
ON INTERCEPT ESTIMATION IN THE
SAMPLE SELECTION MODEL*

Marcia M A Schafgans
Department of Economics, London School of Economics

and

Victoria Zinde-Walsh
Department of Economics, McGill University

Contents:  
Abstract
1. Introduction
2. Intercept estimation
3. Asymptotic normality of the

Heckman estimator
4. Bandwidth selection and

comparison of the estimators
5. Conclusions
Appendx A
Appendix B
References

The Suntory Centre
Suntory and Toyota International Centres
for Economics and Related Disciplines
London School of Economics and Political
Science

Discussion Paper Houghton Street
No. EM/00/380 London WC2A 2AE
January 2000 Tel.: 0171- 405 7686

* This work was supported by the Social Sciences and Humanities Research Council of
Canada and by the Fonds FCAR (Québec).
The authors would like to thank an anonymous referee and Joel Horowitz for their comments and
suggestions.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by LSE Research Online

https://core.ac.uk/display/94059?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

We provide a proof of the consistency and asymptotic normality of the estimator

suggested by Heckman (1990) for the intercept of a semiparametrically

estimated sample selection model. The estimator is based on “identification at

infinity” which leads to non-standard convergence rate. Andrews and Schafgans

(1998) derived asymptotic results for a smoothed version of the estimator. We

examine the optimal bandwidth selection for the estimators and derive

asymptotic MSE rates under a wide class of distributional assumptions. We also

provide some comparisons of the estimators and practical guidelines.
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1 Introduction

Semiparametric estimation of sample selection models has attracted considerable in-

terest in the last decade. More recently the estimation of the intercept of the semi-

parametric estimated sample selection model has received due attention, see Heckman

(1990) and Andrews and Schafgans (1998).

The discussion around the estimation of the intercept arose, since, with the ex-

ception of Gallant and Nychka (1978), all semiparametric estimation approaches to

the sample selection model precluded the estimation of the intercept; the intercept

was absorbed in the nonparametric sample selection bias correction term. The semi-

nonparametric estimator proposed by Gallant and Nychka (1978), however, has a

drawback in that although it is consistent, its asymptotic distribution is unknown.

The importance of this intercept is evident, e.g., when using the sample selection

model in the evaluation of social programs. Estimation of the intercept allows one to

evaluate the net bene…t of a social program, by allowing one to compare the actual

outcome of participants with the expected outcome had they chosen not to participate.

Empirically, the estimation of the intercept of semiparametrically estimated sample

selection models has proven desirable in the estimation of wages. Its estimation

allows for a decomposition of the wage-gap between socio-economic groups (e.g., male–

female) in order to assess the extent of “discrimination” (Schafgans (1998a) and allows

for a discussion of its evolution over time (Buchinsky (1998)).

In Andrews and Schafgans (1998), the …rst consistent and asymptotically normal

estimator was derived for the intercept, ¹0. Their estimator was based on a sugges-

tion by Heckman (1990) to estimate ¹0 using only those observations for which the

probability of selection in the truncated or censored sample is close to one and in

the limit as n ! 1 is one. The justi…cation of this approach is that the conditional

mean of the errors in the outcome equation for the observations having probability of

selection close to one is close to zero. Due to the di¢culty in deriving the asymptotic

distribution of the Heckman (1990) estimator, arising from the non-di¤erentiability of

the indicator function, Andrews and Schafgans (1998) introduced a smooth monotone

[0,1]-valued function, s(¢). Since we will make reference to the Andrews and Schafgans

(1998) paper frequently, we will call it AS henceforth.

In this paper, we derive the consistency and asymptotic distribution of the Heck-
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man estimator itself. This provides the empirical researcher with the advantage of not

having to specify the smoothing function introduced by Andrews and Schafgans. We

investigate a wide class of distributional assumptions for the model and derive “op-

timal” bandwidth parameters and corresponding asymptotic rates for mean squared

error (MSE) for the two estimators. Since the solution for the optimal bandwidth may

not be practical, we provide simpler bounds on the optimal bandwidth parameter;

using a bound may imply preference for either AS or the Heckman estimator.

The remainder of this paper is organized as follows: Section 2 introduces the

sample selection model considered and the estimators of Heckman (1990) and AS. The

asymptotic normality result for the Heckman estimator is given in Section 3. Section

4 discusses the optimal selection of the bandwidth and the rate of the asymptotic

mean squared error. Section 5 concludes. Various appendices follow. Appendix A

contains the proof of the asymptotic normality result given in Section 3. Appendix B

derives the asymptotic bias and variance for the two estimators under a class of general

distributional assumptions and the optimal bandwidth choices given in Section 4.

