baixo está representado esquematicamente nas Figura 24, Figura 25, Figura 26 a relação de cada um dos

parâmetros anteriormente referidos e a sua influência na aproximação de um estado triaxial de tensões (deformação plana).



Figura 24 - Influência do parâmetro slenderness e do expoente de endurecimento [31]



Figura 25 - Influência das cargas biaxiais e das cargas de flexão [31]



Figura 26 - Influência da posição angular na frente de fenda e do rácio entre carga aplicada e carga de cedência [31]

## 3.2 Normalização e o problema da transferibilidade

Num primeiro momento, as agências de normalização (ASTM, ESIS, ISO, BSi) procuraram desenvolver testes normalizados em que as amostras (provetes) utilizadas reflectissem fendas com elevados níveis de constrangimento, de modo a se obter um estado predominantemente de deformação plana. Para esse efeito foram utilizado provetes de flexão (SENB e CT) e profundamente fendidos ( $0,45 < \frac{a}{W} < 0,75$ ).

Em geral as fendas encontradas em estruturas e equipamentos de engenharia (vasos de pressão, tubos, veios, etc.) apresentam fendas superficiais e muitas vezes submetidas a esforços de tração. Estas condições que se vão desenvolver na ponta das fendas muitas vezes não correspondem a um estado de deformação plana. O que acontece quando se transpõe os resultados dos testes normalizados, para serem utilizados para a avaliação estrutural, é que estes podem levar a intervenções desnecessárias de reparação ou substituição na estrutura, devido a valores conservadores de resistência à fractura. Para se evitar este inconveniente, é necessário que a condição de constrangimento da ponta da fenda, existente nas estruturas, seja transferida para o provete a ser ensaiado no laboratório, para que a resistência à fractura depois encontrada reflicta o melhor possível a realidade encontrada nas estruturas. Para se ajustar a esta realidade a ASTM na sua norma E1820, no anexo X2 prevê a realização de ensaios para a determinação da curva R para provetes com fenda superficiais (0,05 <  $\frac{a}{W}$  < 0,45) em provete SENB. No entanto, este anexo torna-se controverso pois as equações para o cálculo dos valores de J não têm em conta o crescimento de fenda, o que causa depois inconsistência com a mesma equação para fendas profundas [33]. Na Figura 27 encontram-se diversas curvas de resistência obtidas para diferentes relações de  $\frac{a}{W}$  segundo os procedimentos da ASTM E 1820.



Figura 27 - Curvas de resistência à fractura para diferentes relações de a/w [33]

Além desta adaptação da ASTM dos testes existentes, foi desenvolvido por esta agência um método de teste normalizado para caracterizar a resistência à fractura em condições de baixo constrangimento: A ASTM E 2472 (*Standartd Test Method for Determination of Resistance to stable Crack Extension under Low-Constraint Conditions*) que foi lançado em 2012. O objectivo deste método de teste é caracterizar a resistência do material à propagação estável de fenda em termos de um único valor crítico de CTOA (*Crack Tip Opening Angle-* $\Psi_c$ ) ou de uma curva de resistência expressa em COD (Crack Opening *Displacement*) elaboradas através de provetes do tipo CT e MT [34].

Devido à necessidade de valores de resistência à fractura em condições de baixo constrangimento, por parte da indústria petrolífera e do gás, foi iniciada a investigação de testes realizados em provetes do tipo SENT pois estes simulavam melhor as condições de baixo constrangimento encontradas nos equipamentos [21]. Estas investigações deram origem, em 2014, à BS 8571 (*Method of test for determination of fracture toughness in metallic materials using single edge notched tension (SENT) speciemens*).

Uma outra maneira de resolver o problema da transferibilidade é através de um método desenvolvido por Chao e Zhu, que consiste na correcção do constrangimento da curva de resistência normalizada para as condições de constrangimento existentes na estrutura. O método baseia –se no pressuposto que a curva de resistência (J-R) é uma função de dois parâmetros e é representada pela equação (18).

$$J(\Delta a, q) = C_1(q) \cdot \left(\frac{\Delta a}{1mm}\right)^{C2(q)}$$
(18)

Onde  $\Delta a$  é a propagação da fenda e q é uma constante arbitrária associada a uma de três teorias do constrangimento da fractura (J-T, J-Q, J-A2) [35]. A selecção do parâmetro arbitrário deve ser em função do tamanho da zona plástica da fenda. É sugerido para grandes zonas plásticas (Large Scale Yielding), materiais dúcteis, a utilização da teoria J-Q ou J-A2 (parâmetros Q e A2. Para pequenas zonas plásticas (Small Scale Yielding), materiais frágeis, é mais adequada a teoria J-T ou seja o parâmetro T [33]. O método consiste em quatro passos, com o objectivo de descobrir os parâmetros C1 e C2, que representam o constrangimento da fenda e são função da Variável arbitrária q. O procedimento inicia-se com a determinação experimental de diversas curvas de resistência, pelo menos três e para diferentes níveis de constrangimento e de preferência que abarquem desde um nível de constrangimento alto a um baixo. Isto é conseguido através de diferentes comprimentos de fenda ou através de diferentes tipos de provetes, sejam eles normalizados ou não. Com as curvas de resitência para diversos níveis de constrangimento, é calculado o valor de  $J_{IC}$  e de  $T_R$  ( $\Delta a = 1mm$ ). Com o valor da carga para a qual ocorre o  $J_{IC}$  é efectuado um estudo de elementos finitos onde é determinado o valor do parâmetro de constrangimento (Q, A2, T) que diz respeito a cada uma das curvas. Uma vez calculados os respectivos valores de q calculam-se os parâmetros de ajuste da curva, C1 e C2. Com os parâmetros de cada uma das curvas calculados é possível ver como cada um deles (C1 e C2) se desenvolve com a variação do parâmetro de constrangimento, "q", e retirar uma equação que descreva a variação dos mesmos, desde o alto ao baixo nível de constrangimento. Deste modo é possível construir uma família de curvas que descrevam o comportamento à fractura do material para diferentes níveis de constrangimento na ponta da fenda [35]. Na Figura 28 está representado um esquema que sumariza o método desenvolvido por Chao e Zhu.



#### Obtenção experimental de curvas de resistência

 No minímo 3 curvas
 As curvas devem representar difrentes estados de constragimento





Determinação do Jic e do Tr(∆a=1mm)



Modelo de elmentos Finitos e calculo do parâmentro de constagimento

- Modelo dos provetes utilizados
  Valor da carga que
- provoca o Jic



Cálculo dos parâmetros C1 e C2

- Calculo de C1 e C2 para cada uma dos diferentes parametros
- Obtenção das equações que descrevem o comportamento dos parametros da curva com o de constragimento

Figura 28 - Método desenvolvido por Zhu e Chao

#### 3.3 Curva "Kr"

A curva de resistência "Kr" é o registo contínuo da resistência desenvolvida em termos do factor de intensidade de tensões "K" versus a extensão de fenda, à medida que a fenda é aberta através de um aumento continuo do factor de intensidade de tensões. [36]

Esta curva, associada a MFLE, é designada de curva "Kr" e está associada a um material metálico com espessura insuficiente para que seja possível obter o estado de deformação plana. Como tal vai caracterizar o comportamento à fractura do material no estado de transição entre a deformação plana e tensão plana, e também deste último referido.

Uma importante propriedade desta curva é que esta é independente do tamanho de fenda quando nos encontramos no estado de tensão plana. Em estados intermédios (entre a tensão plana e deformação plana) esta independência não se verifica [12]. A curva "Kr" é ainda uma propriedade do material dependente da espessura, temperatura e da velocidade de deformação [36].

A curva "Kr" é muitas vezes associada a placas de materiais de alta resistência, em que apesar de a espessura da placa ser insuficiente para que seja aplicada o conceito do K<sub>IC</sub>, o componente permanece predominantemente elástico, o que possibilita a construção de uma curva baseada no factor de intensidade de tensões. O conceito teve bastante sucesso na indústria aeroespacial onde ainda são realizados testes com grandes paineis de fenda central (*Middle-Cracked Tension Panel-*M(T)), na ordem dos 2 m de altura, que representam os materiais estruturais das aeronaves [25]. A utilização de grandes provetes para a obtenção de curvas "Kr" não é propriamente necessária é possível retirar a mesma curva através de provetes mais reduzidos do tipo M(T) ou *Compact Tension* (C(T)) com dimensões na ordem dos 305mm e 125mm respectivamente, reduzindo significativamente os custos. A normalização dos ensaios com provetes de reduzida dimensão foi efectuada, pela primeira vez, em 1974 pela ASTM E 561, e nesta constavam os provetes C(T), M(T) e C(W), no entanto este último foi removido na actualização de 2010 [25]. Na Figura 29 estão representados os provetes que são utilizados pela ASTM E561 para obtenção da curva "Kr", nomeadamente os provete M(T) e C(T) e o já não admitido C(W).



Figura 29 - Provetes utilizados para a determinação da curva "Kr" [36]

A ASTM E 561 considera que a curva é definida pelo factor de intensidade de tensões efectivo, nomeado de Keff. Este factor de intensidade de tensões resulta da utilização do tamanho de fenda efectivo,  $a_{eff}$ , que é a soma do tamanho da fenda real  $(a_0 + \Delta a)$ , com o raio da zona plástica de Irwin. Na equação (19) está a expresso o tamanho de fenda efectivo e nas equações (20) e (22) o cálculo factor de intensidade de tensões para os dois tipos de provetes actualmente aceites.

$$a_{eff} = a_0 + \Delta a + \left(\frac{1}{2\pi} \cdot \left(\frac{K_I^2}{\sigma_{YP}^2}\right)\right)$$
(19)

Para o provete C(T):

$$K_{eff} = \frac{P}{B \cdot \sqrt{W}} \cdot f\left(\frac{a}{W}\right) \tag{20}$$

Onde  $f\left(\frac{a}{W}\right)$  é dado por:

$$\left(\frac{a}{W}\right) = \left[\frac{2 + \frac{a}{W}}{\left(1 - \frac{a}{W}\right)^{3/2}}\right]$$
$$\cdot \left[0,886 + 4.64 \cdot \left(\frac{a}{W}\right) - 13,32 \cdot \left(\frac{a}{W}\right)^2 + 14,72$$
$$\cdot \left(\frac{a}{W}\right)^3 - 5,6 \cdot \left(\frac{a}{W}\right)^4\right], para \ C(T)$$

Para o provete M(T):

$$K_{eff} = \frac{P}{B \cdot W} \cdot f\left(\frac{a}{W}\right) \tag{22}$$

Para este tipo de provete são aceites as seguintes expressões para o factor de forma;

$$f\left(\frac{a_{eff}}{W}\right) = \sqrt{a} \cdot \left[1,77 - 0,177 \cdot \left(\frac{2a}{W}\right) + 1,77 \cdot \left(\frac{2a}{W}\right)^2\right]$$

$$f\left(\frac{a}{W}\right) = \sqrt{\pi \cdot a \cdot \sec\left(\frac{\pi \cdot a}{W}\right)}$$
(23)

Os provetes utilizados na obtenção desta curva, devido a serem de baixa espessura, muitas vezes podem sofrer de encurvadura, o que levará à invalidadez dos dados recolhidos. O fenómeno de encurvadura provoca a sobreposição de dois modos de fractura (por exemplo I e II), logo a curva não seria representativa do modo I. Para evitar este fenómeno, a norma prevê que os provetes sejam equipados com dispositivos anti encurvadura. Em baixo, na Figura 30, está demonstrado esquematicamente o efeito da encurvadura num provete M(T) e o dispositivo de prevenção do mesmo, assim como um dispositivo anti encurvadura para o provete C(T).



Figura 30 – a) Representação esquemática da zona onde ocorre encurvadura [9] - b)Dispositivo anti encurvadura para uma placa com fenda central [9] - c)Dispositivo anti-encurvadura do provete C(T) [31]

Com a utilização dos dispositivos de prevenção da encurvadura pode vir a existir atrito excessivo entre os provetes e os dispositivos, o que é indesejável. Para o evitar é proposto que as áreas de contacto entre o dispositivo e o provete estejam lubrificadas (por exemplo com folha de teflon) [4]. A encurvadura e o atrito excessivo podem ser identificados no diagrama de força e deslocamento. A Figura 31, é apresentada pela ASTM E 561 para a identificação da encurvadura ou atrito excessivo através do diagrama de Força vs deslocamento. A encurvadura e o atrito são identificados no diagrama de força deslocamento se forem efectuados descarregamentos parciais. Se a diferença entre a recta descarregamento e carregamento for superior a 2% é considerado que o provete está a sofrer de encurvadura ou de atrito excessivo. [36]



Figura 31 - Efeito da encurvadura e fricção no diagrama F-Deslocamento [36]

É considerado que este conceito é válido para ser utilizado quando o tamanho da amostra a ser ensaiada tem dimensões suficientes para que esta se mantenha maioritariamente elástica durante o ensaio. A norma do ensaio normalizado apenas propõe a verificação desta condição através da comparação do tamanho do ligamento não fendido (W - a) com o equivalente a oito vezes o raio plástico de Irwin para o estado de tensão plana. A equação (24) é proposta pela ASTM para a confirmação da elasticidade do provete.

$$(W-a) \ge \frac{4}{\pi} \cdot \left(\frac{K_{max}^2}{\sigma_{YP}^2}\right)$$
(24)

À semelhança do que acontece com a verificação do  $K_{IC}$ , também esta apenas se pode efectuar após a realização do ensaio, o que em parte a torna inconveniente.

# 3.3.1 Factores que influenciam a curva de resistência nas condições de tensão plana

Os factores que influenciam a curva R nas condições de tensão plana já foram abordados em diversos artigos na década de 80 e 90. De todos os factores estudados aqueles que são considerados como relevantes foram, o modo de carregamento (tração ou flexão), que está directamente relacionado com o tipo de provete, e a influência da dimensão do ligamento nos mesmos. Foi verificado experimentalmente, por Schwalbe e Heerens, que o modo de carregamento pode não ter qualquer efeito na resistência à fractura, como por exemplo o alumínio 2024-FC, ou pelo contrário, ter influência na mesma, como é o caso do aço 20MnMoNi55. Neste último caso existe um aumento da resistência à fractura nos provetes que apenas sofrem esforços de tracção (CCT). [28] Na Figura 32 estão as curvas de resistência representativas dos estudos efectuados por Schwalbe e Heerens.



Figura 32 – Estudos efectuados em placas finas onde identificou a influência, na resistência à fractura, do tipo de carregamento em materiais diferentes [28].

Os ensaios pretenderam comparar o efeito dos esforços de flexão (representados pelos provetes SENB e CT) com a tracção (representado pelo provete CCT) na resistência à fractura de placas finas. O comportamento observado no alumínio 2024-FC, também é observado noutros materiais, como os aços austeníticos e nas ligas de alumínio de alta resistência. No entanto o comportamento mais usual é aquele observado no gráfico do aço 20MnMoNi55 em que existe um aumento da resistência à fractura quanto menor for o

esforço de flexão. O efeito combinado do modo de carregamento, com a dimensão do ligamento está sumarizado na Figura 33 [28].



TENSION

Figura 33 - Efeito do ligamento combinado [28] com esforços de tração a) e flexão b)

Em 2009 Zhu e Leis, no artigo "*Revisit of ASTM round robin test data for determining R curves of thin sheet materials*", mostraram que a ASTM E 561 e a ASTM E 1820 podem ser equivalentes, no que diz respeito, a determinar curvas de resistência (independentes do tamanho) para provetes finos de ligas de alumínio de baixa tenacidade [34]. Também consideraram que a ASTM E 1820 pode ser aplicada a placas finas de materiais metálicos se o requisito de espessura, necessário para a obtenção de um estado de deformação plana, for desprezado. Devido aos resultados obtidos nesses estudos foi então concluído que uma curva "Jr" é mais geral e de maior utilidade que uma curva "Kr" para materiais metálicos [37].

Brocks et al [38] fez experiências idênticas com a finalidade de identificar qual o melhor método para quantificar o fenómeno de fractura dúctil em placas metálicas de espessura fina. Após análise dos seus resultados, este considerou que o conceito da curva "Kr", apesar de ser aceite na indústria aeroespacial, baseia-se num fundamento que está obsoleto, e que apesar de funcionar bem nuns casos noutros falha completamente. Além disso, as
duas equações propostas pela ASTM E561, para o cálculo do  $a_{eff}$ , proporcionam resultados diferentes (o que é ambíguo), e o conceito de  $a_{eff}$  não é realmente necessário para a quantificação do fenómeno [38].

## 3.4 Curva " $J_R$ "

A curva "Jr" é a representação da resistência à fractura do material metálico (neste caso) em condições elasto plásticas. A curva é baseada no integral "J", e com o mesmo é possível quantificar a energia dissipada no processo de fractura de materiais elásto plásticos. Através da curva, expressa em integral "J", é possível identificar e caracterizar os fenómenos associados à fractura dúctil (à semelhança do que era feito com a curva Kr). .Como se sabe, se o material fôr linear elástico o conceito de curva "J<sub>R</sub>" permanece todavia válido havendo equivalência total com os conceitos de G<sub>I</sub> e K<sub>I</sub> [29].

Após o desenvolvimento do conceito do integral "J" não surgiu logo a necessidade de obtenção da curva de resistência para efeitos de avaliação estrutural, mas sim do valor de "J" a partir do qual se inicia a propagação estável de fenda,  $J_{IC}$ . Com este objectivo em vista Begley e Landes, em 1972, apresentaram, o primeiro método experimental para obter a esta propriedade e consequentemente foi este o primeiro ensaio experimental onde se obteve a curva "Jr". O primeiro ensaio normalizado expresso no parâmetro J foi lançado em 1981 através da ASTM E 813, onde o objectivo, mais uma vez, era a obtenção do valor de  $J_{IC}$  e não da curva em si mesma. A obtenção da curva "J<sub>R</sub>" foi normalizada através da ASTM E 1152, culminando mais tarde na ASTM E 1737, que juntou o ensaio normalizado para obtenção da curva "J<sub>r</sub>" e do  $J_{IC}$  [39].

Em 1999 a ASTM elaborou um procedimento normalizado que pretende efectuar a avaliação da resistência à fractura através de qualquer um dos parâmetros existentes até então ("K", "J", "CTOD"). O procedimento foi designado de E 1820 e reuniu o conhecimento dos ensaios normalizados, para a obtenção de propriedades à fractura existentes (E 399 -  $K_{IC}$ , E 1737 -  $J_{IC}$  e curva "R", E 1270 - CTOD), e elaborou um método genérico para se poder caracterizar qualquer um dos fenómenos que aconteça durante o ensaio, quer seja fractura frágil ou dúctil.

Está previsto na ASTM E 1820 a monitorização contínua da carga *vs* deslocamento da linha de carga (LLD) ou da carga *vs* abertura da boca da fenda (CMOD). Isto para que seja possível caracterizar a resistência à fractura do material caso aconteça uma de duas situações possíveis: (1) a ocorrência de propagação instável de fenda (fractura frágil) que originará um valor único de tenacidade à fractura ou (2) de propagação estável de fenda que originará um registo de um parâmetro de tenacidade à fractura vs propagação de fenda, ou seja uma curva de resistência [40].

A ASTM E 1820 proporciona três métodos para a realização do ensaio de tenacidade à fractura:

- 1. Método Básico (Basic Method)
- 2. Método de curva de resistência (Resistance curve Method)
- 3. Método de normalização (Normalization Method)

O método de teste básico é o de maior simplicidade, é o método multi-provete. Este prossupõe a obtenção do integral "J" através do diagrama de força e deslocamento (deslocamento ao longo da linha de carga ou da abertura da boca da fenda) e do tamanho de fenda inicial. As equações utilizadas por este método para o cálculo do integral "J" são equações de fenda estacionária, o que obriga à correcção dos valores de "J" através do anexo A16 da norma. No entanto, apesar de corrigidos para pequenos tamanhos de propagação de fenda (inferiores a 2 mm) a correcção tem pouco efeito na curva de resistência obtida por este método. Como tal é apenas aconselhado utilizar as curvas "R", obtidas por este método, apenas para a determinação do  $J_{IC}$  [39].

Para a obtenção de uma curva de resistência, para a caracterização da resistência à fractura, é proposto o segundo método chamado de "Curva de Resistência". Este método é exclusivamente realizado com um único provete, e as equações utilizadas já têm em conta a propagação de fenda. O diagrama de força *vs* deslocamento (CMOD ou LLD) é utilizado em conjunto com o comprimento de fenda, para cálcular os valores de "J". Com os valores de "J" e os respectivos valores de comprimento de fenda, obtêm-se a curva de resistência como propriedade do material à fractura. Além desta curva poder ser usada para avaliação estrutural, poderá ser também utilizada para retirar o valor de iniciação à fractura  $J_{IC}$ , através do anexo A9 da ASTM E 1820 [39].

O terceiro método ou "Método de Normalização" infere o comprimento de fenda através do padrão de deformação apresentado na superfície de fractura e a sua relação com as características de deformação provocadas pelo teste efectuado. Sabendo o padrão de deformação do provete com um determinado comprimento de fenda é possível inferir o comprimento de fenda através dos desvios a este mesmo padrão [41].

O método utiliza apenas o diagrama de força vs deslocamento (LLD) e os valores inicial e final do comprimento de fenda. Este método tem a particularidade de normalizar os valores de Força e deslocamento que formam o diagrama de Força *vs* Deslocamento normalizados. Depois a partir deste diagrama, retira-se a equação de uma curva tipo que interpola todos

os pontos do diagrama, e que em conjunto com um processo iterativo, descrito na norma, obtêm-se os valores intermédios de comprimento de fenda. Por fim, com todos os valores de comprimento de fenda obtidos e o diagrama de força *vs* deslocamento do ensaio, aplicam-se as equações do método da curva de resistência, para a obtenção do valor do integral "J", e constrói-se a curva "Jr" do material. Este método foi desenvolvido para os casos em que se torna difícil a aplicação dos dois métodos anteriores, nomeadamente condições de carregamento rápido, temperatura elevada, e ou ambientes agressivos. No entanto este método apenas poderá ser aplicado a provetes com uma relação de  $\frac{a}{w}$  compreendida entre 0,45 e 0,70 e em que a propagação da fenda não seja superior a 4 mm ou 15% do ligamento não fendido original (*b*<sub>0</sub>) [40].

# 3.4.1 Factores que influenciam a curva de resistência em condições elastoplásticas

No início deste capítulo foram referidos genericamente os factores que influenciam a curvas de resistência. No caso da curva "Kr" nem todos esses factores se aplicam (*slenderness* e expoente de encruamento) devido às condições em que esta é considerada válida (materiais frágeis e de baixa espessura). Contudo, na curva "Jr" todos os factores referidos anteriormente são aplicáveis, e as diferentes interacções desses factores podem originar distintos comportamentos à fractura. Na Figura 34, representam-se diferentes comportamentos de curvas de resistência em três materiais metálicos diferentes: a) aço austenítico, b) um alumínio sujeito a tratamento de envelhecimento, c) alumínio recozido.



Figura 34 - Curvas de resistência de diversos materiais metálicos [28]

# 4 Obtenção da curva de resistência à fractura – Caso estudo

# 4.1 Verificação e selecção do material de ensaio

O material disponível para ensaiar encontrava-se na forma de provetes de flexão de três pontos, com diferentes dimensões e sem qual quer informação acerca das propriedades mecânicas, presença de soldaduras, tratamentos térmicos ou superficiais. Para se ter uma ideia do material que se tinha em mãos, os provetes foram inventariados segundo as referências contidas nos mesmos, e em função das suas dimensões. No total foram inventariados 57 provetes, o inventário dos mesmos encontra-se no anexo A.



Figura 35 - Material disponível para ensaio

Foi necessário verificar se o material disponível era ou não proveniente de chapa soldada, como tal foi seleccionado um provete de cada referência para se proceder a verificação. Para esse efeito foi necessário efectuar um polimento parcial nas faces dos provetes (com lixas 120, 240, 500) e contrastar com uma solução de álcool e ácido nítrico, conhecida como Nital. A solução reage com a perlite e a austenite presentes na solduras, criando um contraste entre as regiões afectadas e não afectadas, sendo assim possível detectar a presença de soldaduras. Na Figura 36 e Figura 37 é possível observar as reacções do metal base e do metal soldado ao contrastante químico.



Figura 36 - Provete de material base



Figura 37- Provete proveniente de chapa soldada

Após se verificar os provetes seleccionados, conclui-se que os provetes marcados com as referências 5.2, 5.6 e 5.7 eram provenientes de chapas soldadas, como tal estes foram excluídos. Uma vez identificados e rejeitados os provetes em que existia soldadura, foram seleccionados 31 provetes que se encontravam marcados com a referência CBL, os quais se encontram descriminados na Tabela 2.



Figura 38 - Dimensões de referência do provete de flexão em três pontos

Tabela 2 - Dimensões dos provetes selecionados

| Referência | L [mm] | W [mm] | B [mm] | ae [mm] |
|------------|--------|--------|--------|---------|
| 211        | 140    | 28,02  | 13,93  | 11,03   |
| 213_1      | 179    | 36,93  | 18,57  | 16,23   |
| 213_2      | 180    | 37,07  | 18,65  | 15,87   |
| 213_3      | 180    | 37,34  | 18,55  | 15,45   |
| 213_4      | 179    | 37,12  | 18,52  | 16,12   |
| 213_5      | 180    | 37,04  | 18,42  | 15,46   |
| 213_6      | 180    | 36,96  | 18,44  | 16,24   |
| 213_7      | 180    | 36,99  | 18,48  | 16,27   |
| 217_1      | 195    | 37,1   | 18,59  | 15,73   |
| 217_2      | 195    | 37,09  | 18,67  | 15,94   |
| 217_3      | 195    | 37,08  | 18,65  | 15,96   |
| 217_4      | 198    | 37,07  | 18,62  | 15,7    |
| 217_5      | 196    | 37,16  | 18,82  | 16,07   |
| 217_6      | 194    | 37,14  | 18,58  | 15,9    |
| 217_7      | 199    | 37,07  | 18,53  | 16,03   |

No grupo de provetes selecionado existia dois conjuntos de provetes com dimensões idênticas, e um provete isolado de menores dimensões (211 CBL). Os dois conjuntos foram seleccionados para se efectuar os ensaios experimentais. O provete singular foi utilizado para se obter as propriedades mecânicas, químicas e metalúrgicas do material.

Numa primeira fase foram consideradas como propriedades do material, de todos os provetes, aquelas que foram obtidas através do sacrifício deste provete. Estas propriedades foram utilizadas para o planeamento da pré-fissuração e preparação dos ensaios.

Este pressuposto foi assumido de modo a se evitar o sacrifício, de mais provetes para a obtenção das propriedades básicas dos materiais.

Após se terem ensaiado os provetes, foram obtidas novas propriedades do material através das sobras dos provetes ensaiados. Com as propriedades correctas de cada amostra de material foram efectuados os cálculos que dizem respeito a curva de resistência à fractura e ao cálculo do valor de iniciação à fractura  $J_{IC}$ .

# 4.2 Obtenção das propriedades mecânicas do material

O provete que foi sacrificado, gerou 3 provetes de tracção uniaxial e 16 provetes do tipo A para o ensaio de impacto de Charpy. Além dos provetes ainda foram retiradas amostras para a análise química e para as micrografias. Na Figura 39 encontram – se representados os provetes do ensaio de tracção e de impacto.



Figura 39 - Provetes de tração e de Impacto de Charpy

### 4.2.1 Ensaios de impacto (EN ISO 148)

Os provetes de Charpy tipo A, também designados de Charpy V, têm secção quadrada de 10 mm de lado, entalhe em V de 45° com 2 mm de profundidade. Na Figura 40está representado um dos provetes utilizados no ensaio.



Figura 40 - Provete de Impacto de Charpy Tipo A

Os ensaios foram realizados a sete temperaturas diferentes, com o objectivo de se obter uma noção do comportamento do material com a variação da temperatura. As temperaturas a que se efectuaram os ensaios foram 20°, 0°, -20°, -35°, -50°, -65°. A temperatura da sala

onde foi realizado os ensaios era controlada e encontrava-se nos 20°. Para se obter as restantes temperaturas de ensaio, os provetes foram mergulhados num recipiente com acetona arrefecida com gelo seco (CO<sub>2</sub>) durante 10 min, para que se obtenha uma temperatura uniforme em todo o provete. Uma vez que a acetona tem um ponto de congelação na ordem dos -80° C, torna-se possível que seja arrefecido até aproximadamente até os -70°C. A temperatura do banho foi controlada através de um termopar mergulhado no líquido.

Os resultados dos ensaios de impacto encontram-se representados na Figura 41.



Figura 41- Resultados do ensaio de Impacto

Para se obter uma noção de como varia a ductilidade (ou fragilidade) com a variação da temperatura, foi fotografada as superfícies de fractura de cada um dos provetes, para uma posterior análise das superfícies de fractura. Como meio complementar à análise da ductilidade, foi efectuada a medição da expansão lateral dos provetes, segundo o anexo B da norma EN ISO NP 148-1. Os resultados da análise das superfícies de fractura e encontra-se representados na Figura 42



Figura 42 - Ductilidade domaterial em função da variação de temperatura

Os ensaios de Charpy demonstraram o material à temperatura ambiente (20°C) tem uma superfície de fractura dúctil, no entanto, com a diminuição da temperatura evidência sinais de fragilidade. Por exemplo a uma temperatura de 0°C já existe uma superfície de fractura frágil significativa (cerca de 35%).

Através do gráfico podemos estimar que a temperatura de transição deste aço deverá andar perto dos -13°C. No entanto, para se terem certezas quanto a este ponto seria necessário a realização de ensaios a um maior número de provetes.

A análise da superfície de fractura pode ser considerada subjectiva, pois depende da imagem que é recolhida para ser analisada assim como a avaliação do apreciador do que é fractura frágil ou dúctil. Para se obter algum tipo de validação desta última análise podemos recorrer à medição da expansão lateral. Na Figura 43, é indicada a média da expansão lateral dos provetes de impacto, *versus* a variação de temperatura.



Figura 43 - Expansão lateral

Pode-se dizer que a expansão lateral varia de forma semelhante à curva da ductilidade apresentada no gráfico anterior. Os resultados da expansão lateral, de forma alternativa, reforçam os resultados obtidos na análise da superfície de fractura dos provetes de impacto. Na Figura 44 faz-se o resumo dos dados obtidos através dos ensaios de impacto.



Figura 44 - Compilação dos ensaios de impacto

#### 4.2.2 Composição química, Dureza e microestrutura

A Tabela 3 apresenta os resultados obtidos na análise química efectuada aos provetes. Os materiais em questão são diferentes variações de aço carbono (sem liga). Pois os elementos presentes no mesmo (excepto o carbono) estão em quantidades inferiores às encontradas nos aços ligados. Os aços encontrados nas amostras 213 e 217 não apresentam grandes diferenças no que diz respeito à composição química podendo ser considerados idênticos.

| Ref | C<br>[%] | Si<br>[%] | Mn<br>[%] | P<br>[%] | S<br>[%] |
|-----|----------|-----------|-----------|----------|----------|
| 211 | 0,21     | 0,44      | 1,5       | 0,02     | 0,027    |
| 213 | 0,134    | 0,32      | 1,36      | 0,009    | 0,009    |
| 217 | 0,14     | 0,22      | 1,45      | 0,009    | 0,006    |

Tabela 3 - Composição Química dos materiais metálicos

Na Tabela 4 apresentam-se os resultados dos ensaios de dureza pelo método Vickers (HV), efectuados a algumas amostras de material. É de realçar que a variação de dureza existente entre as amostras 213 a 217 é bastante significativa.

| Tabela 4 - Dureza Vicke |
|-------------------------|
|-------------------------|

| Ref | 211 | 213 | 217 |
|-----|-----|-----|-----|
| HV  | -   | 153 | 218 |

Na Figura 45 pode-se observar a existência de dois tipos de microstruturas distintas, a e b e correspondem a a ferrite (cor clara) e perlite (cor escura) disposta em colunas, e c corresponde a martensite em ripas [42].



Figura 45 - Micrografias obtidas através de microscópio óptico (500 X)

# 4.2.3 Ensaio de tracção (EN ISO 6892)

Os ensaios foram realizados a temperatura de 20°C e de acordo com a norma EN ISO 6892. A Tabela 5 resume as propriedades médias obtidas através dos ensaios de tração.

| Amostra | Tensão de rotura<br>[MPa] | Tensão de cedência<br>a 0,2% [MPa] | Módulo de Young<br>[GPa] |
|---------|---------------------------|------------------------------------|--------------------------|
| 211     | 590,2                     | 377,8                              | 193,4                    |
| 213     | 543,7                     | 374,3                              | 161,5                    |
| 217     | 695,3                     | 585,4                              | 192                      |

Tabela 5 - Resultados dos ensaios de tracção.

À temperatura ambiente as amostras evidenciaram um patamar de cedência, o que comprova a natureza dúctil do material. Como era de esperar a amostra com as propriedades mecânicas mais elevadas foi a 217, uma vez que é aquela que apresenta uma microestrutura martensítica. As amostras 211 e 21, têm idêntico teor em carbono e microestrutura também idêntica, o que fazia prever que as suas propriedades mecânicas também seriam.

### 4.3 Selecção da curva "R"

A Curva "R" define a resistência à fractura de um material em duas situações:

- Materiais metálicos de comportamento maioritariamente frágil, em que o estado de tensão na ponta da fenda se aproxima mais da tensão plana, podendo a curva ser expressa através do conceito de factor de intensidade de tensões, "K", da MFLE. Contudo, também podem ser aplicados os conceitos da MFEP.
- Materiais metálicos de comportamento maioritariamente dúctil, geram uma grande zona plástica na ponta da fenda, impossibilitando assim o uso da MFLE. Neste caso apenas se poderá recorrer aos conceitos da MFEP.

Para se poder definir qual o procedimento utilizar (ASTM E 561, ou ASTM E 1820) para obter a curva "R" do material, é necessário saber se o material originará uma zona plástica admissível segundo MFLE.

A maiorias das verificações baseia-se na comparação do tamanho da zona plástica com as dimensões do provete. No entanto, para se obter uma estimativa do tamanho da zona plástica através da equação do raio plástico de Irwin, é necessário obter o valor do factor de intensidade de tensões, o que implicaria realizar um ensaio. Em alternativa ao ensaio, e consequente destruição de um dos provetes, foi utilizada uma relação que não empregava o factor de intensidade de tensões.

Na literatura especializada, [9], é proposto como limite de utilização dos conceitos da MFLE, o quociente entre o módulo de Young e a tensão de cedência  $\left(\frac{E}{\sigma_{Ys}}\right)$  de 200 (à temperatura ambiente). Com os dados obtidos através dos ensaios de tração podemos calcular este quociente e compara-lo com o valor limite.

$$\frac{E}{\sigma_{Ys}} < 200 \iff \frac{193428 \text{ (MPa)}}{377,834 \text{ (Mpa)}} = 511,933 > 200$$
(25)

Utilizando a equação (25), verifica-se que o valor obtido ultrapassa em mais de duas vezes o limite estabelecido para a MFLE. Este resultado indica que a abordagem a seguir deve ser através dos parâmetros da MFEP, ou seja, a utilização da ASTM E 1820 para a obtenção da curva "Jr". A decisão pode ser ainda apoiada pelos resultados do ensaio de impacto, que indicam que a temperatura ambiente (20°C) o material têm um comportamento dúctil. É necessário ter em atenção que para uma temperatura inferior o

material irá começar a apresentar diferentes de valores de ductilidade, o que vai provocar uma alteração dos valores das propriedades obtidas através do ensaio de tracção, e consequentemente o valor do quociente  $\frac{E}{\sigma_{Ys}}$ .

# 4.4 Equipamentos de ensaio

### 4.4.1 Máquinas de ensaio e fadiga

Para efectuar os testes de acordo com as especificações da ASTM E 1820, foram utilizadas duas máquinas de ensaio universais. Uma para efectuar a pré fissuração e fadiga pós ensaio, outra para realizar o ensaio de resistência à fractura.

Os procedimentos de fadiga foram efectuados numa máquina óleo hidráulica Instron 8502, com capacidade de carga até 250 kN, com controlo por consola ou computador. Na Figura 46 está representada esta máquina e a respectiva consola.



Figura 46 - Instron 8502 e respectiva consola

Os ensaios de resistência à fractura foram efectuados numa máquina óleo hidráulica Instron 8504 com capacidade de carga até 500 kN, com controlo por computador.



Figura 47 - Instron 8204 com o comando e computador de controlo

### 4.4.2 Dispositivos

Para se poder efectuar os procedimentos nas máquinas referidas anteriormente, foi necessário colocar dispositivos para adaptar o movimento da máquina de tração/compressão para flexão. A adaptação é efectuada através de um punção de raio variável e com o dipositivo de flexão, ambos representados na Figura 48.



a)



Figura 48 – a)- Dispositivo de flexão b)- Requsitos dimensionais do dispositivo

A dimensão do rolos de contacto (punção e dispositivo) e a abertura do despositivo devem de estar de acordo com as condições da ASTM E1820:

$$R_{Punção} > \frac{W}{8} \tag{26}$$

$$\frac{W}{2} < D_{Rolo} < W \tag{27}$$

$$l_{Rolo} > W \tag{28}$$

$$S = 4 \cdot W \pm 0.02 \cdot W \tag{29}$$

De modo a cumprir estes requisitos, os rolos e o Vão do dispositivo foram seleccionados segundo a Tabela 6.

Tabela 6 - Dimensões dos rolos do dispositivo de flexão

| B [mm] | W [mm] | Diâmetro do<br>punção [mm] | Diâmetro dos<br>rolos [mm] | Comprimento<br>dos rolos [mm] | Vão (S)<br>[mm] |
|--------|--------|----------------------------|----------------------------|-------------------------------|-----------------|
| 18,5   | 37     | 24,87                      | 24,81                      | 57,84                         | 148             |

#### 4.4.3 Extensómetro

Uma vez que o ensaio requer a medição da abertura da boca da fenda (*CMOD*) é necessário a utilização de um extensómetro de palhetas (*clip gage*), como aquele que está representado na Figura 49. As características do extensómetro utilizado estão descriminadas na Tabela 7.



Figura 49 - Extensómetro de palhetas Instron 10/4

Tabela 7 - Características do Extensómetro

| Gage Lenght [mm] | Travel [mm] |
|------------------|-------------|
| 10               | 4           |

No ponto 6.2 a 6.2.4, da ASTM E1820, estão descritas algumas informações sobre este tipo de extensómetro. O ponto 6.2.2 especifica que o erro do extensómetro deve ter uma precisão de +- 1% e que os pontos recolhidos pelo mesmo, durante a calibração, não devem ter um desvio da recta ou curva de regressão, retirada a partir dos mesmos, em mais de 0,2%.

Para verificar se o extensómetro cumpria os requisitos exigidos, o mesmo foi calibrado manualmente com o auxílio do calibrador. Foi então confirmado que o extensómetro cumpria os requisitos anteriormente referidos. Os dados referentes a esta calibração e verificação encontram – se no anexo B.

## 4.5 Verificação dimensional dos provetes

#### 4.5.1 Requisitos dimensionais do provete e entalhe da ASTM E1820

Para que o ensaio efectuado pelo procedimento normalizado da ASTM E1820 seja válido, é necessário que os provetes cumpram determinados critérios dimensionais. Esses requisitos dimensionais são específicos de cada um dos tipos de provetes, SENB, C(T) DC(T), que estão descritos nos anexos A1, A2 e A3 da norma. No que diz respeito aos provetes do tipo SENB os requisitos dimensionais estão resumidos na Figura 50. [40]



Figura 50 - Requisitos dimensionais do provete SENB [40]

A relação de W/B, de qualquer tipo de provete, é dois. No entanto, a norma aceita qualquer outra relação desde que esteja compreendida entre 1 e 4.

No que diz respeito à geometria e as dimensões do entalhe, são permitidos 4 tipos de entalhe: Entalhe em V, entalhe estreito, entalhe com terminação num furo e o entalhe em Chevron. Na Figura em baixo estão representados esquematicamente os entalhes admitidos.



Figura 51 - Tipos de entalhe [40]

As condições geométricas consideradas válidas para o entalhe em "V" e estreito e estão resumidas na Figura 52.



Figura 52 - Requisitos dimensionais dos entalhes em "V" e estreito [40]

Além das condições contidas na imagem em cima, a fenda de fadiga tem de ter no mínimo um comprimento 0,05B para o entalhe em V e 0,025B para o entalhe estreito.

# 4.5.2 Verificação dos requisitos dimensionais

Com base nos requisitos expostos anteriormente foi elaborada a verificação dimensional dos provetes seleccionados. Nas Tabela 8 e Tabela 9 mostra-se a verificação dimensional das medidas básicas dos provetes, de acordo com as equações (30), (31) e (32).

$$B_{min} > 0.5 \cdot (W - 0.005W) \tag{30}$$

$$B_{max} < 0.5 \cdot (W + 0.005W) \tag{31}$$

$$L > 4,5 \cdot W \tag{32}$$

| Referência | L [mm] | W [mm] | B [mm] | Bmin<br>[mm] | Bmax<br>[mm] | Lmin<br>[mm] |
|------------|--------|--------|--------|--------------|--------------|--------------|
| 1          | 180,24 | 37,07  | 18,45  | Válido       | Válido       | Válido       |
| 2          | 180,1  | 36,87  | 18,35  | Válido       | Válido       | Válido       |
| 3          | 180    | 37,34  | 18,58  | Válido       | Válido       | Válido       |
| 4          | 180    | 37,08  | 18,47  | Válido       | Válido       | Válido       |
| 5          | 179,4  | 37,06  | 18,5   | Válido       | Válido       | Válido       |
| 6          | 180,23 | 36,98  | 18,44  | Válido       | Válido       | Válido       |
| 7          | 179,71 | 37,03  | 18,49  | Válido       | Válido       | Válido       |

Tabela 8 - Verificação dimensional dos provetes – amostra 213

| Referência | L [mm] | W [mm] | B [mm] | Bmin<br>[mm] | Bmax<br>[mm] | Lmin<br>[mm] |
|------------|--------|--------|--------|--------------|--------------|--------------|
| 1          | 196,31 | 37,17  | 18,5   | Válido       | Válido       | Válido       |
| 2          | 193,84 | 37,07  | 18,57  | Válido       | Válido       | Válido       |
| 3          | 193,71 | 37,07  | 18,6   | Válido       | Válido       | Válido       |
| 4          | 196,08 | 37,03  | 18,6   | Válido       | Válido       | Válido       |
| 5          | 195,09 | 37,06  | 18,62  | Válido       | Válido       | Válido       |
| 6          | 194,42 | 37,04  | 18,61  | Válido       | Válido       | Válido       |
| 7          | 193,7  | 37,09  | 18,63  | Válido       | Válido       | Válido       |
| 8          | 193,31 | 37,12  | 18,61  | Válido       | Válido       | Válido       |
| 9          | 193,25 | 37,03  | 18,5   | Válido       | Válido       | Válido       |

Tabela 9 - Verificação dimensional dos provetes - Amostra 217

Os provetes das amostras 213 e 217 têm entalhe em escada. Este último tipo de entalhe não está previsto na ASTM E 1820. No entanto, este tipo de entalhe já foi utilizado em normas anteriores da ASTM e possivelmente poderá ser admitido em normas equivalentes, provenientes de outras instituições de normalização. Um exemplo disso é o procedimento ESIS P2-92 da *European Structural Integrity Society* que permite a utilização deste tipo de entalhe em alternativa ao entalhe em V [43]. Nas Figuras Figura 53 e Figura 54 estão representados os dois tipos de entalhe existentes.



Figura 53 - Entalhe em V



Figura 54 - Entalhe em escada

Com base nos requisitos da norma, que dizem respeito ao entalhes, foi elaborada as tabelas Tabela 10 e Tabela 11, para verificar as dimensões dos entalhes. Os provetes com entalhe em escada foram verificados segundo os requisitos do entalhe estreito.

| Ref | ae [mm] | Le[mm] | Largura<br>máxima | Verificação<br>largura |
|-----|---------|--------|-------------------|------------------------|
| 1   | 15,66   | 0,23   | 0,37              | Ok                     |
| 2   | 16,11   | 0,23   | 0,36              | Ok                     |
| 3   | 16,32   | 0,24   | 0,37              | Ok                     |
| 4   | 16,16   | 0,26   | 0,37              | Ok                     |
| 5   | 15,80   | 0,28   | 0,37              | Ok                     |
| 6   | 15,98   | 0,25   | 0,36              | Ok                     |
| 7   | 16,063  | 0,29   | 0,37              | Ok                     |

Tabela 10 - Verificação dos entalhes em escada - Amostra 213

Tabela 11 - Verificação dos entalhes estreitos - Amostra 217

| Ref | ae [mm] | Le[mm] | Largura<br>máxima [mm] | Verificação<br>largura |
|-----|---------|--------|------------------------|------------------------|
| 1   | 15,99   | 0,20   | 0,37                   | ОК                     |
| 2   | 15,97   | 0,21   | 0,37                   | ОК                     |
| 3   | 15,96   | 0,23   | 0,37                   | ОК                     |
| 4   | 16,10   | 0,24   | 0,37                   | ОК                     |
| 5   | 15,65   | 0,29   | 0,37                   | ОК                     |
| 6   | 15,86   | 0,21   | 0,37                   | ОК                     |
| 7   | 15,89   | 0,16   | 0,37                   | ОК                     |
| 8   | 15,94   | 0,21   | 0,37                   | ОК                     |
| 9   | 16,02   | 0,20   | 0,37                   | ОК                     |

### 4.6 Pré-fissuração dos provetes

A fenda de fadiga no fim do entalhe é utilizada para recriar as fendas existentes nos componentes mecânicos. Em todos os ensaios normalizados de tenacidade à fractura (ASTM E 1820, BS 7448 e ISO 12315), está especificado os requisitos necessários à realização da pré-fissuração. Parte-se do princípio que quando cumpridos os requisitos, a pré-fissuração não influenciará os resultados dos ensaios de fractura.

Recentemente foi realizado um estudo, por Nowak-Coventry et al, sobre a influência das forças utilizadas na realização da pré-fissura, dos diferentes procedimentos normalizados, nos resultados experimentais. Neste estudo foi concluído que quando é ultrapassada o limite máximo de força na pré-fissuração, existente num qualquer procedimento normalizado, existe o risco de ocorrer um aumento do valor de tenacidade à fractura, o que pode ser preocupante em regimes de transição ou quando se tenta obter valores que dizem respeito ao limite inferior de resistência à fractura. No que diz respeito à ASTM E1820 , alerta para o facto, que o procedimento poder induzir à utilização de uma força de pré-fissuração incorrecta [44]. Posteriormente neste capítulo será devidamente sinalizada a fonte geradora deste possível erro.

#### 4.6.1 Requisitos da ASTM E 1820

Como foi referido anteriormente, a fenda de fadiga é utilizada para simular uma fenda real no provete. A pré-fissura é efectuada carregando ciclicamente o provete durante um determinado número de ciclos (entre  $10^4$  e  $10^6$  dependendo da carga aplicada e do tamanho do provete).

O tamanho da fenda de fadiga é variável, tendo apenas de se garantir dois requisitos:

- 1. O comprimento do entalhe juntamente com a fenda de fadiga tem de estar dentro da gama de 0,45W e 0,7W.
- A fenda de fadiga tem de estar dentro do envelope de fenda e cumprir o tamanho mínimo de fenda, requerido para cada tipo de entalhe (0,05B ou 1,3mm se for entalhe em V e 0,025B ou 0,06mm para o entalhe estreito).

O equipamento que realiza a pré-fissuração deve garantir uma distribuição de tensões uniforme ao longo da espessura do provete para proporcionar um crescimento uniforme da fenda ao longo da espessura.

A pré-fissuração deve ser executada em dois passos, o primeiro terá de ser responsável de no máximo de 50% do comprimento de fenda final desejado. O segundo terá de ser responsável no mínimo de 50% do tamanho da fenda de fadiga. Cada um dos passos pode ser subdividido em passos mais pequenos com força decrecente entre cada um deles até se chegar ao valor pretendido. Deste modo é possível controlar o processo com mais exactidão.

Para o primeiro passo, a força máxima é limitada pelo factor de intensidade de tensões máximo que é dado pela equação (33).

$$K_{max} = \left(\frac{\sigma_{YS}^{f}}{\sigma_{YS}^{T}}\right) \cdot \left(0,063 \cdot \sigma_{YS}^{f}\right)$$
(33)

 $\sigma_{YS}^{f}$  é a tensão de cedência obtida à temperatura a que será realizada a pré-fissuração e  $\sigma_{YS}^{T}$  é a tensão de cedência à temperatura de teste. A força máxima a poder ser aplicada no primeiro passo da pré fenda pode ser retirada através da equação (34).

$$P = \frac{K_I \cdot (B \cdot B_N)^{\frac{1}{2}} \cdot W^{\frac{3}{2}}}{f \cdot S}$$
(34)

O procedimento de pré-fissuração da ASTM E 1820, alerta para o facto que para algumas ligas de alumínio e aços de alta resistência, a equação (33) gera valores muito elevados de "K" e consequentemente de força de pré-fissuração. Nesses casos deve ser utilizado o valor de "K", obtido através da expressão (33), multiplicado por 0,7 e utilizar a valor de força máxima que gera esse respectivo valor de "K".

Para o segundo passo da pré-fissuração o valor da máximo do factor de intensidade de tensões é dado por:

$$K_{max} = 0.6 \cdot \left(\frac{\sigma_{YS}^f}{\sigma_{YS}^T}\right) \cdot K_F \tag{35}$$

Onde  $K_F$  é o valor de factor de intensidade de tensões que resulta do valor de um dos valores de J que é retirado do teste  $(J_{Qc}, J_{Qu}, J_Q)$ , que é transformado em factor de intensidade de tensões através da equação (36):

$$K_F = \sqrt{\frac{E \cdot J}{(1 - \nu^2)}} \tag{36}$$

Para encontrar a força máxima para o segundo passo, podemos recorrer à equação (34), substituindo "K" pelo valor obtido na equação (35).

No entanto na ASTM E 1820 também faz referência a uma força  $P_m$ , que não deve ser excedida em qualquer um dos passos de pré-fissuração. A força  $P_m$  depende do tipo de provete e das suas dimensões (assim como da tensão  $\sigma_Y$ ). Para cada tipo de provete a norma propõe uma expressão correspondente para a força  $P_m$ , que é possível encontrar no respectivo anexo. Em relação ao provete de flexão de 3 pontos a expressão da força Pm é dada pela equação (37).

$$P_m = \frac{0.5 \cdot B \cdot b_0^2 \cdot \sigma_Y}{S} \tag{37}$$

Em que  $b_0$  é o tamanho do ligamento no inicio do teste e  $\sigma_Y$  é a média aritmética da tensão de cedência a 0,2% e a tensão de rotura.

A força  $P_m$  representa o ponto a partir do qual o provete transita de um comportamento linear elástico para um comportamento elasto plástico. O que significa que ultrapassar este valor de força durante o procedimento de pré fissuração provoca, uma deformação permanente na amostra.

A multiplicidade de equações fornecida pela ASTM E 1820 pode levar à utilização de uma força máxima de pré-fissuração incorrecta, pois em determinadas condições a força  $P_m$  vai ser superior à força obtida através das equações dos factores de intensidade de tensões máximos do primeiro passo [44].

Uma vez que é necessário estabelecer um limite de força, para o primeiro passo do procedimento de pré-fissuração, o valor máximo de força utilizado será o menor que for obtido pelas equações anteriornente mencionadas.

Outro problema poderá ocorrer na obtenção do limite máximo de força para o segundo passo da execução da fenda de fadiga. A equação (35) está dependente do valor obtido no final do teste, o que à partida é uma impossibilidade. O procedimento sugere a utilização de um valor obtido em ensaios anteriores do mesmo material, no entanto, nada refere para o caso de não existir histórico.

Uma possível solução, nestes casos, é utilizar a força  $P_m$  como valor máximo para o segundo passo de pré-fissuração e utilizar a equação (35), como critério de validação final.

A fenda de fadiga é normalmente efectuada através de uma onda sinusoidal efectuada perto da maior frequência possível e com um rácio de  $\frac{F_{min}}{F_{max}}$  de 0,1.

Além dos requisitos referidos anteriormente, existem alguns detalhes normativos que não podem ser desprezados. E são eles:

- Após a realização da pré fenda de fadiga, não pode ser efectuado qualquer tipo de tratamento térmico. (Estes devem ser realizados antes da pré-fissuração.)
- Os dispositivos utilizados na pré-fissuração devem ter sido construídos com tolerâncias iguais ou inferiores as dos dispositivos de teste.
- Se durante a elaboração da fenda de fadiga existir assimetria do tamanho de fenda, ou seja, a existência de uma fenda de maior dimensão de um dos lados do provete.
  O procedimento deve ser parado e a causa da assimetria identificada e corrigida. (Normalmente pode se corrigir a assimetria virando o provete no dispositivo.)
- Caso não seja possível efectuar a fenda de fadiga no provete devido ao material ser demasiado frágil, a ASTM E 1820 não deve ser aplicada.

### Elaboração de pré fendas de fadiga

Os equipamentos existentes para a elaboração da pré-fissuração dos provetes são as máquinas óleo Hidráulicas utilizadas e o Vibrophore.

Independentemente do equipamento, é sempre necessário efectuar primeiro algum planeamento, para que o processo seja o mais eficiente e controlado possível. Para cada provete foi designado um valor de  $\frac{a}{w}$  dentro dos limites normativos. Nas Tabela 12 e Tabela 13, em baixo, encontra-se o planeamento efectuado para cada grupo de provetes.

| Referência | В     | a/w  | Método                  |
|------------|-------|------|-------------------------|
| 1          | 18,45 | 0,6  | Normalização            |
| 2          | 18,35 | 0,65 | Curva de<br>Resistência |
| 3          | 18,58 | 0,65 | Curva de<br>Resistência |
| 4          | 18,47 | 0,55 | Curva de<br>Resistência |
| 5          | 18,5  | 0,55 | Curva de<br>Resistência |
| 6          | 18,44 | 0,55 | Normalização            |
| 7          | 18,49 | 0,6  | Curva de<br>Resistência |

| Tabela 12 - Planeamento da amostra 21 | 3 |
|---------------------------------------|---|
|---------------------------------------|---|

| Referência | В     | a/w  | Método                  |
|------------|-------|------|-------------------------|
| 1          | 18,5  | 0,6  | Curva de<br>Resistência |
| 2          | 18,57 | 0,5  | Curva de<br>Resistência |
| 3          | 18,6  | 0,5  | Curva de<br>Resistência |
| 4          | 18,6  | 0,65 | Curva de<br>Resistência |
| 5          | 18,62 | 0,65 | Curva de<br>Resistência |
| 6          | 18,61 | 0,56 | Normalização            |
| 7          | 18,63 | 0,56 | Normalização            |
| 8          | 18,61 | 0,61 | Curva de<br>Resistência |
| 9          | 18,5  | -    | -                       |

Tabela 13 - Planeamento da amostra 217

Uma vez seleccionada a relação  $\frac{a}{w}$  e definida o tamanho da fenda de fadiga efectua-se o planeamento do processo de pré fissuração de cada provete.

O planeamento da pré fissuração é a selecção das condições a que o provete estará sujeito durante o processo, mais concretamente as forças dinâmicas aplicadas. O procedimento da ASTM E 1820 impõe limites quantificados relativamente ao factor de intensidade de tensões (e o limite adicional da força  $P_m$ ). No entanto, muitos equipamentos não têm capacidade para efectuar o controlo neste parâmetro (requer software apropriado e a utilização de um extensómetro).

A utilização do parâmetro de força será a escolha mais lógica para efectuar o controlo, no entanto, este tem alguns inconvenientes nomeadamente:

- O factor de intensidade de intensidade de tensões está dependente da intensidade da força aplicada e do tamanho de fenda. A variação do último durante o processo implica um aumento do factor de intensidade de tensões mesmo que a intensidade de força se mantenha (o mesmo acontece com a força  $P_m$  uma vez que esta depende de  $b_0$ ).
- Além da força, é também necessário controlar o tamanho da fissura de fadiga, o que muitas vezes pode ser complicado especialmente se for efectuado de modo visual.

Estes inconvenientes realçam a importância do planeamento. Assim sendo, é necessário efectuar o cálculo dos limites máximos de cada passo do processo definidos pelas equações (33), (35), (37).

#### Cálculo do K<sub>max</sub> do 1º passo

Uma vez que os provetes são todos do mesmo material metálico e que a temperatura de ensaio será idêntica à de pré fissuração, o valor de K máximo para o primeiro passo será igual para todos os provetes.

$$K_{max_{1^{\circ}Passo}} = \left(\frac{\sigma_{YS}^{f}}{\sigma_{YS}^{T}}\right) \cdot \left(0,063 \cdot \sigma_{YS}^{f}\right)$$
$$= \left(\frac{484,015}{484,015}\right) \cdot \left(0,063 \cdot 484,015\right)$$
$$= 23,803 \left[MPa\sqrt{m}\right]$$
(38)

Cálculo do Kmax do 2º passo e Pm

Como foi referido anteriormente, o factor de intensidade de tensões máximo admissível, para o segundo passo, está dependente do resultado final do ensaio ou de um valor de histórico. Uma vez que não existe este último, o valor de referência para o segundo passo será a força  $P_m$  para o tamanho final de fenda seleccionado para cada provete.

Como já foi mencionado o valor de  $P_m$  é dependente do tamanho de fenda final de cada provete, o que significa que este será diferente para cada um dos provetes, e será calculado através da equação (37).

Para melhor planear o processo foi elaborada uma folha de cálculo onde se contabiliza o parâmetro "K" e  $P_m$  em função das dimensões do provete e da carga aplicada.

Nessa folha de cálculo a força  $P_m$  é calculada através da equação (37). E o factor de intensidade de tensões é calculado através da expressão, no anexo A1 da ASTM E 1820, representada na equação (39).

$$K = \frac{F \cdot S}{\left(B \cdot B_n\right)^{\frac{1}{2}} \cdot W^{\frac{3}{2}}} \cdot f\left(\frac{a}{W}\right)$$
(39)

Em que  $f\left(\frac{a}{W}\right)$  é o factor de forma é obtido através da equação (40):

$$f\left(\frac{a}{W}\right) = \frac{3 \cdot \left(\frac{a}{W}\right)^{\frac{1}{2}} \cdot \left[1,99 - \left(\frac{a}{W}\right) \cdot \left(1 - \frac{a}{W}\right) \cdot \left(2,15 - 3,393 \cdot \left(\frac{a}{W}\right) + 2,7 \cdot \left(\frac{a}{W}\right)^{2}\right)\right]}{2 \cdot \left(1 + 2 \cdot \frac{a}{W}\right) \cdot \left(1 - \frac{a}{W}\right)^{\frac{3}{2}}}$$
(40)

O planeamento é efectuado tendo em conta que a em cada passo de fissuração a força máxima atingida pela onda sinusoidal se manterá constante, variando apenas o comprimento de fenda com o decorrer do tempo.

Uma vez seleccionadas as forças máximas de cada passo do processo, é necessário definir algumas forças respeitantes à caracterização da onda de fadiga. Estas forças estão representadas na Figura 55.



Figura 55- Forças no ciclo de fadiga
Em que  $F_M$ é a força média.  $F_{min}$  a força mínima,  $\Delta F$  a variação entre a força máxima e mínima.

Uma vez que a o procedimento recomenda uma relação  $\frac{F_{min}}{F_{max}}$  de 0,1; as forças acima referidas são calculadas na folha de cálculo recorrendo as equações (41), (42), (43) e (44).

$$F_{min} = 0,1 \cdot F_{max} \tag{41}$$

$$F_M = \frac{F_{max} + F_{min}}{2} \tag{42}$$

$$\Delta F = F_{max} - F_{min} \tag{43}$$

$$Amplitude = \frac{\Delta F}{2} \tag{44}$$

Estes valores são calculados para facilitar a programação correcta do ciclo de fadiga que a máquina irá efectuar.

Além do planeamento das forças a utilizar no processo, é necessário também controlar o crescimento da fenda de fadiga. Existem dois métodos passiveis de serem realizados:

- Método visual: Observação da fenda na face dos provetes e medição periódica da mesma até atingir o objectivo definido.
- Utilização de programas de fadiga que recorrem a medição da fenda através do método da *elastic compliance* ou um equivalente.

O primeiro método é o mais simples e não requer nenhum tipo de dispositivo, equipamento ou *software* para ser realizado, no entanto, têm a desvantagem de ter de se recorrer a paragens periódicas para a medição da fenda. Outra desvantagem deste método é que as superfícies do provete necessitam de estar descontaminadas, e de preferência polidas na zona do entalhe, para ser possível efectuar este tipo de controlo.

O segundo método necessita de *software* com a capacidade de efectuar a medição do tamanho de fenda, muitas vezes sendo necessário a utilização de extensómetros de palhetas. Esta abordagem tem a vantagem de o processo poder ser totalmente controlado pelo *software*, eliminando a necessidade de paragem do processo. Além de não ser necessário existir grandes cuidados com a condição superficial do provete. A desvantagem

é que está dependente de *software* especializado, que muitas vezes necessita de transdutores externos para poder ser utilizado.

### 4.6.2 Controlo do processo de pré fissuração

Após o planeamento é necessário iniciar e controlar o processo de pré fissuração para garantir não são ultrapassados os limites máximos estabelecidos.

No caso de ser utilizado *software* para o processo de pré-fissuração será apenas necessário nutrir o programa com os dados geométricos do provete, as forças a serem utilizadas, e o tamanho de fenda pretendido. Depois será preciso iniciar o processo que será controlado de forma automática.

Se for utilizado o método visual é necessário registar o comprimento de fenda com o decorrer do processo e verificar se as condições aplicadas não excedem os limites. Para este fim foi realizada uma tabela de Excel semelhante à realizada para o planeamento, mas com o intuito de registar o progresso da fenda, ao longo de cada um dos passos do processo, e controlar o valor de "K" e P<sub>m</sub>. As tabelas de controlo de prefissuração de cada um dos provetes encontra-se no anexo C.

## 4.7 Ensaio – Procedimento da curva de resistência

Ométodo da *Compliance* elástica é utilizado pelo procedimento de curva de resistência, para se adquirir múltiplos pontos através de um único provete. Com os dados recolhidos poder ser desenvolvida a curva de resistência à fractura (curva R). Outros métodos podem ser utilizados para medir o a propagação da fenda, como por exemplo, a medição da queda de potencial (*Potencial Drop Method*) [40].

#### Requisitos

O ensaio deve ser realizado em controlo de deslocamento, da máquina, ou em função da deformação do extensómetro, e deve ser carregado de modo que o tempo para chegar a força  $P_m$  se encontre no intervalo entre 0,3 e 3 minutos, e o tempo para qualquer sequência de carregamento e descarregamento não pode ultrapassar os 10 minutos.

Cada provete deve ser submetido aos seguintes passos:

- 1. Iniciar o ensaio e efectuar no mínimo 3 sequências de carregamento e descarregamento, compreendida entre a força máxima de pré fissuração e metade da mesma, a fim de se obter o tamanho de fenda inicial  $a_{0q}$
- Prosseguir com o teste e realizar 1 sequência de carregamento/descarregamento no intrevalo máximo de0,01b<sub>0</sub> (ou 0,01W no caso de se pretender obter a a curva de resistência em função δ). É aconselhado que a distância média entre sequências seja 0,005b<sub>0</sub>.(ou 0,005W).É necessário existirem no mínimo 8 pontos (sequências) antes de se atingir a força máxima.
- Antes de se iniciar o descarregamento pode existir uma pequena pausa a força constante para evitar a ocorrência de o descarregamento, não ser efectuado de forma linear.
- 4. As sequências de carregamento devem possuir uma amplitude máxima de $0,5 P_m$
- 5. Após a conclusão da última sequência de descarregamento, a força é levada até zero sem movimento adicional ao do deslocamento máximo, verificado no teste.

## 4.8 Método desenvolvido

Com o intuito de criar de um ensaio que satisfizesse os requisitos acima referidos, foi criado no *software* da *Instron, WaveMatrix,* um método modelo. Na Figura 56, está representado o método desenvolvido no *software*.



Figura 56 - Método desenvolvido no WaveMatrix

O ensaio desenvolvido pode ser dívidido em duas partes distintas, a rampa inicial (os 4 primeiros passos) e a zona de carregamentos e descarregamentos, que em comum têm a velocidade e o controlo de deslocamento. A velocidade é definida em função da espessura do provete na Tabela 14. A primeira parte foi desenvolvida para satisfazer o primeiro passo do procedimento. No esquema, em baixo, está descritod em detalhe os quatro primeiros passos do ensaio desenvolvido.



Para cumprir o requisito dos três carregamentos para o calculo do  $a_0$  existe um "*loop*" que força a repetição do segundo e do terceiro passo, antes de se proceder ao quarto e último passo.

A segunda parte é referente ao carregamento do provete e à execução dos descarregamentos para a obtenção do comprimento de fenda instantâneo. Esta parte é composta por um loop com três passos. No esquema seguinte estão detalhados os três passos que compõem cada um dos loops da segunda parte do ensaio.



O loop força a repetição dos 3 passos até um máximo de 60 repetições, sendo que este número de repetições muito dificilmente será atingido.

O ensaio desenvolvido não pode ser considerado genérico, devido aos requisitos do procedimento que estão associados a parâmetros dependentes da geometria do provete e de propriedades do material. (por exemplo a força  $P_m$ ).

O procedimento indica que o ensaio só deve ser conduzido em controlo de deslocamento. Para cumprir este requisito, o ensaio foi elaborado por inteiro no canal de deslocamento. Isto implica que todas as acções têm de ser programadas, recorrendo apenas, a comandos directos sobre o deslocamento do actuador.No entanto, efectuando o ensaio deste modo é mais difícil os requisitos relacionados com os limites e amplitudes de força.

Na rampa Inicial, o problema é ultrapassado colocando detectores de força que fazem avançar o ensaio para o passo seguinte quando os limites são atingidos. No entanto, estes detectores não podem ser utilizados após a rampa inicial pois estes apenas podem ser utilizados com valores absolutos de força. Isto implica que os descarregamentos durante o ensaio, apenas seriam inteiramente controlados através de um valor relativo de deslocamento.

Foram realizadas experiências preliminares efectuadas, em provetes de dimensões e de material idêntico àqueles que seriam ensaiados, foi possível definir a velocidade e a amplitude dos descarregamentos, adequadas para realizar os ensaios. Na Tabela 14 estão apresentados os respectivos parâmetros definidos para as séries 213 e 217.

| Referência            | Velocidade [mm/min] | Amplitude dos descarregamentos<br>[mm] |
|-----------------------|---------------------|----------------------------------------|
| 213 e 217<br>(B=15mm) | 0,3                 | $\pm 0,17$                             |

#### Tabela 14 - Parâmetros de ensaio para as séries 213 e217

A norma indica o intervalo máximo entre sequências de carregamento/descarregamento, deve ser inferior a  $0,01b_0$  (recomendando o valor de  $0,005b_0$ ). Isto significa que o valor de deslocamento a definir, no quinto passo do método, teria de algum modo tentar satisfazer este requisito.

Para se encontrar valores de deslocamento que cumprissem esta imposição da norma, foi estudado, em regime elástico, a relação entre o deslocamento (vertical do punção) e abertura da boca da fenda (CMOD). O estudo foi efectuado para os provetes de 15 milímetros de espessura com diferentes comprimentos de fenda. e encontra-se representado no **Erro! A origem da referência não foi encontrada.**.



Figura 57- Relação entre o deslocamento vertical e a abertura da boca da fenda (B=1,5mm)

Como era expectável a relação é diferente para diferentes comprimentos de fenda. A fenda irá aumentar com o decorrer do ensaio, e como consequência, a abertura da boca da fenda a aumenta para o mesmo deslocamento vertical. Uma vez que a condição mais desfavorável é para maiores comprimentos de fenda relativos, para os provetes de 37 mm de espessura foi tirada apenas a relação de um provete com comprimento de fenda relativo de 0,65. Tendo em conta o que foi referido anteriormente foi tomada a decisão de adoptar as expressões presentes na Tabela 15.

| Tabela 15 - Expressões de cálculo do deslocamento no pass | 0 . | 5 |
|-----------------------------------------------------------|-----|---|
|-----------------------------------------------------------|-----|---|

| B=15 mm                                      | B=37mm                                       |
|----------------------------------------------|----------------------------------------------|
| $d_{5^{\circ} Passo} = \frac{0.05b_0}{0.60}$ | $d_{5^{\circ} Passo} = \frac{0,05b_0}{0,45}$ |

## 4.9 Processamento de dados e obtenção da curva de resistência

Durante o ensaio são recolhidos os dados relativos à força, deslocamento do actuador (LLD – *Load Line Displacement*) e abertura da boca da fenda (COD – *Crack Opening Displacement*) através do extensómetro. Os dados do último muitas vezes são adquiridos em valores percentuais, necessitando de ser convertidos para milímetros para poderem ser utilizados. A equação (45) faz a conversão do valor percentual adquirido, para o valor correspondente em milímetros.

$$COD[mm] = \frac{COD[\%]}{100} \cdot GageLength \tag{45}$$

Também os dados de deslocamento do actuador muitas vezes são adquiridos em valor absoluto (segundo o referencial da máquina), sendo assim necessário subtrair o valor inicial aos restantes valores adquiridos.

Após o ajustamento dos dados, pode-se construir o gráfico Força *vs* deslocamento (COD ou LLD), que terá um aspecto idêntico ao da Figura 58.



Figura 58 - Diagrama força vs deslocamento do ensaio de um provete SENB utilizando o método de curva de resistência

A curva de resistência será obtida através das equações indicadas no anexo A1 da ASTM E 1820. Para se efectuar se esses cálculos, é necessário retirar três conjuntos de dados do digrama de força vs deslocamento:

- 1. Deslocamento (COD ou LLD) V
- 2. Força F
- 3. Compliance C

A *compliance* é o inverso da rigidez retirada de uma recta de descarregamento. Esta será utilizada para inferir o comprimento de fenda de um determinado momento do ensaio. A cada valor desta, está associado um par de valores de força e deslocamento, que correspondem aos valores imediatamente antes do início do descarregamento.

Uma vez obtidos todos os valores de *compliance*, e dos respectivos pares de força deslocamento, é possível aplicar as equações indicadas no anexo A1 da norma, e obter a curva de resistência do material.

### 4.9.1 Cálculo do comprimento de fenda

A primeira etapa para a obtenção da curva é o cálculo dos comprimentos de fenda. Com o valor de *compliance* de um determinado descarregamento é calculada a variável u, através da equação (46).

$$u = \frac{1}{\left(\frac{B_e \cdot W \cdot E \cdot C_i}{\frac{S}{4}}\right)^{\frac{1}{2}} + 1}$$
(46)

Com o valor de u é possível obter a relação a/w através da equação (47).

$$\frac{a}{W} = 0,999748 - 3.9504 \cdot u + 2,9821 \cdot u^2 - 3,21408 \cdot u^3 + 51,51564 \cdot u^4 - 113,031 \cdot u^5$$
(47)

Uma vez calculada a relação  $a'_W$  basta efectuar a multiplicação da relação, pela largura do provete (*W*) para se adquirir o valor do comprimento de fenda.

#### 4.9.2 Cálculo do Integral J

O método de curva de resistência tem em conta o crescimento da fenda com o decorrer do ensaio. Para ter em conta este efeito, o integral "J" é calculado de forma iterativa, onde cada conjunto de dados recolhidos (*Compliance*, Força e deslocamento) representa um ponto "i" na curva de resistência. No cálculo de cada valor de "J", há que calcular as partes elástica ( $J_{el}$ ) e plástica ( $J_{pl}$ ), somando as duas no final para se obter o valor total.

O  $J_{elástico}$  é calculado através do factor de intensidade de tensões dado pela equação (39). Este será convertido em integral J através da equação (48).

$$J_{el(i)} = \frac{K_{(i)}^2 \cdot (1 - \nu^2)}{E}$$
(48)

O cálculo  $J_{plástico}$  é baseado nas áreas abaixo do digrama força *vs* deslocamento, através da equação (49).

$$J_{pl_{(i)}} = \left[ J_{pl(i-1)} + \left( \frac{\eta_{pl(i)}}{b_{(i-1)}} \right) \cdot \left( \frac{A_{pl(i)} - A_{pl(i-1)}}{B_N} \right) \right] \\ \cdot \left[ 1 - \gamma_{pl(i-1)} \cdot \left( \frac{a_{(i)} - a_{(i-1)}}{b_{(i-1)}} \right) \right]$$
(49)

Em que o  $\eta_{pl}$  e  $\gamma_{pl}$  são factores plásticos de geometria e são calculados através das equações (50) e (51).

$$\eta_{pl(i)} = 3,667 - 2,199 \cdot \left(\frac{a_{(i)}}{W}\right) + 0.437 \cdot \left(\frac{a_{(i)}}{W}\right)^2 \tag{50}$$

$$\gamma_{pl(i)} = 0,131 + 2,131 \cdot \left(\frac{a_{(i)}}{W}\right) \tag{51}$$

As expressões acima referidas são para o caso de ser utilizado o digrama de força vs *CMOD*. Se for utilizado o diagrama de força vs *LLD*,  $\eta_{pl} \in \gamma_{pl}$ tomam os valores de 1,9 e 0,9 respectivamente.

 $A_{pl(i)} - A_{pl(i-1)}$  representa o incremento de área, do gráfico Força vs deslocamento (*CMOD* ou *LLD*), compreendido entre dois pares de força deslocamento consecutivos.  $A_{pl(i)}$  é calculado segundo a equação (52).

$$A_{pl(i)} = A_{pl(i-1)} + \left[F_{(i)} + F_{(i-1)}\right] \cdot \frac{\left[V_{pl_{(i)}} - V_{pl_{(i-1)}}\right]}{2}$$
(52)

Em que  $V_{pl}_{(i)}$ é o deslocamento plástico que é obtido através da equação (53)

$$V_{pl_{(i)}} = v_{(i)} - (F_{(i)} \cdot C_{(i)})$$
(53)

Para outros métodos, que não *elastic compliance* para a determinação do comprimento de fenda, são dadas equações que criam uma "*compliance* fictícia", para ser possivél calcular o deslocamento plástico. As equações (54) e (55) são utilizadas para esse mesmo efeito.

$$C_{(i)_{LLD}} = \frac{1}{E \cdot B_e} \cdot \left(\frac{S}{W - a_{(i)}}\right)^2 \\ \cdot \left[1,193 - 1,98 \cdot \left(\frac{a_{(i)}}{W}\right) + 4,478 \cdot \left(\frac{a_{(i)}}{W}\right)^2 \right.$$
(54)  
$$- 4,443 \cdot \left(\frac{a_{(i)}}{W}\right)^3 + 1,739 \cdot \left(\frac{a_{(i)}}{W}\right)^4 \right]$$

$$C_{(i)_{CMOD}} = \frac{6 \cdot S}{E \cdot W \cdot B_{e}} \cdot \left(\frac{a_{(i)}}{W}\right)$$
  
 
$$\cdot \left[0,63 - 2,28 \cdot \left(\frac{a_{(i)}}{W}\right) + 3,87 \cdot \left(\frac{a_{(i)}}{W}\right)^{2} - 2,04$$
  
 
$$\cdot \left(\frac{a_{(i)}}{W}\right)^{3} + \frac{0,66}{\left(1 - \frac{a_{(i)}}{W}\right)^{2}}\right]$$
(55)

#### 4.9.3 Condições iniciais do cálculo

É possível observar através da equação (49), que valor de  $J_{pl}$ está sempre dependente do valor imediatamente anterior, assim como outras variáveis ( $\gamma_{pl} e A_{pl}$ ). Isto levanta o problema da condição inicial, pois o primeiro valor do cálculo não tem valores anteriores para poder ser calculado.

A ASTM E 1820 não especifica as condições iniciais a utilizar no cálculo, como tal foram tomadas as seguintes considerações iniciais:

$$F_{1} = P_{m}$$

$$a_{1} = a_{0}$$

$$\eta_{pl(1)} = 3,667 - 2,199 \cdot \left(\frac{a_{(1)}}{W}\right) + 0.437 \cdot \left(\frac{a_{(1)}}{W}\right)^{2}$$

$$\gamma_{pl(1)} = 0,131 + 2,131 \cdot \left(\frac{a_{(1)}}{W}\right)$$

$$V_{pl_{(1)}} = 0$$

$$A_{pl(1)} = 0$$

$$J_{pl_{(1)}} = 0$$

É considerado que o primeiro conjunto de dados, retirados do gráfico do ensaio, conterá os valores correspondentes à força  $P_m$ , o deslocamento para o qual esta ocorre e o valor da *compliance* inicial (que gera a<sub>0</sub>). Como já foi dito anteriormente, no subcapítulo que diz respeito a pré fissuração, a força  $P_m$  é força a partir da qual se deixa de verificar um comportamento linear elástico. Assim sendo, primeiro valor de "J" corresponderá apenas ao valor de  $J_{elástico}$ . A partir deste primeiro ponto o cálculo procede de acordo com as equações anteriormente mencionadas.

Após a obtenção de todos os valores de "J", os mesmos podem ser emparelhados num gráfico, com os respectivos comprimentos de fenda. A Figura 59, em baixo, é um exemplo do aspecto final do gráfico.



Figura 59 - Exemplo de uma Curva de Resistência

Para obter as curvas de resistência apartir dos diagramas de força deslocamento, através da aplicação das equações contidas na norma, foi desenvolvida uma folha cálculo no software *Maple*. Esta elabora o cálculo do "J tendo como entrada os dados de força, deslocamento e compliance, recolhidos do diagrama de ensaio, e as propriedades geométricas dos provetes. Um exemplar da folha de cálculo encontra-se no anexo D.

## 4.10 Medição óptica do tamanho de fenda na superfície de fractura.

Para atestar se os dados recolhidos são susceptíveis de serem utilizados, é necessário confrontar a estimativa dos tamanhos de fenda inicial e final, com os valores obtidos por medição óptica na superfície de fractura.

Dependendo do material e do tamanho do provete, muitas vezes, torna-se difícil identificar a zona correspondente à propagação de fenda dúctil. Para o efeito são propostos dois métodos para auxiliar na sua identificação. (1) Efectuar uma fenda de fadiga no provete após a realização do ensaio, ou (2) tingir a fenda com *Heat tinting* e levar ao forno a 300°C durante meia hora [40]. Na Figura 60 está representada uma superfície de fractura, em que foi efectuada uma fenda de fadiga, após o ensaio. Na imagem é possível observar a fenda dúctil entre as duas fendas de fadiga.



Figura 60 - Superfície de Fractura de um provete ensaiado: a)-Entalhe, b)-Pré-fenda de fadiga c)- Fenda dúctil d)-Fenda de fadiga posterior ao ensaio e)- Fractura frágil provocada a baixa temperatura

Uma vez salientada a fenda dúctil, é necessário partir o provete de modo a expor a superfície de fractura, com a menor deformação possível. Uma maneira de minimizar a deformação da superfície de fractura, é arrefecer o provete de modo a assegurar um comportamento frágil no momento da separação.

A medição do tamanho de fenda inicial e final tem de ser efectuado em nove pontos igualmente intervalados entre si. As referência para a medição são, a linha contida no plano que separa a espessura em dois e as linhas de 0,005W, a contar do *sidegroove* ou da

superfície plana do provete, quando o anterior não existe [40]. Tendo isto em conta é possível quantificar o espaçamento entre cada medição, desde 0,005*W*, a partir da seguinte expressão:

$$\Delta x = \frac{B - 0.01W}{10}$$
(56)

Na Figura 56 está representado esquematicamente uma superfície de fractura. Na figura estão identificadas as linhas limite (Vermelha espessa), a linha de centro (linha vermelha de menor espessura) e as linhas guia para a medição (preto). Também estão identificados os pontos correspondentes ao tamanho de fenda inicial (losângulos verdes) e final (círculos azuís).



Figura 61 - Representação da medição óptica dos comprimentos de fenda inicial e final

Após serem realizadas as medições efectua-se o cálculo do tamanho de fenda inicial  $(a_0)$ , final  $(a_p)$  e da respectiva variação  $(\Delta a)$  através das equações (57), (58) e (59):

$$a_0 = \frac{\left(\frac{a_{0_1} + a_{0_9}}{2}\right) + \sum_{i=2}^8 a_{0_i}}{8}$$
(57)

$$a_p = \frac{\left(\frac{a_{p_1} + a_{p_9}}{2}\right) + \sum_{i=2}^8 a_{p_i}}{8}$$
(58)

$$\Delta a_p = a_p - a_0 \tag{59}$$

Com os valores calculados procede-se à verificação dos valores anteriormente medidos através das equações (60), (61) e (62), que se indicam de seguida, estando descrtitas na norma, nos pontos 9.1.4.1, 9.1.4.2 e 9.1.5.1 respectivamente.

$$(a_0 - a_{0_i}) < 0.05B \tag{60}$$

$$\left(a_p - a_{p_i}\right) < 0.05B \tag{61}$$

$$\left(a_{p_{i}}-a_{0_{i}}\right)<0,5\Delta a\tag{62}$$

Esta verificação serve para atestar se o ensaio decorreu dentro de condições de deformação plana. Caso algum dos valores medidos não cumpram a condição respectiva, considera-se que o ensaio não é representativo do estado de deformação plana. Por outras palavras, o estado de tensão plana teve influência no teste e não pode ser considerado desprezável.

Uma vez verificados e validados os valores da medição óptica, utiliza-se o valor calculado de  $\Delta a_p$ .para verificar a previsão efectuada através do método da *elastic compliance* ou de outro método indirecto. As equações seguintes, validam as previsões efectuadas por métodos indirectos:

$$\left(\Delta a_p - \Delta a_{previsão}\right) < 0,15\Delta a_p , se \,\Delta a_p < 0,2b_0 \tag{63}$$

$$\left(\Delta a_p - \Delta a_{previsão}\right) < 0.03b_0 , se \ \Delta a_p \ge 0.2b_0 \tag{64}$$

Esta verificação corresponde ao ponto 9.1.5.2 da norma.

As medições e verificações efectuadas aos provetes ensaiados encontram-se detalhadas no anexo E.

## 4.11 Método de normalização

Como já foi referido, o método de normalização vai inferir os comprimentos de fenda intermédios através do registo normalizado de força vs deslocamento (LLD) e com uma função analítica, que foi calculada utilizando os valores de  $a_0$  e de  $a_p$  medidos na superfície de fractura do provete [45].

O procedimento inicia- se com a medição óptica do  $a_0 e a_p$ . De seguida normaliza-se os valores de força, através da equação 65.

$$P_{n_i} = \frac{F_i}{W \cdot B \cdot \left(\frac{W - a_{b_i}}{W}\right)^{\eta_{pl}}} \tag{65}$$

Na qual  $\eta_{pl} = 1,9$  e que  $a_{b_i}$  é o tamanho de fenda corrigido para o arrombamento (*crack blunting*) e é calculado pela equação (66):

$$a_{b_i} = a_0 + \frac{J_i}{2 \cdot \sigma y} \tag{66}$$

Neste caso, o valor de  $J_i$ é calculado com as equações (48), (49) e com o tamanho de fenda inicial, medido na superfície de fractura, e a *compliance* calculada através da equação (54). O deslocamento será normalizado através da expressão:

$$v_{pl'_{i}} = \frac{v_{i} - (F_{i} \cdot C_{i})}{W}$$
 (67)

Nesta equação,  $C_i$  é obtido através da equação (54). Em que o valor correspondente ao comprimento de fenda é  $a_{b_i}$ .

O último valor do par força-deslocamento será normalizado segundo as equações anteriores, não se aplicando qualquer correcção do arrombamento de fenda ao comprimento de fenda final ( $a_{b_i} = a_p$ ).

Após a normalização de todos os valores até à força máxima (esta não incluída) e o último par, correspondente a  $a_p$ , são colocados num gráfico para se encontrar a função de normalização. Na Figura 62 em baixo encontra-se exemplificado um o gráfico de força deslocamento normalizado ( $P_n$  vs  $v_{pl}'$ ) com os pontos acima referidos.



Figura 62 - Diagrama Força vs deslocamento Normalizado

Para se efectuar o ajustamento e encontrar a equação, não devem estar no gráfico os pontos em que  $v_{pl}'$  seja inferior a 0,001. Deverão sobrar no mínimo 10 pontos para a encontrar a função. A equação de normalização é regida pela seguinte fórmula:

$$P_N = \frac{a + b \cdot v_{pl}' + c \cdot v_{pl}'^2}{d + v_{pl}'}$$
(68)

Em que a, b, c e d são coeficientes de ajustamento.

A equação encontrada deverá ajustar-se aos pontos que a geraram, incluindo o último par, com um desvio máximo correspondente a 1%  $P_n$  do último par.

Para encontrar os novos comprimentos de fenda, de modo iterativo altera-se  $a_i$  e recalculase o par  $P_{n_i}$  e  $v_{pl'_i}$ . Inicia–se depois o procedimento, ajustando o primeiro ponto em que o  $v_{pl'_i}$  é superior a 0,002, normaliza-se esse par com  $a_i$ , e verifica-se se o valor obtido de  $P_n$  difere do da função,  $P_N$ , em ±0,1%. Se isso acontecer procede-se à análise do par seguinte. Se a diferença for superior fazem-se pequenos ajustes a  $a_i$ . Os pares seguintes serão ajustados da mesma maneira até ao par final.

Uma vez obtidos os valores do comprimento de fenda intermédios, e em conjunto com os dados de força e deslocamento, é possível obter a curva de resistência aplicando as equações do método de curva de resistência, com a diferença de que os valores da compliance serão gerados pela equação (54).

Para ser aplicado o método de normalização foi necessário a utilização de mais do que uma ferramenta de cálculo. O método de normalização foi desenvolvido quase na sua totalidade em duas folhas de cálculo do Microsoft Excel. A primeira realiza a normalização do diagrama de força *vs* deslocamento, recorrendo as equações (65) e (67). Os Valores de "J" utilizados neste precesso foram importados de uma folha do software *Maple*. Após a normalização do diagrama, os valores do mesmo são transferidos para o software *Origin*, para poder ser efectuado o ajuste segundo a equação (68) (uma vez que o Excel não consegue efectuar este passo) e encontrar os respectivos coeficientes de ajuste. Uma vez encontrados os coeficientes, é realizado o processo iterativo para encontrar a *compliance* dos pontos entre o comprimento de fenda inicial e final. O exemplo das folhas desenvolvidas (Maple e Excel) encontram-se no anexo F.

O cálculo da curva de resistência, após a determinação dos comprimentos de fenda intermédios, é efectuado com recurso à folha de cálculo Maple idêntica a presente no anexo D.

## 4.12 Obtenção do $J_{IC}$

Apesar de a curva de resistência por si só poder ser utilizada como propriedade do material, esta é muitas vezes utilizada para a obtenção do valor iniciação a fractura dúctil,  $J_{IC}$ .

No caso de ser utilizado o método de curva de resistência na obtenção da curva, a norma exige que o valor de  $a_0$  seja corrigido pelo valor de  $a_{0q}$ .

O  $a_{0q}$  é obtido seleccionando todos pares  $J_i$ ,  $a_i$  antes de se atingir a carga máxima. Estes têm de ser ser no mínimo oito. Estes dados são aproximados pela equação (69):

$$a = a_{0q} + \frac{J}{2\sigma y} + B \cdot J^2 + C \cdot J^3 \tag{69}$$

A norma impõe que os coeficientes  $a_{0q}$ , B e C sejam encontrados através de um procedimento de ajuste, usando o método dos mínimos quadrados, fazendo uso de um mínimo de oito pontos obtidos antes de ser atingida a carga máxima. A relação de correlação entre os dados e a equação de ajuste deverá também ser superior a 0,96. Na Figura 63 está representado a obtenção do a0q através do software *Origin*.



Figura 63 - Obtenção do a0q

O  $a_{0q}$  obtido não pode divergir, relativamente ao comprimento medido de forma óptica, em mais de 0,5mm ou 0,01W. Uma vez obtido e verificado este valor substitui-se e corrigem-se os valores de  $J_i$ . A norma refere que devem existir no mínimo três pontos entre 0,4 $J_Q$  e  $J_Q$ , no entanto, esta condição só poderá ser verificada após a obtenção do  $J_Q$ .

Após a correcção da curva de resistência, tem de se calcular as variações  $\Delta a_i$  através da equação:

$$\Delta a_i = a_i - a_{0q} \tag{70}$$

Finalmente constrói-se o gráfico de J vs  $\Delta a$  com as seguintes linhas de construção/restrição representada na Figura 64.



Figura 64 - Curva de resistência restringida para obtenção do Jic

As linhas representadas na imagem em cima podem ser descritas através das equações (73)(71), (72), (73), (74), (75) representadas em baixo.

$$Lc = J = (2 \cdot \sigma Y) \cdot \Delta a \tag{71}$$

$$LE_{0,15mm} = (2 \cdot \sigma Y) \cdot (\Delta a - 0,15) \tag{72}$$

$$J_{limt} = b_0 \cdot \frac{\sigma y}{7,5} \tag{73}$$

$$LR_{0,2mm} = (2 \cdot \sigma Y) \cdot (\Delta a - 0, 2) \tag{74}$$

$$LE_{1,5mm} = (2 \cdot \sigma Y) \cdot (\Delta a - 1,5) \tag{75}$$

Após a construção destas linhas, fica delimitada a região de dados válidos, que se pode observar na Figura 65.



Crack Extension (mm)

Figura 65 - Delimitação da região de dados válidos

Depois de serem ignorados todos os pares de dados que se encontram fora da zona de admissão, os dados são linearizados. Esses dados (linearizados) são ajustados através de equação (76) e retiram-se os coeficientes  $C_1$  e  $C_2$ . A norma refere que o coeficiente  $C_2$  tem de ser obrigatoriamente menor que 1. A equação (77) representa analiticamente a curva de resistência através dos coeficientes  $C_1$  e  $C_2$ .

$$\ln(J) = \ln C_1 + C_2 \cdot \ln(\Delta a) \tag{76}$$

$$J = C_1 \cdot (\Delta a)^{C_2} \tag{77}$$

Após a determinação dos coeficientes  $C_1 \in C_2$ , a curva de ajuste aos valores, dada pela equação (77) pode representar-se no gráfico (ver Figura 65). De seguida determina-se o ponto intersecção entre a linha de referência que passa pela abcissa de 0,2 mm e a linha que representa a equação (77). O par de valores retirado representa  $\Delta a_Q \in J_Q$ .