2 Intercept Estimation

The sample selection model that we consider can be written as:

Y ¤i = ¹0 + Z
0
iµ0 + Ui ;

Di = 1(X
0
i¯0 > "i) ; and

Yi = Y
¤
i Di for i = 1; :::; n ;

(1)

where (Yi; Di; Zi; Xi) are observed random variables. The …rst equation is the out-

come equation and the second equation is the participation equation. For convenience,

we set

Wi = X
0
i¯0 : (2)

The literature on semiparametric estimation of sample selection models gives sev-

eral root-n consistent and asymptotically normal estimators for the selection para-

meters, ¯0 (up to some unknown scale), and the slope parameters of the outcome

equation, µ0. For instance, one could consider: Ichimura (1993), Han (1987), Newey

(1988), Robinson (1988), Powell (1989), Powell, Stock, and Stoker (1989), Ichimura
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and Lee (1990), Andrews (1991), and Klein and Spady (1993). The existing litera-

ture and AS can deal both with censored samples (as in the model given in (1)), or

truncated samples. In the latter case, that is where Yi is observed only if Di = 1,

®0 and ¯0 need to be estimated simultaneously using, e.g., Ichimura and Lee (1990).

Regarding the selection parameters ¯0; furthermore, it should be noted that only the

slope parameters are required in the context of estimating the intercept ¹0. The loss

of identi…cation of the intercept in the selection equation, e.g., when using Ichimura

(1993) or Ichimura and Lee (1990) is innocuous therefore.

A consistent and asymptotically normal estimator for the intercept, ¹0, which

uses these preliminary estimators, was provided by AS. Their estimator, call it the

AS estimator, is given by

¹̂s =

Pn
i=1(Yi ¡ Z 0ibµ)Dis(X 0

i
b̄ ¡ °n)Pn

i=1Dis(X
0
i
b̄ ¡ °n)

; (3)

where s(¢) is a non-decreasing [0,1]-valued function that has three derivatives bounded

over R and for which s(x) = 0 for x · 0 and s(x) = 1 for x ¸ b for some 0 < b < 1
(AS, Assumption 3). The preliminary estimators (bµ; b̄) are root-n consistent estima-

tors of (µ0; ¯0). The parameter °n is called the bandwidth or smoothing parameter,

where the bandwidth parameter is chosen such that °n ! 1 as n ! 1.

The Heckman (1990) estimator, on which the AS estimator was based, is given by

¹̂I =

Pn
i=1(Yi ¡ Z 0ibµ)Di1(X 0

i
b̄ > °n)Pn

i=1Di1(X 0
i
b̄ > °n)

(4)

Comparing the two formulae (3) and (4), it is clear that the AS estimator b¹s
di¤ers from Heckman’s (1990) ¹̂I only in that it replaces the indicator function 1(¢)
with a smooth function s(¢).

Heckman’s estimator ¹̂I is essentially a sample average of the random variables

Ui + ¹0 over a fraction of all observations, since Yi ¡ Z 0ibµ !p Ui + ¹0 as n!1 for

all i ¸ 1. The e¤ective sample size is equal to the number of observations used for

the estimation of ¹0: Since AS introduced a weighting scheme for these observations,

viz., the smooth function s(¢); the estimator b¹s is a weighted sample average of the

random variables Ui+¹0; where observations with X 0
i
b̄ greater than °n and with X 0

i
b̄

close to the threshold °n are weighted less than those further away.

3



Estimation using the AS or Heckman estimator involves two choices, that of the

bandwidth parameter °n and that of a function s(¢) (or 1(¢)). It is clear that the

choice of °n has the most important consequences for the properties of the estimator

while the impact of the function s(¢) is small in comparison. This is con…rmed in the

analysis of Section 4; nevertheless there are cases when the choice of s(¢) (or 1(¢))
a¤ects the asymptotic rate of the MSE; results are presented in Section 4.

First, we turn to our asymptotic normality result for the Heckman estimator.

3 Asymptotic normality of the Heckman estimator

Here we prove the conjecture made by Andrews and Schafgans that the Heckman

estimator also is asymptotically normal. In the unrealistic case where the true µ0 and

¯0 are known, Andrews and Schafgans already showed that the Heckman estimator,

¹̂I;0, is asymptotically normal (i.e., in Andrews and Schafgans (1998) the indicator

replaces the s(¢) function when the true µ0 and ¯0 are known).1

For our purposes, all we need to show now is that

p
nEDi1(Wi > °n)

¾

¡
¹̂I ¡ ¹̂I;0

¢ p¡! 0; (5)

where ¾2 = Var(Ui). Essentially, the proof requires us to deal directly with the

non-di¤erentiability of the indicator function.

There are di¤erent ways of dealing with asymptotics for non-di¤erentiable func-

tions. Typically assumptions regarding the probability density function are required.

This is due to the fact that the expectation of the Dirac ±-function, which is the

generalized derivative of the indicator function, equals the value of the p.d.f. at zero.