A norma, no ponto 9.6.6 recomenda um procedimento iterativo para a determinação do  $J_Q$ . O processo é baseado nas equações (78)e (79), e inicia-se com o valor aproximado do  $J_Q$ , retirado visualmente do gráfico. Com este valor inicial calcula –se  $\Delta a_{q_1}$  e  $J_{q_2}$ e verifica - se a diferença entre o  $J_{q_2}$  e o inicial. Se esta diferença for inferior a  $\pm 2$  %, o valor de  $J_{q_2}$  pode ser considerado o valor de  $J_Q$ . Caso essa diferença seja superior reinicia-se o procedimento com o valor de  $J_{q_2}$ .

$$\Delta a_{q_i} = \frac{J_{q_i}}{2 \cdot \sigma Y} + 0,2 \tag{78}$$

$$J_{q_{i+1}} = C_1 \cdot \left(\frac{\Delta a_{q_i}}{k}\right)^{C_2} \tag{79}$$

É relevante referir que diversos autores, como por exemplo Dzugan e Viehrig (2004) [46], Zhu e Joyce (2007) [45], Chen Bao et al (2015) [47], aparentam não retirar o  $J_Q$  como foi anteriormente referido. Estes autores, preferiram utilizar o ponto de intersecção entre a recta de 0,2 mm com a aproximação analítica da curva de resistência (equação (77)) ou com um dos pontos dos obtidos no ensaio. As razões que levam a estas práticas são desconhecidas, no entanto, esta simplificação provavelmente é realizada pois o valor obtido opticamente em muitos casos pode ser mais conservador do que o método recomendado pela norma. Tarpani e Spinelli (2000) [48] recomendam que a aproximação à curva deve ser logarítmica, quando esta é utilizada em avaliação estrutural, pois na maioria dos casos acaba por ser a aproximação mais conservadora, quando comparado com a aproximação dada pela equação (77).

Para se poder validar  $J_Q$  como  $J_{IC}$  é necessário validar todas as condições que dizem respeito à pré fissuração, medição óptica da fenda, obtenção do  $a_{0q}$  (no caso de a curva ter

sido obtida pelo método da curva de resistência), e ainda as condições representadas pelas equações (80) e (81).

$$B > 10 \cdot \frac{J_Q}{\sigma Y} \tag{80}$$

$$b_0 > 10 \cdot \frac{J_Q}{\sigma Y} \tag{81}$$

A obtenção detalhada dos valores de  $J_{IC}$  está apresentada no anexo G.

## 5 Resultados - Tratamento, verificação e interpretação

As figuras Figura 66 e Figura 67 representam os diagramas de força vs deslocamento de modo reduzido, ou seja, apresentando a força em função do deslocamento ao longo do ensaio, e assinala os pontos que foram utilizados para o cálculo da curva de resistência. No caso do método de curva de resistência, os pontos assinalados são também onde ocorreram os descarregamentos.



Figura 66 - Diagrama reduzido F vs V amostra - 217



Figura 67 - Diagrama de F vs deslocamneto reduzido amostra - 213

Através da análise das figuras é possível constatar que os provetes com maiores comprimentos de fenda demonstraram menor capacidade de carga devido à menor secção resistente e maior factor de intensificação de tensões. Comparando também os gráficos **Erro! A origem da referência não foi encontrada.** e **Erro! A origem da referência não foi encontrada.** e **Erro! A origem da referência não i encontrada.** é possível constatar que os provetes 213, em relação aos 217, apresentam um diagrama bastante mais alongado, um sinal evidente de maior plasticidade.

A diferença na plasticidade e nas forças suportadas é explicada pelas diferentes estruturas micrográficas de cada um dos materiais. Como já foi referido no capítulo anterior, as amostras 213 apresentam uma microestrutura de ferrite e perlite; por sua vez, a amostras 217 apresenta martensite na sua microestrutura. A martensite é obtida através de tratamento térmico de têmpera, que proporciona um aumento da resistência mecânica do aço, devido à elevada concentração de deslocações que se forma por solução sólida intersticial causada pelos átomos de carbono [7]. A esta melhoria das propriedades mecânicas do material, como sejam a resistência, está também associada a perda de ductilidade e tenacidade, verificada nas amostras 217.

# 5.1 Verificação dos ensaios referentes ao método de curva de resistência

Os requisitos para a obtenção da curva através deste método estão descritos no capítulo anterior, no sub capítulo "Ensaio – Procedimento da curva de resistência". Os requisitos 2 e 4 contêm medidas quantitativas com o objectivo de "regular/avaliar" o ensaio, ao nível dos descarregamentos. Estes requisitos correspondem aos pontos da norma 8.6.3.2 [40] e 8.6.3.4 [40]. É relevante referir que a validação destes pontos da norma não tem como fim efectuar qualquer avaliação do ensaio, mas sim auxiliar na sua construção, garantido que no caso de serem cumpridos, a curva de resistência obtida vai ter bastante precisão, caso contrario a mesma será definida aproximadamente.

#### Nas tabelas Tabela 16 e

Tabela 17 indica-se o resultado da avaliação feita aos ensaios relativos ao método de curva de resistência, decorrente da validação dos pontos da norma referidos.

| Provete | Nº de C/D<br>antes do<br>Fmax | intrevalo<br>C/D [mm] | Amp.<br>Máxima<br>C/D [N] | 8.6.3.2 | 8.6.3.2 | 8.6.3.4       |
|---------|-------------------------------|-----------------------|---------------------------|---------|---------|---------------|
| 217_1   | 11                            | 0,1155                | 5170                      | Cumpre  | Cumpre  | Não<br>cumpre |
| 217_2   | 9                             | 0,148                 | 8250                      | Cumpre  | Cumpre  | Não<br>cumpre |
| 217_3   | 9                             | 0,1425                | 6000                      | Cumpre  | Cumpre  | Não<br>cumpre |
| 217_4   | 9                             | 0,1194                | 4569,8                    | Cumpre  | Cumpre  | Não<br>cumpre |
| 217_5   | 11                            | 0,1175                | 4158,39                   | Cumpre  | Cumpre  | Não<br>cumpre |
| 217_8   | 9                             | 0,1171                | 5191,65                   | Cumpre  | Cumpre  | Não           |

Tabela 16 - Verificação dos ensaios efectuados através do método de curva de resistência, amostra 217

| cumpre |
|--------|
| ·      |

| Provete | № de C/D<br>antes do<br>Fmax | Intervalo<br>C/D [mm] | Amp.<br>Máxima<br>C/D [N] | 8.6.3.2 | 8.6.3.2       | 8.6.3.4       |
|---------|------------------------------|-----------------------|---------------------------|---------|---------------|---------------|
| 213_3   | 38                           | 0,11338815            | 3984,62                   | Cumpre  | Cumpre        | Não<br>cumpre |
| 213_4   | 23                           | 0,1506                | 4862,616                  | Cumpre  | Não<br>Cumpre | Não<br>cumpre |
| 213_5   | 28                           | 0,1457                | 5926,187                  | Cumpre  | Não<br>Cumpre | Não<br>cumpre |
| 213_7   | 27                           | 0,1454                | 4590,498                  | Cumpre  | Cumpre        | Cumpre        |

Tabela 17 - Verificação dos ensaios efectuados através do método de curva de resistência, amostra 213

É possível constatar através das tabelas Tabela 16 e Tabela 17 que a grande da maioria dos ensaios não foi capaz de cumprir os três requisitos em simultâneo, mas na sua grande maioria conseguiram alcançar dois requisitos e todos conseguiram pelo menos um.

A não satisfação dos requisitos prende-se quase única e exclusivamente com o facto do controlo do ensaio ser efectuado através do canal de deslocamento. No caso da amplitude dos descarregamentos, é difícil estabelecer a amplitude do descarregamento em deslocamento, que provoque a amplitude de força desejada (mesmo que seja estabelecida com precisão no início, esta não se manterá com o decorrer do ensaio, devido à perda de rigidez que ocorre com a propagação da fenda). O mesmo acontece com o intervalo entre descarregamentos, pois o valor que é possível fornecer ao software corresponde ao deslocamento vertical da máquina e não ao da abertura do extensómetro (COD), ao qual o requisito faz referência. À semelhança do caso anterior, a perda de rigidez com o decorrer do ensaio, vai alterar a relação entre o deslocamento vertical e a abertura do extensómetro.

## 5.2 Curvas de Resistência





Figura 68 - Curvas de resistência: Amostra 217

À primeira vista poderá parecer que existe uma dispersão significativa entre curvas obtidas, no entanto, estas podem ser explicadas através dos comprimentos de fenda relativos. As duas curvas mais que acabam juntas mais acima (provetes 2 e 3), correspondem aos provetes com comprimentos de fenda relativos de menor dimensão Em oposição, as curvas dispostas mais abaixo, deveriam corresponder ao maior comprimento de fenda relativo, o que de facto acontece para o provete 4, mas que não acontece com o provete 5, em que a sua curva aparece numa zona intermédia do gráfico. Os provetes 1 e 8, que correspondem a um comprimento de fenda intermédio, encontram –se entre as curvas de maior e menor comprimento de fenda relativo.

Ainda no mesmo gráfico, no que diz respeito às curvas obtidas através do método de normalização, estas não apresentam um comportamento consistente uma vez que uma delas (provete 6) tem comportamento semelhante ao dos provetes homólogos do método de resistência (2 e 3) com uma pendente inicial invulgar. Por sua vez, o segundo provete do método de normalização (provete 7), apesar de ter uma zona inicial mais de acordo com o esperado, a curva cruza-se com as restantes ao longo da sua progressão.



Na Figura 69, estão representadas as curvas de resistência correspondentes à amostra 213.

Figura 69 - Curvas de resistência: Amostra 213

Da análise dos resultados da amostra 213, pode pensar-se que têm menor dispersão. No entanto, à semelhança do que aconteceu com a amostra 217, as curvas correspondentes com o menor comprimento de fenda relativo (4 e 5) são as mais periféricas, relativamente ao limite superior do gráfico (dentro do método de curva de resistência). A curva correspondente ao maior comprimento de fenda relativo (provete 3) é efectivamente uma curvas localizada no limite inferior, contudo, está relativamente perto da curva do provete 5. A curva correspondente aos comprimento de fenda intermédio (provete 7) apresentou um comportamento invulgar no início e vindo a coincidir, na parte final, com as curvas dos provetes 4 e 5.

Em relação às curvas do método de normalização (1 e 6), estas apresentam alguma coincidência entre elas na fase inicial e divergem perto dos 0,2 mm, tendo a curva do

provete 6 um comportamento relativamente parecido com as do método de curva de resistência. Por sua vez, a curva do provete 1 interceptou as restantes, estabelecendo o limite inferior.

Na Figura 70 está representado a comparação entre algumas curvas de resistência das amostras 217 e 213, para comprimentos de fenda relativos idênticos



Figura 70 - Comparação entre as amostras 213 e 217

Sobrepondo dois exemplares de cada amostra (217 e 213) no mesmo gráfico, é possível observar o diferente comportamento à fractura de cada uma das respectivas amostras. A amostra 213 apresenta maior resistência à fractura (maior energia requerida para a mesma propagação de fenda). Esta diferença é uma vez mais explicada pela diferença da estrutura microscópica de cada uma das amostras, em que a amostra baseadas em martensite (a 217) apresenta menor resistência à fractura que a e ferrite e perlite (a 213).

## 5.3 Medição óptica e previsão do tamanho de fenda

A norma requer a verificação da uniformidade da frente de fenda de fadiga e da fenda dúctil, e também a verificação da previsão dos comprimentos de fenda, obtidos através de métodos indirectos. Estas verificações são efectuadas pelos pontos 9.1.4.1, 9.1.4.2, 9.1.5.1 e 9.1.5.2 da norma. A Tabela 18 contém o resumo das verificações efectuadas à amostra 217. Na **Erro! A origem da referência não foi encontrada.** está representada o erro elativo da previsão dos comprimentos de fenda através do método da "*elastic compliance*".

|         | Medição óptica (uniformidade de<br>frente de fenda) |                            |                            | Erro da Previsão (%)       |       |       | 9.1.5.2    |                      |
|---------|-----------------------------------------------------|----------------------------|----------------------------|----------------------------|-------|-------|------------|----------------------|
| Provete | Provete                                             | 9.1.4.1<br>(Equação<br>60) | 9.1.4.2<br>(Equação<br>61) | 9.1.5.1<br>(Equação<br>62) | aO    | af    | Δa         | (Equação 63<br>e 64) |
| 1       | Cumpre                                              | Não<br>cumpre              | Não<br>cumpre              | 0,64                       | 7,16  | 43,25 | Não cumpre |                      |
| 2       | Cumpre                                              | Não<br>cumpre              | Não<br>cumpre              | 1,01                       | 7,22  | 39,49 | Não cumpre |                      |
| 3       | Cumpre                                              | Não<br>cumpre              | Não<br>cumpre              | 1,01                       | 9,25  | 45,43 | Não cumpre |                      |
| 4       | Cumpre                                              | Não<br>cumpre              | Não<br>cumpre              | 0,26                       | 4,719 | 40,27 | Não cumpre |                      |
| 5       | Cumpre                                              | Não<br>cumpre              | Não<br>cumpre              | 0,08                       | 3,79  | 41,69 | Não cumpre |                      |
| 8       | Cumpre                                              | Não<br>cumpre              | Não<br>cumpre              | 0,11                       | 5,15  | 41,69 | Não cumpre |                      |

Tabela 18 - Verificação da medição directa e indirecta do comprimento de fenda - Amostra 217



Figura 71 - Erro da previsão - Amostra 217

Através da análise da Tabela 18 é possível constatar que todas as superfícies de fractura da amostra 217 originaram frentes de fenda por fadiga uniformes e dentro dos requisitos normativos. No entanto, as frentes de fenda dúctil não cumpriram esses mesmos requisitos, o que significa, que as curvas obtidas não podem ser consideradas como representativas do estado de deformação plana A não uniformidade da frente dúctil de fenda está relacionada com o chamado efeito de Túnel (*"Tunneling effect"*) e a formação dos lábios de corte ou "shearlips".



Figura 72 - Frente de fenda sujeita a "Tunelling effect" (a) e b) medição dos pontos de contorno das respectivas frentes de fenda.

Na Figura 72 está representada, em a), uma fotografia da superfície de fractura de um dos provetes da amostra 217 com a respectiva medição de nove pontos., em b). O efeito túnel ocorre devido à condição de baixa triaxialidade, encontrada junto às superfícies livres do provete, tendo zona plástica de maior dimensão [17], sendo, por isso, uma zona de maior resistência à fractura. Devido a este factor, a fenda tende a propagar com mais intensidade no interior, onde a resistência é menor, provocando uma frente de fenda arqueada.

A previsão dada através do método da "*elastic compliance*" perde precisão com a ocorrência deste fenómeno, pois as equações que computam a rigidez do descarregamento em comprimento de fenda, foram desenvolvidas tendo em conta uma perda de rigidez provocada por uma fenda uniforme ao longo da espessura do provete. Isto é observável através da diferença entre o erro relativo da previsão da *compliance* do comprimento de fenda inicial e final, no primeiro caso. o erro máximo verificado foi de 1,01%, enquanto que no segundo caso, o mesmo ascende aos 9,25%. Este factor afecta muito o erro no comprimento de fenda final e consequentementeo erro na previsão da extensão de fenda ( $\Delta a$ ). Na Tabela 19 apresenta-se um resumo da verificação das superfícies de fractura da amostra 213 e da respectiva previsão.

|         | Medição óptica (uniformidade de<br>frente de fenda |                            |                            | Erro | 9.1.5.2 |       |                       |
|---------|----------------------------------------------------|----------------------------|----------------------------|------|---------|-------|-----------------------|
| Provete | 9.1.4.1<br>(Equação<br>60)                         | 9.1.4.2<br>(Equação<br>61) | 9.1.5.1<br>(Equação<br>62) | a0   | af      | Δa    | (Equação<br>63 ou 64) |
| 3       | Cumpre                                             | Não<br>cumpre              | Não<br>cumpre              | 3,62 | 5,95    | 44,07 | Não<br>cumpre         |
| 4       | Cumpre                                             | Não<br>cumpre              | Não<br>cumpre              | 3,75 | 7,7     | 45,18 | Não<br>cumpre         |
| 5       | Cumpre                                             | Não<br>cumpre              | Não<br>cumpre              | 5,14 | 9,16    | 40,58 | Não<br>cumpre         |
| 7       | Cumpre                                             | Não<br>cumpre              | Não<br>cumpre              | 4,12 | 7,31    | 37,95 | Não<br>cumpre         |

Tabela 19 - Verificação da medição directa e indirecta do comprimento de fenda - Amostra 213



Figura 73 - Erro da previsão - amostra 213

Á semelhança do que aconteceu com a amostra 217, os provetes desta amostra desenvolveram também "*crack tunneling*" o que induziu erro na previsão e a aceitação através dos requisitos normativos. Apenas referir que desta vez se verificou um maior erro na previsão do comprimento de fenda inicial (em média 4,16 %).

Na Tabela 20 está resumida a aptidão de cada um dos provetes utilizados para o método de normalização.

| Amostra . | Mediçi  | ão optica (unifo<br>frente de fen | ormidade de<br>da | Δa   | Aptidão para o método de<br>normalização |  |
|-----------|---------|-----------------------------------|-------------------|------|------------------------------------------|--|
|           | 9.1.4.1 | 9.1.4.2                           | 9.1.5.1           | (mm) | 15.2.1 (Δa< 4mm ou Δa<<br>15% b0)        |  |
| 213_1     | Cumpre  | Não cumpre                        | Não cumpre        | 2    | Não cumpre                               |  |
| 213_6     | Cumpre  | Não cumpre                        | Não cumpre        | 2,84 | Não cumpre                               |  |
| 217_6     | Cumpre  | Não cumpre                        | Não cumpre        | 2,56 | Não cumpre                               |  |
| 217_7     | Cumpre  | Não cumpre                        | Não cumpre        | 4,03 | Não cumpre                               |  |

Tabela 20 - Verificação da aplicabilidade do método de normalização - Amostras 217 e213

A semelhança do que aconteceu com os provetes do método de curva de resistência, a frente de fenda dúctil não se desenvolveu de modo uniforme falhando a aceitação nos
pontos 9.1.4.2 e 9.1.5.1. O tamanho de fenda dúctil desenvolvido durante o ensaio também excedeu os limites da norma para que fosse aceitável ser usado o método de normalização. No entanto, apesar deste facto foram obtidas as curvas de resistência a partir do mesmo com fim puramente académico.

### 5.4 $J_Q$ - Valor de iniciação à fractura.

Uma vez que as curvas não representam a resistência à fractura do material no estado de deformação plana, o valor de iniciação à fractura retirado através da aplicação do anexo A9, da norma, não pode ser considerado como  $J_{IC}$ , mas sim como um valor dependente da espessura  $J_Q$ .

Na Figura 74 está representada a comparação dos valores de  $J_Q$  entre o método de curva de resistência e método de normalização. Na Figura 75 está representada a influência do comprimento de fenda relativo na amostra 217.



Figura 74 - JQ M. Curva de Resistência vs M normalização - Amostra 217



Figura 75 - JQ Influência do comprimento de fenda relativo - Amostra 217

É possível observar que existe alguma dispersão nos valores de  $J_Q$  tanto no método de curva de resistência como no método de normalização. A dispersão apresentada entre os dois valores correspondentes ao método de normalização é justificada pelo diferente comportamento que apresentaram em termos de curva de resistência. No método de curva de resistência a dispersão tende a diminuir com o aumento da fenda relativa assim como também o valor do Jq.

Nas Figura 76 e Figura 77 estão representadas comparações anteriores mas para a amostra 213.



Figura 76 - JQ M. Curva de Resistência vs M. Normalização - Amostra 213



Figura 77 - JQ: Influência do comprimento de fenda relativo - Amostra 213

No caso da amostra 213 existe bastante menos dispersão, no que diz respeito ao comprimento de fenda relativo de 0,55, tanto para os valores do método de curva de resistência assim como para o método de normalização. O mesmo não se verificou para o comprimento de fenda relativo de 0,6 onde a diferença entre o método de normalização já parece ser significativa. Em relação à tendência decrescente com o aumento do comprimento de fenda também se verifica nesta amostra. Se compararmos a evolução do JQ de cada um dos materiais, observa-se que na amostra 217 a tendência decrescente é

menos acentuada em comparação com a 213. Isto pode significar que as condições encontradas na amostra 217 se encontram mais próximas do estado de deformação plana.

#### 6 Conclusões

Pela verificação efectuada através das superfícies de fractura, as curvas de resistência obtidas não são representativas de um estado de deformação plana. Isto acontece mesmo quando foram cumpridas todos os requisitos iniciais para que fosse possível obter esse mesmo estado. O que significa que *à priori* não é possível determinar ou não a validade do ensaio. No entanto, as curvas obtidas não são desprovidas de significado. Estas curvas representam a resistência à fractura real do material metálico ensaiado. Esta resistência é a soma da resistência do material que está sujeito a um estado de defomação plana no interior do provete, com a resistência do material junto as superfices livres onde este se encontra num estado entre a deformação plana e a tensão plana. Apesar destas curvas não poderem ser utilizadas para determinação da propriedade  $J_{IC}$ , estas podem ser utilizadas como método de comparação entre materiais.

É necessário referir que mesmo quando os ensaios são efectuados sob condições de deformação plana, também se encontra alguma dispersão. No trabalho de Zhu e Joyce (2007) [45], curvas com comprimento de fenda dentro do intervalo normativo não apresentaram coincidência perfeita.. Esta dispersão, contudo, poderá ser considerada pouco relevante, pois parece ser idêntica à encontrada no trabalho de Park e Gravel (2015) [49], onde as curvas com o mesmo comprimento relativo de fenda não também não apresentam coincidência.

A frente de fenda dúctil, obtida durante a realização do ensaio, não se desenvolveu de forma uniforme, devido a elevada plasticidade junto as superfícies livres do provetes (onde é necessário dispender mais energia para a fenda propagar). A fenda apresentou o fenomeno designado de *tunneling effect* (ou *crack tunneling*) (efeito túnel) afectando severamente a previsão através do método da *elastic compliance*. A possível solução é, após a prefissuração do provete, efectuar os rasgos laterais ou *"sidegrooves"* para minimizar ou eliminar o efeito de túnel (uma vez que que está a ser retirado o material que não está sujeito a um estado de deformação plana e também concentra as tensões ao longo do ligamento garantindo que a fenda cresce sempre num estado triaxial de tensões). No entanto a utilização desta técnica não significa que a frente de fenda se propage de forma uniforme e cumpra os requisitos da norma, como se verifica nos ensaios efectuados por Lott (2004) [50] em provetes C(T) com *sidegrooves* em que as fendas dúcteis obtidas, não

conseguiram cumprir os requisitos normativos relativos ao comprimento final de fenda (ponto 9.4.1.2).

Foi possível verificar que os provetes com menor comprimento de fenda relativo, mais próximo do limite inferior da norma, apresentaram maior efeito de túnel, também se ter verificado a situação inversa para os comprimentos relativos de fenda mais próximos do limite superior.

O ensaio desenvolvido para efectuar o método de curva de resistência possui limitações que o impedem de cumprir plenamente o procedimento descrito na norma. No entanto, quando observando os ensaios de Lott (2004) [50] obtidos através de software comercial (*Instron J<sub>IC</sub> Unloading compliance software*, desenvolvido de acordo com ASTM E 813), Minnebruggen et al (2011) [51] e Prakash (2015) [52], verifica-se que os ensaios efectuados também não cumprem todos os pontos do procedimento da ASTM E1820. Isto demonstra a dificuldade em se obter um ensaio perfeitamente de acordo com o procedimento normativo.

Os resultados obtidos através do método de normalização não podem ser considerados válidos, pois a frente de fenda dúctil desenvolvida não cumpre os requisitos normativos. No entanto, as curvas obtidas através deste método, aproximam-se das obtidas através do método de curva de resistência. O método de normalização apesar, de experimentalmente ser mais simples de executar, possui um o processamento de dados mais complexo. É importante referir também, que a norma não específica se o comprimento de fenda a utilizar para a obtenção da curva "R" é o real ou corrigido ( $a_{b_i}$ ). Contudo, os melhores resultados foram obtidos utilizando este último.

A validade dos resultados obtidos pelo método de curva de resistência e de normalização apenas pode ser comprovada após a elaboração do ensaio, o que se torna inconveniente do ponto de vista experimental, pois muitas vezes corre-se o risco de elaborar o ensaio e este ser considerado "inválido" segundo os requisitos normativos. Para se minimizar este inconveniente muitas vezes a elaboração de *sidegrooves* poderá ser suficiente, no entanto, esta solução não garante a validade dos resultados.

#### 6.1 Sugestões para estudos posteriores

Os estudos que poderão ser desenvolvidos posteriormente, podem recair sobre a obtenção da curva de resistência em condições de baixo constrangimento, recorrendo à ASTM E 2472. Uma vez que é a situação de constrangimento mais habitual em tubos e estruturas. Ainda relacionado com a ASTM E 1820 poderá ser abordada a temática da dispersão de dados na obtenção das curvas de resistência e valores de iniciação à fractura  $J_{IC}$ , à semelhança dos estudos efectuados por Chen (1997) [53] para os valores de K<sub>IC</sub>.

Outra área que pode ser abordada é a obtenção da curva de resistência em provetes não normalizados, à semelhança dos estudos efectuados por Bergant et al (2016) e em provetes de dimensão reduzida, em analogia aos estudos efectuados por Holzman e Valka (1993) [54] onde foram obtidas curvas de resistência em provetes com as dimensões idênticas as utilizada no ensaio de impacto (10x10 mm).

Uma outra opção interessante de estudo, é a verificação e aplicação dos estudos de Pherson e Landes (2007) [24] sobre a obtenção do  $J_{IC}$  directamente do diagrama de força vs deslocamento.

Um tópico que poderá ser igualmente abordado, é a possibilidade da correcção dos valores do comprimento de fenda, obtidos através do método de *elastic compliance*, quando afectados pelo efeito de túnel.

Ainda sobre a obtenção do comprimento de fenda, também deveria ser estudada a possibilidade de ser aplicado o método das secantes descrito na ASTM E 561 [36], como método alternativo ao método da *elastic compliance*.

Poderá também ser efectuado um estudo sobre aplicação do conceito do integral J como ferramenta para a análise estrutural. Assim como, a tentativa de obtenção da curva de resistência através de métodos de elementos finitos. Tendo em conta os problemas assinalados por Broek (1986) [9] nestes dois temas, e verificar se já foram encontrados soluções para os mesmos.

### 7 Bibliografia

- T. M. Osman e J. D. Rigney, "ASM Handbook Vol 8 Mechanical Testing and Evaluation," A. S. M. International, Ed., ASM International, 2000, pp. 20-21.
- [2] C. Q. Bowles, "ASM Handbook Vol 19 Fatigue and Fracture," A. S. M. International, Ed., ASM International, 2000, p. 13 to 19.
- [3] C. K. R. C. U.Zerbest, "Fracture Mechanics as a tool in failure analysis Prospects and limitations," *Engeneering Failure Analysis*, pp. 376-410, 2015.
- [4] T. L. Anderson, Fracture Mechanics Fundamental and Applications, 2nd ed., CRC PRESS, 1995.
- [5] B. Cotterel, "The past, present, and the future of fracture mechanics," *Engineering Fracture Mechanics*, pp. 533-553, 2002.
- [6] B. N. Leis, "The Charpy impact test and its applications," *Journal of Pipeline Engineering*, vol. 12, pp. 183-198, September 2013.
- [7] W. F. Smith, Princípios De Ciência e Engenharia Dos Materiais, 2nd ed., McGraw-Hill, 1998.
- [8] D. Roylance, Mechanics of Materials, Jhon Wiley and Sons, Inc, 1996.
- [9] D. Broek, Elementary Engeneering Fracture Mechanics, 4th ed., Kluwer Academic Publishers, 1986.
- [10] C. E. Inglis, Stress in a plate due to the presence of cracks and sharp corners, 1913.
- [11] D. Radaj, "State-of-the-art review on extended stress intensity factor concept," *Fatigue and Fracture of Engineering Materials and Structures*, 2013.
- [12] J. Z. R. J. H. W. M. Janssen, Fracture Mechanics, 2nd ed., Dup Blue Print, 2002.

- [13] C. A. G. D. M. Branco, Mecânica dos Materiais, 5th ed., Fundação Caloust Gulbenkian, 2011.
- [14] A. A. F. P. M. S. T. D. C. Carlos A.G. De Moura Branco, Fadiga De Estruturas Soldadas, 2<sup>a</sup> ed., Fundação Caloust Gulbenkian, 1999.
- [15] A. P. J. G. W. D. R. Moore, Fracture Mechanics Testing Method for Polymers, Adhesives and Composites, 1st ed., Elsevier Science, 2001.
- [16] P. C. P. G. R. I. Hiroshi Tada, The Stress Analysis of Crack Handbook, 3rd ed., The American Society of Mechanical Engineers, 2000.
- [17] T. L. Anderson, Fracture Mechanics: Fundamentals and Applications, 3rd ed., Taylor & Francis, 2005.
- [18] E 399- 05 Standard Test method for Linear-Elastic Plane-Strain Fracture Toughness Kic of Metallic Materials, 2005.
- [19] N. E. Dowling, Mechanical Behaviour of Materials: Engeneering mmethod for deformation, fracture and fatigue, 2nd ed., Prentice Hall, 1998.
- [20] Y. K. M. O. T. H. T. K. Y. Y. K. T. H. Y. S. A. Y. H. Tetsuya Tagawa, "Comparison of CTOD standards : BS 7448-Part 1 and revised ASTM E 1290," *Engineering Fracture Mechanics*, pp. 327-336, 2008.
- [21] H. P. Philipa Moore, "CTOD and pipelines: the past, present, and future," *Journal of Pipeline Engineering*, 2013.
- [22] J. R. Rice, "A path Independent Integral and the Approximate Analysis of Stress Strain Concentration by Noches and Cracks," *Journal of Applied Mechanics*, vol. 35, pp. 379-386, 1968.
- [23] R. S. F. D. F. O. Kolendnik, "A new view on J-integrals in elastic-plastic materials," *International Journal of Fracture*, 2014.
- [24] J. D. L. B. P. Pherson, "A direct estimate of Jic from the load versus load-line

displacement record," *Fatigue* \& *Fracture of Engineering Materials* \& *Structures*, 2007.

- [25] J. A. J. Xian-Kui Zhu, "Review of fracture toughness (G,K,J,CTOD,CTOA) testing and standardization," *Engeneering Fracture Mechanics*, pp. 1-46, 2012.
- [26] J. D. Landes, "ASM Handbook Vol 19 Fatigue and Fracture," vol. 19, ASM International, 2000, pp. 963-980.
- [27] F. Erdogan, "Fracture mechanics," *International Journal of Solids and Structures*, pp. 171-183, 2000.
- [28] J. H. K. H. Shwalbe, "R-curve testing and its relevance to structural assement," *Fatigue* & *Fracture of Engineering Materials* & *Structures*, pp. 1259-1271, 1999.
- [29] A. Saxena, Nonlinear Fracture Mechanics for Engineers, CRC PRESS, 1998.
- [30] D. W. Zhou, "Measurement and modelling of R-curves for Low-Constraint specimens," *Engeneering Fracture Mechanics*, pp. 605-622, 2011.
- [31] J. C. N. J. J. L. S. J. Karl-Heinz. Schwalbe, "Fracture mechanics testing on specimens with low constraint - standardisation activities within ISO and ASTM," *Engeneering Fracture Mechanics*, pp. 557-576, 2005.
- [32] J. H. C. J. C. A. B. D. S. D. J. C. Newman Jr, Variations of a Global Constraint Factor in CrCrack Bodies Under Tension and Bending Loads, 1994.
- [33] X.-K. Zhu, "Review of fracture toughness test methods for ductile materials in lowconstraint conditions," *International Journal of Pressure Vessels and Piping*, pp. 173-183, 2016.
- [34] E 2472-12 Standart Test Method for Determination of Resitance to Stable Crack Extension under Low-Constraint Conditions, 2012.
- [35] Y. J. Chao e X. K. Zhu, "Constraint-modified J-R curves and its application to ductile crack growth," *International Journal of Fracture*, pp. 135-160, 2000.

- [36] E 561-98 Standard Practice for R-curve Determination, 1998.
- [37] X.-K. Zhu, "Fracture-toughness (K,J) testing, evaluation, and standardization," *Journal of Pipeline Engineering*, vol. 12, pp. 145-153, September 2013.
- [38] P. A. I. S. Wolfgang Brocks, "Ductile tearing resistance of metal sheets," *Engeneering Failure Analysis*, pp. 607-616, 2010.
- [39] X.-K. Zhu, "J-integral resistance curve testing and evaluation," *Journal of Zhejiang University. Science A*, pp. 1541-1560, 2009.
- [40] E1820-13 Standart Test Method for Measurment of Fracture Toughness, 2013.
- [41] J. D. L. J. H. K. H. Shwalbe, "Comprehensive Strutural integrity, Online update Fracture of Materials from Nano to Macro," R. R. B. K. Milne, Ed., Elsevier Science, 2007, pp. 3-42.
- [42] J. a. M. G. Barralis, Prontuário de metalurgia Elaboração, Estrutura-Proprierdades e Normalização, 3 edição ed., F. C. Gulbenkian, Ed., Fundação Caloust Gulbenkian, 1997.
- [43] "ESIS Procedure for Determining the Fracture Behaviour of Materials ESIS P2-92," 1992.
- [44] M. a. P. H. a. M. P. Nowak-Coventry, "The effect of fatigue pre-cracking forces on fracture toughness.," *Fatigue* \& *Fracture of Engineering Materials* \& *Structures*, pp. 135-148, 2016.
- [45] X.-K. a. J. J. A. Zhu, "J-Resistance curve testing of HY80 steel using SE(B) specimens and normalzation method," *Engineering Fracture Mechanics*, pp. 2263-2281, 2007.
- [46] J. a. V. H.-W. Dzugan, "Application of the normalization method for the determination of J-R curves," *Materials Science and Engineering A*, pp. 307-311, 2004.

- [47] C. a. C. L. a. S. K. a. D. C. a. Y. Y. Bao, "Improved Normalization method for determination based on dimensionless load separation principle," *Acta Mechanica Sinica*, vol. 28, #sep# 2015.
- [48] J. R. a. S. D. Tarpani, "J-R CURVE FIT METHODS AFFECTING STRUCTURAL INTEGRITY ASSEMENT," em Jornadas SAM 2000 - IV Coloquio Latinoamericano de Fractura y Fadiga, 2000.
- [49] D. Y. a. G. J. P. Park, "Fracture toughness mmeasurment using two single notched bend test methods in a single specimen," *Engineering Fracture Mechanics*, 2015.
- [50] R. Lott, "Fracture Toughness Testing of Compact Tension Specimens from Watts Bar Unit 1 Surveillance Capsule X," 2004.
- [51] K. V. a. P. D. V. a. W. W. D. a. V. M. a. H. S. a. D. R. Minnebruggen, "Implementation of unloading compliance procedure for measurment of crack growth in pipeline steel," *Sustainable Construction and Design 2011*, 2011.
- [52] R. V. Prakash, "Limitation of unloading compliance method to correlate with physical crack size during single specimen J-integral testing," *ecf15*, 2015.
- [53] J. H. Chen e G. Z. Wang, "On scattering of measured values of fracture toughness parameters.," *International Journal of Fracture*, vol. 94, pp. 33-49, 1998.
- [54] M. a. M. J. Holzman e L. Válka, "J-R curves and fracture toughness transition behaviour at static, rapid and impact loading of Cr-Ni-Mo-V reactor pressure vessel steel," em *Structural Mechanics in Reactor Technology*, 1993.

## 8 Anexos

## 8.1 Anexo A – Lista de provetes originais



| Referência | L [mm] | W [mm]         | B [mm] | ae [mm] | Anotações            |
|------------|--------|----------------|--------|---------|----------------------|
| 5.2        | 145,44 | 27             | 13,57  | 11,41   | Entalhe não centrado |
| 5.6        | 145,39 | 27,02          | 13,51  | 11,04   | Entalhe não centrado |
| 5.7        | 145,67 | 27,22          | 13,64  | 11,03   | Entalhe não centrado |
| 5.9        | 145    | 26,99          | 13,48  | 11,24   | Entalhe não centrado |
| 218        | 150    | 29,06          | 14,5   | 11,61   | Entalhado            |
| 218        | 151    | 29,13          | 14,52  | 11,61   | Entalhado            |
| 206 CO DBL | 140,04 | 27,94          | 14,05  | 11,4    | fissurado            |
| 206 COD BL | 140    | 28,16          | 14     | 12,13   | Entalhado            |
| 207 COD BL | 205    | 42,02          | 21,31  | 18,36   | Entalhado            |
| 209 BL COC | 348    | 74,13          | 37,1   | 34,8    | Entalhado            |
| 209 BL COD | 348    | 73,78          | 37,08  | 35,25   | Entalhado            |
| 209 BL COD | 343    | 74,06          | 37,06  | 35,05   | Entalhado            |
| 209 BL COD | 343    | 73,96          | 37,13  | 34,5    | Entalhado            |
| 209 BL COD | 349    | 74,13          | 37,02  | 35,14   | Entalhado            |
| 209 BL COD | 344    | 73,92          | 37,14  | 34,81   | Entalhado            |
| 209 BL COD | 348    | 73,97          | 37,13  | 34,37   | Entalhado            |
| 209 BL COD | 347    | 74,05          | 37,15  | 35,81   | Entalhado            |
| 209 BL COD | 345    | 73,97          | 37,06  | 34,39   | Entalhado            |
| 209 BL COD | 347    | 74,18          | 36,99  | 34,77   | Entalhado            |
| 211 CBL    | 140    | 28,02          | 13,93  | 11,03   | Entalhado            |
| 213 CBL    | 179    | 36,93          | 18,57  | 16,23   | Entalhado            |
| 213 CBL    | 180    | 37,07          | 18,65  | 15,87   | Entalhado            |
| 213 CBL    | 180    | 37,34          | 18,55  | 15,45   | Entalhado            |
| 213 CBL    | 179    | 37,12          | 18,52  | 16,12   | Entalhado            |
| 213 CBL    | 180    | 37,04          | 18,42  | 15,46   | Entalhado            |
| 213 CBL    | 180    | 36,96          | 18,44  | 16,24   | Entalhado            |
| 213 CBL    | 180    | 36,99          | 18,48  | 16,27   | Entalhado            |
| 214 CBL    | 330    | 65,27          | 32,53  | 28,85   | Entalhado            |
| 214 CBL    | 330    | 65,07          | 32,41  | 28,53   | Entalhado            |
| 214 CBL    | 329    | 65,19          | 32,53  | 27,97   | Entalhado            |
| 214 CBL    | 331    | 65,26          | 32,5   | 28,27   | Entalhado            |
| 214 CBL    | 332    | 65 <i>,</i> 05 | 32,52  | 27,37   | Entalhado            |
| 214 CBL    | 338    | 65,25          | 32,56  | 28,18   | Entalhado            |
| 214 CBL    | 330    | 65,3           | 32,55  | 28,48   | Entalhado            |
| 214 CBL    | 337    | 65,11          | 32,45  | 28,33   | Entalhado            |
| 214 CBL    | 332    | 62,28          | 32,56  | 28,35   | Entalhado            |
| 214 CBL    | 337    | 65,16          | 32,55  | 28,1    | Entalhado            |
| 215 CBL    | 328    | 72,05          | 36,01  | 31,89   | Entalhado            |
| 215 CBL    | 330    | 72,11          | 36,16  | 30,75   | Entalhado            |

| 215 CBL  | 330 | 71,97 | 36,02 | 31,42 | Entalhado                  |
|----------|-----|-------|-------|-------|----------------------------|
| 215 CBL  | 331 | 72,04 | 36,02 | 31,6  | Entalhado                  |
| 215 CBL  | 328 | 72,11 | 36,02 | 31,56 | Entalhado                  |
| 215 CBL  | 339 | 72,02 | 36,13 | 31,52 | Entalhado                  |
| 217 CBL  | 195 | 37,1  | 18,59 | 15,73 | Entalhado                  |
| 217 CBL  | 195 | 37,09 | 18,67 | 15,94 | Entalhado                  |
| 217 CBL  | 195 | 37,08 | 18,65 | 15,96 | Entalhado                  |
| 217 CBL  | 198 | 37,07 | 18,62 | 15,7  | Entalhado                  |
| 217 CBL  | 193 | 36,87 | 18,57 | 16,21 | Entalhado                  |
| 217 CBL  | 196 | 37,16 | 18,82 | 16,07 | Entalhado                  |
| 217 CBL  | 194 | 37,14 | 18,58 | 15,9  | Entalhado                  |
| 217 CBL  | 199 | 37,07 | 18,53 | 16,03 | Entalhado                  |
| 7 COD 1  | 183 | 35,93 | 18,03 | 0     | Não entalhado              |
| 7 COD 11 | 205 | 36,25 | 18,14 | 0     | Não entalhado              |
| 7 COD 12 | 205 | 36,3  | 18,15 | 0     | Não entalhado              |
| 7 COD 2  | 183 | 36,34 | 18,11 | 0     | Não entalhado              |
| 7 COD 5  | 185 | 35,98 | 18,83 | 0     | Não entalhado              |
| SEM REF  | 208 | 47,03 | 23,65 | 20,15 | Entalhado e sem referência |
|          |     |       |       |       |                            |

## 8.2 Anexo B – Verificação do extensómetro

|                                                                           |          | Medições |       |       |          |          |          | Erro                                                                                                                      |                                    |          |          |          |          |             | Verifica | ções                    |                         |                      |
|---------------------------------------------------------------------------|----------|----------|-------|-------|----------|----------|----------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------|----------|----------|----------|-------------|----------|-------------------------|-------------------------|----------------------|
| Dispositvo                                                                | ∆causada | 1º       | 2º    | 3º    | 1º       | 2º       | 3º       | Δ(%) permitida ASTI                                                                                                       | M 1820                             | Status   | eq_tend1 | eq_tend2 | eq_tend3 | ∆eq-1       | ∆eq-2    | ∆eq-3                   | Δeq permitida ASTM 1820 | Status               |
| 10                                                                        | 0        | 0        | 0     | 0     | #DIV/0!  | #DIV/0!  | #DIV/0!  | 1                                                                                                                         |                                    |          | 0,0063   | 0,0048   | 0,0055   |             |          |                         | 0,08                    |                      |
| 10,5                                                                      | 0,5      | 0,504    | 0,503 | 0,504 | 0,8      | 0,6      | 0,8      | 1                                                                                                                         |                                    | Conforme | 0,50535  | 0,504    | 0,5054   | -0,00135    | -0,001   | -0,0014                 | 0,08                    | Conforme             |
| 11                                                                        | 1        | 1,006    | 1,004 | 1,007 | 0,6      | 0,4      | 0,7      | 1                                                                                                                         |                                    | Conforme | 1,0044   | 1,0032   | 1,0053   | 0,0016      | 0,0008   | 0,0017                  | 0,08                    | Conforme             |
| 11,5                                                                      | 1,5      | 1,506    | 1,505 | 1,508 | 0,4      | 0,333333 | 0,533333 | 1                                                                                                                         |                                    | Conforme | 1,50345  | 1,5024   | 1,5052   | 0,00255     | 0,0026   | 0,0028                  | 0,08                    | Conforme             |
| 12                                                                        | 2        | 2,006    | 2,004 | 2,008 | 0,3      | 0,2      | 0,4      | 1                                                                                                                         |                                    | Conforme | 2,0025   | 2,0016   | 2,0051   | 0,0035      | 0,0024   | 0,0029                  | 0,08                    | Conforme             |
| 12,5                                                                      | 2,5      | 2,505    | 2,503 | 2,508 | 0,2      | 0,12     | 0,32     | 1                                                                                                                         |                                    | Conforme | 2,50155  | 2,5008   | 2,505    | 0,00345     | 0,0022   | 0,003                   | 0,08                    | Conforme             |
| 13                                                                        | 3        | 3,003    | 3,002 | 3,007 | 0,1      | 0,066667 | 0,233333 | 1                                                                                                                         |                                    | Conforme | 3,0006   | 3        | 3,0049   | 0,0024      | 0,002    | 0,0021                  | 0,08                    | Conforme             |
| 13,5                                                                      | 3,5      | 3,501    | 3,5   | 3,505 | 0,028571 | 0        | 0,142857 | 1                                                                                                                         |                                    | Conforme | 3,49965  | 3,4992   | 3,5048   | 0,00135     | 0,0008   | 0,0002                  | 0,08                    | Conforme             |
| 14                                                                        | 4        | 3,998    | 3,997 | 4,003 | -0,05    | -0,075   | 0,075    | 1                                                                                                                         |                                    | Conforme | 3,9987   | 3,9984   | 4,0047   | -0,0007     | -0,0014  | -0,0017                 | 0,08                    | Conforme             |
| 14,5                                                                      | 4,5      | 4,491    | 4,493 | 4,5   | -0,2     | -0,15556 | 0        | 1                                                                                                                         |                                    | Conforme | 4,49775  | 4,4976   | 4,5046   | -0,00675    | -0,0046  | -0,0046                 | 0,08                    | Conforme             |
| 4,5<br>4,5<br>(m)3,5<br>3<br>3<br>2,5<br>2<br>1,5<br>1,5<br>1,5<br>5<br>3 |          |          |       |       |          |          | <u>у</u> | <ul> <li>↓ 1º</li> <li>2º</li> <li>3º</li> <li>Linear<br/>(1º)</li> <li>0,9981x + 0,0063<br/>R<sup>2</sup> = 1</li> </ul> | 1<br>0,8<br>0,6<br>0,4<br>0,2<br>0 | 0 0,5    | ,<br>1   | ,<br>1,5 | ÷        | <b>Erro</b> | 3        | <b>A</b><br><b>3</b> ,5 | 4,5                     | • 1º<br>• 2º<br>• 3º |

-0,2

-0,4

deformação provocada (mm)

y = 0,9984x + 0,0048R<sup>2</sup> = 1

 $\frac{5}{9} = 0,9998x + 0,0055$ R<sup>2</sup> = 1

0

0

2

deformação provocada (mm)

1

3

4

# 8.3 Anexo C – Registo da pré-fissuração

|        |        |        |        |         |         |        |        |        |          |          |          |                     | Planeamento _213     | 3_1                  |                   |                         |          |       |            |                  |                |
|--------|--------|--------|--------|---------|---------|--------|--------|--------|----------|----------|----------|---------------------|----------------------|----------------------|-------------------|-------------------------|----------|-------|------------|------------------|----------------|
| L [mm] | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm] | b0     | S [mm] | a/w      | Pm [N]   | f(a/w)   | Kmax_1[Mpa m^(1/2)] | K_Imposto [MPam^1/2] | Força resultante [N] | Força imposta [N] | K resultante [MPam^1/2] | Fmin [N] | ΔF[N] | Fmédio [N] | kmin [Mpa m^0,5] | ΔK [Mpa m^0,5] |
| 180,24 | 37,07  | 18,45  | 18,45  | 15,663  | 0       | 15,663 | 21,407 | 148,28 | 0,422525 | 13799,21 | 2,110963 | 23,8                | 23                   | 9675,980221          | 7500              | 17,82765116             | 750      | 6750  | 4125       | 1,782765116      | 16,04488604    |
| 180,24 | 37,07  | 18,45  | 18,45  | 15,663  | 0,5     | 16,163 | 20,907 | 148,28 | 0,486013 | 13162,13 | 2,194123 | 23,8                | 23                   | 9309,247544          | 7500              | 18,52996165             | 750      | 6750  | 4125       | 1,852996165      | 16,67696549    |
| 180,24 | 37,07  | 18,45  | 18,45  | 15,663  | 1       | 16,663 | 20,407 | 148,28 | 0,449501 | 12540,1  | 2,28212  | 23,8                | 23                   | 8950,290051          | 7500              | 19,27311841             | 750      | 6750  | 4125       | 1,927311841      | 17,34580657    |
| 180,24 | 37,07  | 18,45  | 18,45  | 15,663  | 1,5     | 17,163 | 19,907 | 148,28 | 0,462989 | 11933,13 | 2,375386 | 23,8                | 23                   | 8598,868102          | 7500              | 20,06077986             | 750      | 6750  | 4125       | 2,006077986      | 18,05470187    |
| 180,24 | 37,07  | 18,45  | 18,45  | 15,663  | 2       | 17,663 | 19,407 | 148,28 | 0,476477 | 11341,21 | 2,474405 | 23,8                | 23                   | 8254,766638          | 7500              | 20,89701715             | 750      | 6750  | 4125       | 2,089701715      | 18,80731543    |
| 180,24 | 37,07  | 18,45  | 18,45  | 15,663  | 2,5     | 18,163 | 18,907 | 148,28 | 0,489965 | 10764,35 | 2,579713 | 23,8                | 23                   | 7917,791182          | 7500              | 21,78637906             | 750      | 6750  | 4125       | 2,178637906      | 19,60774115    |
| 180,24 | 37,07  | 18,45  | 18,45  | 15,663  | 3       | 18,663 | 18,407 | 148,28 | 0,503453 | 10202,55 | 2,691917 | 23,8                | 23                   | 7587,764772          | 7500              | 22,7339678              | 750      | 6750  | 4125       | 2,27339678       | 20,46057102    |
| 180,24 | 37,07  | 18,45  | 18,45  | 15,663  | 3,5     | 19,163 | 17,907 | 148,28 | 0,516941 | 9655,801 | 2,811695 | 23,8                | 23                   | 7264,525656          | 5000              | 15,83035224             | 500      | 4500  | 2750       | 1,583035224      | 14,24731702    |
| 180,24 | 37,07  | 18,45  | 18,45  | 15,663  | 4       | 19,663 | 17,407 | 148,28 | 0,530429 | 9124,109 | 2,939817 | 23,8                | 23                   | 6947,925609          | 5000              | 16,55170283             | 500      | 4500  | 2750       | 1,655170283      | 14,89653255    |
| 180,24 | 37,07  | 18,45  | 18,45  | 15,663  | 4,5     | 20,163 | 16,907 | 148,28 | 0,543917 | 8607,474 | 3,077156 | 23,8                | 23                   | 6637,828749          | 5000              | 17,32494229             | 500      | 4500  | 2750       | 1,732494229      | 15,59244806    |
| 180,24 | 37,07  | 18,45  | 18,45  | 15,663  | 5       | 20,663 | 16,407 | 148,28 | 0,557405 | 8105,895 | 3,224704 | 23,8                | 23                   | 6334,110755          | 5000              | 18,15566611             | 500      | 4500  | 2750       | 1,815566611      | 16,3400995     |
| 180,24 | 37,07  | 18,45  | 18,45  | 15,663  | 5,5     | 21,163 | 15,907 | 148,28 | 0,570893 | 7619,372 | 3,383599 | 23,8                | 23                   | 6036,658427          | 5000              | 19,05027448             | 500      | 4500  | 2750       | 1,905027448      | 17,14524704    |
| 180,24 | 37,07  | 18,45  | 18,45  | 15,663  | 6       | 21,663 | 15,407 | 148,28 | 0,584881 | 7147,905 | 3,555147 | 23,8                | 23                   | 5745,369507          | 5000              | 20,01611904             | 500      | 4500  | 2750       | 2,001511904      | 18,01450714    |
| 180,24 | 37,07  | 18,45  | 18,45  | 15,663  | 6,5     | 22,163 | 14,907 | 148,28 | 0,597869 | 6691,494 | 3,740854 | 23,8                | 23                   | 5460,152727          | 5000              | 21,06168193             | 500      | 4500  | 2750       | 2,106168193      | 18,95551373    |
| 180,24 | 37,07  | 18,45  | 18,45  | 15,663  | 7       | 22,663 | 14,407 | 148,28 | 0,611357 | 6250,14  | 3,942466 | 23,8                | 23                   | 5180,928033          | 5000              | 22,19679549             | 500      | 4500  | 2750       | 2,219679549      | 19,97711594    |

| 0,45W  | 16,6815 |
|--------|---------|
| 0,7W   | 25,949  |
| 1passo | 19,163  |
| 2passo | 22,663  |
| l-s/2  | 15,98   |
|        | 74,14   |
| alinh  | 19,99   |

|        |        |        |        |         |         |        |        |        |          |          |          | Controlo  |            |                     |               |                 |                  |
|--------|--------|--------|--------|---------|---------|--------|--------|--------|----------|----------|----------|-----------|------------|---------------------|---------------|-----------------|------------------|
| L[mm]  | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm] | b0     | S [mm] | a/w      | Pm [N]   | f(a/w)   | Fmédio[N] | Fmáximo[N] | K máximo [Mpam^0,5] | R (Fmin/Fmax) | Frequência [Hz] | tempo [s]/ciclos |
| 180,24 | 37,07  | 18,45  | 18,45  | 15,663  | 0       | 15,663 | 21,407 | 148,28 | 0,422525 | 13799,21 | 2,110963 | 4200      | 7500       | 17,82765116         | 0,12          | 20              |                  |
| 180,24 | 37,07  | 18,45  | 18,45  | 15,663  | 0,425   | 16,088 | 20,982 | 148,28 | Q43399   | 13256,73 | 2,18135  | 4200      | 7500       | 18,42209559         | 0,12          | 25              |                  |
| 180,24 | 37,07  | 18,45  | 18,45  | 15,663  | 2,05    | 17,713 | 19,357 | 148,28 | 0A77826  | 11282,85 | 2,484643 | 4200      | 7500       | 20,98348315         | 0,12          | 25              |                  |
| 180,24 | 37,07  | 18,45  | 18,45  | 15,663  | 6,2     | 21,863 | 15,207 | 148,28 | 0,589776 | 6963,534 | 3,627639 | 2750      | 5000       | 20,42426028         | 0,1           | 25              |                  |
| 180.24 | 37.07  | 18,45  | 18.45  | 15,663  | 8       | 23,663 | 13,407 | 148.28 | 0.638833 | 5412,599 | 4,401893 | 2750      | 5000       | 24,78345095         | 0.1           | 25              |                  |

|          | Tração    |         |
|----------|-----------|---------|
| oys[MPa] | ots [MPa] | σy[MPa] |
| 377,83   | 590,2     | 484,015 |

|        |        |        |        |         |         |        |        |        |          | dados para | o ensaio |         |          |            |           |
|--------|--------|--------|--------|---------|---------|--------|--------|--------|----------|------------|----------|---------|----------|------------|-----------|
| L[mm]  | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm] | b0     | S [mm] | a/w      | Pm [N]     | f(a/w)   | 0,01b0  | 0,005b0  | 0,01b0 [%] | 0,05b0[%] |
| 180,24 | 37,07  | 18,45  | 18,45  | 15,663  | 8,21    | 23,873 | 13,197 | 148,28 | 0,643998 | 5244,367   | 4,509358 | 0,13197 | 0,065985 | 1,3197     | 0,65985   |
| 180,24 | 37,07  | 18,45  | 18,45  | 15,663  | 8,21    | 23,873 | 13,197 | 148,28 | 0,643998 | 5244,367   | 4,509358 | 0,13197 | 0,065985 | 1,3197     |           |



|        |         |        |        |         |         |        |        |        |          |          |          |                     | Planeamento_213_2: Acid | dentado              |                   |                         |          |       |            |                  |                |
|--------|---------|--------|--------|---------|---------|--------|--------|--------|----------|----------|----------|---------------------|-------------------------|----------------------|-------------------|-------------------------|----------|-------|------------|------------------|----------------|
| L [mm] | W [mm]  | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm] | b0     | S [mm] | a/w      | Pm [N]   | f(a/w)   | Kmax_1[Mpa m^(1/2)] | K_Imposto [MPam^1/2]    | Força resultante [N] | Força imposta [N] | K resultante [MPam^1/2] | Fmin [N] | ΔF[N] | Fmédio [N] | kmin [Mpa m^0,5] | ΔK [Mpa m^0,5] |
| 180,1  | 36,87   | 18,35  | 18,34  | 16,112  | 0       | 16,112 | 20,758 | 147,48 | 0,436995 | 12974,86 | 2,200361 | 23,8                | 23                      | 9205,094626          | 6200              | 15,49142141             | 620      | 5580  | 3410       | 1,549142141      | 13,94227927    |
| 180,1  | 36,87   | 18,35  | 18,34  | 16,112  | 0,5     | 16,612 | 20,258 | 147,48 | 0,450556 | 12357,34 | 2,289219 | 23,8                | 23                      | 8847,78847           | 6200              | 16,11702184             | 620      | 5580  | 3410       | 1,611702184      | 14,50531966    |
| 180,1  | 36,87   | 18,35  | 18,34  | 16,112  | 1       | 17,112 | 19,758 | 147,48 | 0,464117 | 11754,87 | 2,383441 | 23,8                | 23                      | 8498,018349          | 6200              | 16,78038269             | 620      | 5580  | 3410       | 1,678038269      | 15,10234442    |
| 180,1  | 36,87   | 18,35  | 18,34  | 16,112  | 1,5     | 17,612 | 19,258 | 147,48 | 0,477678 | 11167,45 | 2,483521 | 23,8                | 23                      | 8155,569327          | 6200              | 17,4849841              | 620      | 5580  | 3410       | 1,74849841       | 15,73648569    |
| 180,1  | 36,87   | 18,35  | 18,34  | 16,112  | 2       | 18,112 | 18,758 | 147,48 | 0,491289 | 10595,09 | 2,590011 | 23,8                | 23                      | 7820,247031          | 6200              | 18,23471809             | 620      | 5580  | 3410       | 1,823471809      | 16,41124628    |
| 180,1  | 36,87   | 18,35  | 18,34  | 16,112  | 2,5     | 18,612 | 18,258 | 147,48 | 0,504801 | 10037,79 | 2,703533 | 23,8                | 23                      | 7491,8746            | 6200              | 19,03395447             | 620      | 5580  | 3410       | 1,903395447      | 17,13055902    |
| 180,1  | 36,87   | 18,35  | 18,34  | 16,112  | 3       | 19,112 | 17,758 | 147,48 | 0,518362 | 9495,544 | 2,824785 | 23,8                | 23                      | 7170,290401          | 6200              | 19,8876185              | 620      | 5580  | 3410       | 1,98876185       | 17,89885665    |
| 180,1  | 36,87   | 18,35  | 18,34  | 16,112  | 3,5     | 19,612 | 17,258 | 147,48 | 0,531923 | 8968,353 | 2,954559 | 23,8                | 23                      | 6855,346369          | 6200              | 20,80128302             | 620      | 5580  | 3410       | 2,080128302      | 18,72115472    |
| 180,1  | 36,87   | 18,35  | 18,34  | 16,112  | 4       | 20,112 | 16,758 | 147,48 | 0,545484 | 8456,217 | 3,093755 | 23,8                | 23                      | 6546,906844          | 6200              | 21,78127831             | 620      | 5580  | 3410       | 2,178127831      | 19,60315047    |
| 180,1  | 36,87   | 18,35  | 18,34  | 16,112  | 4,5     | 20,612 | 16,258 | 147,48 | 0,559045 | 7959,137 | 3,243398 | 23,8                | 23                      | 6244,847818          | 4200              | 15,46875165             | 420      | 3780  | 2310       | 1,546875165      | 13,92187649    |
| 180,1  | 36,87   | 18,35  | 18,34  | 16,112  | 5       | 21,112 | 15,758 | 147,48 | 0,572606 | 7477,113 | 3,404662 | 23,8                | 23                      | 5949,056519          | 4200              | 16,23786893             | 420      | 3780  | 2310       | 1,623786893      | 14,61408203    |
| 180,1  | 36,87   | 18,35  | 18,34  | 16,112  | 5,5     | 21,612 | 15,258 | 147,48 | 0,586168 | 7010,145 | 3,578898 | 23,8                | 23                      | 5659,431256          | 4200              | 17,06885297             | 420      | 3780  | 2310       | 1,706885297      | 15,36196767    |
| 180,1  | 36,87   | 18,35  | 18,34  | 16,112  | 6       | 22,112 | 14,758 | 147,48 | 0,599729 | 6558,232 | 3,767666 | 23,8                | 23                      | 5375,881496          | 4200              | 17,9691461              | 420      | 3780  | 2310       | 1,79691461       | 16,17223149    |
| 180,1  | 36,87   | 18,35  | 18,34  | 16,112  | 6,5     | 22,612 | 14,258 | 147,48 | 0,61329  | 6121,375 | 3,972778 | 23,8                | 23                      | 5098,328113          | 4200              | 18,94738782             | 420      | 3780  | 2310       | 1,894738782      | 17,05264904    |
| 180,1  | 36,87   | 18,35  | 18,34  | 16,112  | 7       | 23,112 | 13,758 | 147,48 | 0,626851 | 5699,574 | 4,196348 | 23,8                | 23                      | 4826,703794          | 4200              | 20,01365821             | 420      | 3780  | 2310       | 2,001365821      | 18,01229239    |
| 180,1  | 36,87   | 18,35  | 18,34  | 16,112  | 7,5     | 23,612 | 13,258 | 147,48 | 0,640412 | 5292,828 | 4,440854 | 23,8                | 23                      | 4560,953568          | 4200              | 21,1797815              | 420      | 3780  | 2310       | 2,11797815       | 19,06180335    |
| 180,1  | 36,87   | 18,35  | 18,34  | 16,112  | 8       | 24,112 | 12,758 | 147,48 | 0,653973 | 4901,138 | 4,709221 | 23,8                | 23                      | 4301,035444          | 4200              | 22,45970796             | 420      | 3780  | 2310       | 2,245970796      | 20,21373716    |
|        |         |        |        |         |         |        |        |        |          |          |          |                     |                         |                      |                   |                         |          |       |            |                  |                |
| 0.45W  | 16 5915 |        |        |         |         |        |        |        |          |          |          |                     |                         |                      |                   |                         |          |       |            |                  |                |

| 0,45W  | 16,5915 |
|--------|---------|
| 0,7W   | 25,809  |
| 1passo | 20,612  |
| 2passo | 24,112  |
| I-s/2  | 16,31   |
| alinh  | 20,04   |

|        |        |        |        |         |         |        |        |        |          |          |          | Controlo  |            |                     |               |                 |                  |
|--------|--------|--------|--------|---------|---------|--------|--------|--------|----------|----------|----------|-----------|------------|---------------------|---------------|-----------------|------------------|
| L [mm] | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm] | b0     | S [mm] | a/w      | Pm [N]   | f(a/w)   | Fmédio[N] | Fmáximo[N] | K máximo [Mpam^0,5] | R (Fmin/Fmax) | Frequência [Hz] | tempo [s]/ciclos |
| 180,1  | 36,87  | 18,34  | 18,35  | 16,112  | 0       | 16,112 | 20,758 | 147,48 | 0,436995 | 12967,79 | 2,200361 | 3720      | 6200       | 15,49142141         | 0,2           | 25              |                  |

|          | Tração    |         |
|----------|-----------|---------|
| oys[MPa] | ots [MPa] | oy[MPa] |
| 377,83   | 590,2     | 484,015 |

|        | dados para o ensaio |        |        |         |         |        |        |        |          |          |          |         |         |            |           |
|--------|---------------------|--------|--------|---------|---------|--------|--------|--------|----------|----------|----------|---------|---------|------------|-----------|
| L [mm] | W [mm]              | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm] | b0     | S [mm] | a/w      | Pm [N]   | f(a/w)   | 0,01b0  | 0,005b0 | 0,01b0 [%] | 0,05b0[%] |
| 180,1  | 36,87               | 18,34  | 18,35  | 15,112  | 0       | 16,112 | 20,758 | 147,48 | 0,436995 | 12967,79 | 2,200361 | 0,20758 | 0,10379 | 2,0758     | 0,010379  |

|       |        |        |        |         |         |        |        |        |          |          |          |                     | Planeamento_213_3    |                      |                   |                         |          |       |            |                  |                |
|-------|--------|--------|--------|---------|---------|--------|--------|--------|----------|----------|----------|---------------------|----------------------|----------------------|-------------------|-------------------------|----------|-------|------------|------------------|----------------|
| L[mm] | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm] | b0     | S [mm] | a/w      | Pm [N]   | f(a/w)   | Kmax_1[Mpa m^(1/2)] | K_Imposto [MPam^1/2] | Força resultante [N] | Força imposta [N] | K resultante [MPam^1/2] | Fmin [N] | ΔF[N] | Fmédio [N] | kmin [Mpa m^0,5] | ΔK [Mpa m^0,5] |
| 180,1 | 37,13  | 18,45  | 18,45  | 16,323  | 0       | 16,323 | 20,807 | 148,52 | 0,439618 | 13015,45 | 2,217149 | 23,8                | 23                   | 9220,019266          | 6200              | 15,46634512             | 620      | 5580  | 3410       | 1,546634512      | 13,91971061    |
| 180,1 | 37,13  | 18,45  | 18,45  | 16,323  | 0,5     | 16,823 | 20,307 | 148,52 | 0,453084 | 12397,43 | 2,306361 | 23,8                | 23                   | 8863,380385          | 6200              | 16,08866976             | 620      | 5580  | 3410       | 1,608866976      | 14,47980279    |
| 180,1 | 37,13  | 18,45  | 18,45  | 16,323  | 1       | 17,323 | 19,807 | 148,52 | 0,46655  | 11794,45 | 2,400949 | 23,8                | 23                   | 8514,199587          | 6200              | 16,74849157             | 620      | 5580  | 3410       | 1,674849157      | 15,07364241    |
| 180,1 | 37,13  | 18,45  | 18,45  | 16,323  | 1,5     | 17,823 | 19,307 | 148,52 | 0,480016 | 11206,5  | 2,501405 | 23,8                | 23                   | 8172,268458          | 6200              | 17,44925546             | 620      | 5580  | 3410       | 1,744925546      | 15,70432991    |
| 180,1 | 37,13  | 18,45  | 18,45  | 16,323  | 2       | 18,323 | 18,807 | 148,52 | 0,493482 | 10633,58 | 2,608283 | 23,8                | 23                   | 7837,398159          | 6200              | 18,19481378             | 620      | 5580  | 3410       | 1,819481378      | 16,3753324     |
| 180,1 | 37,13  | 18,45  | 18,45  | 16,323  | 2,5     | 18,823 | 18,307 | 148,52 | 0,506949 | 10075,69 | 2,722203 | 23,8                | 23                   | 7509,4166            | 6200              | 18,98949114             | 620      | 5580  | 3410       | 1,898949114      | 17,09054203    |
| 180,1 | 37,13  | 18,45  | 18,45  | 16,323  | 3       | 19,323 | 17,807 | 148,52 | 0,520415 | 9532,828 | 2,843862 | 23,8                | 23                   | 7188,166325          | 6200              | 19,83816088             | 620      | 5580  | 3410       | 1,983816088      | 17,85434479    |
| 180,1 | 37,13  | 18,45  | 18,45  | 16,323  | 3,5     | 19,823 | 17,307 | 148,52 | 0,533881 | 9005,003 | 2,974052 | 23,8                | 23                   | 6873,502979          | 6200              | 20,74633566             | 620      | 5580  | 3410       | 2,074633566      | 18,6717021     |
| 180,1 | 37,13  | 18,45  | 18,45  | 16,323  | 4       | 20,323 | 16,807 | 148,52 | 0,547347 | 8492,209 | 3,113669 | 23,8                | 23                   | 6565,294243          | 6200              | 21,72027554             | 620      | 5580  | 3410       | 2,172027554      | 19,54824799    |
| 180,1 | 37,13  | 18,45  | 18,45  | 16,323  | 4,5     | 20,823 | 16,307 | 148,52 | 0,560813 | 7994,446 | 3,263737 | 23,8                | 23                   | 6263,419156          | 4200              | 15,42288606             | 420      | 3780  | 2310       | 1,542288606      | 13,88059746    |
| 180,1 | 37,13  | 18,45  | 18,45  | 16,323  | 5       | 21,323 | 15,807 | 148,52 | 0,57428  | 7511,716 | 3,425427 | 23,8                | 23                   | 5967,767742          | 4200              | 16,18695703             | 420      | 3780  | 2310       | 1,618695703      | 14,56826133    |
| 180,1 | 37,13  | 18,45  | 18,45  | 16,323  | 5,5     | 21,823 | 15,307 | 148,52 | 0,587746 | 7044,017 | 3,600086 | 23,8                | 23                   | 5678,240903          | 4200              | 17,01231097             | 420      | 3780  | 2310       | 1,701231097      | 15,31107987    |
| 180,1 | 37,13  | 18,45  | 18,45  | 16,323  | 6       | 22,323 | 14,807 | 148,52 | 0,601212 | 6591,351 | 3,789268 | 23,8                | 23                   | 5394,750505          | 4200              | 17,90629611             | 420      | 3780  | 2310       | 1,790629611      | 16,1156665     |
| 180,1 | 37,13  | 18,45  | 18,45  | 16,323  | 6,5     | 22,823 | 14,307 | 148,52 | 0,614678 | 6153,715 | 3,994778 | 23,8                | 23                   | 5117,219652          | 4200              | 18,87743864             | 420      | 3780  | 2310       | 1,887743864      | 16,98969478    |
| 180,1 | 37,13  | 18,45  | 18,45  | 16,323  | 7       | 23,323 | 13,807 | 148,52 | 0,628144 | 5731,112 | 4,218719 | 23,8                | 23                   | 4845,583086          | 4200              | 19,93568128             | 420      | 3780  | 2310       | 1,993568128      | 17,94211315    |
| 180,1 | 37,13  | 18,45  | 18,45  | 16,323  | 7,5     | 23,823 | 13,307 | 148,52 | 0,641611 | 5323,541 | 4,46356  | 23,8                | 23                   | 4579,787722          | 4200              | 21,09268068             | 420      | 3780  | 2310       | 2,109268068      | 18,98341261    |
| 180,1 | 37,13  | 18,45  | 18,45  | 16,323  | 8       | 24,323 | 12,807 | 148,52 | 0,655077 | 4931,001 | 4,732207 | 23,8                | 23                   | 4319,793278          | 4200              | 22,36218119             | 420      | 3780  | 2310       | 2,236218119      | 20,12596307    |

| 0,45W  | 16,7085 |
|--------|---------|
| 0,7W   | 25,991  |
| 1passo | 20,323  |
| 2passo | 24,323  |
| I-s/2  | 15,79   |
| alinh  | 19,99   |

|       |        |        |        |         |         |         |         |        |          |          |          | Controlo  |            |                     |               |                 |        |
|-------|--------|--------|--------|---------|---------|---------|---------|--------|----------|----------|----------|-----------|------------|---------------------|---------------|-----------------|--------|
| L[mm] | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm]  | b0      | S [mm] | a/w      | Pm [N]   | f(a/w)   | Fmédio[N] | Fmáximo[N] | K máximo [Mpam^0,5] | R (Fmin/Fmax) | Frequência [Hz] | ciclos |
| 180,1 | 37,13  | 18,45  | 18,45  | 16,323  | 0       | 16,323  | 20,807  | 148,52 | 0,439618 | 13015,45 | 2,217149 | 3720      | 6200       | 15,46634512         | 0,2           | 25              | 20984  |
| 180,1 | 37,13  | 18,45  | 18,45  | 16,323  | 3,3075  | 19,6305 | 17,4995 | 148,52 | 0,528696 | 9206,436 | 2,922865 | 3410      | 6200       | 20,38926263         | 0,1           | 25              | 65861  |
| 180,1 | 37,13  | 18,45  | 18,45  | 16,323  | 5,6985  | 22,0215 | 15,1085 | 148,52 | 0,593092 | 6862,509 | 3,673358 | 2310      | 4200       | 17,35856162         | 0,1           | 25              | 211551 |
| 180,1 | 37,13  | 18,45  | 18,45  | 16,323  | 8,1455  | 24,4685 | 12,6615 | 148,52 | 0,658995 | 4819,595 | 4,815334 | 2310      | 4200       | 22,7550026          | 0,1           | 25              | 17350  |

|          | Tração    |         |
|----------|-----------|---------|
| oys[MPa] | ots [MPa] | σy[MPa] |
| 377,83   | 590,2     | 484,015 |

|       |        |        |        |         |         |         |            |           | d        | lados para o | o ensaio |          |             |         |          |
|-------|--------|--------|--------|---------|---------|---------|------------|-----------|----------|--------------|----------|----------|-------------|---------|----------|
| L[mm] | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | 0,005b0 | 0,01b0 [%] | 0,05b0[%] |          |              |          |          |             |         |          |
| 180,1 | 37,13  | 18,45  | 18,45  | 16,323  | 8,1455  | 24,4685 | 12,6615    | 148,52    | 0,658995 | 4819,595     | 4,815334 | 0,126615 | 0,0633075   | 1,26615 | 0,633075 |
|       | an     |        |        |         |         |         |            |           |          |              |          |          | 0,005b0/0,6 |         |          |
|       |        |        |        |         |         |         | 0,1055125  | 1         |          |              |          |          |             |         |          |

|       |        |        |        |         |         |        |        |        |          |          |          |                     | Planeamento_213_4    |                      |                   |                         |          |       |            |                  |                |
|-------|--------|--------|--------|---------|---------|--------|--------|--------|----------|----------|----------|---------------------|----------------------|----------------------|-------------------|-------------------------|----------|-------|------------|------------------|----------------|
| L[mm] | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm] | b0     | S [mm] | a/w      | Pm [N]   | f(a/w)   | Kmax_1[Mpa m^(1/2)] | K_Imposto [MPam^1/2] | Força resultante [N] | Força imposta [N] | K resultante [MPam^1/2] | Fmin [N] | ΔF[N] | Fmédio [N] | kmin [Mpa m^0,5] | ΔK [Mpa m^0,5] |
| 180   | 37,08  | 18,47  | 18,47  | 16,164  | 0       | 16,164 | 20,916 | 148,32 | 0,435922 | 13184,18 | 2,193548 | 23,8                | 23                   | 9323,036395          | 8000              | 19,73605939             | 800      | 7200  | 4400       | 1,973605939      | 17,76245345    |
| 180   | 37,08  | 18,47  | 18,47  | 16,164  | 0,5     | 16,664 | 20,416 | 148,32 | 0,449407 | 12561,38 | 2,281487 | 23,8                | 23                   | 8963,685764          | 8000              | 20,52727024             | 800      | 7200  | 4400       | 2,052727024      | 18,47454321    |
| 180   | 37,08  | 18,47  | 18,47  | 16,164  | 1       | 17,164 | 19,916 | 148,32 | 0,462891 | 11953,64 | 2,374689 | 23,8                | 23                   | 8611,877377          | 8000              | 21,36584068             | 800      | 7200  | 4400       | 2,136584068      | 19,22925661    |
| 180   | 37,08  | 18,47  | 18,47  | 16,164  | 1,5     | 17,664 | 19,416 | 148,32 | 0,476375 | 11360,97 | 2,473636 | 23,8                | 23                   | 8267,395929          | 8000              | 22,25610114             | 800      | 7200  | 4400       | 2,225610114      | 20,03049103    |
| 180   | 37,08  | 18,47  | 18,47  | 16,164  | 2       | 18,164 | 18,916 | 148,32 | 0,48986  | 10783,37 | 2,578866 | 23,8                | 23                   | 7930,046724          | 6300              | 18,27227569             | 630      | 5670  | 3465       | 1,827227569      | 16,44504812    |
| 180   | 37,08  | 18,47  | 18,47  | 16,164  | 2,5     | 18,664 | 18,416 | 148,32 | 0,503344 | 10220,84 | 2,690982 | 23,8                | 23                   | 7599,652602          | 6300              | 19,06666102             | 630      | 5670  | 3465       | 1,9066666102     | 17,15999491    |
| 180   | 37,08  | 18,47  | 18,47  | 16,164  | 3       | 19,164 | 17,916 | 148,32 | 0,516828 | 9673,377 | 2,810663 | 23,8                | 23                   | 7276,051632          | 6300              | 19,91464703             | 630      | 5670  | 3465       | 1,991464703      | 17,92318232    |
| 180   | 37,08  | 18,47  | 18,47  | 16,164  | 3,5     | 19,664 | 17,416 | 148,32 | 0,530313 | 9140,982 | 2,938677 | 23,8                | 23                   | 6959,095424          | 6300              | 20,82167167             | 630      | 5670  | 3465       | 2,082167167      | 18,7395045     |
| 180   | 37,08  | 18,47  | 18,47  | 16,164  | 4       | 20,164 | 16,916 | 148,32 | 0,543797 | 8623,655 | 3,075893 | 23,8                | 23                   | 6648,647937          | 6300              | 21,79390477             | 630      | 5670  | 3465       | 2,179390477      | 19,61451429    |
| 180   | 37,08  | 18,47  | 18,47  | 16,164  | 4,5     | 20,664 | 16,416 | 148,32 | 0,557282 | 8121,396 | 3,223305 | 23,8                | 23                   | 6344,584703          | 6300              | 22,83837426             | 630      | 5670  | 3465       | 2,283837426      | 20,55453684    |

| 0,45W  | 16,686 |
|--------|--------|
| 0,7W   | 25,956 |
| 1passo | 17,664 |
| 2passo | 20,664 |
| I-s/2  | 15,84  |
| aling  | 19,98  |

|       |        |        |        |         |         |         |         |        |          |          |          | Controlo  |            |                     |               |                 |        |
|-------|--------|--------|--------|---------|---------|---------|---------|--------|----------|----------|----------|-----------|------------|---------------------|---------------|-----------------|--------|
| L[mm] | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm]  | b0      | S [mm] | a/w      | Pm [N]   | f(a/w)   | Fmédio[N] | Fmáximo[N] | K máximo [Mpam^0,5] | R (Fmin/Fmax) | Frequência [Hz] | ciclos |
| 180   | 37,08  | 18,47  | 18,47  | 16,164  | 0       | 16,164  | 20,916  | 148,32 | 0,435922 | 13184,18 | 2,193548 | 4800      | 8000       | 19,73605939         | 0,2           | 25              |        |
| 180   | 37,08  | 18,47  | 18,47  | 16,164  | 0,444   | 16,608  | 20,472  | 148,32 | 0,447896 | 12630,38 | 2,271384 | 4800      | 8000       | 20,43637484         | 0,2           | 25              | 47267  |
| 180   | 37,08  | 18,47  | 18,47  | 16,164  | 0,444   | 16,608  | 20,472  | 148,32 | 0,447896 | 12630,38 | 2,271384 | 4400      | 8000       | 20,43637484         | 0,1           | 25              | 7500   |
| 180   | 37,08  | 18,47  | 18,47  | 16,164  | 6,1745  | 22,3385 | 14,7415 | 148,32 | 0,602441 | 6549,066 | 3,807313 | 3465      | 6300       | 26,97630052         | 0,1           | 25              | 59554  |

|          | Tração    |         |
|----------|-----------|---------|
| oys[MPa] | ots [MPa] | oy[MPa] |
| 377,83   | 590,2     | 484,015 |

|       |        |        |        |         |         |         |         |        | d        | lados para o | ensaio   |          |           |            |           |
|-------|--------|--------|--------|---------|---------|---------|---------|--------|----------|--------------|----------|----------|-----------|------------|-----------|
| L[mm] | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm]  | b0      | S [mm] | a/w      | Pm [N]       | f(a/w)   | 0,01b0   | 0,005b0   | 0,01b0 [%] | 0,05b0[%] |
| 180   | 37,08  | 18,47  | 18,47  | 16,164  | 6,1745  | 22,3385 | 14,7415 | 148,32 | 0,602441 | 6549,066     | 3,807313 | 0,147415 | 0,0737075 | 1,47415    | 0,737075  |

0,005b0/0,6 0,122845833

|       |        |        |        |         |         |        |        |        |          |          |          |                     | Planeamento_213_5    |                      |                   |                         |          |       |            |                  |                |
|-------|--------|--------|--------|---------|---------|--------|--------|--------|----------|----------|----------|---------------------|----------------------|----------------------|-------------------|-------------------------|----------|-------|------------|------------------|----------------|
| L[mm] | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm] | bO     | S [mm] | a/w      | Pm [N]   | f(a/w)   | Kmax_1[Mpa m^(1/2)] | K_Imposto [MPam^1/2] | Força resultante [N] | Força imposta [N] | K resultante [MPam^1/2] | Fmin [N] | ΔF[N] | Fmédio [N] | kmin [Mpa m^0,5] | ΔK [Mpa m^0,5] |
| 179,4 | 37,06  | 18,5   | 18,5   | 15,802  | 0       | 15,802 | 21,258 | 148,24 | 0,42639  | 13648,34 | 2,134319 | 23,8                | 23                   | 9594,732078          | 7500              | 17,97861562             | 750      | 6750  | 4125       | 1,797861562      | 16,18075406    |
| 179,4 | 37,06  | 18,5   | 18,5   | 15,802  | 0,5     | 16,302 | 20,758 | 148,24 | 0,439881 | 13013,86 | 2,218847 | 23,8                | 23                   | 9229,217331          | 7500              | 18,69064232             | 750      | 6750  | 4125       | 1,869064232      | 16,82157809    |
| 179,4 | 37,06  | 18,5   | 18,5   | 15,802  | 1       | 16,802 | 20,258 | 148,24 | 0,453373 | 12394,48 | 2,308334 | 23,8                | 23                   | 8871,430252          | 7500              | 19,44444076             | 750      | 6750  | 4125       | 1,944444076      | 17,49999668    |
| 179,4 | 37,06  | 18,5   | 18,5   | 15,802  | 1,5     | 17,302 | 19,758 | 148,24 | 0,466865 | 11790,2  | 2,403226 | 23,8                | 23                   | 8521,137943          | 7500              | 20,24377509             | 750      | 6750  | 4125       | 2,024377509      | 18,21939758    |
| 179,4 | 37,06  | 18,5   | 18,5   | 15,802  | 2       | 17,802 | 19,258 | 148,24 | 0,480356 | 11201,02 | 2,504022 | 23,8                | 23                   | 8178,130912          | 7500              | 21,09283916             | 750      | 6750  | 4125       | 2,109283916      | 18,98355525    |
| 179,4 | 37,06  | 18,5   | 18,5   | 15,802  | 2,5     | 18,302 | 18,758 | 148,24 | 0,493848 | 10626,94 | 2,611279 | 23,8                | 23                   | 7842,219355          | 7500              | 21,99632428             | 750      | 6750  | 4125       | 2,199632428      | 19,79669185    |
| 179,4 | 37,06  | 18,5   | 18,5   | 15,802  | 3       | 18,802 | 18,258 | 148,24 | 0,507339 | 10067,96 | 2,725622 | 23,8                | 23                   | 7513,230308          | 6200              | 18,97985209             | 620      | 5580  | 3410       | 1,897985209      | 17,08186689    |
| 179,4 | 37,06  | 18,5   | 18,5   | 15,802  | 3,5     | 19,302 | 17,758 | 148,24 | 0,520831 | 9524,085 | 2,847755 | 23,8                | 23                   | 7191,00553           | 6200              | 19,83032823             | 620      | 5580  | 3410       | 1,983032823      | 17,84729541    |
| 179,4 | 37,06  | 18,5   | 18,5   | 15,802  | 4       | 19,802 | 17,258 | 148,24 | 0,534323 | 8995,309 | 2,978477 | 23,8                | 23                   | 6875,399967          | 6200              | 20,74061156             | 620      | 5580  | 3410       | 2,074061156      | 18,6665504     |
| 179,4 | 37,06  | 18,5   | 18,5   | 15,802  | 4,5     | 20,302 | 16,758 | 148,24 | 0,547814 | 8481,634 | 3,118695 | 23,8                | 23                   | 6566,280686          | 6200              | 21,71701254             | 620      | 5580  | 3410       | 2,171701254      | 19,54531129    |
| 179,4 | 37,06  | 18,5   | 18,5   | 15,802  | 5       | 20,802 | 16,258 | 148,24 | 0,561306 | 7983,06  | 3,26944  | 23,8                | 23                   | 6263,526204          | 6200              | 22,76672842             | 620      | 5580  | 3410       | 2,276672842      | 20,49005557    |



|        |        |        |        |         |         |         |         |        |          |            |          | Controlo  |             |                     |               |                 |        |
|--------|--------|--------|--------|---------|---------|---------|---------|--------|----------|------------|----------|-----------|-------------|---------------------|---------------|-----------------|--------|
| L [mm] | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm]  | bO      | S [mm] | a/w      | Pm [N]     | f(a/w)   | Fmédio[N] | Fmáximo[N]  | K máximo [Mpam^0,5] | R (Fmin/Fmax) | Frequência [Hz] | ciclos |
| 179,4  | 37,06  | 18,5   | 18,5   | 15,802  | 0       | 15,802  | 21,258  | 148,24 | 0,42639  | 13648,34   | 2,134319 | 4500      | 7500        | 17,97861562         | 0,2           | 25              |        |
| 179,4  | 37,06  | 18,5   | 18,5   | 15,802  | 0,273   | 16,075  | 20,985  | 148,24 | 0,433756 | 13300,04   | 2,179882 | 4125      | 7500        | 18,36241674         | 0,1           | 25              | 83871  |
| 179,4  | 37,06  | 18,5   | 18,5   | 15,802  | 0,5815  | 16,3835 | 20,6765 | 148,24 | 0,44208  | 12911,87   | 2,233084 | 4125      | 7500        | 18,81056724         | 0,1           | 25              | 29393  |
| 179,4  | 37,06  | 18,5   | 18,5   | 15,802  | 1,383   | 17,185  | 19,875  | 148,24 | 0,463708 | 11930,25   | 2,380512 | 4125      | 7500        | 20,05243615         | 0,1           | 25              | 35199  |
| 179,4  | 37,06  | 18,5   | 18,5   | 15,802  | 1,6675  | 17,4695 | 19,5905 | 148,24 | 0,471384 | 11591,14   | 2,436309 | 4125      | 7500        | 20,52245072         | 0,1           | 25              | 15269  |
| 179,4  | 37,06  | 18,5   | 18,5   | 15,802  | 3,114   | 18,916  | 18,144  | 148,24 | 0,510416 | 9942,629   | 2,752755 | 3410      | 6200        | 19,16879694         | 0,1           | 25              | 80853  |
| 179,4  | 37,06  | 18,5   | 18,5   | 15,802  | 5,0815  | 20,8835 | 16,1765 | 148,24 | Q563505  | 7903,224   | 3,295088 | 3410      | 6200        | 22,94532793         | 0,1           | 25              | 57989  |
|        |        |        |        |         |         |         |         |        | 1        | dados para | o ensaio |           |             |                     |               |                 |        |
| L[mm]  | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm]  | bO      | S [mm] | a/w      | Pm [N]     | f(a/w)   | 0,01b0    | 0,005b0     | 0,0160 [%]          | 0,05b0[%]     |                 |        |
| 179,4  | 37,06  | 18,5   | 18,5   | 15,802  | 5,0815  | 20,8835 | 16,1765 | 148,24 | 0,563505 | 7903,224   | 3,295088 | 0,161765  | 0,0808825   | 1,61765             | 0,808825      |                 |        |
|        |        |        |        |         |         |         |         |        |          |            |          |           | 0,005b0/0,6 |                     |               |                 |        |
|        |        |        |        |         |         |         |         |        |          |            |          |           | 0,134804167 |                     |               |                 |        |

|          | Tração    |         |
|----------|-----------|---------|
| oys[MPa] | ots [MPa] | oy[MPa] |
| 377,83   | 590,2     | 484,015 |

|        |        |        |        |         |         |        |        |        |          |          |          |                     | Planeamento_213_6    |                      |                   |                         |          |       |            |                  |                |
|--------|--------|--------|--------|---------|---------|--------|--------|--------|----------|----------|----------|---------------------|----------------------|----------------------|-------------------|-------------------------|----------|-------|------------|------------------|----------------|
| L[mm]  | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm] | bO     | S [mm] | a/w      | Pm [N]   | f(a/w)   | Kmax_1[Mpa m^(1/2)] | K_Imposto [MPam^1/2] | Força resultante [N] | Força imposta [N] | K resultante [MPam^1/2] | Fmin [N] | ΔF[N] | Fmédio [N] | kmin [Mpa m^0,5] | ΔK [Mpa m^0,5] |
| 180,23 | 36,98  | 18,5   | 18,5   | 15,979  | 0       | 15,979 | 21,001 | 147,92 | 0,432098 | 13349,15 | 2,169508 | 23,8                | 23                   | 9428,917122          | 8000              | 19,51443603             | 800      | 7200  | 4400       | 1,951443603      | 17,56299243    |
| 180,23 | 36,98  | 18,5   | 18,5   | 15,979  | 0,5     | 16,479 | 20,501 | 147,92 | 0,445619 | 12721,07 | 2,256275 | 23,8                | 23                   | 9066,319097          | 8000              | 20,29489565             | 800      | 7200  | 4400       | 2,029489565      | 18,26540608    |
| 180,23 | 36,98  | 18,5   | 18,5   | 15,979  | 1       | 16,979 | 20,001 | 147,92 | 0,45914  | 12108,13 | 2,348208 | 23,8                | 23                   | 8711,371314          | 8000              | 21,12181807             | 800      | 7200  | 4400       | 2,112181807      | 19,00963626    |
| 180,23 | 36,98  | 18,5   | 18,5   | 15,979  | 1,5     | 17,479 | 19,501 | 147,92 | 0,472661 | 11510,32 | 2,445777 | 23,8                | 23                   | 8363,850168          | 8000              | 21,99943762             | 800      | 7200  | 4400       | 2,199943762      | 19,79949385    |
| 180,23 | 36,98  | 18,5   | 18,5   | 15,979  | 2       | 17,979 | 19,001 | 147,92 | 0,486182 | 10927,64 | 2,549507 | 23,8                | 23                   | 8023,553916          | 6200              | 17,77267299             | 620      | 5580  | 3410       | 1,777267299      | 15,99540569    |
| 180,23 | 36,98  | 18,5   | 18,5   | 15,979  | 2,5     | 18,479 | 18,501 | 147,92 | 0,499703 | 10360,1  | 2,659989 | 23,8                | 23                   | 7690,29932           | 6200              | 18,54284132             | 620      | 5580  | 3410       | 1,854284132      | 16,68855719    |
| 180,23 | 36,98  | 18,5   | 18,5   | 15,979  | 3       | 18,979 | 18,001 | 147,92 | 0,513223 | 9807,694 | 2,777883 | 23,8                | 23                   | 7363,919112          | 6200              | 19,36468853             | 620      | 5580  | 3410       | 1,936468853      | 17,42821968    |
| 180,23 | 36,98  | 18,5   | 18,5   | 15,979  | 3,5     | 19,479 | 17,501 | 147,92 | 0,526744 | 9270,419 | 2,90394  | 23,8                | 23                   | 7044,26012           | 6200              | 20,2434319              | 620      | 5580  | 3410       | 2,02434319       | 18,21908871    |
| 180,23 | 36,98  | 18,5   | 18,5   | 15,979  | 4       | 19,979 | 17,001 | 147,92 | 0,540265 | 8748,278 | 3,039007 | 23,8                | 23                   | 6731,181938          | 6200              | 21,18498673             | 620      | 5580  | 3410       | 2,118498673      | 19,06648805    |
| 180,23 | 36,98  | 18,5   | 18,5   | 15,979  | 4,5     | 20,479 | 16,501 | 147,92 | 0,553786 | 8241,271 | 3,18405  | 23,8                | 23                   | 6424,556034          | 6200              | 22,19608627             | 620      | 5580  | 3410       | 2,219608627      | 19,97647765    |

| 0,45W  | 16,641 |
|--------|--------|
| 0,7W   | 25,886 |
| 1passo | 18,979 |
| 2passo | 0      |
| I-s/2  | 16,155 |
| aling  | 19,965 |

| x      | Controlo                                                                                                                                                  |      |      |        |        |         |         |        |          |          |          |                                       |      |             |     |        |        |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|--------|--------|---------|---------|--------|----------|----------|----------|---------------------------------------|------|-------------|-----|--------|--------|
| L[mm]  | m) W (mm) B (mm) B (mm) ae (mm) aff(mm) a0(mm) b0 S (mm) a/w Pm (N) f(a/w) Fmédio(N) Fmáximo (N) K máximo (Mpam^0,5) R (Fmin/Fmax) Frequência (Hz) ciclos |      |      |        |        |         |         |        |          |          |          |                                       |      |             |     | ciclos |        |
| 180,23 | 36,98                                                                                                                                                     | 18,5 | 18,5 | 15,979 | 0,221  | 16,2    | 20,78   | 147,92 | 0,438075 | 13069,67 | 2,20725  | 4800                                  | 8000 | 19,8539225  | 0,2 | 25     | 82588  |
| 180,23 | 36,98                                                                                                                                                     | 18,5 | 18,5 | 15,979 | 1,322  | 17,301  | 19,679  | 147,92 | 0,467847 | 11721,41 | 2,410364 | 4400                                  | 8000 | 21,68090792 | 0,1 | 25     | 29132  |
| 180,23 | 36,98                                                                                                                                                     | 18,5 | 18,5 | 15,979 | 4,9325 | 20,9115 | 16,0685 | 147,92 | 0,565481 | 7814,916 | 3,318406 | 3410                                  | 6200 | 23,13268254 | 0,1 | 25     | 175453 |
|        |                                                                                                                                                           |      |      |        |        |         |         |        |          |          |          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |      |             |     |        | 287173 |

|          | Tração    |         |
|----------|-----------|---------|
| oys[MPa] | ots [MPa] | oy[MPa] |
| 377,83   | 590,2     | 484,015 |

|        | dados para o ensaio                                                                                                         |  |  |  |  |  |  |  |  |  |  |  |             |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|-------------|--|--|
| L[mm]  | nm] W [mm] B [mm] BN[mm] ae [mm] aff[mm] a0[mm] b0 S [mm] a/w Pm [N] f(a/w) 0,01b0 0,005b0 0,01b0 [%] 0,05b0[%]             |  |  |  |  |  |  |  |  |  |  |  |             |  |  |
| 180,24 | 80,24 37,07 18,45 18,45 15,663 4,9325 20,5955 16,4745 148,28 0,555584 8172,729 3,204149 0,164745 0,0823725 1,64745 0,823725 |  |  |  |  |  |  |  |  |  |  |  |             |  |  |
|        |                                                                                                                             |  |  |  |  |  |  |  |  |  |  |  | 0,00560/0,6 |  |  |
|        |                                                                                                                             |  |  |  |  |  |  |  |  |  |  |  | 0.1372875   |  |  |

|        |        |        |        |         |         |        |        |        |          |          |          |                     | Planeamento_213_7    |                      |                   |                         |          |       |            |                  |                |
|--------|--------|--------|--------|---------|---------|--------|--------|--------|----------|----------|----------|---------------------|----------------------|----------------------|-------------------|-------------------------|----------|-------|------------|------------------|----------------|
| L[mm]  | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm] | bO     | S [mm] | a/w      | Pm [N]   | f(a/w)   | Kmax_1[Mpa m^(1/2)] | K_Imposto [MPam^1/2] | Força resultante [N] | Força imposta [N] | K resultante [MPam^1/2] | Fmin [N] | ΔF[N] | Fmédio [N] | kmin [Mpa m^0,5] | ΔK [Mpa m^0,5] |
| 179,71 | 37,03  | 18,49  | 18,49  | 16,063  | 0       | 16,063 | 20,967 | 148,12 | 0,433783 | 13280,81 | 2,180054 | 23,8                | 23                   | 9384,569901          | 7200              | 17,64598716             | 720      | 6480  | 3960       | 1,764598716      | 15,88138845    |
| 179,71 | 37,03  | 18,49  | 18,49  | 16,063  | 0,5     | 16,563 | 20,467 | 148,12 | 0,447286 | 12654,95 | 2,267319 | 23,8                | 23                   | 9023,372689          | 7200              | 18,35233961             | 720      | 6480  | 3960       | 1,835233961      | 16,51710565    |
| 179,71 | 37,03  | 18,49  | 18,49  | 16,063  | 1       | 17,063 | 19,967 | 148,12 | 0,460789 | 12044,19 | 2,359792 | 23,8                | 23                   | 8669,777288          | 7200              | 19,10083668             | 720      | 6480  | 3960       | 1,910083668      | 17,19075301    |
| 179,71 | 37,03  | 18,49  | 18,49  | 16,063  | 1,5     | 17,563 | 19,467 | 148,12 | 0,474291 | 11448,54 | 2,457946 | 23,8                | 23                   | 8323,56385           | 7200              | 19,89532404             | 720      | 6480  | 3960       | 1,989532404      | 17,90579164    |
| 179,71 | 37,03  | 18,49  | 18,49  | 16,063  | 2       | 18,063 | 18,967 | 148,12 | 0,487794 | 10867,99 | 2,562312 | 23,8                | 23                   | 7984,533819          | 7200              | 20,74009626             | 720      | 6480  | 3960       | 2,074009626      | 18,66608663    |
| 179,71 | 37,03  | 18,49  | 18,49  | 16,063  | 2,5     | 18,563 | 18,467 | 148,12 | 0,501296 | 10302,55 | 2,673486 | 23,8                | 23                   | 7652,5067            | 7200              | 21,63996799             | 720      | 6480  | 3960       | 2,163996799      | 19,47597119    |
| 179,71 | 37,03  | 18,49  | 18,49  | 16,063  | 3       | 19,063 | 17,967 | 148,12 | 0,514799 | 9752,213 | 2,792136 | 23,8                | 23                   | 7327,31763           | 7200              | 22,60035778             | 720      | 6480  | 3960       | 2,260035778      | 20,340322      |
| 179,71 | 37,03  | 18,49  | 18,49  | 16,063  | 3,5     | 19,563 | 17,467 | 148,12 | 0,528301 | 9216,981 | 2,919019 | 23,8                | 23                   | 7008,815585          | 5200              | 17,06422413             | 520      | 4680  | 2860       | 1,706422413      | 15,35780171    |
| 179,71 | 37,03  | 18,49  | 18,49  | 16,063  | 4       | 20,063 | 16,967 | 148,12 | 0,541804 | 8696,853 | 3,054993 | 23,8                | 23                   | 6696,862119          | 5200              | 17,85911041             | 520      | 4680  | 2860       | 1,785911041      | 16,07319937    |
| 179,71 | 37,03  | 18,49  | 18,49  | 16,063  | 4,5     | 20,563 | 16,467 | 148,12 | 0,555307 | 8191,831 | 3,201034 | 23,8                | 23                   | 6391,330516          | 5200              | 18,71284855             | 520      | 4680  | 2860       | 1,871284855      | 16,8415637     |
| 179,71 | 37,03  | 18,49  | 18,49  | 16,063  | 5       | 21,063 | 15,967 | 148,12 | 0,568809 | 7701,914 | 3,358259 | 23,8                | 23                   | 6092,105296          | 5200              | 19,63196534             | 520      | 4680  | 2860       | 1,963196534      | 17,6687688     |
| 179,71 | 37,03  | 18,49  | 18,49  | 16,063  | 5,5     | 21,563 | 15,467 | 148,12 | 0,582312 | 7227,102 | 3,52795  | 23,8                | 23                   | 5799,082001          | 5200              | 20,62395392             | 520      | 4680  | 2860       | 2,062395392      | 18,56155853    |
| 179,71 | 37,03  | 18,49  | 18,49  | 16,063  | 6       | 22,063 | 14,967 | 148,12 | 0,595814 | 6767,395 | 3,711583 | 23,8                | 23                   | 5512,167207          | 5200              | 21,69745501             | 520      | 4680  | 2860       | 2,169745501      | 19,52770951    |
| 179,71 | 37,03  | 18,49  | 18,49  | 16,063  | 6,5     | 22,563 | 14,467 | 148,12 | 0,609317 | 6322,793 | 3,910873 | 23,8                | 23                   | 5231,278726          | 5200              | 22,862479               | 520      | 4680  | 2860       | 2,2862479        | 20,5762311     |

| 0,45W  | 16,6635 |
|--------|---------|
| 0,7W   | 25,921  |
| 1passo | 19,063  |
| 2passo | 22,563  |
| I-s/2  | 15,795  |
| Aling  | 19,97   |

|        |        |        |        |         |         |        |        |        |          |          |          | Controlo  |            |                     |               |                 |        |
|--------|--------|--------|--------|---------|---------|--------|--------|--------|----------|----------|----------|-----------|------------|---------------------|---------------|-----------------|--------|
| L[mm]  | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm] | b0     | S [mm] | a/w      | Pm [N]   | f(a/w)   | Fmédio[N] | Fmáximo[N] | K máximo [Mpam^0,5] | R (Fmin/Fmax) | Frequência [Hz] | ciclos |
| 179,71 | 37,03  | 18,49  | 18,49  | 16,063  | 0,5     | 16,563 | 20,467 | 148,12 | 0,447286 | 12654,95 | 2,267319 | 4320      | 7200       | 18,35233961         | 0,2           | 25              | 100982 |
| 179,71 | 37,03  | 18,49  | 18,49  | 16,063  | 3,202   | 19,265 | 17,765 | 148,12 | 0,520254 | 9534,16  | 2,84236  | 3960      | 7200       | 23,00688349         | 0,1           | 25              | 87209  |
| 179,71 | 37,03  | 18,49  | 18,49  | 16,063  | 6,574   | 22,637 | 14,393 | 148,12 | 0,611315 | 6258,276 | 3,941815 | 2860      | 5200       | 23,0433626          | 0,1           | 25              | 126233 |
|        |        |        |        |         |         |        |        |        |          |          |          |           |            |                     |               |                 | 314424 |

|          | Tração    |         |
|----------|-----------|---------|
| oys[MPa] | ots [MPa] | oy[MPa] |
| 377,83   | 590,2     | 484,015 |

|        | dados para o ensaio                                                                                                                                                                                                                    |               |       |        |       |        |        |        |          |          |          |         |             |        |         |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|--------|-------|--------|--------|--------|----------|----------|----------|---------|-------------|--------|---------|
| L[mm]  | mm         W (mm)         B (mm)         BN(mm)         ae (mm)         aff(mm)         a0(mm)         b0         S (mm)         a/w         Pm [N]         f(a/w)         0,01b0         0,005b0         0,01b0 (%)         0,05b0(%) |               |       |        |       |        |        |        |          |          |          |         |             |        |         |
| 179,71 | 37,03                                                                                                                                                                                                                                  | 18,49         | 18,49 | 16,063 | 6,574 | 22,637 | 14,393 | 148,12 | 0,611315 | 6258,276 | 3,941815 | 0,14393 | 0,071965    | 1,4393 | 0,71965 |
|        |                                                                                                                                                                                                                                        | 28 - 281 - 22 |       |        |       |        |        |        |          |          |          |         | 0,00560/0,6 |        |         |
|        |                                                                                                                                                                                                                                        |               |       |        |       |        |        |        |          |          |          |         | 0.119941667 | 1      |         |

|        |        |        |        |         |         |        |        |        |          |          |          |                     | Planeamento_217_1    |                      |                   |                         |          |       |            |                  |                |
|--------|--------|--------|--------|---------|---------|--------|--------|--------|----------|----------|----------|---------------------|----------------------|----------------------|-------------------|-------------------------|----------|-------|------------|------------------|----------------|
| L[mm]  | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm] | bO     | S [mm] | a/w      | Pm [N]   | f(a/w)   | Kmax_1[Mpa m^(1/2)] | K_Imposto [MPam^1/2] | Força resultante [N] | Força imposta [N] | K resultante [MPam^1/2] | Fmin [N] | ΔF[N] | Fmédio [N] | kmin [Mpa m^0,5] | ΔK [Mpa m^0,5] |
| 196,31 | 37,17  | 18,5   | 18,5   | 15,999  | 0       | 15,999 | 21,171 | 148,68 | 0,430428 | 13496,8  | 2,159124 | 23,8                | 23                   | 9498,571445          | 7500              | 18,16062563             | 750      | 6750  | 4125       | 1,816062563      | 16,34456306    |
| 196,31 | 37,17  | 18,5   | 18,5   | 15,999  | 0,5     | 16,499 | 20,671 | 148,68 | 0,443879 | 12866,81 | 2,24483  | 23,8                | 23                   | 9135,921986          | 7500              | 18,88150974             | 750      | 6750  | 4125       | 1,888150974      | 16,99335877    |
| 196,31 | 37,17  | 18,5   | 18,5   | 15,999  | 1       | 16,999 | 20,171 | 148,68 | 0,457331 | 12251,88 | 2,335593 | 23,8                | 23                   | 8780,894501          | 7500              | 19,64492342             | 750      | 6750  | 4125       | 1,964492342      | 17,68043107    |
| 196,31 | 37,17  | 18,5   | 18,5   | 15,999  | 1,5     | 17,499 | 19,671 | 148,68 | 0,470783 | 11652,01 | 2,431869 | 23,8                | 23                   | 8433,265109          | 7500              | 20,45471093             | 750      | 6750  | 4125       | 2,045471093      | 18,40923984    |
| 196,31 | 37,17  | 18,5   | 18,5   | 15,999  | 2       | 17,999 | 19,171 | 148,68 | 0,484235 | 11067,19 | 2,534168 | 23,8                | 23                   | 8092,831911          | 7500              | 21,31515913             | 750      | 6750  | 4125       | 2,131515913      | 19,18364322    |
| 196,31 | 37,17  | 18,5   | 18,5   | 15,999  | 2,5     | 18,499 | 18,671 | 148,68 | 0,497686 | 10497,43 | 2,64306  | 23,8                | 23                   | 7759,411591          | 7500              | 22,23106713             | 750      | 6750  | 4125       | 2,223106713      | 20,00796042    |
| 196,31 | 37,17  | 18,5   | 18,5   | 15,999  | 3       | 18,999 | 18,171 | 148,68 | 0,511138 | 9942,73  | 2,759188 | 23,8                | 23                   | 7432,836832          | 5000              | 15,47188545             | 500      | 4500  | 2750       | 1,547188545      | 13,9246969     |
| 196,31 | 37,17  | 18,5   | 18,5   | 15,999  | 3,5     | 19,499 | 17,671 | 148,68 | 0,52459  | 9403,083 | 2,883273 | 23,8                | 23                   | 7112,954397          | 5000              | 16,16768414             | 500      | 4500  | 2750       | 1,616768414      | 14,55091573    |
| 196,31 | 37,17  | 18,5   | 18,5   | 15,999  | 4       | 19,999 | 17,171 | 148,68 | 0,538041 | 8878,491 | 3,016136 | 23,8                | 23                   | 6799,623763          | 5000              | 16,91270047             | 500      | 4500  | 2750       | 1,691270047      | 15,22143042    |
| 196,31 | 37,17  | 18,5   | 18,5   | 15,999  | 4,5     | 20,499 | 16,671 | 148,68 | 0,551493 | 8368,956 | 3,158708 | 23,8                | 23                   | 6492,716181          | 5000              | 17,71215571             | 500      | 4500  | 2750       | 1,771215571      | 15,94094014    |
| 196,31 | 37,17  | 18,5   | 18,5   | 15,999  | 5       | 20,999 | 16,171 | 148,68 | 0,564945 | 7874,478 | 3,31205  | 23,8                | 23                   | 6192,114104          | 5000              | 18,57200918             | 500      | 4500  | 2750       | 1,857200918      | 16,71480827    |
| 196,31 | 37,17  | 18,5   | 18,5   | 15,999  | 5,5     | 21,499 | 15,671 | 148,68 | 0,578397 | 7395,055 | 3,477382 | 23,8                | 23                   | 5897,710898          | 5000              | 19,49909075             | 500      | 4500  | 2750       | 1,949909075      | 17,54918167    |
| 196,31 | 37,17  | 18,5   | 18,5   | 15,999  | 6       | 21,999 | 15,171 | 148,68 | 0,591848 | 6930,689 | 3,656105 | 23,8                | 23                   | 5609,410803          | 5000              | 20,5012619              | 500      | 4500  | 2750       | 2,05012619       | 18,45113571    |
| 196,31 | 37,17  | 18,5   | 18,5   | 15,999  | 6,5     | 22,499 | 14,671 | 148,68 | 0,6053   | 6481,379 | 3,84984  | 23,8                | 23                   | 5327,129079          | 5000              | 21,58761282             | 500      | 4500  | 2750       | 2,158761282      | 19,42885154    |

| 0,45w | 8,325  |
|-------|--------|
| 0,7W  | 12,95  |
| 1p    | 18,499 |
| 2p    | 22,499 |
| I-s/2 | 23,815 |
| alinh | 19,965 |

|        |        |        | Controlo |         |         |         |         |        |          |          |          |           |            |                     |               |                 |        |
|--------|--------|--------|----------|---------|---------|---------|---------|--------|----------|----------|----------|-----------|------------|---------------------|---------------|-----------------|--------|
| L[mm]  | W [mm] | B [mm] | BN[mm]   | ae [mm] | aff[mm] | a0[mm]  | b0      | S [mm] | a/w      | Pm [N]   | f(a/w)   | Fmédio[N] | Fmáximo[N] | K máximo [Mpam^0,5] | R (Fmin/Fmax) | Frequência [Hz] | ciclos |
| 196,31 | 37,17  | 18,5   | 18,5     | 15,999  | 0,489   | 16,488  | 20,682  | 148,68 | 0,443584 | 12880,51 | 2,242892 | 4500      | 7500       | 18,8652061          | 0,2           | 25              | 57024  |
| 196,31 | 37,17  | 18,5   | 18,5     | 15,999  | 2,375   | 18,374  | 18,796  | 148,68 | 0,494323 | 10638,46 | 2,615185 | 4125      | 7500       | 21,99660684         | 0,1           | 25              | 60752  |
| 196,31 | 37,17  | 18,5   | 18,5     | 15,999  | 6,6975  | 22,6965 | 14,4735 | 148,68 | 0,610613 | 6308,05  | 3,930905 | 2750      | 5000       | 22,04218168         | 0,1           | 25              | 211353 |
|        |        |        |          |         |         |         |         |        |          |          |          |           |            |                     |               |                 | 329129 |

|          | Tração    |         |
|----------|-----------|---------|
| oys[MPa] | ots [MPa] | oy[MPa] |
| 377,83   | 590,2     | 484,015 |

|         | dados para o ensaio |        |        |         |         |         |         |        |          |         |          |          |           |            |           |
|---------|---------------------|--------|--------|---------|---------|---------|---------|--------|----------|---------|----------|----------|-----------|------------|-----------|
| L[mm] V | W [mm]              | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm]  | b0      | S [mm] | a/w      | Pm [N]  | f(a/w)   | 0,01b0   | 0,005b0   | 0,01b0 [%] | 0,05b0[%] |
| 196,31  | 37,17               | 18,5   | 18,5   | 15,999  | 6,6975  | 22,6965 | 14,4735 | 148,68 | 0,610613 | 6308,05 | 3,930905 | 0,144735 | 0,0723675 | 1,44735    | 0,723675  |

0,005b0/0,6 0,1206125

|        |        |        |        |         |         |        |        |        |          |          |          |                     | Planeamento_217_2    |                      |                   |                         |          |       |            |                  |                |
|--------|--------|--------|--------|---------|---------|--------|--------|--------|----------|----------|----------|---------------------|----------------------|----------------------|-------------------|-------------------------|----------|-------|------------|------------------|----------------|
| L[mm]  | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm] | bO     | S [mm] | a/w      | Pm [N]   | f(a/w)   | Kmax_1[Mpa m^(1/2)] | K_Imposto [MPam^1/2] | Força resultante [N] | Força imposta [N] | K resultante [MPam^1/2] | Fmin [N] | ΔF[N] | Fmédio [N] | kmin [Mpa m^0,5] | ΔK [Mpa m^0,5] |
| 193,84 | 37,07  | 18,57  | 18,57  | 15,973  | 0       | 15,973 | 21,097 | 148,28 | 0,430888 | 13489,62 | 2,161974 | 23,8                | 23                   | 9509,124462          | 7500              | 18,14047136             | 750      | 6750  | 4125       | 1,814047136      | 16,32642423    |
| 193,84 | 37,07  | 18,57  | 18,57  | 15,973  | 0,5     | 16,473 | 20,597 | 148,28 | 0,444376 | 12857,78 | 2,248084 | 23,8                | 23                   | 9144,888408          | 7500              | 18,86299672             | 750      | 6750  | 4125       | 1,886299672      | 16,97669704    |
| 193,84 | 37,07  | 18,57  | 18,57  | 15,973  | 1       | 16,973 | 20,097 | 148,28 | 0,457864 | 12241,1  | 2,339295 | 23,8                | 23                   | 8788,325396          | 7500              | 19,62831282             | 750      | 6750  | 4125       | 1,962831282      | 17,66548154    |
| 193,84 | 37,07  | 18,57  | 18,57  | 15,973  | 1,5     | 17,473 | 19,597 | 148,28 | 0,471351 | 11639,58 | 2,436067 | 23,8                | 23                   | 8439,2101            | 7000              | 19,07761486             | 700      | 6300  | 3850       | 1,907761486      | 17,16985337    |
| 193,84 | 37,07  | 18,57  | 18,57  | 15,973  | 2       | 17,973 | 19,097 | 148,28 | 0,484839 | 11053,21 | 2,538918 | 23,8                | 23                   | 8097,339318          | 7000              | 19,88307439             | 700      | 6300  | 3850       | 1,988307439      | 17,89476695    |
| 193,84 | 37,07  | 18,57  | 18,57  | 15,973  | 2,5     | 18,473 | 18,597 | 148,28 | 0,498327 | 10481,99 | 2,648426 | 23,8                | 23                   | 7762,528547          | 7000              | 20,74066447             | 700      | 6300  | 3850       | 2,074066447      | 18,66659802    |
| 193,84 | 37,07  | 18,57  | 18,57  | 15,973  | 3       | 18,973 | 18,097 | 148,28 | 0,511815 | 9925,933 | 2,76524  | 23,8                | 23                   | 7434,609397          | 7000              | 21,65547528             | 700      | 6300  | 3850       | 2,165547528      | 19,48992775    |

| 0,45w | 16,6815 |
|-------|---------|
| 0,7W  | 25,949  |
| 1p    | 16,973  |
| 2p    | 18,973  |
| I-s/2 | 22,78   |
| aling | 19,93   |

| -      |          |        |        |         |         |         |         |        |          |          |          |           |            |                     |               |                 |        |
|--------|----------|--------|--------|---------|---------|---------|---------|--------|----------|----------|----------|-----------|------------|---------------------|---------------|-----------------|--------|
|        | Controlo |        |        |         |         |         |         |        |          |          |          |           |            |                     |               |                 |        |
| L[mm]  | W [mm]   | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm]  | bO      | S [mm] | a/w      | Pm [N]   | f(a/w)   | Fmédio[N] | Fmáximo[N] | K máximo [Mpam^0,5] | R (Fmin/Fmax) | Frequência [Hz] | ciclos |
| 193,84 | 37,07    | 18,57  | 18,57  | 15,973  | 0,2655  | 16,2385 | 20,8315 | 148,28 | 0,43805  | 13152,23 | 2,20709  | 4500      | 7500       | 18,51902549         | 0,2           | 25              | 32252  |
| 193,84 | 37,07    | 18,57  | 18,57  | 15,973  | 1,146   | 17,119  | 19,951  | 148,28 | 0,461802 | 12063,89 | 2,366955 | 4125      | 7500       | 19,8604054          | 0,1           | 25              | 36869  |
| 193.84 | 37.07    | 18,57  | 18.57  | 15,973  | 3,009   | 18,982  | 18.088  | 148,28 | 0.512058 | 9916,062 | 2,767414 | 3850      | 7000       | 21,67250045         | 0.1           | 25              | 68072  |

|          | Tração    |         |
|----------|-----------|---------|
| oys[MPa] | ots [MPa] | oy[MPa] |
| 377,83   | 590,2     | 484,015 |

| E   |        |        |        |        |         |         |        |        |        | d        | lados para ( | o ensaio |         |             |            |           |
|-----|--------|--------|--------|--------|---------|---------|--------|--------|--------|----------|--------------|----------|---------|-------------|------------|-----------|
|     | L[mm]  | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm] | bO     | S [mm] | a/w      | Pm [N]       | f(a/w)   | 0,01b0  | 0,005b0     | 0,01b0 [%] | 0,05b0[%] |
| - [ | 193,84 | 37,07  | 18,57  | 18,57  | 15,973  | 3,009   | 18,982 | 18,088 | 148,28 | 0,512058 | 9916,062     | 2,767414 | 0,18088 | 0,09044     | 1,8088     | 0,9044    |
|     |        |        |        |        |         |         |        |        |        |          |              |          |         | 0,005b0/0,6 |            |           |
|     |        |        |        |        |         |         |        |        |        |          |              |          |         | 0,150733333 |            |           |

|        |        | ~      |        |         |         |        |        |        |          |          |          |                     | Planeamento_217_3    |                      |                   |                         |          |       |            |                  |                |
|--------|--------|--------|--------|---------|---------|--------|--------|--------|----------|----------|----------|---------------------|----------------------|----------------------|-------------------|-------------------------|----------|-------|------------|------------------|----------------|
| L[mm]  | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm] | bO     | S [mm] | a/w      | Pm [N]   | f(a/w)   | Kmax_1[Mpa m^(1/2)] | K_Imposto [MPam^1/2] | Força resultante [N] | Força imposta [N] | K resultante [MPam^1/2] | Fmin [N] | ΔF[N] | Fmédio [N] | kmin [Mpa m^0,5] | ΔK [Mpa m^0,5] |
| 193,71 | 37,07  | 18,6   | 18,6   | 15,967  | 0       | 15,967 | 21,103 | 148,28 | 0,430726 | 13519,09 | 2,16097  | 23,8                | 23                   | 9528,912094          | 7500              | 18,10280106             | 750      | 6750  | 4125       | 1,810280106      | 16,29252096    |
| 193,71 | 37,07  | 18,6   | 18,6   | 15,967  | 0,5     | 16,467 | 20,603 | 148,28 | 0,444214 | 12886,06 | 2,247022 | 23,8                | 23                   | 9163,993914          | 7500              | 18,82367029             | 750      | 6750  | 4125       | 1,882367029      | 16,94130326    |
| 193,71 | 37,07  | 18,6   | 18,6   | 15,967  | 1       | 16,967 | 20,103 | 148,28 | 0,457702 | 12268,2  | 2,338168 | 23,8                | 23                   | 8806,764033          | 7500              | 19,58721721             | 750      | 6750  | 4125       | 1,958721721      | 17,62849549    |
| 193,71 | 37,07  | 18,6   | 18,6   | 15,967  | 1,5     | 17,467 | 19,603 | 148,28 | 0,47119  | 11665,52 | 2,434871 | 23,8                | 23                   | 8456,996469          | 7000              | 19,03749169             | 700      | 6300  | 3850       | 1,903749169      | 17,13374252    |
| 193,71 | 37,07  | 18,6   | 18,6   | 15,967  | 2       | 17,967 | 19,103 | 148,28 | 0,484678 | 11078,03 | 2,537646 | 23,8                | 23                   | 8114,487446          | 7000              | 19,84105602             | 700      | 6300  | 3850       | 1,984105602      | 17,85695042    |
| 193,71 | 37,07  | 18,6   | 18,6   | 15,967  | 2,5     | 18,467 | 18,603 | 148,28 | 0,498166 | 10505,7  | 2,64707  | 23,8                | 23                   | 7779,051959          | 7000              | 20,69660941             | 700      | 6300  | 3850       | 2,069660941      | 18,62694847    |
| 193,71 | 37,07  | 18,6   | 18,6   | 15,967  | 3       | 18,967 | 18,103 | 148,28 | 0,511654 | 9948,562 | 2,763792 | 23,8                | 23                   | 7450,521162          | 7000              | 21,60922659             | 700      | 6300  | 3850       | 2,160922659      | 19,44830393    |

| 0,45w | 16,6815 |
|-------|---------|
| 0,7W  | 25,949  |
| 1p    | 16,967  |
| 2p    | 18,967  |
| I-s/2 | 22,715  |

| 1.31 - | 22,720   |        |        |         |         |         |         |        |          |          |          |           |            |                     |               |                 |        |
|--------|----------|--------|--------|---------|---------|---------|---------|--------|----------|----------|----------|-----------|------------|---------------------|---------------|-----------------|--------|
| -      |          |        |        |         |         |         |         |        |          |          |          | Controlo  |            |                     |               |                 |        |
| L[mm   | ] W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm]  | b0      | S [mm] | a/w      | Pm [N]   | f(a/w)   | Fmédio[N] | Fmáximo[N] | K máximo [Mpam^0,5] | R (Fmin/Fmax) | Frequência [Hz] | ciclos |
| 193,7  | 37,07    | 18,6   | 18,6   | 15,967  | 0,4465  | 16,4135 | 20,6565 | 148,28 | 0,44277  | 12953,07 | 2,237579 | 4500      | 7500       | 18,74456279         | 0,2           | 25              | 61177  |
| 193,7  | 37,07    | 18,6   | 18,6   | 15,967  | 0,8135  | 16,7805 | 20,2895 | 148,28 | 0,452671 | 12496,89 | 2,303547 | 4125      | 7500       | 19,29718727         | 0,1           | 25              | 16706  |
|        | 37,07    | 18,6   | 18,6   | 15,967  | 3,0765  | 19,0435 | 18,0265 | 148,28 | 0,513717 | 9864,658 | 2,78234  | 3850      | 7000       | 21,75424323         | 0,1           | 25              | 79737  |
|        |          |        |        |         |         |         |         |        |          |          |          |           |            |                     |               |                 | 157620 |

|          | Tração    |         |  |  |
|----------|-----------|---------|--|--|
| oys[MPa] | ots [MPa] | σy[MPa] |  |  |
| 377,83   | 590,2     | 484,015 |  |  |

|        |        |               |        |         |         |         |            |        | c        | lados para o | o ensaio |          |             |            |           |
|--------|--------|---------------|--------|---------|---------|---------|------------|--------|----------|--------------|----------|----------|-------------|------------|-----------|
| L [mm] | W [mm] | B [mm]        | BN[mm] | ae [mm] | aff[mm] | a0[mm]  | b0         | S [mm] | a/w      | Pm [N]       | f(a/w)   | 0,01b0   | 0,00560     | 0,01b0 [%] | 0,05b0[%] |
| 193,71 | 37,07  | 18,6          | 18,6   | 15,967  | 3,0765  | 19,0435 | 18,0265    | 148,28 | 0,513717 | 9864,658     | 2,78234  | 0,180265 | 0,0901325   | 1,80265    | 0,901325  |
|        |        | s - 1817 - 11 |        |         |         |         | (1) (2, 1) |        | 00-00    |              |          |          |             |            |           |
|        |        |               |        |         |         |         |            |        |          |              |          |          | 0,005b0/0,6 |            |           |
|        |        |               |        |         |         |         |            |        |          |              |          |          | 0,150220833 |            |           |

|        |        |        |        |         |         |        |        |        |          |          |          |                     | Planeamento_217_4    |                      |                   |                         |          |       |            |                  |                |
|--------|--------|--------|--------|---------|---------|--------|--------|--------|----------|----------|----------|---------------------|----------------------|----------------------|-------------------|-------------------------|----------|-------|------------|------------------|----------------|
| L [mm] | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm] | b0     | S [mm] | a/w      | Pm [N]   | f(a/w)   | Kmax_1[Mpa m^(1/2)] | K_Imposto [MPam^1/2] | Força resultante [N] | Força imposta [N] | K resultante [MPam^1/2] | Fmin [N] | ΔF[N] | Fmédio [N] | kmin [Mpa m^0,5] | ΔK [Mpa m^0,5] |
| 196,08 | 37,03  | 18,6   | 18,6   | 16,098  | 0       | 16,098 | 20,932 | 148,12 | 0,434729 | 13315,26 | 2,186002 | 23,8                | 23                   | 9414,712084          | 7500              | 18,32238718             | 750      | 6750  | 4125       | 1,832238718      | 16,49014846    |
| 196,08 | 37,03  | 18,6   | 18,6   | 16,098  | 0,5     | 16,598 | 20,432 | 148,12 | 0,448231 | 12686,73 | 2,273618 | 23,8                | 23                   | 9051,909052          | 7500              | 19,05675356             | 750      | 6750  | 4125       | 1,905675356      | 17,1510782     |
| 196,08 | 37,03  | 18,6   | 18,6   | 16,098  | 1       | 17,098 | 19,932 | 148,12 | 0,461734 | 12073,41 | 2,366472 | 23,8                | 23                   | 8696,736794          | 7500              | 19,83502595             | 750      | 6750  | 4125       | 1,983502595      | 17,85152336    |
| 196,08 | 37,03  | 18,6   | 18,6   | 16,098  | 1,5     | 17,598 | 19,432 | 148,12 | 0,475236 | 11475,27 | 2,465043 | 23,8                | 23                   | 8348,975781          | 7500              | 20,66121696             | 750      | 6750  | 4125       | 2,066121696      | 18,59509526    |
| 196,08 | 37,03  | 18,6   | 18,6   | 16,098  | 2       | 18,098 | 18,932 | 148,12 | 0,488739 | 10892,34 | 2,569865 | 23,8                | 23                   | 8008,427541          | 7500              | 21,53980878             | 750      | 6750  | 4125       | 2,153980878      | 19,3858279     |
| 196,08 | 37,03  | 18,6   | 18,6   | 16,098  | 2,5     | 18,598 | 18,432 | 148,12 | 0,502241 | 10324,59 | 2,68154  | 23,8                | 23                   | 7674,911979          | 7500              | 22,4758278              | 750      | 6750  | 4125       | 2,24758278       | 20,22824502    |
| 196,08 | 37,03  | 18,6   | 18,6   | 16,098  | 3       | 19,098 | 17,932 | 148,12 | 0,515744 | 9772,047 | 2,800741 | 23,8                | 23                   | 7348,263974          | 4400              | 13,77196034             | 440      | 3960  | 2420       | 1,377195034      | 12,3947643     |
| 196,08 | 37,03  | 18,6   | 18,6   | 16,098  | 3,5     | 19,598 | 17,432 | 148,12 | 0,529247 | 9234,694 | 2,928231 | 23,8                | 23                   | 7028,33263           | 4400              | 14,39886319             | 440      | 3960  | 2420       | 1,439886319      | 12,95897687    |
| 196,08 | 37,03  | 18,6   | 18,6   | 16,098  | 4       | 20,098 | 16,932 | 148,12 | 0,542749 | 8712,536 | 3,064876 | 23,8                | 23                   | 6714,979522          | 4400              | 15,07078311             | 440      | 3960  | 2420       | 1,507078311      | 13,5637048     |
| 196,08 | 37,03  | 18,6   | 18,6   | 16,098  | 4,5     | 20,598 | 16,432 | 148,12 | 0,556252 | 8205,573 | 3,211662 | 23,8                | 23                   | 6408,077987          | 4400              | 15,79256685             | 440      | 3960  | 2420       | 1,579256685      | 14,21331017    |
| 196,08 | 37,03  | 18,6   | 18,6   | 16,098  | 5       | 21,098 | 15,932 | 148,12 | 0,569754 | 7713,805 | 3,369716 | 23,8                | 23                   | 6107,512638          | 4400              | 16,56975695             | 440      | 3960  | 2420       | 1,656975695      | 14,91278126    |
| 196,08 | 37,03  | 18,6   | 18,6   | 16,098  | 5,5     | 21,598 | 15,432 | 148,12 | 0,583257 | 7237,232 | 3,540332 | 23,8                | 23                   | 5813,179169          | 4400              | 17,40871855             | 440      | 3960  | 2420       | 1,740871855      | 15,66784669    |
| 196,08 | 37,03  | 18,6   | 18,6   | 16,098  | 6       | 22,098 | 14,932 | 148,12 | 0,596759 | 6775,854 | 3,725003 | 23,8                | 23                   | 5524,984381          | 4400              | 18,31679386             | 440      | 3960  | 2420       | 1,831679386      | 16,48511448    |
| 196,08 | 37,03  | 18,6   | 18,6   | 16,098  | 6,5     | 22,598 | 14,432 | 148,12 | 0,610262 | 6329,671 | 3,92546  | 23,8                | 23                   | 5242,846403          | 4400              | 19,30249186             | 440      | 3960  | 2420       | 1,930249186      | 17,37224267    |
| 196,08 | 37,03  | 18,6   | 18,6   | 16,098  | 7       | 23,098 | 13,932 | 148,12 | 0,623765 | 5898,682 | 4,143718 | 23,8                | 23                   | 4966,695059          | 4400              | 20,37572245             | 440      | 3960  | 2420       | 2,037572245      | 18,3381502     |
| 196,08 | 37,03  | 18,6   | 18,6   | 16,098  | 7,5     | 23,598 | 13,432 | 148,12 | 0,637267 | 5482,889 | 4,382136 | 23,8                | 23                   | 4696,472371          | 4400              | 21,54808801             | 440      | 3960  | 2420       | 2,154808801      | 19,39327921    |
| 196,08 | 37,03  | 18,6   | 18,6   | 16,098  | 8       | 24,098 | 12,932 | 148,12 | 0,65077  | 5082,29  | 4,643494 | 23,8                | 23                   | 4432,133168          | 4400              | 22,83324895             | 440      | 3960  | 2420       | 2,283324895      | 20,54992405    |

| 0,45w | 16,6635 |
|-------|---------|
| 0,7W  | 25,921  |
| 1p    | 18,598  |
| 2p    | 24,098  |
| I-s/2 | 23,98   |
| alin  | 19,915  |

| alin   | 19,915    |        |        |         |         |          |          |        |          |          |          |           |            |                     |               |                 |        |
|--------|-----------|--------|--------|---------|---------|----------|----------|--------|----------|----------|----------|-----------|------------|---------------------|---------------|-----------------|--------|
|        |           |        |        |         |         |          | 17       |        |          |          | (        | Controlo  |            |                     |               |                 | 71     |
| L [mm] | W [mm]    | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm]   | b0       | S [mm] | a/w      | Pm [N]   | f(a/w)   | Fmédio[N] | Fmáximo[N] | K máximo [Mpam^0,5] | R (Fmin/Fmax) | Frequência [Hz] | ciclos |
| 196,08 | 37,03     | 18,6   | 18,6   | 16,098  | 0,3655  | 16,4635  | 20,5665  | 148,12 | 0,444599 | 12854,31 | 2,249553 | 4500      | 7500       | 18,85504901         | 0,2           | 25              | 47099  |
| 196,08 | 37,03     | 18,6   | 18,6   | 16,098  | 2,67445 | 18,77245 | 18,25755 | 148,12 | 0,506952 | 10130,08 | 2,722237 | 4125      | 7500       | 22,81693993         | 0,1           | 25              | 75047  |
| 196,08 | 37,03     | 18,6   | 18,6   | 16,098  | 8,0005  | 24,0985  | 12,9315  | 148,12 | 0,650783 | 5081,897 | 4,643767 | 2420      | 4400       | 22,83459573         | 0,1           | 25              | 448018 |
|        | · · · · · |        |        |         |         |          |          |        |          |          |          |           |            |                     |               |                 | 570164 |
|        |           |        |        |         |         |          |          |        |          |          |          |           |            |                     |               |                 |        |

| Tração   |           |         |  |  |  |  |  |  |  |  |
|----------|-----------|---------|--|--|--|--|--|--|--|--|
| oys[MPa] | ots [MPa] | σy[MPa] |  |  |  |  |  |  |  |  |
| 377,83   | 590,2     | 484,015 |  |  |  |  |  |  |  |  |

|        |        |        |        |         |         |         |         |        | dad      | os para o e | nsaio    |          |             |            |           |
|--------|--------|--------|--------|---------|---------|---------|---------|--------|----------|-------------|----------|----------|-------------|------------|-----------|
| L [mm] | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm]  | b0      | S [mm] | a/w      | Pm [N]      | f(a/w)   | 0,01b0   | 0,005b0     | 0,01b0 [%] | 0,05b0[%] |
| 196,08 | 37,03  | 18,6   | 18,6   | 16,098  | 8,0005  | 24,0985 | 12,9315 | 148,12 | 0,650783 | 5081,897    | 4,643767 | 0,129315 | 0,0646575   | 1,29315    | 0,646575  |
|        |        |        |        |         |         |         |         |        |          |             |          |          | 0,005b0/0,6 |            |           |
|        |        |        |        |         |         |         |         |        |          |             |          |          | 0.1077625   |            |           |

|        |        |        |        |         |         |        |       |        |          |          |          |                     | Planeamento_217_5    |                      |                   |                         |          |               |            |                  |                |
|--------|--------|--------|--------|---------|---------|--------|-------|--------|----------|----------|----------|---------------------|----------------------|----------------------|-------------------|-------------------------|----------|---------------|------------|------------------|----------------|
| L [mm] | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm] | b0    | S [mm] | a/w      | Pm [N]   | f(a/w)   | Kmax_1[Mpa m^(1/2)] | K_Imposto [MPam^1/2] | Força resultante [N] | Força imposta [N] | K resultante [MPam^1/2] | Fmin [N] | $\Delta F[N]$ | Fmédio [N] | kmin [Mpa m^0,5] | ΔK [Mpa m^0,5] |
| 195,09 | 37,06  | 18,62  | 18,62  | 15,65   | 0       | 15,65  | 21,41 | 148,24 | 0,422288 | 13934,02 | 2,109544 | 23,8                | 23                   | 9770,386193          | 7500              | 17,65539218             | 750      | 6750          | 4125       | 1,765539218      | 15,88985296    |
| 195,09 | 37,06  | 18,62  | 18,62  | 15,65   | 0,5     | 16,15  | 20,91 | 148,24 | 0,43578  | 13290,8  | 2,192646 | 23,8                | 23                   | 9400,085452          | 7500              | 18,35089701             | 750      | 6750          | 4125       | 1,835089701      | 16,51580731    |
| 195,09 | 37,06  | 18,62  | 18,62  | 15,65   | 1       | 16,65  | 20,41 | 148,24 | 0,449271 | 12662,78 | 2,28058  | 23,8                | 23                   | 9037,639143          | 7500              | 19,08684306             | 750      | 6750          | 4125       | 1,908684306      | 17,17815876    |
| 195,09 | 37,06  | 18,62  | 18,62  | 15,65   | 1,5     | 17,15  | 19,91 | 148,24 | 0,462763 | 12049,96 | 2,373778 | 23,8                | 23                   | 8682,804786          | 7500              | 19,86685227             | 750      | 6750          | 4125       | 1,986685227      | 17,88016705    |
| 195,09 | 37,06  | 18,62  | 18,62  | 15,65   | 2       | 17,65  | 19,41 | 148,24 | 0,476255 | 11452,34 | 2,472724 | 23,8                | 23                   | 8335,364813          | 7500              | 20,69495503             | 750      | 6750          | 4125       | 2,069495503      | 18,62545953    |
| 195,09 | 37,06  | 18,62  | 18,62  | 15,65   | 2,5     | 18,15  | 18,91 | 148,24 | 0,489746 | 10869,92 | 2,577954 | 23,8                | 23                   | 7995,122504          | 7500              | 21,5756544              | 750      | 6750          | 4125       | 2,15756544       | 19,41808896    |
| 195,09 | 37,06  | 18,62  | 18,62  | 15,65   | 3       | 18,65  | 18,41 | 148,24 | 0,503238 | 10302,69 | 2,690071 | 23,8                | 23                   | 7661,898875          | 7500              | 22,51400114             | 750      | 6750          | 4125       | 2,251400114      | 20,26260102    |
| 195,09 | 37,06  | 18,62  | 18,62  | 15,65   | 3,5     | 19,15  | 17,91 | 148,24 | 0,51673  | 9750,666 | 2,809757 | 23,8                | 23                   | 7335,530345          | 4400              | 13,79586686             | 440      | 3960          | 2420       | 1,379586686      | 12,41628018    |
| 195,09 | 37,06  | 18,62  | 18,62  | 15,65   | 4       | 19,65  | 17,41 | 148,24 | 0,530221 | 9213,839 | 2,937777 | 23,8                | 23                   | 7015,867016          | 4400              | 14,42444672             | 440      | 3960          | 2420       | 1,442444672      | 12,98200205    |
| 195,09 | 37,06  | 18,62  | 18,62  | 15,65   | 4,5     | 20,15  | 16,91 | 148,24 | 0,543713 | 8692,212 | 3,075005 | 23,8                | 23                   | 6702,771473          | 4400              | 15,09823219             | 440      | 3960          | 2420       | 1,509823219      | 13,58840897    |
| 195,09 | 37,06  | 18,62  | 18,62  | 15,65   | 5       | 20,65  | 16,41 | 148,24 | 0,557205 | 8185,784 | 3,222432 | 23,8                | 23                   | 6396,117992          | 4400              | 15,82209711             | 440      | 3960          | 2420       | 1,582209711      | 14,2398874     |
| 195,09 | 37,06  | 18,62  | 18,62  | 15,65   | 5,5     | 21,15  | 15,91 | 148,24 | 0,570696 | 7694,554 | 3,381194 | 23,8                | 23                   | 6095,792087          | 4400              | 16,60161609             | 440      | 3960          | 2420       | 1,660161609      | 14,94145448    |
| 195,09 | 37,06  | 18,62  | 18,62  | 15,65   | 6       | 21,65  | 15,41 | 148,24 | 0,584188 | 7218,523 | 3,552595 | 23,8                | 23                   | 5801,690325          | 4400              | 17,4431923              | 440      | 3960          | 2420       | 1,74431923       | 15,69887307    |
| 195,09 | 37,06  | 18,62  | 18,62  | 15,65   | 6,5     | 22,15  | 14,91 | 148,24 | 0,597679 | 6757,692 | 3,738139 | 23,8                | 23                   | 5513,720372          | 4400              | 18,35421334             | 440      | 3960          | 2420       | 1,835421334      | 16,51879201    |
| 195,09 | 37,06  | 18,62  | 18,62  | 15,65   | 7       | 22,65  | 14,41 | 148,24 | 0,611171 | 6312,059 | 3,939572 | 23,8                | 23                   | 5231,801222          | 4400              | 19,34324255             | 440      | 3960          | 2420       | 1,934324255      | 17,40891829    |
| 195,09 | 37,06  | 18,62  | 18,62  | 15,65   | 7,5     | 23,15  | 13,91 | 148,24 | 0,624663 | 5881,625 | 4,158923 | 23,8                | 23                   | 4955,863573          | 4400              | 20,42025542             | 440      | 3960          | 2420       | 2,042025542      | 18,37822988    |
| 195,09 | 37,06  | 18,62  | 18,62  | 15,65   | 8       | 23,65  | 13,41 | 148,24 | 0,638154 | 5466,39  | 4,398573 | 23,8                | 23                   | 4685,850339          | 4400              | 21,59693389             | 440      | 3960          | 2420       | 2,159693389      | 19,4372405     |
| 195,09 | 37,06  | 18,62  | 18,62  | 15,65   | 8,5     | 24,15  | 12,91 | 148,24 | 0,651646 | 5066,355 | 4,661324 | 23,8                | 23                   | 4421,717262          | 4400              | 22,88703551             | 440      | 3960          | 2420       | 2,288703551      | 20,59833196    |

| 0,45w | 16,677 |
|-------|--------|
| 0,7W  | 25,942 |
| 1p    | 18,65  |
| 2p    | 24,15  |
| Ls/2  | 23 425 |

alinh 19,905

| 1-\$/2 | 23,423 |        |        |         |         |         |         |        |          |          |          |           |            |                     |               |                 |        |
|--------|--------|--------|--------|---------|---------|---------|---------|--------|----------|----------|----------|-----------|------------|---------------------|---------------|-----------------|--------|
|        |        |        |        |         |         |         |         |        |          |          |          | Controlo  |            |                     |               |                 |        |
| L[mm]  | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm]  | bO      | S [mm] | a/w      | Pm [N]   | f(a/w)   | Fmédio[N] | Fmáximo[N] | K máximo [Mpam^0,5] | R (Fmin/Fmax) | Frequência [Hz] | ciclos |
| 195,09 | 37,06  | 18,62  | 18,62  | 15,65   | 0,244   | 15,894  | 21,166  | 148,24 | 0,428872 | 13618,23 | 2,149519 | 4500      | 7500       | 17,98995978         | 0,2           | 25              | 64999  |
| 195,09 | 37,06  | 18,62  | 18,62  | 15,65   | 3,375   | 19,025  | 18,035  | 148,24 | 0,513357 | 9887,247 | 2,779086 | 4125      | 7500       | 23,25898655         | 0,1           | 25              | 79852  |
| 195,09 | 37,06  | 18,62  | 18,62  | 15,65   | 8,4155  | 24,0655 | 12,9945 | 148,24 | 0,649366 | 5132,893 | 4,615162 | 2420      | 4400       | 22,66038093         | 0,1           | 25              | 457388 |
|        |        |        |        |         |         |         |         |        |          |          |          |           |            |                     |               |                 | 602239 |

| Tração   |           |         |  |  |  |  |  |  |  |  |
|----------|-----------|---------|--|--|--|--|--|--|--|--|
| oys[MPa] | ots [MPa] | oy[MPa] |  |  |  |  |  |  |  |  |
| 377,83   | 590,2     | 484,015 |  |  |  |  |  |  |  |  |

|        |                                                                                                                 |       |       |       |        |         |         |        | d        | lados para o | o ensaio |          |             |         |          |
|--------|-----------------------------------------------------------------------------------------------------------------|-------|-------|-------|--------|---------|---------|--------|----------|--------------|----------|----------|-------------|---------|----------|
| L[mm]  | mm] W [mm] B [mm] BN[mm] ae [mm] aff(mm] a0[mm] b0 S [mm] a/w Pm [N] f(a/w) 0,01b0 0,005b0 0,01b0 [%] 0,05b0[%] |       |       |       |        |         |         |        |          |              |          |          |             |         |          |
| 195,09 | 37,06                                                                                                           | 18,62 | 18,62 | 15,65 | 8,4155 | 24,0655 | 12,9945 | 148,24 | 0,649366 | 5132,893     | 4,615162 | 0,129945 | 0,0649725   | 1,29945 | 0,649725 |
|        |                                                                                                                 |       |       |       |        |         |         |        |          |              |          |          | 0,005b0/0,6 |         |          |
|        |                                                                                                                 |       |       |       |        |         |         |        |          |              |          |          | 0,1082875   |         |          |

|        |        |        |        |         |         |        |       |        |          |          |          |                     | Planeamento_217_6    |                      |                   |                         |          |       |            |                  |                |
|--------|--------|--------|--------|---------|---------|--------|-------|--------|----------|----------|----------|---------------------|----------------------|----------------------|-------------------|-------------------------|----------|-------|------------|------------------|----------------|
| L [mm] | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm] | bO    | S [mm] | a/w      | Pm [N]   | f(a/w)   | Kmax_1[Mpa m^(1/2)] | K_Imposto [MPam^1/2] | Força resultante [N] | Força imposta [N] | K resultante [MPam^1/2] | Fmin [N] | ΔF[N] | Fmédio [N] | kmin [Mpa m^0,5] | ΔK [Mpa m^0,5] |
| 194,42 | 37,04  | 18,61  | 18,61  | 15,86   | 0       | 15,86  | 21,18 | 148,16 | 0,428186 | 13636,29 | 2,145301 | 23,8                | 23                   | 9599,783417          | 7500              | 17,9691554              | 750      | 6750  | 4125       | 1,79691554       | 16,17223986    |
| 194,42 | 37,04  | 18,61  | 18,61  | 15,86   | 0,5     | 16,36  | 20,68 | 148,16 | 0,441685 | 13000,06 | 2,230512 | 23,8                | 23                   | 9233,047844          | 7500              | 18,68288813             | 750      | 6750  | 4125       | 1,868288813      | 16,81459932    |
| 194,42 | 37,04  | 18,61  | 18,61  | 15,86   | 1       | 16,86  | 20,18 | 148,16 | 0,455184 | 12379,03 | 2,320745 | 23,8                | 23                   | 8874,059319          | 7500              | 19,43868007             | 750      | 6750  | 4125       | 1,943868007      | 17,49481206    |
| 194,42 | 37,04  | 18,61  | 18,61  | 15,86   | 1,5     | 17,36  | 19,68 | 148,16 | 0,468683 | 11773,2  | 2,416453 | 23,8                | 23                   | 8522,586653          | 7500              | 20,24033395             | 750      | 6750  | 4125       | 2,024033395      | 18,21630056    |
| 194,42 | 37,04  | 18,61  | 18,61  | 15,86   | 2       | 17,86  | 19,18 | 148,16 | 0,482181 | 11182,57 | 2,518142 | 23,8                | 23                   | 8178,421691          | 7500              | 21,09208922             | 750      | 6750  | 4125       | 2,109208922      | 18,9828803     |
| 194,42 | 37,04  | 18,61  | 18,61  | 15,86   | 2,5     | 18,36  | 18,68 | 148,16 | 0,49568  | 10607,13 | 2,626379 | 23,8                | 23                   | 7841,375678          | 7500              | 21,99869093             | 750      | 6750  | 4125       | 2,199869093      | 19,79882184    |
| 194,42 | 37,04  | 18,61  | 18,61  | 15,86   | 3       | 18,86  | 18,18 | 148,16 | 0,509179 | 10046,9  | 2,741801 | 23,8                | 23                   | 7511,27651           | 6200              | 18,98478905             | 620      | 5580  | 3410       | 1,898478905      | 17,08631014    |
| 194,42 | 37,04  | 18,61  | 18,61  | 15,86   | 3,5     | 19,36  | 17,68 | 148,16 | 0,522678 | 9501,863 | 2,865126 | 23,8                | 23                   | 7187,966676          | 6200              | 19,8387119              | 620      | 5580  | 3410       | 1,98387119       | 17,85484071    |
| 194,42 | 37,04  | 18,61  | 18,61  | 15,86   | 4       | 19,86  | 17,18 | 148,16 | 0,536177 | 8972,027 | 2,997165 | 23,8                | 23                   | 6871,301785          | 6200              | 20,75298167             | 620      | 5580  | 3410       | 2,075298167      | 18,6776835     |
| 194,42 | 37,04  | 18,61  | 18,61  | 15,86   | 4,5     | 20,36  | 16,68 | 148,16 | 0,549676 | 8457,389 | 3,138844 | 23,8                | 23                   | 6561,149548          | 6200              | 21,7339963              | 620      | 5580  | 3410       | 2,17339963       | 19,56059667    |
| 194,42 | 37,04  | 18,61  | 18,61  | 15,86   | 5       | 20,86  | 16,18 | 148,16 | 0,563175 | 7957,951 | 3,291217 | 23,8                | 23                   | 6257,389144          | 6200              | 22,78905734             | 620      | 5580  | 3410       | 2,278905734      | 20,5101516     |

| 0,45w<br>0,7W<br>1p<br>2p<br>I-s/2 | / 16,668<br>25,928<br>18,36<br>20,86<br>23,13 |                          |                          |                           |                            |                             |                         |                            |                            |                                |                                |                                       |                            |                                                  |                             |                             |                          |                    |                    |                    |
|------------------------------------|-----------------------------------------------|--------------------------|--------------------------|---------------------------|----------------------------|-----------------------------|-------------------------|----------------------------|----------------------------|--------------------------------|--------------------------------|---------------------------------------|----------------------------|--------------------------------------------------|-----------------------------|-----------------------------|--------------------------|--------------------|--------------------|--------------------|
| alinh                              | 19,91                                         | 1                        |                          |                           |                            |                             |                         |                            |                            |                                |                                |                                       |                            |                                                  |                             |                             |                          |                    | Tração             |                    |
|                                    |                                               |                          |                          |                           |                            |                             |                         |                            |                            |                                |                                |                                       |                            |                                                  |                             |                             |                          |                    | Tuçuo              |                    |
|                                    |                                               |                          |                          |                           |                            |                             |                         |                            |                            |                                |                                | Controlo                              |                            |                                                  |                             |                             |                          | oys[MPa]           | ots [MPa]          | oy[MPa]            |
| L (mm                              | ] W [mm]                                      | B [mm]                   | BN[mm]                   | ae [mm]                   | aff[mm]                    | a0[mm]                      | b0                      | S [mm]                     | a/w                        | Pm [N]                         | f(a/w)                         | Controlo<br>Fmédio[N]                 | Fmáximo[N]                 | K máximo [Mpam^0,5]                              | R (Fmin/Fmax)               | Frequência [Hz]             | ciclos                   | σys[MPa]<br>377,83 | ots [MPa]<br>590,2 | σy[MPa]<br>484,015 |
| L [mm<br>194,43                    | W [mm]                                        | B [mm]<br>18,61          | BN[mm]<br>18,61          | ae [mm]<br>15,86          | aff[mm]<br>0,4065          | a0[mm]<br>16,2665           | b0<br>20,7735           | S [mm]<br>148,16           | a/w<br>0,43916             | Pm [N]<br>13117,88             | f(a/w)<br>2,214209             | Controlo<br>Fmédio[N]<br>4500         | Fmáximo[N]<br>7500         | K máximo [Mpam^0,5]<br>18,5463308                | R (Fmin/Fmax)<br>0,2        | Frequência [Hz]<br>25       | ciclos<br>52621          | σys[MPa]<br>377,83 | ots [MPa]<br>590,2 | σy[MPa]<br>484,015 |
| L [mm<br>194,42<br>194,42          | W [mm]<br>2 37,04<br>2 37,04                  | B [mm]<br>18,61<br>18,61 | BN[mm]<br>18,61<br>18,61 | ae [mm]<br>15,86<br>15,86 | aff[mm]<br>0,4065<br>2,295 | a0[mm]<br>16,2665<br>18,155 | b0<br>20,7735<br>18,885 | S [mm]<br>148,16<br>148,16 | a/w<br>0,43916<br>0,490146 | Pm [N]<br>13117,88<br>10841,22 | f(a/w)<br>2,214209<br>2,581171 | Controlo<br>Fmédio[N]<br>4500<br>4125 | Fmáximo[N]<br>7500<br>7500 | K máximo [Mpam^0,5]<br>18,5463308<br>21,62002308 | R (Fmin/Fmax)<br>0,2<br>0,1 | Frequência [Hz]<br>25<br>25 | ciclos<br>52621<br>65630 | σγs[MPa]<br>377,83 | ots [MPa]<br>590,2 | oy[MPa]<br>484,015 |

| -      |                                                                                                                 |       |       |       |       |        |        |        |          |              |          |         |             |        |         |
|--------|-----------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|--------|--------|--------|----------|--------------|----------|---------|-------------|--------|---------|
|        |                                                                                                                 |       |       |       |       |        |        |        | d        | lados para o | o ensaio |         |             |        |         |
| L[mm]  | mm] W [mm] B [mm] BN[mm] ae [mm] aff[mm] a0[mm] b0 S [mm] a/w Pm [N] f(a/w) 0,01b0 0,005b0 0,01b0 (%) 0,05b0[%) |       |       |       |       |        |        |        |          |              |          |         |             |        |         |
| 194,42 | 37,04                                                                                                           | 18,61 | 18,61 | 15,86 | 5,069 | 20,929 | 16,111 | 148,16 | 0,565038 | 7890,222     | 3,31315  | 0,16111 | 0,080555    | 1,6111 | 0,80555 |
|        |                                                                                                                 |       |       |       |       |        |        |        |          |              |          |         | 0,005b0/0,6 |        |         |
|        |                                                                                                                 |       |       |       |       |        |        |        |          |              |          |         | 0,134258333 |        |         |

|        |        |        |        |         |         |        |        |        |          |          |          |                     | Planeamento_217_7    |                      |                   |                         |          |       |            |                  |                |
|--------|--------|--------|--------|---------|---------|--------|--------|--------|----------|----------|----------|---------------------|----------------------|----------------------|-------------------|-------------------------|----------|-------|------------|------------------|----------------|
| L [mm] | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm] | b0     | S [mm] | a/w      | Pm [N]   | f(a/w)   | Kmax_1[Mpa m^(1/2)] | K_Imposto [MPam^1/2] | Força resultante [N] | Força imposta [N] | K resultante [MPam^1/2] | Fmin [N] | ΔF[N] | Fmédio [N] | kmin [Mpa m^0,5] | ΔK [Mpa m^0,5] |
| 193,7  | 37,09  | 18,63  | 18,63  | 15,889  | 0       | 15,889 | 21,201 | 148,36 | 0,42839  | 13659,59 | 2,146558 | 23,8                | 23                   | 9610,955356          | 7500              | 17,94826774             | 750      | 6750  | 4125       | 1,794826774      | 16,15344097    |
| 193,7  | 37,09  | 18,63  | 18,63  | 15,889  | 0,5     | 16,389 | 20,701 | 148,36 | 0,441871 | 13022,89 | 2,231723 | 23,8                | 23                   | 9244,187278          | 7500              | 18,66037487             | 750      | 6750  | 4125       | 1,866037487      | 16,79433739    |
| 193,7  | 37,09  | 18,63  | 18,63  | 15,889  | 1       | 16,889 | 20,201 | 148,36 | 0,455352 | 12401,4  | 2,321903 | 23,8                | 23                   | 8885,155523          | 7500              | 19,41440412             | 750      | 6750  | 4125       | 1,941440412      | 17,47296371    |
| 193,7  | 37,09  | 18,63  | 18,63  | 15,889  | 1,5     | 17,389 | 19,701 | 148,36 | 0,468833 | 11795,09 | 2,417549 | 23,8                | 23                   | 8533,629766          | 7500              | 20,21414155             | 750      | 6750  | 4125       | 2,021414155      | 18,19272739    |
| 193,7  | 37,09  | 18,63  | 18,63  | 15,889  | 2       | 17,889 | 19,201 | 148,36 | 0,482313 | 11203,99 | 2,519167 | 23,8                | 23                   | 8189,402576          | 7500              | 21,06380757             | 750      | 6750  | 4125       | 2,106380757      | 18,95742682    |
| 193,7  | 37,09  | 18,63  | 18,63  | 15,889  | 2,5     | 18,389 | 18,701 | 148,36 | 0,495794 | 10628,07 | 2,62732  | 23,8                | 23                   | 7852,285821          | 6300              | 18,45322538             | 630      | 5670  | 3465       | 1,845322538      | 16,60790284    |
| 193,7  | 37,09  | 18,63  | 18,63  | 15,889  | 3       | 18,889 | 18,201 | 148,36 | 0,509275 | 10067,35 | 2,742645 | 23,8                | 23                   | 7522,107932          | 6300              | 19,26321735             | 630      | 5670  | 3465       | 1,926321735      | 17,33689561    |
| 193,7  | 37,09  | 18,63  | 18,63  | 15,889  | 3,5     | 19,389 | 17,701 | 148,36 | 0,522755 | 9521,831 | 2,865856 | 23,8                | 23                   | 7198,711867          | 6300              | 20,12860115             | 630      | 5670  | 3465       | 2,012860115      | 18,11574104    |
| 193,7  | 37,09  | 18,63  | 18,63  | 15,889  | 4       | 19,889 | 17,201 | 148,36 | 0,536236 | 8991,502 | 2,997764 | 23,8                | 23                   | 6881,953646          | 6300              | 21,05506771             | 630      | 5670  | 3465       | 2,105506771      | 18,94956094    |
| 193,7  | 37,09  | 18,63  | 18,63  | 15,889  | 4,5     | 20,389 | 16,701 | 148,36 | 0,549717 | 8476,368 | 3,139289 | 23,8                | 23                   | 6571,701344          | 6300              | 22,04908477             | 630      | 5670  | 3465       | 2,204908477      | 19,84417629    |
| 193,7  | 37,09  | 18,63  | 18,63  | 15,889  | 5       | 20,889 | 16,201 | 148,36 | 0,563198 | 7976,429 | 3,291483 | 23,8                | 23                   | 6267,83446           | 6300              | 23,11803238             | 630      | 5670  | 3465       | 2,311803238      | 20,80622914    |

| alinh | 19,9    |
|-------|---------|
| 0,45w | 16,6905 |
| 0,7W  | 25,963  |
| 1p    | 17,889  |
| 2p    | 20,889  |
| I-s/2 | 22,67   |

| 1-3/2  | 22,07  |        |        |         |         |         |         |        |          |          |          |           |            |                     |               |            |        |
|--------|--------|--------|--------|---------|---------|---------|---------|--------|----------|----------|----------|-----------|------------|---------------------|---------------|------------|--------|
|        |        |        |        |         |         |         |         |        |          |          | (        | Controlo  |            |                     |               |            |        |
| L [mm] | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm]  | b0      | S [mm] | a/w      | Pm [N]   | f(a/w)   | Fmédio[N] | Fmáximo[N] | K máximo [Mpam^0,5] | R (Fmin/Fmax) | frequencia | ciclos |
| 193,7  | 37,09  | 18,63  | 18,63  | 15,889  | 0,5515  | 16,4405 | 20,6495 | 148,36 | 0,44326  | 12958,18 | 2,240773 | 4500      | 7500       | 18,73604218         | 0,2           | 25         | 60423  |
| 193,7  | 37,09  | 18,63  | 18,63  | 15,889  | 2,004   | 17,893  | 19,197  | 148,36 | 0,482421 | 11199,32 | 2,520005 | 4125      | 7500       | 21,07081859         | 0,1           | 25         | 47918  |
| 193,7  | 37,09  | 18,63  | 18,63  | 15,889  | 5,217   | 21,106  | 15,984  | 148,36 | 0,569048 | 7764,184 | 3,361153 | 3465      | 6300       | 23,6073642          | 0,1           | 25         | 101253 |
|        |        |        |        |         |         |         |         |        |          |          |          |           |            |                     |               |            | 209594 |
|        |        |        |        |         |         |         |         |        |          |          |          |           |            |                     |               |            |        |

|          | Tração    |         |
|----------|-----------|---------|
| oys[MPa] | σts [MPa] | oy[MPa] |
| 377,83   | 590,2     | 484,015 |

|        |        |        |        |         |         |         |            |           | dade     | os para o er | nsaio    |         |             |        |        |
|--------|--------|--------|--------|---------|---------|---------|------------|-----------|----------|--------------|----------|---------|-------------|--------|--------|
| L [mm] | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | 0,005b0 | 0,01b0 [%] | 0,05b0[%] |          |              |          |         |             |        |        |
| 193,7  | 37,09  | 18,63  | 18,63  | 15,889  | 5,217   | 21,106  | 15,984     | 148,36    | 0,569048 | 7764,184     | 3,361153 | 0,15984 | 0,07992     | 1,5984 | 0,7992 |
| -      |        |        |        |         |         |         |            |           |          |              |          |         | 0,005b0/0,6 |        |        |
|        |        |        |        |         |         |         |            |           |          |              |          |         | 0,1332      | 1      |        |

|        |        |        |        |         |         |        |        |        |          |          |          |                     | Planeamento_217_8    |                      |                   |                         |          |       |            |                  |                |
|--------|--------|--------|--------|---------|---------|--------|--------|--------|----------|----------|----------|---------------------|----------------------|----------------------|-------------------|-------------------------|----------|-------|------------|------------------|----------------|
| L [mm] | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm] | bO     | S [mm] | a/w      | Pm [N]   | f(a/w)   | Kmax_1[Mpa m^(1/2)] | K_Imposto [MPam^1/2] | Força resultante [N] | Força imposta [N] | K resultante [MPam^1/2] | Fmin [N] | ΔF[N] | Fmédio [N] | kmin [Mpa m^0,5] | ΔK [Mpa m^0,5] |
| 193,31 | 37,12  | 18,61  | 18,61  | 15,941  | 0       | 15,941 | 21,179 | 148,48 | 0,429445 | 13605,61 | 2,153049 | 23,8                | 23                   | 9575,560777          | 7500              | 18,01461074             | 750      | 6750  | 4125       | 1,801461074      | 16,21314966    |
| 193,31 | 37,12  | 18,61  | 18,61  | 15,941  | 0,5     | 16,441 | 20,679 | 148,48 | 0,442915 | 12970,79 | 2,238521 | 23,8                | 23                   | 9209,94461           | 7500              | 18,72975434             | 750      | 6750  | 4125       | 1,872975434      | 16,8567789     |
| 193,31 | 37,12  | 18,61  | 18,61  | 15,941  | 1       | 16,941 | 20,179 | 148,48 | 0,456385 | 12351,13 | 2,329032 | 23,8                | 23                   | 8852,028385          | 7500              | 19,48705907             | 750      | 6750  | 4125       | 1,948705907      | 17,53835316    |
| 193,31 | 37,12  | 18,61  | 18,61  | 15,941  | 1,5     | 17,441 | 19,679 | 148,48 | 0,469855 | 11746,63 | 2,425037 | 23,8                | 23                   | 8501,584394          | 7500              | 20,29033554             | 750      | 6750  | 4125       | 2,029033554      | 18,26130199    |
| 193,31 | 37,12  | 18,61  | 18,61  | 15,941  | 2       | 17,941 | 19,179 | 148,48 | 0,483324 | 11157,3  | 2,527044 | 23,8                | 23                   | 8158,407432          | 7500              | 21,14383247             | 750      | 6750  | 4125       | 2,114383247      | 19,02944923    |
| 193,31 | 37,12  | 18,61  | 18,61  | 15,941  | 2,5     | 18,441 | 18,679 | 148,48 | 0,496794 | 10583,14 | 2,635622 | 23,8                | 23                   | 7822,311278          | 7500              | 22,05230575             | 750      | 6750  | 4125       | 2,205230575      | 19,84707518    |
| 193,31 | 37,12  | 18,61  | 18,61  | 15,941  | 3       | 18,941 | 18,179 | 148,48 | 0,510264 | 10024,14 | 2,751409 | 23,8                | 23                   | 7493,126035          | 5000              | 15,34739966             | 500      | 4500  | 2750       | 1,534739966      | 13,8126597     |
| 193,31 | 37,12  | 18,61  | 18,61  | 15,941  | 3,5     | 19,441 | 17,679 | 148,48 | 0,523734 | 9480,312 | 2,875126 | 23,8                | 23                   | 7170,696154          | 5000              | 16,03749448             | 500      | 4500  | 2750       | 1,603749448      | 14,43374503    |
| 193,31 | 37,12  | 18,61  | 18,61  | 15,941  | 4       | 19,941 | 17,179 | 148,48 | 0,537204 | 8951,648 | 3,007588 | 23,8                | 23                   | 6854,879004          | 5000              | 16,77637197             | 500      | 4500  | 2750       | 1,677637197      | 15,09873478    |
| 193,31 | 37,12  | 18,61  | 18,61  | 15,941  | 4,5     | 20,441 | 16,679 | 148,48 | 0,550673 | 8438,15  | 3,149724 | 23,8                | 23                   | 6545,543908          | 5000              | 17,56920458             | 500      | 4500  | 2750       | 1,756920458      | 15,81228412    |
| 193,31 | 37,12  | 18,61  | 18,61  | 15,941  | 5       | 20,941 | 16,179 | 148,48 | 0,564143 | 7939,819 | 3,30259  | 23,8                | 23                   | 6242,571534          | 5000              | 18,42189543             | 500      | 4500  | 2750       | 1,842189543      | 16,57970589    |
| 193,31 | 37,12  | 18,61  | 18,61  | 15,941  | 5,6     | 21,541 | 15,579 | 148,48 | 0,580307 | 7361,84  | 3,501915 | 23,8                | 23                   | 5887,25178           | 5000              | 19,53373226             | 500      | 4500  | 2750       | 1,953373226      | 17,58035903    |
| 193,31 | 37,12  | 18,61  | 18,61  | 15,941  | 7       | 22,941 | 14,179 | 148,48 | 0,618023 | 6098,155 | 4,048587 | 23,8                | 23                   | 5092,309269          | 5000              | 22,58307458             | 500      | 4500  | 2750       | 2,258307458      | 20,32476712    |

| alinh | 19,91  |
|-------|--------|
| 0,45w | 16,704 |
| 0,7W  | 25,984 |
| 1p    | 18,441 |
| 2p    | 22,941 |
| I-s/2 | 22,415 |

|        |        |        |        |         |         |         |         |        |          |          |          | Controlo  |            |                     |               |                 |        |
|--------|--------|--------|--------|---------|---------|---------|---------|--------|----------|----------|----------|-----------|------------|---------------------|---------------|-----------------|--------|
| L [mm] | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm]  | b0      | S [mm] | a/w      | Pm [N]   | f(a/w)   | Fmédio[N] | Fmáximo[N] | K máximo [Mpam^0,5] | R (Fmin/Fmax) | Frequência [Hz] | ciclos |
| 193,31 | 37,12  | 18,61  | 18,61  | 15,941  | 0,2385  | 16,1795 | 20,9405 | 148,48 | 0,43587  | 13300,91 | 2,193218 | 4500      | 7500       | 18,35070077         | 0,2           | 25              | 40238  |
| 193,31 | 37,12  | 18,61  | 18,61  | 15,941  | 2,3235  | 18,2645 | 18,8555 | 148,48 | 0,492039 | 10784,09 | 2,596505 | 4125      | 7500       | 21,72501507         | 0,1           | 25              | 72916  |
| 193,31 | 37,12  | 18,61  | 18,61  | 15,941  | 7,1935  | 23,1345 | 13,9855 | 148,48 | 0,623235 | 5932,848 | 4,134803 | 2750      | 5000       | 23,06399018         | 0,1           | 25              | 246150 |
|        |        |        |        |         |         |         |         |        |          |          |          |           | 5          |                     | 17542         |                 | 359304 |

|          | Tração    |         |
|----------|-----------|---------|
| oys[MPa] | ots [MPa] | σy[MPa] |
| 377,83   | 590,2     | 484,015 |

|        | dados para o ensaio |        |        |         |         |         |         |        |          |          |          |          |             |            |           |
|--------|---------------------|--------|--------|---------|---------|---------|---------|--------|----------|----------|----------|----------|-------------|------------|-----------|
| L [mm] | W [mm]              | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm]  | bO      | S [mm] | a/w      | Pm [N]   | f(a/w)   | 0,01b0   | 0,005b0     | 0,01b0 [%] | 0,05b0[%] |
| 193,31 | 37,12               | 18,61  | 18,61  | 15,941  | 7,1935  | 23,1345 | 13,9855 | 148,48 | 0,623235 | 5932,848 | 4,134803 | 0,139855 | 0,0699275   | 1,39855    | 0,699275  |
|        |                     |        |        |         |         |         |         |        |          |          |          |          | 0,005b0     |            |           |
|        |                     |        |        |         |         |         |         |        |          |          |          |          | 0 116545833 | 1          |           |

|        |        |        |        |         |         |        |        |        |          |          |          |                     | Planeamento_217_9    |                      |                   |                         |          |       |            |                  |                |
|--------|--------|--------|--------|---------|---------|--------|--------|--------|----------|----------|----------|---------------------|----------------------|----------------------|-------------------|-------------------------|----------|-------|------------|------------------|----------------|
| L [mm] | W [mm] | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm] | b0     | S [mm] | a/w      | Pm [N]   | f(a/w)   | Kmax_1[Mpa m^(1/2)] | K_Imposto [MPam^1/2] | Força resultante [N] | Força imposta [N] | K resultante [MPam^1/2] | Fmin [N] | ΔF[N] | Fmédio [N] | kmin [Mpa m^0,5] | ΔK [Mpa m^0,5] |
| 193,25 | 37,03  | 18,5   | 18,5   | 16,018  | 0       | 16,018 | 21,012 | 148,12 | 0,432568 | 13345,09 | 2,17244  | 23,8                | 23                   | 9422,551952          | 7500              | 18,30714236             | 750      | 6750  | 4125       | 1,830714236      | 16,47642813    |
| 193,25 | 37,03  | 18,5   | 18,5   | 16,018  | 0,5     | 16,518 | 20,512 | 148,12 | 0,446071 | 12717,53 | 2,259259 | 23,8                | 23                   | 9060,463237          | 7500              | 19,03876165             | 750      | 6750  | 4125       | 1,903876165      | 17,13488548    |
| 193,25 | 37,03  | 18,5   | 18,5   | 16,018  | 1       | 17,018 | 20,012 | 148,12 | 0,459573 | 12105,08 | 2,351244 | 23,8                | 23                   | 8706,00142           | 7500              | 19,8139182              | 750      | 6750  | 4125       | 1,98139182       | 17,83252638    |
| 193,25 | 37,03  | 18,5   | 18,5   | 16,018  | 1,5     | 17,518 | 19,512 | 148,12 | 0,473076 | 11507,75 | 2,448866 | 23,8                | 23                   | 8358,94443           | 7500              | 20,63657696             | 750      | 6750  | 4125       | 2,063657696      | 18,57291926    |
| 193,25 | 37,03  | 18,5   | 18,5   | 16,018  | 2       | 18,018 | 19,012 | 148,12 | 0,486578 | 10925,53 | 2,55265  | 23,8                | 23                   | 8019,091829          | 7500              | 21,51116407             | 750      | 6750  | 4125       | 2,151116407      | 19,36004766    |
| 193,25 | 37,03  | 18,5   | 18,5   | 16,018  | 2,5     | 18,518 | 18,512 | 148,12 | 0,500081 | 10358,42 | 2,663185 | 23,8                | 23                   | 7686,261509          | 6500              | 19,450288               | 650      | 5850  | 3575       | 1,9450288        | 17,5052592     |
| 193,25 | 37,03  | 18,5   | 18,5   | 16,018  | 3       | 19,018 | 18,012 | 148,12 | 0,513584 | 9806,425 | 2,781132 | 23,8                | 23                   | 7360,287192          | 6500              | 20,31170743             | 650      | 5850  | 3575       | 2,031170743      | 18,28053668    |
| 193,25 | 37,03  | 18,5   | 18,5   | 16,018  | 3,5     | 19,518 | 17,512 | 148,12 | 0,527086 | 9269,544 | 2,907241 | 23,8                | 23                   | 7041,016585          | 6500              | 21,23272942             | 650      | 5850  | 3575       | 2,123272942      | 19,10945648    |
| 193,25 | 37,03  | 18,5   | 18,5   | 16,018  | 4       | 20,018 | 17,012 | 148,12 | 0,540589 | 8747,775 | 3,042359 | 23,8                | 23                   | 6728,310075          | 6500              | 22,21954671             | 650      | 5850  | 3575       | 2,221954671      | 19,99759204    |

| 0,45w  | 16,6635 | 1      |        |         |         |        |        |        |          |          |         |           |            |                     |               |                 |           |          |           |         |
|--------|---------|--------|--------|---------|---------|--------|--------|--------|----------|----------|---------|-----------|------------|---------------------|---------------|-----------------|-----------|----------|-----------|---------|
| 0,7W   | 25,921  | 1      |        |         |         |        |        |        |          |          |         |           |            |                     |               |                 |           |          |           |         |
| 1p     | 18,018  | ]      |        |         |         |        |        |        |          |          |         |           |            |                     |               |                 |           |          |           |         |
| 2p     | 20,018  | ]      |        |         |         |        |        |        |          |          |         |           |            |                     |               |                 |           |          |           |         |
| I-s/2  | 22,565  |        |        |         |         |        |        |        |          |          |         |           |            |                     |               |                 |           |          | Tração    |         |
| -      |         |        |        |         |         |        |        |        |          |          |         | Controlo  |            |                     |               |                 |           | oys[MPa] | ots [MPa] | σy[MPa] |
| L [mm] | W [mm]  | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm] | b0     | S [mm] | a/w      | Pm [N]   | f(a/w)  | Fmédio[N] | Fmáximo[N] | K máximo [Mpam^0,5] | R (Fmin/Fmax) | Frequência [Hz] | tempo [s] | 377,83   | 590,2     | 484,015 |
| 193,25 | 37,03   | 18,5   | 18,5   | 16,018  | 0       | 16,018 | 21,012 | 148,12 | 0,432568 | 13345,09 | 2,17244 | 4125      | 7500       | 18,30714236         | 0,1           |                 |           |          |           |         |

|        | dados para o ensaio |        |        |         |         |        |        |        |          |          |         |         |         |            |           |
|--------|---------------------|--------|--------|---------|---------|--------|--------|--------|----------|----------|---------|---------|---------|------------|-----------|
| L [mm] | W [mm]              | B [mm] | BN[mm] | ae [mm] | aff[mm] | a0[mm] | b0     | S [mm] | a/w      | Pm [N]   | f(a/w)  | 0,01b0  | 0,005b0 | 0,0160 [%] | 0,05b0[%] |
| 193,25 | 37,03               | 18,5   | 18,5   | 16,018  | 0       | 16,018 | 21,012 | 148,12 | 0,432568 | 13345,09 | 2,17244 | 0,21012 | 0,10506 | 2,1012     | 0,010506  |
8.4 Anexo D – Exemplo do calculo da curva de resistência.

> restart with(LinearAlgebra) : with(plots) : #Dados geométricos e Mecânicos do provete >  $EE := 191.995 \cdot 10^3$ :  $\sigma ys := 585.35 \cdot 10^6$ :  $\sigma uts := 695.25 \cdot 10^6$ : B := 18.4: Bn := B: W  $= 37.12 : Be := B - \frac{(B - Bn)^2}{B} : S := 148.68 : v := 0.3 : L := 196.31 : \sigma y$  $:= \frac{\sigma ys + \sigma uts}{2}$ : #importação dos dados recolhidos no diagrama de força vs deslocamento > dados:=ImportMatrix ("C:\\Users\\Adriano Balhana\\Dropbox\\tese mestrado/\Ensaios/\Ensaios provetes pequenos\\217\_cbl\_1\\217\_cbl\_1\_dados.txt", source = delimited, delimiter = "", datatype = float[8], skiplines = 1); 51 x 3 Matrix dados := Data Type: float<sub>8</sub> Storage: rectangular Order: Fortran\_order (1) >  $n \coloneqq 51$ :  $F \coloneqq Vector[column](n) : V \coloneqq Vector[column](n) : C \coloneqq Vector[column](n) : N$ := Vector[column](n): #Extração dos dados do diagrama para vectores > for i from 1 to n do  $F_i \coloneqq dados_{i, 2};$  $V_i := dados_{i-1};$  $C_i \coloneqq dados_{i-3};$  $N_i \coloneqq i;$ end do:  $u \coloneqq Vector[column](n) : aw \coloneqq Vector[column](n) : a \coloneqq Vector[column](n) :$ #Calculo do u e do comprimento de fenda for *i* from 1 to *n* do  $\begin{aligned} \mathbf{u}_i &\coloneqq evalf\left(\frac{1}{\left(\frac{Be \cdot W \cdot EE \cdot C_i}{\frac{S}{4}}\right)^{\frac{1}{2}}} \right): \end{aligned}$ 



$$\begin{aligned} & \#Factor de intensidade de tensões \\ & K := \left( \left( \frac{p \cdot S}{(B \cdot Bn)^{\frac{1}{2}} \cdot y^{\frac{3}{2}}} \right) \cdot f \right) \cdot \sqrt{0.001} : \#MPa\sqrt{m} \\ & \# Jelástico \\ & Jelastico := \frac{K^{2} \cdot (1 - v^{2})}{EE : 10^{6}} : \# \frac{J}{m^{2}} \\ & KI := Vector[column](n) : Jel := Vector[column](n) : \\ & \# calculo do K e J \\ & \text{ for i from 1 to n do} \\ & KI_{i} := evalf (subs(Ki = KI_{p} Jelastico) \cdot (10^{-3})) : \# \frac{KI}{m^{2}} \\ & \text{ end do} \\ & \# Calculo do J plástico \\ & \# Calculo do J plástico \\ & \# Calculo do J plástico \\ & \# Peter (column](n) : pl := Vector[column](n) : Apl := Vector[column](n) : Vpl \\ & := Vector[column](n) : pl := Vector[column](n) : Apl := Vector[column](n) : Vpl \\ & := Vector[column](n) : pl := Vector[column](n) : Apl := Vector[column](n) : Vpl \\ & := Vector[column](n) : pl := Vector[column](n) : Apl := Vector[column](n) : Vpl \\ & := Vector[column](n) : pl := Vector[column](n) : Apl := Vector[column](n) : Vpl \\ & := Vector[column](n) : pl := Vector[column](n) : Apl := Vector[column](n) : Vpl \\ & := Vector[column](n) : pl := Vector[column](n) : Apl := Vector[column](n) : Vpl \\ & := Vector[column](n) : pl := Vector[column](n) : Apl := Vector[column](n) : Vpl \\ & := Vector[column](n) : pl := Vector[column](n) : Apl := Vector[column](n) : Vpl \\ & := Vector[column](n) : pl := Vector[column](n) : Apl := Vector[column](n) : Vpl \\ & := Vector[column](n) : pl := Vector[column](n) : Apl := Vector[column](n) : Vpl \\ & := Vector[column](n) : pl := Vector[column](n) : Apl := Vector[column](n) : Vpl \\ & := Vector[column](n) : pl := Vector[column](n) : Apl := Vector[column](n) : Vpl \\ & := Vector[column](n) : D : Pl : = Vector[column](n) : Apl := Vector[column](n) : Vpl \\ & := Vector[column](n) : D : Pl : = Vector[column](n) : Vpl \\ & := Vector[column](n) : D : Vector[column](n) : Apl := Vector[column](n) : Vpl \\ & := Vector[column](n) : D : Vector[column](n) : Apl : = Vector[column](n) : Vpl \\ & := Vector[column](n) : D : Vector[column](n) : Apl : = Vector[column](n) : Vpl \\ & := Vector[column](n) : D : Vector[column](n) : Ve$$





11, 23.6357674085348, 0.131781193538711, 177.502667933909 12, 23.6751314053481, 0.171145190351950, 198.287893432034 13, 23, 7223930312645, 0.218406816268363, 218, 203413448263 14, 23.7935888780849, 0.289602663088800, 236.984082600441 15, 23.8690579165432, 0.365071701547055, 257.858996874106 16, 23.8641840650550, 0.360197850058885, 278.308675197756 17, 23.9335418919362, 0.429555676940051, 297.260641439440 18, 24.0148320813967, 0.510845866400572, 317.715864487887 19, 24.0520954678647, 0.548109252868564, 336.798892368394 20, 24.1054486966333, 0.601462481637238, 357.086542724103 21, 24.1345007754475, 0.630514560451392, 376.036857769316 22, 24.1850547560066, 0.681068541010543, 397.572141982138 23, 24.2427902290884, 0.738804014092285, 417.875405749804 24, 24, 4179491107521, 0.913962895755954, 431, 760365018142 25, 24.3646820742885, 0.860695859292374, 456.375720745617 26, 24, 4455978211947, 0.941611606198599, 473, 487160717110 27, 24.5236895790401, 1.01970336404404, 492.704000301135 28, 24.5440607842498, 1.04007456925365, 511.973904115276 29, 24.5866581320156, 1.08267191701950, 532.930360143207 30, 24.5852273535983, 1.08124113860219, 553.536156397074 31, 24.7293439942356, 1.22535777923950, 567.051071936405 32, 24.7201835780460, 1.21619736304994, 588.831602028223 33, 24.8697399120682, 1.36575369707207, 603.536408444401 34, 24.8875795374694, 1.38359332247332, 623.682514380152 35, 24.9071937651364, 1.40320755014026, 642.429594640079 36, 24.9706880391003, 1.46670182410420, 661.095430032996 37, 25.0256585386701, 1.52167232367400, 676.776819964461 38, 25.0957883478550, 1.59180213285894, 694.208750656407 39, 25.1248735313055, 1.62088731630937, 711.266416677910 40, 25.2139074069108, 1.70992119191472, 728.466225798380 41, 25.2549518246973, 1.75096560970117, 746.586638632143 42, 25.3156756750437, 1.81168946004761, 762.228094153312 43, 25.4027171552475, 1.89873094025143, 777.030070456590 44, 25.5182443455830, 2.01425813058686, 789.090892840480 45, 25.5771709864636, 2.07318477146746, 806.457109117966 46, 25.7049363523569, 2.20095013736082, 815.777411104054 47, 25.7607530900150, 2.25676687501893, 831.415845253454 48, 25.7768147377205, 2.27282852272443, 849.972198557242 49, 25.7928599252901, 2.28887371029397, 868.697146696141 50, 25.8655450948416, 2.36155887984552, 881.559517459137 51, 25.9282959207210, 2.42430970572488, 895.352676446785

(4)

8.5 Anexo E – Registo da medição do comprimento de fenda na superfície de fractura.

| Medição do optica do tamanho de fenda   Verificação     W [mm]   B [mm]   ae [mm]   0,005W   ΔH [mm]   i   ai [mm]   afi [mm]   a0-ai < 0,05B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | afi-ai>0,5*∆a<br>Não Cumpre<br>Cumpre<br>Cumpre |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| W [mm]   B [mm]   ae [mm]   0,005W   ΔH [mm]   i   ai [mm]   afi [mm]   a0-ai < 0,05B   a | afi-ai>0,5*∆a<br>Não Cumpre<br>Cumpre<br>Cumpre |
| 37,24   18,44   15,701   0,1862   1,80676   1   8,743   9,521   Cumpre   Não Cumpre     2   8,975   10,911   Cumpre   Cumpre   Cumpre   Cumpre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Não Cumpre<br>Cumpre<br>Cumpre                  |
| 2 8,975 10,911 Cumpre Cumpre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cumpre<br>Cumpre                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cumpre                                          |
| 3 9,036 11,387 Cumpre Cumpre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |
| 4 9,096 11,391 Cumpre Cumpre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cumpre                                          |
| 5 9,099 11,528 Cumpre Cumpre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cumpre                                          |
| 6 9,071 11,412 Cumpre Cumpre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cumpre                                          |
| 7 9,061 11,317 Cumpre Cumpre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cumpre                                          |
| 8 9,017 10,692 Cumpre Cumpre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cumpre                                          |
| 9 8,89 9,579 Cumpre Não Cumpre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Não Cumpre                                      |
| ai/af 9,021438 11,0235 9.1.4.1 9.1.4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.1.5.1                                         |
| Δa 2,0020625 SIM NÃO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 |
| <4mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 |

|          |                    | Co       | mparação co | m a previsão  |          |               |                    |          | verifica | ação     |
|----------|--------------------|----------|-------------|---------------|----------|---------------|--------------------|----------|----------|----------|
| a0 [mm]  | a0 (estimado) [mm] | erro [%] | aF [mm]     | aF (estimado) | erro [%] | ∆a [mm]       | Δa (estimado) [mm] | erro [%] | ∆a<0,2b0 | ∆a>0,2b0 |
| 24,72244 |                    | #VALOR   | 26,7245     |               | #VALOR!  | 2,002063      |                    | #VALOR!  | #VALOR!  | #VALOR!  |
|          | Г                  |          |             |               |          |               |                    |          |          |          |
|          |                    | Mor      | fologia     | da superf     | ície de  | fractura      | Ĩ                  |          |          |          |
|          |                    | 14       |             |               |          |               |                    |          |          |          |
|          |                    | 12       |             |               |          | _             |                    |          |          |          |
|          |                    | 10       |             |               |          |               |                    |          |          |          |
|          |                    | 8        |             |               |          | — <b>—</b> a0 | - Fenda de fadiga  |          |          |          |
|          |                    | 6        |             |               |          | <b></b> af -  | Fenda dúctil       |          |          |          |
|          |                    | 4        |             |               |          |               |                    |          |          |          |

2 -

|              |                 |                                                                                                                 |              |              | 213_3 |         |          |               |                |              |
|--------------|-----------------|-----------------------------------------------------------------------------------------------------------------|--------------|--------------|-------|---------|----------|---------------|----------------|--------------|
|              |                 | Medição do opt                                                                                                  | ica do tamai | nho de fenda |       |         |          | V             | erificação     |              |
| W [mm]       | B [mm]          | ae[mm]                                                                                                          | 0,005W       | ΔH [mm]      | i     | ai [mm] | afi [mm] | a0-ai < 0,05B | a0-afi < 0,05B | af-ai>0,5*∆a |
| 37,13        | 18,45           | 16,256                                                                                                          | 0,18565      | 1,80787      | 1     | 8,577   | 9,204    | Cumpre        | Não Cumpre     | Não Cumpre   |
| Margaret Mar |                 |                                                                                                                 |              | -            | 2     | 8,786   | 10,301   | Cumpre        | Cumpre         | Cumpre       |
|              |                 | Contraction of the                                                                                              | Northeast    | Store 1.5    | 3     | 8,936   | 10,539   | Cumpre        | Cumpre         | Cumpre       |
| RET I        | A MARINE STREET | The second se | AL           |              | 4     | 9,007   | 10,92    | Cumpre        | Cumpre         | Cumpre       |
| april 10 m   |                 | 3                                                                                                               | 3.8 7        |              | 5     | 9,041   | 11,131   | Cumpre        | Cumpre         | Cumpre       |
| HAT IN       | A Carl And Dest |                                                                                                                 | r. A.        |              | 6     | 9,099   | 10,864   | Cumpre        | Cumpre         | Cumpre       |
| Alexand      |                 | 3                                                                                                               | - mi         |              | 7     | 9,077   | 10,564   | Cumpre        | Cumpre         | Cumpre       |
|              |                 | 15                                                                                                              |              |              | 8     | 8,981   | 10,103   | Cumpre        | Cumpre         | Cumpre       |
| 11220        |                 | New Parts                                                                                                       |              |              | 9     | 8,969   | 10,079   | Cumpre        | Cumpre         | Cumpre       |
|              |                 | -                                                                                                               | the second   |              | ai/af | 8,9625  | 10,50794 | 9.1.4.1       | 9.1.4.2        | 9.1.5.1      |
| - MARAN      |                 |                                                                                                                 | , At         |              | Δa    | 1,545   | 4375     |               |                |              |
| HT           |                 | R.                                                                                                              | - July       |              |       |         |          |               |                |              |
|              |                 | A E                                                                                                             | Jacob State  |              |       |         |          |               |                |              |
| Contra the   | and have a sub- | A DECEMBER OF STREET, S |              |              |       |         |          |               |                |              |

|                                                                                                                                  | /        |
|----------------------------------------------------------------------------------------------------------------------------------|----------|
| a0 [mm] a0 (estimado) [mm] Δa (or [%] Δa<0,260 Δa>0, | ∆a>0,2b0 |
| 25,2185 24,30481682 3,623067 26,763938 25,16846075 5,96129306 1,545438 0,863643933 44,11654092 Não cumpre Cum                    | Cumpre   |
| Morfologia da superfície de<br>fractura<br>Frente de Fadiga<br>Frente Dúctil                                                     |          |

|                        |                          |                  |                |              | and the second second |           |          |               |                |              |
|------------------------|--------------------------|------------------|----------------|--------------|-----------------------|-----------|----------|---------------|----------------|--------------|
|                        |                          |                  |                |              | 213_4                 |           |          |               |                |              |
|                        |                          | Medição do optic | a do taman     | nho de fenda |                       |           |          | Verificação   |                |              |
| W [mm]                 | B [mm]                   | ae[mm]           | 0,005W         | ΔH [mm]      | i i                   | ai [mm]   | afi [mm] | a0-ai < 0,05B | a0-afi < 0,05B | af-ai>0,5*∆a |
| 37,15                  | 18,33                    | 16,076           | 0,18575        | 1,79585      | 1                     | 6,709     | 8,0012   | Cumpre        | Não Cumpre     | Cumpre       |
|                        |                          |                  |                |              | 2                     | 6,96      | 9,22     | Cumpre        | Cumpre         | Cumpre       |
| eres and installed the | AND THE REAL PROPERTY OF | Not state        | and the state  |              | 3                     | 7,079     | 10,066   | Cumpre        | Cumpre         | Cumpre       |
|                        |                          |                  |                | 1            | 4                     | 7,175     | 10,235   | Cumpre        | Cumpre         | Cumpre       |
| A starting             |                          |                  |                |              | 5                     | 7,261     | 10,235   | Cumpre        | Cumpre         | Cumpre       |
|                        |                          |                  |                | 1000         | 6                     | 7,237     | 10,036   | Cumpre        | Cumpre         | Cumpre       |
| Contraction of the     | With No. 3               |                  |                |              | 7                     | 7,176     | 9,55     | Cumpre        | Cumpre         | Cumpre       |
| Same line              |                          |                  |                |              | 8                     | 7,058     | 8,967    | Cumpre        | Cumpre         | Cumpre       |
|                        |                          |                  |                |              | 9                     | 6,886     | 8,094    | Cumpre        | Não Cumpre     | Não Cumpre   |
| E-A                    |                          |                  |                |              | ai/af                 | 7,0929375 | 9,544575 | 9.1.4.1       | 9.1.4.2        | 9.1.5.1      |
| STATES.                |                          |                  | and the second |              | Δa                    | 2,4516    | 5375     |               |                |              |
| ELAN MARCH             |                          |                  |                | A CONTRACTOR |                       |           |          | -             |                |              |

|          | Comparação com a previsão |          |           |               |            |          |                    |            |            |            |  |
|----------|---------------------------|----------|-----------|---------------|------------|----------|--------------------|------------|------------|------------|--|
| a0 [mm]  | a0 (estimado) [mm]        | erro [%] | aF [mm]   | aF (estimado) | erro [%]   | ∆a [mm]  | Δa (estimado) [mm] | erro [%]   | ∆a<0,2b0   | ∆a>0,2b0   |  |
| 23,16894 | 22,29858432               | 3,756552 | 25,620575 | 23,64248078   | 7,72072532 | 2,451638 | 1,343896462        | 45,1837206 | Não cumpre | Não cumpre |  |



|                 | 213_5                                                                                                          |                |              |              |       |           |                |               |                |              |
|-----------------|----------------------------------------------------------------------------------------------------------------|----------------|--------------|--------------|-------|-----------|----------------|---------------|----------------|--------------|
|                 |                                                                                                                | Medição do opt | ica do tamai | nho de fenda |       |           |                | Verificação   |                |              |
| W [mm]          | B [mm]                                                                                                         | ae[mm]         | 0,005W       | ΔH [mm]      | i     | ai [mm]   | afi [mm]       | a0-ai < 0,05B | a0-afi < 0,05B | af-ai>0,5*∆a |
| 37,06           | 18,41                                                                                                          | 15,864         | 0,1853       | 1,80394      | 1     | 5,655     | 6,726          | Cumpre        | Não Cumpre     | Não Cumpre   |
| CHARGE THE REAL |                                                                                                                |                |              |              | 2     | 5,681     | 8,134          | Cumpre        | Cumpre         | Cumpre       |
|                 | The second s |                |              |              | 3     | 5,725     | 9,108          | Cumpre        | Cumpre         | Cumpre       |
| 3               |                                                                                                                |                |              |              | 4     | 5,803     | 9,446          | Cumpre        | Cumpre         | Cumpre       |
|                 | · 111                                                                                                          |                |              |              | 5     | 5,951     | 9 <i>,</i> 837 | Cumpre        | Cumpre         | Cumpre       |
| A state         |                                                                                                                |                |              |              | 6     | 6,04      | 9,213          | Cumpre        | Cumpre         | Cumpre       |
| 1 4 4           |                                                                                                                |                |              |              | 7     | 6,052     | 8,92           | Cumpre        | Cumpre         | Cumpre       |
| And Art         |                                                                                                                |                | 100          |              | 8     | 5,979     | 7,828          | Cumpre        | Cumpre         | Cumpre       |
| ALC: NO         |                                                                                                                |                |              |              | 9     | 5,824     | 6,787          | Cumpre        | Não Cumpre     | Não Cumpre   |
| 1990年           |                                                                                                                |                |              |              | ai/af | 5,8713125 | 8,655313       | 9.1.4.1       | 9.1.4.2        | 9.1.5.1      |
| Server 1        |                                                                                                                |                |              |              | Δa    | 2,78      | 34             |               |                |              |
|                 | CONTRACTOR OF STREET                                                                                           |                |              | Sector 12    |       |           | 0              |               |                |              |

|          |                    | verific  | ação      |                    |                                  |                                       |                    |             |            |            |
|----------|--------------------|----------|-----------|--------------------|----------------------------------|---------------------------------------|--------------------|-------------|------------|------------|
| a0 [mm]  | a0 (estimado) [mm] | erro [%] | aF [mm]   | aF (estimado)      | erro [%]                         | ∆a [mm]                               | ∆a (estimado) [mm] | erro [%]    | ∆a<0,2b0   | Δa>0,2b0   |
| 21,73531 | 20,61704505        | 5,144934 | 24,519313 | 22,27167629        | 9,16679946                       | 2,784                                 | 1,654631246        | 40,56640641 | Não cumpre | Não cumpre |
| 21,73531 | 20,61704505        | 5,144934 | 24,519313 | orfologia (<br>fra | 9,166/9946<br>da super<br>nctura | 2,784<br>fície de<br>Frente<br>Frente | 1,654631246        | 40,56640641 | Nao cumpre | Não cumpre |
|          |                    |          | 0         | 2 4                | 4 6                              | 8                                     | 10                 |             |            |            |
|          |                    |          |           |                    | i                                |                                       |                    |             |            |            |
|          |                    |          |           |                    |                                  |                                       |                    |             |            |            |

|                |                                                                                                                 |                                                                                                                |                          |                                                                                                                | 213_6 |          |          |               |                |               |  |
|----------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------|-------|----------|----------|---------------|----------------|---------------|--|
|                |                                                                                                                 | Medição do optica                                                                                              | a do tamanh              | io de fenda                                                                                                    |       |          |          | Verificação   |                |               |  |
| W [mm]         | B [mm]                                                                                                          | ae [mm]                                                                                                        | 0,005W                   | ΔH [mm]                                                                                                        | 1     | ai [mm]  | afi [mm] | a0-ai < 0,05B | a0-afi < 0,05B | afi-ai>0,5*∆a |  |
| 37,05          | 18,39                                                                                                           | 16,011                                                                                                         | 0,18525                  | 1,80195                                                                                                        | 1     | 5,89     | 6,539    | Cumpre        | Não Cumpre     | Não Cumpre    |  |
| VIDE STORE     |                                                                                                                 |                                                                                                                |                          |                                                                                                                | 2     | 6,006    | 8,487    | Cumpre        | Cumpre         | Cumpre        |  |
|                |                                                                                                                 | and the second                                                                                                 |                          | 1000 C                                                                                                         | 3     | 6,036    | 8,824    | Cumpre        | Cumpre         | Cumpre        |  |
| and the second | A SIGNATURE AND | Sugar -                                                                                                        |                          |                                                                                                                | 4     | 6,006    | 9,082    | Cumpre        | Cumpre         | Cumpre        |  |
| ANTE!          | Sherry Tables and                                                                                               |                                                                                                                |                          |                                                                                                                | 5     | 5,542    | 8,741    | Cumpre        | Cumpre         | Cumpre        |  |
|                | the second second                                                                                               | States 1                                                                                                       |                          |                                                                                                                | 6     | 5,212    | 8,979    | Cumpre        | Cumpre         | Cumpre        |  |
| 1.45.65        |                                                                                                                 |                                                                                                                | -                        |                                                                                                                | 7     | 5,557    | 9,508    | Cumpre        | Cumpre         | Cumpre        |  |
| an prist       | Parks -                                                                                                         | and the second second                                                                                          |                          |                                                                                                                | 8     | 5,545    | 8,081    | Cumpre        | Cumpre         | Cumpre        |  |
|                |                                                                                                                 |                                                                                                                | with 1                   |                                                                                                                | 9     | 5,364    | 6,661    | Cumpre        | Não Cumpre     | Não Cumpre    |  |
|                |                                                                                                                 |                                                                                                                |                          |                                                                                                                | ai/af | 5,691375 | 8,53775  | 9.1.4.1       | 9.1.4.2        | 9.1.5.1       |  |
| Sec. 1         | 5×5/1                                                                                                           | 202                                                                                                            | AND AND AND              |                                                                                                                | Δa    | 2,84     | 6375     | SIM           | NÃO            |               |  |
|                |                                                                                                                 |                                                                                                                |                          |                                                                                                                |       |          |          | <4mm          | <15% b0        |               |  |
| Section and    |                                                                                                                 | the second s | Protection of the second | State of the second |       |          | 5        |               |                |               |  |

JE CONTRACT

|          | Comparação com a previsão |          |          |               |          |          |                    |          |            |            |  |
|----------|---------------------------|----------|----------|---------------|----------|----------|--------------------|----------|------------|------------|--|
| a0 [mm]  | a0 (estimado) [mm]        | erro [%] | aF [mm]  | aF (estimado) | erro [%] | ∆a [mm]  | Δa (estimado) [mm] | erro [%] | ∆a<0,2b0   | ∆a>0,2b0   |  |
| 21,70238 |                           | #VALOR!  | 24,54875 |               | #VALOR!  | 2,846375 |                    | 100      | Não cumpre | Não cumpre |  |



|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |              | 213_7 |           |          |               |                |              |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------|--------------|-------|-----------|----------|---------------|----------------|--------------|
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Medição do opt                   | tica do tama | nho de fenda |       |           |          | V             | erificação     |              |
| W [mm]           | B [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ae[mm]                           | 0,005W       | ΔH [mm]      | i     | ai [mm]   | afi [mm] | a0-ai < 0,05B | a0-afi < 0,05B | af-ai>0,5*∆a |
| 37,05            | 18,37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15,917                           | 0,18525      | 1,79995      | 1     | 7,267     | 8,408    | Cumpre        | Não Cumpre     | Não Cumpre   |
| PROFILE C        | A. 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  | 1.5722-5749  |              | 2     | 7,606     | 9,935    | Cumpre        | Cumpre         | Cumpre       |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |              | 3     | 7,741     | 10,596   | Cumpre        | Cumpre         | Cumpre       |
| A DEFENSION      | and the states and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No.                              |              |              | 4     | 7,736     | 10,818   | Cumpre        | Cumpre         | Cumpre       |
| ( the literal is | A MARA . THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | >                                |              |              | 5     | 7,801     | 10,72    | Cumpre        | Cumpre         | Cumpre       |
| 14               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 23           |              | 6     | 7,866     | 10,934   | Cumpre        | Cumpre         | Cumpre       |
|                  | EN // AN AN AN AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |              |              | 7     | 7,866     | 10,672   | Cumpre        | Cumpre         | Cumpre       |
| A PERMAN         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | La La Marine |              | 8     | 7,629     | 9,2422   | Cumpre        | Cumpre         | Cumpre       |
| in the second    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |              | 9     | 7,412     | 8,174    | Cumpre        | Não Cumpre     | Não Cumpre   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |              | ai/af | 7,6980625 | 10,15103 | 9.1.4.1       | 9.1.4.2        | 9.1.5.1      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |              | Δa    | 2,4529    | 9625     |               |                |              |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |              |       |           |          |               |                |              |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F P                              |              |              |       |           |          |               |                |              |
| 84 m             | And the second s | Contraction of the second second |              |              |       |           |          |               |                |              |

| Comparação com a previsão |                    |          |           |               |            |          |                    |             |            |            |  |
|---------------------------|--------------------|----------|-----------|---------------|------------|----------|--------------------|-------------|------------|------------|--|
| a0 [mm]                   | a0 (estimado) [mm] | erro [%] | aF [mm]   | aF (estimado) | erro [%]   | ∆a [mm]  | Δa (estimado) [mm] | erro [%]    | ∆a<0,2b0   | ∆a>0,2b0   |  |
| 23,61506                  | 22,64314061        | 4,115686 | 26,068025 | 24,16205823   | 7,31151198 | 2,452963 | 1,51891762         | 38,07823723 | Não cumpre | Não cumpre |  |



|              |                    |                 |                |                    | 217_1 |           |          |               |                |              |  |
|--------------|--------------------|-----------------|----------------|--------------------|-------|-----------|----------|---------------|----------------|--------------|--|
|              |                    | Medição do opti | ca do tamar    | nho de fenda       |       |           |          | Verificação   |                |              |  |
| W [mm]       | B [mm]             | ae[mm]          | 0,005W         | ΔH [mm]            | i     | ai [mm]   | afi [mm] | a0-ai < 0,05B | af-afi < 0,05B | af-ai>0,5*∆a |  |
| 37,12        | 18,4               | 15,999          | 0,1856         | 1,80288            | 1     | 7,267     | 9,224    | Cumpre        | Não Cumpre     | Não Cumpre   |  |
|              |                    |                 |                |                    | 2     | 7,477     | 11,647   | Cumpre        | Cumpre         | Cumpre       |  |
| 100 A 1/     |                    | and they        |                | Contraction of the | 3     | 7,601     | 12,134   | Cumpre        | Cumpre         | Cumpre       |  |
| A AL HE      |                    |                 |                |                    | 4     | 7,711     | 12,156   | Cumpre        | Cumpre         | Cumpre       |  |
| PR IN IT     |                    |                 |                |                    | 5     | 7,805     | 12,347   | Cumpre        | Cumpre         | Cumpre       |  |
|              |                    |                 |                |                    | 6     | 7,7791    | 12,216   | Cumpre        | Cumpre         | Cumpre       |  |
| CARD AND     |                    |                 | Server 1       |                    | 7     | 7,796     | 12,1     | Cumpre        | Cumpre         | Cumpre       |  |
| 1. 此前的情况     | A REAL PROPERTY OF | EX.             | and the second |                    | 8     | 7,723     | 11,289   | Cumpre        | Cumpre         | Cumpre       |  |
| REFERENCE IN |                    |                 | a car la       |                    | 9     | 7,453     | 9,14     | Cumpre        | Não Cumpre     | Não Cumpre   |  |
|              |                    |                 |                |                    | ai/af | 7,6565125 | 11,63388 | 9.1.4.1       | 9.1.4.2        | 9.1.5.1      |  |
| BURNER /     |                    |                 |                | 3- 22              | Δa    | 3,9773    | 3625     |               |                |              |  |
| S. 1.4.1     |                    |                 |                |                    |       |           |          |               |                |              |  |

ALC CHART

|          | Comparação com a previsão |          |           |               |            |          |                    |             |            |            |
|----------|---------------------------|----------|-----------|---------------|------------|----------|--------------------|-------------|------------|------------|
| a0 [mm]  | a0 (estimado) [mm]        | erro [%] | aF [mm]   | aF (estimado) | erro [%]   | ∆a [mm]  | ∆a (estimado) [mm] | erro [%]    | ∆a<0,2b0   | ∆a>0,2b0   |
| 23,65551 | 23,50398621               | 0,640554 | 27,632875 | 25,92829592   | 6,16866352 | 3,977363 | 2,424309706        | 39,04730319 | Não cumpre | Não cumpre |
|          |                           |          |           |               |            |          |                    |             |            |            |



|               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                   | 217_2                                   |          |          |               |                |              |  |
|---------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------|----------|----------|---------------|----------------|--------------|--|
|               |        | Medição do opt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ica do tamai                                                                                                     | nho de fenda      | 1                                       |          |          | Verificação   |                |              |  |
| W [mm]        | B [mm] | ae[mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,005W                                                                                                           | ΔH [mm]           | i                                       | ai [mm]  | afi [mm] | a0-ai < 0,05B | a0-afi < 0,05B | af-ai>0,5*∆a |  |
| 37,19         | 18,55  | 16,023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,18595                                                                                                          | 1,81781           | 1                                       | 3,556    | 4,656    | Cumpre        | Não Cumpre     | Não Cumpre   |  |
|               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second |                   | 2                                       | 3,63     | 5,773    | Cumpre        | Não Cumpre     | Não Cumpre   |  |
| 1/2           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                   | 3                                       | 3,685    | 9,217    | Cumpre        | Cumpre         | Cumpre       |  |
| 1800          |        | State of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |                   | 4                                       | 3,712    | 11,04    | Cumpre        | Cumpre         | Cumpre       |  |
|               |        | Kitter .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |                   | 5                                       | 3,733    | 11,583   | Cumpre        | Cumpre         | Cumpre       |  |
| N. S. S. L.S. |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                   | 6                                       | 3,692    | 10,632   | Cumpre        | Cumpre         | Cumpre       |  |
| A Press       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                   | 7                                       | 3,651    | 9,544    | Cumpre        | Cumpre         | Cumpre       |  |
| Petroletica.  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                   | 8                                       | 3,561    | 6,744    | Cumpre        | Não Cumpre     | Cumpre       |  |
|               |        | Service of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                   | 9                                       | 3,41     | 4,866    | Cumpre        | Não Cumpre     | Não Cumpre   |  |
| 47 10 10 10   |        | and the first                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  | and a state       | ai/af                                   | 3,643375 | 8,66175  | 9.1.4.1       | 9.1.4.2        | 9.1.5.1      |  |
| - 12 m        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                   | Δa                                      | 5,018    | 375      |               |                |              |  |
|               |        | States and a state of the state |                                                                                                                  | Carlos and Carlos | 2-11 - 12 - 12 - 12 - 12 - 12 - 12 - 12 | 00.1     |          |               |                |              |  |

|          |                    | Co       | omparação c | om a previsão    |                    |                            |                         |             | verific    | ação       |
|----------|--------------------|----------|-------------|------------------|--------------------|----------------------------|-------------------------|-------------|------------|------------|
| a0 [mm]  | a0 (estimado) [mm] | erro [%] | aF [mm]     | aF (estimado)    | erro [%]           | ∆a [mm]                    | Δa (estimado) [mm]      | erro [%]    | ∆a<0,2b0   | ∆a>0,2b0   |
| 19,66638 | 19,86511852        | -1,01058 | 24,68475    | 22,90111268      | 7,22566492         | 5,018375                   | 3,035994163             | 39,50244525 | Não cumpre | Não cumpre |
|          |                    |          | M           | orfologia<br>fra | da super<br>actura | fície de<br>Frent<br>Frent | e de Fadiga<br>e Dúctil |             |            |            |
|          |                    |          | 10          |                  |                    | _                          |                         |             |            |            |

**E** <sup>8</sup> <sub>6</sub>



|            |                                                                                                                |                |                                          |              | 217_3 |           |          |               |                |              |  |
|------------|----------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------|--------------|-------|-----------|----------|---------------|----------------|--------------|--|
|            |                                                                                                                | Medição do opt | ica do tamai                             | nho de fenda |       |           |          | Verificação   |                |              |  |
| W [mm]     | B [mm]                                                                                                         | ae[mm]         | 0,005W                                   | ΔH [mm]      | i     | ai [mm]   | afi [mm] | a0-ai < 0,05B | a0-afi < 0,05B | af-ai>0,5*∆a |  |
| 37,19      | 18,53                                                                                                          | 15,96          | 0,18595                                  | 1,81581      | 1     | 3,532     | 5,387    | Cumpre        | Não Cumpre     | Não Cumpre   |  |
| -          | The second s |                |                                          |              | 2     | 3,755     | 7,041    | Cumpre        | Não Cumpre     | Cumpre       |  |
| 12         |                                                                                                                |                |                                          |              | 3     | 3,762     | 9,727    | Cumpre        | Cumpre         | Cumpre       |  |
| P.S. de    |                                                                                                                | 12 State       |                                          |              | 4     | 3,839     | 11,27    | Cumpre        | Cumpre         | Cumpre       |  |
| · Martin   |                                                                                                                | No.            |                                          |              | 5     | 3,881     | 12,239   | Cumpre        | Cumpre         | Cumpre       |  |
| Contra Par |                                                                                                                |                | - 22                                     |              | 6     | 3,873     | 11,57    | Cumpre        | Cumpre         | Cumpre       |  |
| A DE RA    |                                                                                                                |                | an a |              | 7     | 3,778     | 9,953    | Cumpre        | Cumpre         | Cumpre       |  |
| 1721/25    |                                                                                                                |                |                                          |              | 8     | 3,716     | 7,568    | Cumpre        | Não Cumpre     | Cumpre       |  |
| ALC: NO    |                                                                                                                | E CARA         |                                          |              | 9     | 3,637     | 5,805    | Cumpre        | Não Cumpre     | Não Cumpre   |  |
| 1.57       |                                                                                                                | The second     |                                          |              | ai/af | 3,7735625 | 9,3705   | 9.1.4.1       | 9.1.4.2        | 9.1.5.1      |  |
|            |                                                                                                                | 1 Barry        |                                          |              | Δa    | 5,5969    | 9375     |               |                |              |  |
|            |                                                                                                                |                |                                          |              |       |           |          |               |                |              |  |

|          | Comparação com a previsão |          |         |               |            |          |                    |             |            |            |  |
|----------|---------------------------|----------|---------|---------------|------------|----------|--------------------|-------------|------------|------------|--|
| a0 (mm)  | a0 (estimado) [mm]        | erro [%] | aF [mm] | aF (estimado) | erro [%]   | ∆a [mm]  | Δa (estimado) [mm] | erro [%]    | ∆a<0,2b0   | ∆a>0,2b0   |  |
| 19,73356 | 19,932                    | -1,00558 | 25,3305 | 22,98691137   | 9,25204251 | 5,596938 | 3,054911372        | 45,41816178 | Não cumpre | Não cumpre |  |
|          |                           |          | M       | orfologia d   | la superf  | ície de  |                    |             |            |            |  |



|            |                                                                                                                  |                |                     |              | 217_4 |          |          |               |                |              |  |
|------------|------------------------------------------------------------------------------------------------------------------|----------------|---------------------|--------------|-------|----------|----------|---------------|----------------|--------------|--|
|            |                                                                                                                  | Medição do opt | tica do tama        | nho de fenda | 6     |          |          | Verificação   |                |              |  |
| W [mm]     | B [mm]                                                                                                           | ae[mm]         | 0,005W              | ΔH [mm]      | i     | ai [mm]  | afi [mm] | a0-ai < 0,05B | af-afi < 0,05B | af-ai>0,5*∆a |  |
| 37,18      | 18,55                                                                                                            | 16,065         | 0,1859              | 1,81782      | 1     | 8,468    | 9,129    | Cumpre        | Não Cumpre     | Não Cumpre   |  |
|            | and the second |                | And the owner water |              | 2     | 8,498    | 10,94    | Cumpre        | Não Cumpre     | Cumpre       |  |
| CHARGE AND |                                                                                                                  |                |                     |              | 3     | 8,525    | 12,39    | Cumpre        | Cumpre         | Cumpre       |  |
| N. State   | MAR AND                                                                      |                |                     |              | 4     | 8,58     | 12,741   | Cumpre        | Cumpre         | Cumpre       |  |
|            | TANK A                                                                                                           |                |                     |              | 5     | 8,57     | 13,353   | Cumpre        | Cumpre         | Cumpre       |  |
|            |                                                                                                                  |                |                     |              | 6     | 8,6      | 12,661   | Cumpre        | Cumpre         | Cumpre       |  |
| A-M.       | 1. 法国际资料 1. 出                                                                                                    |                |                     |              | 7     | 8,494    | 12,406   | Cumpre        | Cumpre         | Cumpre       |  |
| 1-1-1-2    |                                                                                                                  |                |                     |              | 8     | 8,465    | 11,953   | Cumpre        | Cumpre         | Cumpre       |  |
| 1 1 1 N    |                                                                                                                  |                | Ran Taki            |              | 9     | 8,358    | 9,468    | Cumpre        | Não Cumpre     | Não Cumpre   |  |
|            |                                                                                                                  |                |                     |              | ai/af | 8,518125 | 11,96781 | 9.1.4.1       | 9.1.4.2        | 9.1.5.1      |  |
| ATT A      | ALS STOL                                                                                                         |                |                     |              | Δa    | 3,449    | 6875     |               |                |              |  |
| A MARY AND | A CLEAR AND A C  |                |                     |              |       |          |          |               |                |              |  |

K BA

| Comparação com a previsão                                                                                                                                                                                                                                          | verific                   | ação       |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------|------------|
| a0 [mm] a0 (estimado) [mm] erro [%] aF [mm] aF (estimado) erro [%] Δa [mm] Δa (                                                                                                                                                                                    | (estimado) [mm] erro [%]  | Δa<0,2b0   | ∆a>0,2b0   |
| 24,58313 24,64966447 -0,27067 28,032813 26,70947506 4,72067311 3,449688 2,                                                                                                                                                                                         | 2,05981058823 40,28993675 | Não cumpre | Não cumpre |
| 24,58513 24,64566447 -0,27/067 26,052813 26,70547506 4,72067511 3,449688 2,<br>Morfologia da superfície de<br>fractura<br>Frente de Fa<br>Frente Dúcti<br>16<br>16<br>16<br>16<br>16<br>16<br>10<br>16<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | Fadiga                    | Nao cumpre | Nao cumpre |
| i                                                                                                                                                                                                                                                                  | 10                        |            |            |

|              |                |                |             |              | 217_5 |           |          |               |                |              |  |
|--------------|----------------|----------------|-------------|--------------|-------|-----------|----------|---------------|----------------|--------------|--|
|              |                | Medição do opt | ica do tama | nho de fenda | 8     |           |          | Verificação   |                |              |  |
| W [mm]       | B [mm]         | ae[mm]         | 0,005W      | ΔH [mm]      | i i   | ai [mm]   | afi [mm] | a0-ai < 0,05B | a0-afi < 0,05B | af-ai>0,5*∆a |  |
| 37,08        | 18,62          | 15,974         | 0,1854      | 1,82492      | 1     | 8,948     | 9,457    | Cumpre        | Não Cumpre     | Não Cumpre   |  |
|              |                |                |             |              | 2     | 9,083     | 11,753   | Cumpre        | Cumpre         | Cumpre       |  |
| Construction |                |                |             |              | 3     | 9,157     | 11,88    | Cumpre        | Cumpre         | Cumpre       |  |
| STREET, DO   | WALL WALL WALL | A Strand Mary  | 14 66       |              | 4     | 9,26      | 12,114   | Cumpre        | Cumpre         | Cumpre       |  |
|              |                |                |             | 2 12         | 5     | 9,231     | 12,652   | Cumpre        | Cumpre         | Cumpre       |  |
|              |                |                |             |              | 6     | 9,255     | 12,202   | Cumpre        | Cumpre         | Cumpre       |  |
|              |                |                |             |              | 7     | 9,194     | 12,104   | Cumpre        | Cumpre         | Cumpre       |  |
| 12116        |                |                | En Francis  |              | 8     | 9,1       | 11,65    | Cumpre        | Cumpre         | Cumpre       |  |
|              |                |                |             | Castra -     | 9     | 8,989     | 9,552    | Cumpre        | Não Cumpre     | Não Cumpre   |  |
| (SXII)       |                | - Contraction  |             | ALL T        | ai/af | 9,1560625 | 11,73244 | 9.1.4.1       | 9.1.4.2        | 9.1.5.1      |  |
|              |                |                |             |              | Δa    | 2,576     | 375      |               |                |              |  |
| V/AL         |                |                |             | 298.1        |       |           |          |               |                |              |  |
| S/AL         |                |                |             |              |       |           |          |               |                |              |  |

|          |                    | Co       | omparação co | om a previsão      |                    |                             |                     |             | verific    | ação       |
|----------|--------------------|----------|--------------|--------------------|--------------------|-----------------------------|---------------------|-------------|------------|------------|
| a0 [mm]  | a0 (estimado) [mm] | erro [%] | aF [mm]      | aF (estimado)      | erro [%]           | ∆a [mm]                     | Δa (estimado) [mm]  | erro [%]    | ∆a<0,2b0   | Δa>0,2b0   |
| 25,13006 | 25,15233059        | -0,08861 | 27,706438    | 26,65482079        | 3,79556812         | 2,576375                    | 1,502490202         | 41,68200662 | Não cumpre | Não cumpre |
|          |                    | E        | Mc           | orfologia d<br>fra | la superf<br>ctura | ície de<br>Frente<br>Frente | de Fadiga<br>Dúctil |             |            |            |
|          |                    |          |              |                    |                    |                             |                     |             |            |            |

| 217_6           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |             |       |          |          |               |                |               |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|-------------|-------|----------|----------|---------------|----------------|---------------|--|
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Medição do optica | a do tamanh | no de fenda |       |          |          | Verificação   |                |               |  |
| W [mm]          | B [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ae [mm]           | 0,005W      | ΔH [mm]     | i     | ai [mm]  | afi [mm] | a0-ai < 0,05B | a0-afi < 0,05B | afi-ai>0,5*∆a |  |
| 37,09           | 18,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15,86             | 0,18545     | 1,81291     | 1     | 5,698    | 6,305    | Cumpre        | Não Cumpre     | Não Cumpre    |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |             | 2     | 5,782    | 7,086    | Cumpre        | Não Cumpre     | Cumpre        |  |
| al and a second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | urris 100   |             | 3     | 5,874    | 9,146    | Cumpre        | Cumpre         | Cumpre        |  |
| C. 19.013       | THE REAL PROPERTY AND A RE | Mer of the        |             |             | 4     | 5,837    | 9,521    | Cumpre        | Cumpre         | Cumpre        |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |             | 5     | 5,928    | 9,755    | Cumpre        | Cumpre         | Cumpre        |  |
| L.X             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second        | 1 Toto      |             | 6     | 5,924    | 9,248    | Cumpre        | Cumpre         | Cumpre        |  |
| IS OF           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             | 1.1         | 7     | 5,935    | 9,177    | Cumpre        | Cumpre         | Cumpre        |  |
| No.             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 日本の               |             |             | 8     | 5,753    | 7,083    | Cumpre        | Não Cumpre     | Cumpre        |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5               |             |             | 9     | 5,595    | 6,019    | Cumpre        | Não Cumpre     | Não Cumpre    |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sec. 1            |             |             | ai/af | 5,834938 | 8,39725  | 9.1.4.1       | 9.1.4.2        | 9.1.5.1       |  |
| V               | AND AND AND AND AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 2 3             |             |             | Δa    | 2,562    | 23125    | SIM           | NÃO            |               |  |
| ALC: N          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |             |             |       |          |          | <4mm          | <15% b0        | Í.            |  |

|          |                    | Con      | nparação co | m a previsão  |          |           |                     |          | verifica | ção      |
|----------|--------------------|----------|-------------|---------------|----------|-----------|---------------------|----------|----------|----------|
| a0 [mm]  | a0 (estimado) [mm] | erro [%] | aF [mm]     | aF (estimado) | erro [%] | ∆a [mm]   | Δa (estimado) [mm]  | erro [%] | ∆a<0,2b0 | ∆a>0,2b0 |
| 21,69494 |                    | #VALOR!  | 24,25725    |               | #VALOR!  | 2,562313  |                     | #VALOR!  | #VALOR!  | #VALOR!  |
|          |                    | 12       | M           | orfologia     | da supe  | erfície d | e fractura          |          |          |          |
|          |                    | 10       |             |               |          |           |                     |          |          |          |
|          |                    | 6        |             |               |          | 5         | 🛶 a0 - Fenda de fad | ga       |          |          |
|          |                    | 4        |             |               |          |           | - af - Fenda dúctil |          |          |          |
|          |                    | 2        |             |               |          |           |                     |          |          |          |
|          |                    | 0        | 0 2         | 4             | 6        | 8 10      |                     |          |          |          |

|                                       |                                  |                   |                                                                                                                 |         | 217_7 |                |          |               |                |               |
|---------------------------------------|----------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|---------|-------|----------------|----------|---------------|----------------|---------------|
| Medição do optica do tamanho de fenda |                                  |                   |                                                                                                                 |         |       |                | 1        | Verificação   |                |               |
| W [mm]                                | B [mm]                           | ae [mm]           | 0,005W                                                                                                          | ΔH [mm] | i     | ai [mm]        | afi [mm] | a0-ai < 0,05B | a0-afi < 0,05B | afi-ai>0,5*∆a |
| 37,11                                 | 18,59                            | 15,88             | 0,18555                                                                                                         | 1,82189 | 1     | 5,562          | 5,918    | Cumpre        | Não Cumpre     | Não Cumpre    |
|                                       |                                  |                   |                                                                                                                 |         | 2     | 5,741          | 8,811    | Cumpre        | Não Cumpre     | Cumpre        |
|                                       | THE REAL PROPERTY AND ADDRESS OF | The second second |                                                                                                                 |         | 3     | 5 <i>,</i> 888 | 10,155   | Cumpre        | Cumpre         | Cumpre        |
| K                                     | Is shill be th                   | The second        | 6. 1.                                                                                                           |         | 4     | 5,959          | 11,423   | Cumpre        | Cumpre         | Cumpre        |
|                                       |                                  |                   |                                                                                                                 |         | 5     | 6,022          | 12,074   | Cumpre        | Cumpre         | Cumpre        |
| - Pastal/                             |                                  |                   |                                                                                                                 |         | 6     | 6,008          | 11,553   | Cumpre        | Cumpre         | Cumpre        |
| 1                                     |                                  |                   |                                                                                                                 |         | 7     | 5 <i>,</i> 895 | 10,901   | Cumpre        | Cumpre         | Cumpre        |
|                                       |                                  |                   |                                                                                                                 |         | 8     | 5,805          | 8,193    | Cumpre        | Não Cumpre     | Cumpre        |
|                                       |                                  |                   |                                                                                                                 |         | 9     | 5,697          | 6,386    | Cumpre        | Não Cumpre     | Não Cumpre    |
|                                       |                                  |                   |                                                                                                                 |         | ai/af | 5,868438       | 9,90775  | 9.1.4.1       | 9.1.4.2        | 9.1.5.1       |
|                                       |                                  | 1                 |                                                                                                                 |         | Δa    | 4,039          | 3125     | NÃO           | NÃO            |               |
|                                       |                                  | Here Here         |                                                                                                                 |         |       |                |          | <4mm          | <15% b0        |               |
|                                       |                                  |                   | the second se |         |       |                |          |               |                |               |

A BARANES IN MARKARAMAN MARKA SAMA

|          |                    | Con                                                          | nparação cor | n a previsão  |             |           |                    |          | verifica | ição     |
|----------|--------------------|--------------------------------------------------------------|--------------|---------------|-------------|-----------|--------------------|----------|----------|----------|
| a0 [mm]  | a0 (estimado) [mm] | erro [%]                                                     | aF [mm]      | aF (estimado) | erro [%]    | ∆a [mm]   | Δa (estimado) [mm] | erro [%] | ∆a<0,2b0 | ∆a>0,2b0 |
| 21,74844 |                    | #VALOR!                                                      | 25,78775     |               | #VALOR!     | 4,039313  |                    | #VALOR!  | #VALOR!  | #VALOR!  |
|          |                    | 14 -   12 -   10 -   8 -   6 -   4 -   2 -   0 -   0 -   0 - |              | rfologia d    | a supe<br>σ | rfície de | e fractura<br>     | a        |          |          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 217_8         |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |         |          |               |                |              |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|----------|---------------|----------------|--------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | Medição do opt | tica do tamar | nho de fenda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |         |          | V             | erificação     |              |  |
| W [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B [mm]        | ae[mm]         | 0,005W        | ∆H [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | í     | ai [mm] | afi [mm] | a0-ai < 0,05B | af-afi < 0,05B | af-ai>0,5*∆a |  |
| 37,07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18,53         | 16,072         | 0,18535       | 1,81593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1     | 7,543   | 7,906    | Cumpre        | Não Cumpre     | Não Cumpre   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2     | 7,552   | 10,646   | Cumpre        | Cumpre         | Cumpre       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | 1              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3     | 7,639   | 11,45    | Cumpre        | Cumpre         | Cumpre       |  |
| Carlos and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CONTRACTOR OF |                | A H           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4     | 7,634   | 12,083   | Cumpre        | Cumpre         | Cumpre       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5     | 7,731   | 12,102   | Cumpre        | Cumpre         | Cumpre       |  |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6     | 7,698   | 12,047   | Cumpre        | Cumpre         | Cumpre       |  |
| 1055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7     | 7,675   | 11,091   | Cumpre        | Cumpre         | Cumpre       |  |
| 1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8     | 7,586   | 9,881    | Cumpre        | Não Cumpre     | Cumpre       |  |
| E State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9     | 7,475   | 7,881    | Cumpre        | Não Cumpre     | Não Cumpre   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                | a start       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ai/af | 7,628   | 10,89919 | 9.1.4.1       | 9.1.4.2        | 9.1.5.1      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Δa    | 3,271   | 1875     |               |                |              |  |
| and the second se |               |                |               | Contraction of the local division of the loc |       |         |          |               |                |              |  |

|         |                    | Co       | omparação co     | om a previsão      |                    |          |                     |             | verific    | ação       |
|---------|--------------------|----------|------------------|--------------------|--------------------|----------|---------------------|-------------|------------|------------|
| a0 [mm] | a0 (estimado) [mm] | erro [%] | aF [mm]          | aF (estimado)      | erro [%]           | Δa [mm]  | Δa (estimado) [mm]  | erro [%]    | Δa<0,2b0   | ∆a>0,2b0   |
| 23,7    | 23,6730707         | 0,113626 | 26,971188        | 25,58099966        | 5,15434421         | 3,271188 | 1,880999658         | 42,49795652 | Não cumpre | Não cumpre |
|         |                    |          | Mc               | orfologia d<br>fra | la superf<br>ctura | Frente   | de Fadiga<br>Dúctil |             |            |            |
|         |                    | Ē        |                  |                    |                    |          | <b>&gt;</b>         |             |            |            |
|         |                    |          | 4<br>2<br>0<br>0 | 2 4                | 6<br>i             | 8        | 10                  |             |            |            |

### 8.6 Anexo F – Método de normalização

# Cálculo do J para a normalização do diagrama de força vs deslocamento

> restart with(LinearAlgebra) : with(plots) : #Dados geométricos e Mecânicos do provete >  $EE := 191.995 \cdot 10^3$ :  $\sigma ys := 585.35 \cdot 10^6$ :  $\sigma uts := 695.25 \cdot 10^6$ : B := 18.4: Bn := B: W  $= 37.12 : Be := B - \frac{(B - Bn)^2}{B} : S := 148.68 : v := 0.3 : L := 196.31 : oy$  $:= \frac{\sigma ys + \sigma uts}{2}$ : #importação dos dados recolhidos no diagrama de força vs deslocamento > dados:=ImportMatrix ("C:\\Users\\Adriano Balhana\\Dropbox\\tese mestrado/\Ensaios/\Ensaios provetes pequenos\\217\_cbl\_1\\217\_cbl\_1\_dados.txt", source = delimited, delimiter = "", datatype = float[8], skiplines = 1); 51 x 3 Matrix dados := Data Type: float<sub>8</sub> Storage: rectangular Order: Fortran\_order (1) > n := 51: > F := Vector[column](n) : V := Vector[column](n) : C := Vector[column](n) : N:= Vector[column](n): #Extração dos dados do diagrama para vectores > for i from 1 to n do  $F_i := dados_{i, 2};$  $V_i := dados_{i-1};$  $C_i := dados_{i, 3};$  $N_i := i;$ end do: u := Vector[column](n) : aw := Vector[column](n) : a := Vector[column](n) :#Calculo do u e do comprimento de fenda for i from 1 to n do  $\begin{bmatrix} 107 i \text{ from } 1 \text{ torr } u_i \\ u_i \coloneqq evalf \left( \frac{1}{\left( \frac{Be \cdot W \cdot EE \cdot C_i}{\frac{S}{4}} \right)^{\frac{1}{2}} + 1} \end{bmatrix}$ 



$$\begin{aligned} & \# Factor de intensidade de tensões \\ & K := \left( \left( \frac{P \cdot S}{(B \cdot Bn)^{\frac{1}{2}} \cdot y^{\frac{3}{2}}} \right) \cdot f \right) \cdot \sqrt{0.001} : \# MPa \sqrt{m} \\ & \# J elástico \\ & Jelastico := \frac{K^{2} \cdot (1 - o^{2})}{EE : 10^{6}} : \# \frac{J}{m^{2}} \\ & KI := Vector[column](n) : Jel := Vector[column](n) : \\ & \# calculo do K e J \\ & \text{ for i f fom 1 to n do} \\ & KI_{i} := evalf (subs (af = a_{p} P = F_{p} K)) \cdot 10^{6} \# Pa \sqrt{m} \\ & Jel_{i} := evalf (subs (Ki = KI_{p} Jelastico) \cdot (10^{-3})) : \# \frac{kI}{m^{2}} \\ & \text{ end do:} \\ & \# Calculo do J J plástico \\ & \eta pl_{i} := Vector[column](n) : pl := Vector[column](n) : Apl := Vector[column](n) : Vpl \\ & := Vector[column](n) : pl := Vector[column](n) : Apl := Vector[column](n) : Vpl \\ & := Vector[column](n) : pl := Vector[column](n) : Apl := Vector[column](n) : Vpl \\ & := Vector[column](n) : pl := Vector[column](n) : Apl := Vector[column](n) : Vpl \\ & := Vector[column](n) : pl := Vector[column](n) : Apl := 0 \\ & \eta pl_{1} := 3.667 - 2.199 \cdot (aw_{1}) + 0.437 \cdot (aw_{1})^{2}; \\ & ppl_{1} := 0; \\ & Vpl_{1} := 0; \\ & Jpl_{1} := 0; \\ & Jpl_{1} := 0; \\ & for i from 2 to n do \\ & Vpl_{1} := V_{1} - (F_{1} \cdot C_{1}); \\ & Apl_{i} := Apl_{i-1} + \left( (F_{i} + F_{i-1}) \cdot \frac{(Vpl_{i} - Vpl_{i-1})}{2} \right); \\ & \eta pl_{i} := 3.667 - 2.199 \cdot (aw_{i}) + 0.437 \cdot (aw_{i})^{2}; \\ & ppl_{i} := 0.131 + 2.131 \cdot (aw_{i}) - 1.465 \cdot (aw_{i})^{2}; \\ & ppl_{i} := 0.131 + 2.131 \cdot (aw_{i}) - 1.465 \cdot (aw_{i})^{2}; \\ & ppl_{i} := 0.131 + 2.131 \cdot (aw_{i}) - 1.465 \cdot (aw_{i})^{2}; \\ & ppl_{i} := \left( Jpl_{i-1} + \left( \frac{\eta pl_{i}}{b_{i-1}} \right) \cdot \left( \frac{Apl_{i} - Apl_{i-1}}{Bn} \right) \right) \cdot \left( 1 - pl_{i-1} \cdot \left( \frac{a_{i} - a_{i-1}}{b_{i-1}} \right) \right) : \# \frac{kI}{m^{2}} \\ & \text{ end do:} \end{aligned}$$





11, 23.6357674085348, 0.131781193538711, 177.502667933909 12, 23.6751314053481, 0.171145190351950, 198.287893432034 13, 23, 7223930312645, 0.218406816268363, 218, 203413448263 14, 23, 7935888780849, 0.289602663088800, 236, 984082600441 15, 23.8690579165432, 0.365071701547055, 257.858996874106 16, 23.8641840650550, 0.360197850058885, 278.308675197756 17, 23.9335418919362, 0.429555676940051, 297.260641439440 18, 24.0148320813967, 0.510845866400572, 317.715864487887 19, 24.0520954678647, 0.548109252868564, 336.798892368394 20, 24.1054486966333, 0.601462481637238, 357.086542724103 21, 24.1345007754475, 0.630514560451392, 376.036857769316 22, 24.1850547560066, 0.681068541010543, 397.572141982138 23, 24.2427902290884, 0.738804014092285, 417.875405749804 24, 24.4179491107521, 0.913962895755954, 431.760365018142 25, 24.3646820742885, 0.860695859292374, 456.375720745617 26, 24.4455978211947, 0.941611606198599, 473.487160717110 27, 24.5236895790401, 1.01970336404404, 492.704000301135 28, 24.5440607842498, 1.04007456925365, 511.973904115276 29, 24.5866581320156, 1.08267191701950, 532.930360143207 30, 24.5852273535983, 1.08124113860219, 553.536156397074 31, 24, 7293439942356, 1.22535777923950, 567.051071936405 32, 24.7201835780460, 1.21619736304994, 588.831602028223 33, 24,8697399120682, 1.36575369707207, 603,536408444401 34, 24.8875795374694, 1.38359332247332, 623.682514380152 35, 24,9071937651364, 1,40320755014026, 642,429594640079 36, 24.9706880391003, 1.46670182410420, 661.095430032996 37, 25.0256585386701, 1.52167232367400, 676.776819964461 38, 25.0957883478550, 1.59180213285894, 694.208750656407 39, 25.1248735313055, 1.62088731630937, 711.266416677910 40, 25.2139074069108, 1.70992119191472, 728.466225798380 41, 25.2549518246973, 1.75096560970117, 746.586638632143 42, 25.3156756750437, 1.81168946004761, 762.228094153312 43, 25.4027171552475, 1.89873094025143, 777.030070456590 44, 25.5182443455830, 2.01425813058686, 789.090892840480 45, 25.5771709864636, 2.07318477146746, 806.457109117966 46, 25.7049363523569, 2.20095013736082, 815.777411104054 47, 25.7607530900150, 2.25676687501893, 831.415845253454 48, 25.7768147377205, 2.27282852272443, 849.972198557242 49, 25.7928599252901, 2.28887371029397, 868.697146696141 50, 25.8655450948416, 2.36155887984552, 881.559517459137 51, 25.9282959207210, 2.42430970572488, 895.352676446785

(4)

# Cálculo do diagrama de força vs deslocamento normalizad



# Processo iterativo para a obtenção dos comprimentos de fenda intermédios

### coefecientes da equação b c а -0,51866 109,971 406,483 -0,00446

dif dif(%) verificação

1,165426 1,019161 Não ok

,595715 1,358811 Não ok

1,445732 1,217699 Não ok

1,437747 1,198518 Não ok

0,752267 0,598636 OK

0,354608 0,277353 OK 0,462214 0,358452 OK

OK

OK

OK

OK

OK

OK

OK

OK

OK OK

OK OK

OK

OK

OK

OK

OK

OK

OK OK

OK

OK

OK

OK OK

OK

OK

OK

OK

OK OK

OK

OK

OK

OK

OK OK

OK

OK

OK

OK

OK OK

OK

OK

OK

OK

OK

OK

OK

OK

OK

0,10%

1,081066 0,892396 0,620367 0,502667

0,73172 0,587515

0,602858 0,47559

0,462214 0,358452

0,323136 0,248506

0,332246 0,253403

0,099465 0,075241 0,312958 0,234824

0,168483 0,125397

0,276996 0,204539 0,312175 0,228694

0,526549 0,382728

0,804723 0,575924

0,817591 0,576215

0,837087 0,576878

0,927748 0,634707

0,959398 0,651584

0,801751 0,540562

0,826076 0,552958

-0,15357 -0,10207

-0,04759 -0,03141

-0,0758 -0,04967

0,073295 0,047351

-0,04098 -0,02629 0,104952 0,066865

-0,03463 -0,02191

0,094298 0,059254

0,025107 0,015669

0,07196 0,044609

-0,06909 -0,04226

0,098462 0,059832

0,037467 0,022619

0,110041 0,066001

0,165969 0,098901

0,108565 0,064277

-0,01822 -0,01072 -0,11569 -0,06761

-0,01762 -0,01023

0,029707 0,017143

0,039765 0,022803

0,045263 0,025794

-0,07785 -0,04409

0,082301 0,046321

0,127661 0,071414

0,037543 0,020875

0,040405 0,022331

-0,12782 -0,07022

-0,0251 -0,01371

0,158708 0,086147

0,079243 0,042758

-0,01763 -0,00945

-0,77922 -0,41687 OK

0,155304 0,082812

0,120469 0,078369 OK

0,582889 0,420369 OK

0,972159 0,690373 OK

0,832659 0,582454 OK 0,873109 0,606229 OK

1,731255 1,492137 Não ok

| VPL        | PN          |
|------------|-------------|
| 2          |             |
|            |             |
|            |             |
|            |             |
|            |             |
|            |             |
|            |             |
| 0,0124819  | 114,3515053 |
| 0,0150878  | 116,0252161 |
| 0,0176509  | 117,4346641 |
| 0,0202182  | 118,7265007 |
| 0,0228104  | 119,9603907 |
| 0,0253854  | 121,141936  |
| 0,0305129  | 123,4152218 |
| 0,0331193  | 124,5448543 |
| 0,0357271  | 125,6634262 |
| 0,038304   | 126,7598397 |
| 0,040893   | 127,8544061 |
| 0,0434908  | 128,9471214 |
| 0,0460804  | 130,0317758 |
| 0,0486725  | 131,1137638 |
| 0,0512696  | 132,194649  |
| 0,0538683  | 133,2735535 |
| 0,0564902  | 134,3598542 |
| 0,0590645  | 135,4244667 |
| 0,061678   | 136,503639  |
| 0,0642834  | 137,5779516 |
| 0,0669134  | 138,6611565 |
| 0,0695045  | 139,7272241 |
| 0,0721544  | 140,8164879 |
| 0,0747681  | 141,889934  |
| 0,0773685  | 142,9571442 |
| 0,079967   | 144,0228942 |
| 0,0826101  | 145,1062744 |
| 0,0852054  | 146,1694928 |
| 0,0878221  | 147,2409466 |
| 0,0904538  | 148,3180704 |
| 0,0930795  | 149,392305  |
| 0,0956908  | 150,4602456 |
| 0,0983367  | 151,5419733 |
| 0,1009892  | 152,6260359 |
| 0,1036671  | 153,7201764 |
| 0,1062911  | 154,/92016  |
| 0,1089367  | 155,8/24246 |
| 0,1116017  | 156,9604705 |
| 0,1142941  | 158,059504  |
| 0,110944   | 159,1409252 |
| 0,1196295  | 160,236/008 |
| 0,1222/25  | 101,3149/68 |
| 0,12/5858  | 103,4820995 |
| 0,1302392  | 104,5040918 |
| 0,1328952  | 166 7262877 |
| 0,1333428  | 167 9142224 |
| 0,1382115  | 167,8142221 |
| 0,1408/64  | 160,9004085 |
| 0,1453539  | 171 0092954 |
| 0,1402097  | 172 1001805 |
| 0,1409494  | 172,1901805 |
| 0,1510529  | 174 2840000 |
| 0,1545366  | 175 4921024 |
| 0 15970923 | 176 5722405 |
| 0 1624117  | 177 6742272 |
| 0.165070   | 178 7605584 |
| 0 1677476  | 179 8473512 |
| 0.1704214  | 180 9261065 |
| 0 1731314  | 182 0397082 |
| 0.1758182  | 183,1337151 |
| 0.1785102  | 184,2297598 |
| 0.1812058  | 185.3272342 |
| 0.1839337  | 186.4378253 |
| 0.1866386  | 187.5389889 |
| 0,1851149  | 186,9187102 |
| -,         |             |

Equação de normalização

| -        |          | nn V/Pi     |          |          |  |  |
|----------|----------|-------------|----------|----------|--|--|
| 24.7224  | 24,7224  | 4.19272E-05 | 10.43359 | 0.001699 |  |  |
| 24,7224  | 24,72358 | 4,19353E-05 | 29,14926 | 0,002535 |  |  |
| 24,7224  | 24,72666 | 4,19565E-05 | 55,31824 | 0,002681 |  |  |
| 24,7224  | 24,73132 | 4,19885E-05 | 80,10257 | 0,002955 |  |  |
| 24,7224  | 24,73611 | 4,20214E-05 | 99,37072 | 0,003763 |  |  |
| 24,7224  | 24,73908 | 4,20418E-05 | 109,6643 | 0,005433 |  |  |
| 24,7224  | 24,70307 | 4,22214E-05 | 113 1861 | 0.01045  |  |  |
| 24,7224  | 24,78244 | 4,2342E-05  | 114.294  | 0.013035 |  |  |
| 24,7224  | 24,79128 | 4,24036E-05 | 115,8389 | 0,015569 |  |  |
| 24,7224  | 24,80021 | 4,2466E-05  | 117,2808 | 0,01811  |  |  |
| 24,7224  | 24,80926 | 4,25293E-05 | 118,5226 | 0,020679 |  |  |
| 24,7224  | 24,81842 | 4,25936E-05 | 120,0609 | 0,023225 |  |  |
| 24,7224  | 24,83687 | 4,27234E-05 | 122,7949 | 0,028301 |  |  |
| 24,7224  | 24,8462/ | 4,27898E-05 | 123,8131 | 0,030888 |  |  |
| 24.7224  | 24.86527 | 4.29245E-05 | 126.157  | 0.036029 |  |  |
| 24,7224  | 24,87492 | 4,29931E-05 | 127,4998 | 0,038592 |  |  |
| 24,7224  | 24,88458 | 4,3062E-05  | 128,4849 | 0,041171 |  |  |
| 24,7224  | 24,89435 | 4,31318E-05 | 129,7086 | 0,043738 |  |  |
| 24,7224  | 24,90415 | 4,3202E-05  | 130,7815 | 0,046309 |  |  |
| 24,7224  | 24,91412 | 4,32736E-05 | 132,0952 | 0,048881 |  |  |
| 24,7224  | 24,92403 | 4,35449E-05 | 132,9606 | 0.054062 |  |  |
| 24.7224  | 24,94418 | 4,34905E-05 | 135.1475 | 0.056618 |  |  |
| 24,7224  | 24,95439 | 4,35645E-05 | 136,1915 | 0,059211 |  |  |
| 24,7224  | 24,96456 | 4,36385E-05 | 137,0514 | 0,061799 |  |  |
| 24,7224  | 24,97494 | 4,37142E-05 | 138,0783 | 0,06441  |  |  |
| 24,7224  | 24,98516 | 4,37889E-05 | 138,9225 | 0,066984 |  |  |
| 24,7224  | 24,99569 | 4,3866E-05  | 139,8443 | 0,069616 |  |  |
| 24,739   | 25,0227  | 4,40049E-05 | 141,0725 | 0,072174 |  |  |
| 24,751   | 25,05559 | 4,43088E-05 | 143,1498 | 0.077309 |  |  |
| 24,759   | 25,0743  | 4,44484E-05 | 144,2692 | 0,079914 |  |  |
| 24,769   | 25,09479 | 4,46022E-05 | 145,2417 | 0,08247  |  |  |
| 24,779   | 25,11544 | 4,47578E-05 | 146,2815 | 0,085046 |  |  |
| 24,799   | 25,14617 | 4,49911E-05 | 147,5163 | 0,087613 |  |  |
| 24,611   | 25,10091 | 4,56649E-05 | 140,5002 | 0.092652 |  |  |
| 24,885   | 25,26443 | 4,59057E-05 | 151,5896 | 0,095235 |  |  |
| 24,905   | 25,29532 | 4,61492E-05 | 152,7018 | 0,097822 |  |  |
| 24,925   | 25,32626 | 4,6395E-05  | 153,5997 | 0,100438 |  |  |
| 24,955   | 25,36699 | 4,67215E-05 | 154,7187 | 0,102974 |  |  |
| 24,985   | 25,40/83 | 4,/05241-05 | 155,9134 | 0,105528 |  |  |
| 25,015   | 25,49963 | 4,7809E-05  | 158.0941 | 0.110685 |  |  |
| 25,085   | 25,54039 | 4,81508E-05 | 159,0466 | 0,113246 |  |  |
| 25,115   | 25,58137 | 4,8498E-05  | 160,2116 | 0,115838 |  |  |
| 25,145   | 25,62213 | 4,88472E-05 | 161,243  | 0,118389 |  |  |
| 25,205   | 25,70383 | 4,95583E-05 | 163,5512 | 0,12351  |  |  |
| 25,215   | 25,72477 | 4,97431E-05 | 164,4656 | 0,126115 |  |  |
| 25,245   | 25,79651 | 5.03839E-05 | 166,6163 | 0,1200/4 |  |  |
| 25,295   | 25.8374  | 5,07546E-05 | 167,6483 | 0.13382  |  |  |
| 25,325   | 25,87829 | 5,11295E-05 | 168,7918 | 0,136384 |  |  |
| 25,365   | 25,92918 | 5,16018E-05 | 170,0107 | 0,138937 |  |  |
| 25,415   | 25,99009 | 5,21756E-05 | 171,214  | 0,141501 |  |  |
| 25,445   | 26,03093 | 5,25658E-05 | 172,2078 | 0,144081 |  |  |
| 25,485   | 26,081/1 | 5,30569E-05 | 1/3,2538 | 0,146639 |  |  |
| 25,525   | 26 18322 | 5,35555E-05 | 175 4378 | 0.151782 |  |  |
| 25,605   | 26,23402 | 5,45718E-05 | 176,6511 | 0,154325 |  |  |
| 25,635   | 26,27482 | 5,49885E-05 | 177,5919 | 0,156925 |  |  |
| 25,665   | 26,31548 | 5,54085E-05 | 178,6329 | 0,159486 |  |  |
| 25,695   | 26,35617 | 5,58336E-05 | 179,8098 | 0,162043 |  |  |
| 25,725   | 26,39685 | 5,62635E-05 | 180,8958 | 0,164606 |  |  |
| 25,775   | 26,45752 | 5,69139E-05 | 182,1675 | 0,167152 |  |  |
| 25,605   | 26,49816 | 5,755582-05 | 184 0711 | 0,109/29 |  |  |
| 25.879   | 26,59332 | 5,84108E-05 | 185,248  | 0,174859 |  |  |
| 25,929   | 26,65391 | 5,90977E-05 | 186,4555 | 0,177419 |  |  |
| 25,969   | 26,70438 | 5,96789E-05 | 187,3837 | 0,179989 |  |  |
| 20 22 45 | 36 7345  | 5 00121E-05 | 107 6070 | A 101/00 |  |  |

5,1136E-05 5,8411E-05

5,16001E-05 5,9098E-05

5,19759E-05 5,9679E-05

5,99131E-05 5,9913E-05



· Pri

10-10-00-00000000 1.0-0000

-0.01000

HE PTT

100.4100

di Manak

A second

nom (Use) Fit of Sheet1 D

100 Loca-

4,0000

A LOUGH

8.7 Anexo G – Obtenção do  $J_{IC}$ 

| Propriedades e dimensões |                                 |        |            |       |                |
|--------------------------|---------------------------------|--------|------------|-------|----------------|
| B [mm]                   | 18,44                           |        |            |       |                |
| W [mm]                   | 37,24                           |        |            | 213   | 1              |
| b0 [mm]                  | 12,518                          |        |            | _     |                |
| 2оу [МРа]                | 917,94                          |        |            |       |                |
|                          |                                 |        |            |       |                |
| Verificações a0q         |                                 | a0q-a0 | a0q+-0,01W | 0,5mm | Ponto da norma |
| Magneticity of           | and a large or real and dealers |        |            |       |                |

| a0 [mm]                                               | 24,722 | #VALOPI | #VALOPI | #VALORI | 9721    |
|-------------------------------------------------------|--------|---------|---------|---------|---------|
| a0Q [mm]                                              | -      | #VALOR: | #VALOR! | #VALOR! | 9.7.2.1 |
| R^2                                                   | -      |         | ok      |         |         |
| Nº de pontos utilizados                               | -      |         | ok      | 9.7.2.2 |         |
| Nº de pontos de qualificação do a0q entre 0,4 Jq e Jq | -      | ok      |         |         |         |
|                                                       |        |         |         |         |         |

| 10 | C1        | C2     | ΔaQ [mm]   | JQ [kJ/m^2] | 0,4*JQ      |
|----|-----------|--------|------------|-------------|-------------|
| JQ | 587,63147 | 0,4665 | 0,76494118 | 518,582106  | 207,4328425 |

| Verificações e qualificação JQ               |           |    |         |  |  |  |
|----------------------------------------------|-----------|----|---------|--|--|--|
| nº de pontos entre L0,2 e L0,5               | 13        | ok | 9.6.4   |  |  |  |
| C2                                           | 0,4665    | ok | 9.7.1   |  |  |  |
| Nº de pontos na região de dados qualificados | 24        | ok | 9.6.6.6 |  |  |  |
| B> 10 (JQ/σY)                                | 11,298824 | ok | 9.8.1   |  |  |  |
| b0> 10 (JQ/σY)                               | 11,298824 | ok | 9.8.2   |  |  |  |




| Propriedades e dimensões |         |       |
|--------------------------|---------|-------|
| B [mm]                   | 18,45   |       |
| W [mm]                   | 37,13   | 213 3 |
| b0 [mm]                  | 11,9115 |       |
| 2σy [MPa]                | 917,94  |       |

| Verificações a0q                                      |         | a0q-a0   | a0q+-0,01W | 0,5mm   | Ponto da norma |         |         |        |      |
|-------------------------------------------------------|---------|----------|------------|---------|----------------|---------|---------|--------|------|
| a0 [mm]                                               | 25,2185 | 0.0155   |            | 25,2185 | 35 0.0155      | 25,2185 | Não ale | não ok | 0721 |
| a0Q [mm]                                              | 24,303  | 0,9155   | Nao ok     | nao ok  | 9.7.2.1        |         |         |        |      |
| R^2                                                   | 0,978   | ok       |            |         | 9.7.2.2        |         |         |        |      |
| № de pontos utilizados                                | 38      | ok<br>ok |            |         |                |         |         |        |      |
| Nº de pontos de qualificação do a0q entre 0,4 Jq e Jq | 14      |          |            |         |                |         |         |        |      |
|                                                       |         |          |            |         |                |         |         |        |      |

| 10 | C1        | C2    | ΔaQ [mm]   | JQ [kJ/m^2] | 0,4*JQ      |
|----|-----------|-------|------------|-------------|-------------|
| JQ | 680,61718 | 0,791 | 0,85512395 | 601,364656  | 240,5458623 |

| Verificações e qualificação JQ               |           |        |         |  |
|----------------------------------------------|-----------|--------|---------|--|
| nº de pontos entre L0,2 e L0,5               | 3         | ok     | 9.6.4   |  |
| C2                                           | 0,791     | ok     | 9.7.1   |  |
| Nº de pontos na região de dados qualificados | 3         | Não ok | 9.6.6.6 |  |
| B> 10 (JQ/σY)                                | 13,102483 | ok     | 9.8.1   |  |
| b0> 10 (JQ/σY)                               | 13,102483 | Não ok | 9.8.2   |  |





| Propriedades e d | imensões |   |           |       |                |
|------------------|----------|---|-----------|-------|----------------|
| B [mm]           | 18,33    |   |           |       |                |
| W [mm]           | 37,15    |   |           | 213   | 4              |
| b0 [mm]          | 13,99    |   |           |       |                |
| 2oy [MPa]        | 917,95   | 2 |           |       |                |
|                  |          |   |           | cell. |                |
| Vorificaçãos     | 20g      |   | 1 0 0114/ | 0 Emm | Donto do normo |

| Verificações aUq                                      |       | a0q-a0 | a0q+-0,01W | 0,5mm  | Ponto da norma |  |
|-------------------------------------------------------|-------|--------|------------|--------|----------------|--|
| a0 [mm]                                               | 23,16 | 0.05   | Não ak     | não ok | 0721           |  |
| a0Q [mm]                                              | 22,31 | 0,85   | Naook      | Had OK | 9.7.2.1        |  |
| R^2                                                   | 97,06 | ok     |            |        | 9.7.2.2        |  |
| Nº de pontos utilizados                               | 27    | ok     |            |        |                |  |
| Nº de pontos de qualificação do a0q entre 0,4 Jq e Jq | 8     | ok     |            |        |                |  |
|                                                       |       |        |            |        |                |  |

| 796,39875 0,4645 1,111 836,337 334,5348 | 10 | C1        | C2     | ΔaQ [mm] | JQ [kJ/m^2] | 0,4*JQ   |
|-----------------------------------------|----|-----------|--------|----------|-------------|----------|
|                                         | JQ | 796,39875 | 0,4645 | 1,111    | 836,337     | 334,5348 |

| Verificações                                 | Ponto da norma |        |         |
|----------------------------------------------|----------------|--------|---------|
| nº de pontos entre L0,2 e L0,5               | 1              | não ok | 9.6.4   |
| C2                                           | 0,4645         | ok     | 9.7.1   |
| Nº de pontos na região de dados qualificados | 5              | Não ok | 9.6.6.6 |
| B> 10 (JQ/σY)                                | 18,221842      | ok     | 9.8.1   |
| b0> 10 (JQ/ơY)                               | 18,221842      | Não ok | 9.8.2   |





| Propriedades e dimensões |        |        |            |        |                |  |
|--------------------------|--------|--------|------------|--------|----------------|--|
| B [mm]                   | 18,41  |        | 213 5      |        |                |  |
| W [mm]                   | 37,06  |        |            |        |                |  |
| b0 [mm]                  | 15,33  |        |            | —      |                |  |
| 2оу [МРа]                | 917,94 |        |            |        |                |  |
|                          |        | _      |            |        |                |  |
| Verificações a0q         |        | a0q-a0 | a0q+-0,01W | 0,5mm  | Ponto da norma |  |
| a0 [mm]                  | 21,73  | 1 11   | Não ok     | não ok | 9721           |  |

| Verificações a0q                                      |       | a0q-a0   | a0q+-0,01W | 0,5mm  | Ponto da norm |       |        |        |      |
|-------------------------------------------------------|-------|----------|------------|--------|---------------|-------|--------|--------|------|
| a0 [mm]                                               | 21,73 | 4.44     | 21,73      | 21,73  | 21,73         | 1 1 1 | Não ak | não ok | 0721 |
| a0Q [mm]                                              | 20,62 | 1,11     | Nao ok     | nao ok | 9.7.2.1       |       |        |        |      |
| R^2                                                   | 0,995 | ok<br>ok |            |        | 9.7.2.2       |       |        |        |      |
| Nº de pontos utilizados                               | 39    |          |            |        |               |       |        |        |      |
| Nº de pontos de qualificação do a0q entre 0,4 Jq e Jq | 20    |          | ok         |        |               |       |        |        |      |
|                                                       |       | .0       |            |        |               |       |        |        |      |

| 10 | C1        | C2     | ∆aQ [mm]  | JQ [kJ/m^2] | 0,4*JQ      |
|----|-----------|--------|-----------|-------------|-------------|
| JQ | 751,82231 | 0,6379 | 1,0395498 | 770,656459  | 308,2625837 |
|    |           |        |           |             |             |

| Verificações e                               | Ponto da norma |        |         |
|----------------------------------------------|----------------|--------|---------|
| nº de pontos entre L0,2 e L0,5               | 10             | ok     | 9.6.4   |
| C2                                           | 0,6379         | ok     | 9.7.1   |
| Nº de pontos na região de dados qualificados | 16             | ok     | 9.6.6.6 |
| B> 10 (JQ/σY)                                | 16,790999      | ok     | 9.8.1   |
| b0> 10 (JQ/σY)                               | 16,790999      | Não ok | 9.8.2   |





| Propriedades e | dimensões |
|----------------|-----------|
| B [mm]         | 18,39     |
| W [mm]         | 37,05     |
| b0 [mm]        | 15,34762  |
| 2σy [MPa]      | 917,94    |

213\_6

| Verificações a0q                                      |          | a0q-a0  | a0q+-0,01W | 0,5mm   | Ponto da norma |
|-------------------------------------------------------|----------|---------|------------|---------|----------------|
| a0 [mm]                                               | 21,70238 | #VALORI | #VALOPI    | #VALORI | 9721           |
| a0Q [mm]                                              |          | #VALON: | #VALOR!    | #VALOR! | 5.7.2.1        |
| R^2                                                   | -        | ok      |            |         |                |
| Nº de pontos utilizados                               | -        | ok      |            |         | 9.7.2.2        |
| Nº de pontos de qualificação do a0q entre 0,4 Jq e Jq | -        |         | ok         |         |                |

| 10 | C1        | C2     | ΔaQ [mm]   | JQ [kJ/m^2] | 0,4*JQ      |
|----|-----------|--------|------------|-------------|-------------|
| JQ | 817,29491 | 0,3833 | 1,13447409 | 857,791145  | 343,1164579 |

| Verificações e qualificação JQ               |           |        |         |  |
|----------------------------------------------|-----------|--------|---------|--|
| nº de pontos entre L0,2 e L0,5               | 9.6.4     |        |         |  |
| C2                                           | 0,3833    | ok     | 9.7.1   |  |
| Nº de pontos na região de dados qualificados | 19        | ok     | 9.6.6.6 |  |
| B> 10 (JQ/σY)                                | 18,689482 | Não ok | 9.8.1   |  |
| b0> 10 (JQ/σY)                               | 18,689482 | Não ok | 9.8.2   |  |





| Propriedades e dimer | nsões  |       |
|----------------------|--------|-------|
| B [mm]               | 18,37  |       |
| W [mm]               | 37,05  | 213 7 |
| b0 [mm]              | 13,435 |       |
| 2оу [МРа]            | 971,94 |       |
|                      |        |       |

| verificações auq                                      |                                                                                                                  | auq-au              | aud+-0,01M   | U,SMM  | Ponto da norma |      |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------|--------------|--------|----------------|------|
| a0 [mm]                                               | 23,615 0.895 Não ek                                                                                              | 23,615 0.885 Não ak | Não ok       | Não ok | não ok         | 0721 |
| a0Q [mm]                                              | 22,73                                                                                                            | 0,885               | 0,885 Na0 OK |        | 9.7.2.1        |      |
| R^2                                                   | 0,956                                                                                                            |                     | Não ok       |        |                |      |
| Nº de pontos utilizados                               | 33                                                                                                               | ok                  |              | ok     |                |      |
| Nº de pontos de qualificação do a0q entre 0,4 Jq e Jq | 12                                                                                                               |                     | ok           |        |                |      |
|                                                       | Constant and Constant |                     |              |        | 111            |      |

| 10 | C1        | C2     | ΔaQ [mm]   | JQ [kJ/m^2] | 0,4*JQ      |
|----|-----------|--------|------------|-------------|-------------|
| JQ | 780,08275 | 0,4089 | 1,00387362 | 781,316927  | 312,5267707 |

| Verificações e qualificação JQ               |           |        |         |  |
|----------------------------------------------|-----------|--------|---------|--|
| nº de pontos entre L0,2 e L0,5               | ok        | 9.6.4  |         |  |
| C2                                           | 0,4089    | ok     | 9.7.1   |  |
| Nº de pontos na região de dados qualificados | 10        | ok     | 9.6.6.6 |  |
| B> 10 (JQ/σY)                                | 16,077472 | ok     | 9.8.1   |  |
| b0> 10 (JQ/σY)                               | 16,077472 | Não ok | 9.8.2   |  |





| Propriedades e dimensões |        |        |            |       |                |
|--------------------------|--------|--------|------------|-------|----------------|
| B [mm]                   | 18,4   |        |            |       |                |
| W [mm]                   | 37,12  |        |            | 217   | 1              |
| b0 [mm]                  | 13,465 | ]      |            | _     |                |
| 2оу [МРа]                | 1280,6 | ]      | 8          |       |                |
|                          |        |        |            | 1.17  |                |
| Verificações a0q         |        | a0q-a0 | a0q+-0,01W | 0,5mm | Ponto da norma |
| a0 [mm]                  | 23,655 | 0.227  | ok         | ak    | 0721           |
| a0Q [mm]                 | 23,428 | 0,227  | ŬK         | OK    | 5.7.2.1        |
| R^2                      | 0.9687 |        | ok         |       |                |

| Nº de pontos utilizados                               | 12        |       | ok       |             | 9.7.2.2 |
|-------------------------------------------------------|-----------|-------|----------|-------------|---------|
| Nº de pontos de qualificação do a0q entre 0,4 Jq e Jq | 4         |       | ok       |             |         |
|                                                       |           |       |          |             |         |
| 10                                                    | C1        | C2    | ΔaQ [mm] | JQ [kJ/m^2] | 0,4*JQ  |
| JQ                                                    | 504 21261 | 0 669 | 0.42     | 202.04      | 112 126 |

| Verificações e qualificação JQ               |           |    |         |  |
|----------------------------------------------|-----------|----|---------|--|
| nº de pontos entre L0,2 e L0,5               | 6         | ok | 9.6.4   |  |
| C2                                           | 0,7278    | ok | 9.7.1   |  |
| Nº de pontos na região de dados qualificados | 30        | ok | 9.6.6.6 |  |
| B> 10 (JQ/σY)                                | 4,4173044 | ok | 9.8.1   |  |
| b0> 10 (JQ/ơY)                               | 4,4173044 | ok | 9.8.2   |  |





| Propriedades e dimensões                                                                         |             |                |                                                                                                                                                           |             |                 |  |
|--------------------------------------------------------------------------------------------------|-------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|--|
| B [mm]                                                                                           | 18,55       |                |                                                                                                                                                           |             | _               |  |
| W [mm]                                                                                           | 37,19       |                |                                                                                                                                                           | 217_3       | 2               |  |
| b0 [mm]                                                                                          | 17,53       |                |                                                                                                                                                           |             |                 |  |
| 2σy [MPa]                                                                                        | 1280,6      | 2              |                                                                                                                                                           |             |                 |  |
| Verificaçãos p0z                                                                                 |             | -0 <i>-</i> -0 | 0.0114/                                                                                                                                                   | 0.5 mm      | Dente de norme  |  |
| a0 [mm]                                                                                          | 19.66       | auq-au         | +-0,0100                                                                                                                                                  | 0,5mm       | Ponto da norma  |  |
| a00 [mm]                                                                                         | 19,00       | 0,179          | ok                                                                                                                                                        | ok          | 9.7.2.1         |  |
| R^2                                                                                              | 0.9904      |                | ok                                                                                                                                                        |             |                 |  |
| Nº de pontos utilizados                                                                          | 11          |                | ok                                                                                                                                                        |             | 9.7.2.2         |  |
| Nº de pontos de gualificação do a0g entre 0,4 Jg e Jg                                            | 5           |                | ok                                                                                                                                                        |             |                 |  |
|                                                                                                  |             |                |                                                                                                                                                           | -           |                 |  |
| 10                                                                                               | C1          | C2             | ΔaQ [mm]                                                                                                                                                  | JQ [kJ/m^2] | 0,4*JQ          |  |
| ,d                                                                                               | 597,10919   | 0,7506         | 0,46                                                                                                                                                      | 333,666     | 133,4664        |  |
|                                                                                                  |             |                |                                                                                                                                                           |             |                 |  |
| Verificações e qual                                                                              | ificação JQ |                |                                                                                                                                                           |             | Ponto da norma  |  |
| nº de pontos entre L0,2 e L0,5                                                                   | 7           |                | ok                                                                                                                                                        |             | 9.6.4           |  |
| C2                                                                                               | 0,7506      |                | ok                                                                                                                                                        |             | 9.7.1           |  |
| Nº de pontos na região de dados qualificados                                                     | 23          |                | ok                                                                                                                                                        |             | 9.6.6.6         |  |
| B> 10 (JQ/σY)                                                                                    | 5,2110886   |                | ok                                                                                                                                                        |             | 9.8.1           |  |
| b0> 10 (JQ/σY)                                                                                   | 5,2110886   |                | ok                                                                                                                                                        |             | 9.8.2           |  |
| 20.25<br>20.20<br>20.15<br>20.10<br>20.05<br>79.95<br>19.95<br>19.85<br>0 50 100 150 200 250 300 |             |                | In(J)<br>8<br>7<br>7<br>6<br>9 = 0,7506x + 6,3921<br>5<br>R <sup>2</sup> = 0,9861<br>7<br>-1<br>-0,5<br>0<br>0,5<br>1<br>In(Δa)<br>• In(J) Linear (In(J)) |             |                 |  |
|                                                                                                  | Analise     | do JQ          |                                                                                                                                                           |             |                 |  |
| 100<br>100<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90                                 |             |                |                                                                                                                                                           |             |                 |  |
| Curva de Resistência                                                                             | J Válido 🗕  | -L.C           | L0,15L0,                                                                                                                                                  | .2 <u> </u> | eq —Jlimt —L0,5 |  |



| Propriedades e dimensões                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                       |                                                                                 |                                                             |                                     |                                        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------|----------------------------------------|--|
| B [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18,55                                                                 |                                                                                 |                                                             |                                     |                                        |  |
| W [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37,18                                                                 | 1                                                                               |                                                             | 217 4                               | 4                                      |  |
| b0 [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12,5969                                                               |                                                                                 |                                                             | _                                   |                                        |  |
| 2σy [MPa]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1280,6                                                                |                                                                                 |                                                             |                                     |                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       | -                                                                               |                                                             |                                     |                                        |  |
| Verificações a0q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       | a0q-a0                                                                          | a0q+-0,01W                                                  | 0,5mm                               | Ponto da norma                         |  |
| a0 [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24,5831                                                               | 0.0459                                                                          | ok                                                          | ok                                  | 9.7.2.1                                |  |
| a0Q [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24,629                                                                | -,                                                                              |                                                             |                                     |                                        |  |
| R^2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,908                                                                 |                                                                                 | Não ok                                                      |                                     |                                        |  |
| Nº de pontos utilizados                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                    |                                                                                 | ok                                                          |                                     | 9.7.2.2                                |  |
| Nº de pontos de qualificação do a0q entre 0,4 Jq e Jq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                     |                                                                                 | ok                                                          |                                     |                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       | 62                                                                              | 1 A-0 [mm]                                                  | 10 [1.1/ 42]                        | 0.410                                  |  |
| JQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                       | 0.0240                                                                          |                                                             | JQ [kJ/m^2]                         | 0,4*JQ                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 383,8301                                                              | 0,9248                                                                          | 0,358                                                       | 213,66                              | 85,464                                 |  |
| Verificações e g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ualificação IO                                                        |                                                                                 |                                                             |                                     | Ponto da norma                         |  |
| nº de nontos entre 10.2 e 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |                                                                                 | ok                                                          |                                     |                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 02/8                                                                |                                                                                 | ok                                                          |                                     | 9.0.4                                  |  |
| C2<br>Nº de pontos na região de dados qualificados                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3248                                                                  |                                                                                 | ok                                                          |                                     | 9666                                   |  |
| B> 10 (IO/gV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 3368733                                                             |                                                                                 | ok                                                          |                                     | 9.8.1                                  |  |
| h > 10 (h < 0.07)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 3368733                                                             |                                                                                 | ok                                                          |                                     | 982                                    |  |
| 24,85<br>24,80<br>24,75<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,75<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65<br>24,65 | M89/23-10/23<br>240287 50<br>240287 100<br>1207967 100<br>1207967 100 | ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>( | 6,8<br>6,6<br>6,4<br>6,2<br>6,2<br>5,8<br>5,6<br>5,6<br>5,4 | y = 0,92<br>y = 0,92<br>0<br>In(Δa) | 248x + 5,9502<br>0,5<br>Linear (In(J)) |  |
| 900<br>800<br>700<br>600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analise                                                               | do JQ                                                                           |                                                             |                                     | $\bigwedge$                            |  |
| 2500<br>WW/NJ 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                                                                 |                                                             | /                                   |                                        |  |



O valor de JQ foi retirado directamente da intersecção da curva com a linha de 0,2. A aproximação atravês da equação da pontência é conservadora

| 18,62  |                                   |
|--------|-----------------------------------|
| 37,08  | 217 5                             |
| 11,95  |                                   |
| 1280,6 |                                   |
|        | 18,62<br>37,08<br>11,95<br>1280,6 |

| Verificações a0q                                      |        | a0q-a0   | a0q+-0,01W | 0,5mm | Ponto da norma |
|-------------------------------------------------------|--------|----------|------------|-------|----------------|
| a0 [mm]                                               | 25,13  | 0.012    | ok         | ok    | 0721           |
| a0Q [mm]                                              | 25,142 | 0,012    | UK         | UK    | 5.7.2.1        |
| R^2                                                   | 0,9766 | ok<br>ok |            |       |                |
| Nº de pontos utilizados                               | 12     |          |            |       | 9.7.2.2        |
| Nº de pontos de qualificação do a0q entre 0,4 Jq e Jq | 4      |          | ok         |       | 1              |

| 10 | C1        | C2     | ΔaQ [mm]   | JQ [kJ/m^2] | 0,4*JQ      |
|----|-----------|--------|------------|-------------|-------------|
| JQ | 534,21587 | 0,7958 | 0,40199612 | 258,67624   | 103,4704962 |

| Verificações e qualificação JQ               |           |    |         |  |
|----------------------------------------------|-----------|----|---------|--|
| nº de pontos entre L0,2 e L0,5               | 14        | ok | 9.6.4   |  |
| C2                                           | 0,7958    | ok | 9.7.1   |  |
| Nº de pontos na região de dados qualificados | 30        | ok | 9.6.6.6 |  |
| B> 10 (JQ/oY)                                | 4,0399225 | ok | 9.8.1   |  |
| b0> 10 (JQ/σY)                               |           | ok | 9.8.2   |  |





| Propriedades e dimensões |        |       |
|--------------------------|--------|-------|
| B [mm]                   | 18,5   |       |
| W [mm]                   | 37,09  | 217 6 |
| b0 [mm]                  | 15,396 |       |
| 2σy [MPa]                | 1280,6 |       |

|                | a0q-a0                     | a0q+-0,01W                           | 0,5mm                                                                                   | Ponto da norma                                                                               |      |
|----------------|----------------------------|--------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------|
| 21,694 #VALOP1 | 21,694 #\/ALOB1 #\/AL      | #VALOP1                              | #VALORI                                                                                 | #VALORI                                                                                      | 0721 |
| -              | #VALUR!                    | #VALOR!                              | #VALOR!                                                                                 | 9.7.2.1                                                                                      |      |
| -              | ok                         |                                      |                                                                                         |                                                                                              |      |
| -              | ok                         |                                      |                                                                                         | 9.7.2.2                                                                                      |      |
|                | ok                         |                                      |                                                                                         |                                                                                              |      |
|                | 21,694<br>-<br>-<br>-<br>- | 21,694<br>-<br>-<br>-<br>-<br>-<br>- | auq-au auq+-0,01W   21,694 #VALOR! #VALOR!   - #VALOR! ok   - ok ok   - ok ok   - ok ok | auq-au auq+-0,01w 0,5mm   21,694 #VALOR! #VALOR! #VALOR!   - ok - ok   - ok - ok   - ok - ok |      |

| 10 | C1        | C2     | ∆aQ [mm]   | JQ [kJ/m^2] | 0,4*JQ      |
|----|-----------|--------|------------|-------------|-------------|
| 34 | 600,40234 | 0,6173 | 0,50903105 | 395,745167  | 158,2980669 |

| Verificações e qualificação JQ               |           |    |         |  |
|----------------------------------------------|-----------|----|---------|--|
| nº de pontos entre L0,2 e L0,5               | 10        | ok | 9.6.4   |  |
| C2                                           | 0,6173    | ok | 9.7.1   |  |
| Nº de pontos na região de dados qualificados | 30        | ok | 9.6.6.6 |  |
| B> 10 (JQ/σY)                                | 6,1806211 | ok | 9.8.1   |  |
| b0> 10 (JQ/σY)                               | 6,1806211 | ok | 9.8.2   |  |





| Propriedades e dimensões |          |       |
|--------------------------|----------|-------|
| B [mm]                   | 18,59    |       |
| W [mm]                   | 37,11    | 217 7 |
| b0 [mm]                  | 15,36156 | 5 –   |
| 2оу [МРа]                | 1280,6   |       |
| 209 [iiii d]             | 1200,0   |       |

| #\/ALOP1 | 9721    |
|----------|---------|
| #VALOR:  | 9.7.2.1 |
|          |         |
|          | 9.7.2.2 |
|          |         |
|          |         |

| 10 | C1        | C2     | ΔaQ [mm] | JQ [kJ/m^2] | 0,4*JQ   |
|----|-----------|--------|----------|-------------|----------|
| JQ | 480,29476 | 0,5791 | 0,43     | 294,644     | 117,8576 |

| Verificações e qualificação JQ               |           |    |         |  |
|----------------------------------------------|-----------|----|---------|--|
| nº de pontos entre L0,2 e L0,5               | 10        | ok | 9.6.4   |  |
| C2                                           | 0,5791    | ok | 9.7.1   |  |
| Nº de pontos na região de dados qualificados | 26        | ok | 9.6.6.6 |  |
| B> 10 (JQ/σY)                                | 4,6016555 | ok | 9.8.1   |  |
| b0> 10 (JQ/σY)                               | 4,6016555 | ok | 9.8.2   |  |





| Propriedades e dimensões                             |           |        |            |             |                |  |
|------------------------------------------------------|-----------|--------|------------|-------------|----------------|--|
| B [mm]                                               | 18,53     |        | 217 8      |             |                |  |
| W [mm]                                               | 37,07     |        |            |             |                |  |
| b0 [mm]                                              | 13,37     |        |            |             |                |  |
| 2σу [МРа]                                            | 1280,6    | ]      |            |             |                |  |
|                                                      |           |        |            |             |                |  |
| Verificações a0q                                     |           | a0q-a0 | a0q+-0,01W | 0,5mm       | Ponto da norma |  |
| a0 [mm]                                              | 23,7      | 0,004  | ok         | ok          | 9.7.2.1        |  |
| a0Q [mm]                                             | 23,704    |        |            |             |                |  |
| R^2                                                  | 0,928     | Não ok |            |             |                |  |
| Nº de pontos utilizados                              | 10        | 5      | ok         | 9.7.2.2     |                |  |
| № de pontos de qualificação do a0q entre 0,4 Jq e Jq | 3         |        |            |             |                |  |
| [                                                    | 0         |        | A20 [mm]   | 10 [k]/m^2] | 0.4*10         |  |
| JQ                                                   | 473,71222 | 0,8634 | 0,378      | 230,167     | 92,0668        |  |
|                                                      | 0494      |        |            |             |                |  |
| Verificações e qualificação JQ                       |           |        |            |             |                |  |
| nº de pontos entre L0,2 e L0,5                       | 9         |        | ok         |             | 9.6.4          |  |
| C2                                                   | 0,8634    | ok     |            |             | 9.7.1          |  |
| Nº de pontos na região de dados qualificados         | 34        | ok     |            |             | 9666           |  |

1,4378697





9.8.1