In our case we need to consider the non-di¤erentiable function ®in given by

®n(^̄;Wi; Xi) with ®n(¯;W;X) = 1(X 0¯ > °n)¡ 1(W > °n); (6)

where W = X 0¯0. Transform Xi via a linear transformation into the random vector

partitioned as (Wi;¡i): For our purposes, it will be convenient to let ¡i = Xi(¡1);

where Xi(¡1) is Xi with the exclusion of its …rst component.

1The estimator ¹̂I;0 is identical to ¹̂I with the preliminary estimators replaced by their true

values.
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We add the following Assumption A to the Assumptions 1–7 of AS.2

Assumption A: (a) For some A > 0 the conditional probability density function

p:d:f:W;¡j¡ exists for all W > A and declines monotonically. The marginal probability

density function p:d:f:W is such that for some d ! 0; dn1=6 ! 1
p:d:f:W (°n ¡ d)
Pr(Wi > °n)

3=4
= O(1):

(b) For any Wi > A the conditional moment E jW=Wi
(
°°Xi(¡1)

°°3) exists.

Similar to Assumptions 4 and 7 of AS, Assumption A(a) relates to the upper tail

behaviour of the selection index Wi = X 0
i¯0. It is satis…ed if Wi has a Weibull, Pareto

or “combined” upper tail. If Assumption 4 of AS is satis…ed with » = 0, then this

condition can be replaced by:

p:d:f:W (°n)

Pr(Wi > °n)
3=4
= O(1):

In both cases, the condition is less strong than requiring a bounded hazard function

on Wi; since p:d:f:W (°n ¡ d)1=4 = o(1).
The second part of Assumption A requires the existence of the conditional mo-

ment, but does not place any restrictions on its behaviour as a function of Wi. This

assumption is satis…ed, for example, if the unbounded components of Xi have a joint

normal or spherical distribution with Wi:

The following theorem summarizes our result for the Heckman estimator which

satis…es Assumption 30 of AS.

Theorem 1: Under Assumptions 1, 2, 4–7 of AS and Assumption A

(a)

p
nEDi1(Wi > °n)

¾

µ
¹̂I ¡ ¹0 ¡ EUiDi1(Wi > °n)

EDi1(Wi > °n)

¶
d¡! N(0; 1)

(b)

p
nEDi1(Wi > °n)

¾
(¹̂I ¡ ¹0)

d¡! N (0; 1) i¤ Assumption 8 of AS holds.

2Essentially, Assumptions 1 and 2 of AS require existence of moments and independence between

(Ui; "i) and (Zi; Xi); Assumption 3 and 30 deal with the shape of s(¢); Assumption 4 characterizes

the upper tail of Wi in terms of a parameter 0 · » < 1=3 with “fatter” tails if » = 0; Assumption 5

is root-n consistency and asymptotic normality of (bµ; b̄); Assumption 6 is °n ! 1; where its speed

is restricted by Assumption 7 in terms of the tail of Wi > °n:
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Proof: See Appendix A. 2

To test hypotheses and construct con…dence intervals for functions of (¹0; µ0; ¯0),

we need a joint asymptotic normality result for (¹̂I ;bµ; b̄). This result, similar to that

in AS, is given by

Theorem 2: Under Assumptions 1, 2, 4–8 of AS and Assumption A
0
B@

p
nEDi1(Wi > °n)

¾
(¹̂I ¡ ¹0)

p
n¡1=2

¡bµ¡µ0
b̄¡¯0

¢

1
CA d¡! N(0; I):

Proof: See Appendix A. 2

In the following section, we compare the performance of the estimators and provide

guidelines for selection of the bandwidth parameter and function s(¢) (or 1(¢)).

4 Bandwidth selection and comparison of the es-

timators

Here we use the asymptotic MSE as a criterion for bandwidth selection and choice of

the estimator. Two characteristics of the model are of importance for these choices:

the tail behaviour of the selection index, Wi, and the tail behaviour of the function

!(W ) de…ned below that determines the asymptotic bias of the estimator. Speci…-

cally, let

!(W ) = EjW=WUi1("i > W ): (7)

The asymptotic bias (abias) of the estimator b¹s (or b¹I for s(¢) = 1(¢)) is given by3

abias(b¹s) =
¡E [!(Wi)s(Wi ¡ °n)]
[EDis(Wi ¡ °n)]

: (8)

Under the bivariate normality assumption of (Ui; "i), !(W ) is equal to ¾"U
¾"
Á(W

¾"
);

where Á(¢) denotes the standard normal density function.

3Since E(Uis(Wi > °n)) = 0 by independence of Ui and Wi, this follows as E(UiDis(Wi > °n)) =

¡E(Ui(1 ¡ Di)s(Wi > °n)) = ¡E(Ui1("i > Wi)s(Wi > °n)): By law of iterated expectations, this

equals ¡E(!(Wi)s(Wi > °n)).
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There are circumstances when !(W ) may be zero for large enough W , e.g. if the

distribution of "i has …nite support, in which case a comparison of the asymptotic

variance will determine the optimal estimator. When !(W ) di¤ers from zero for large

W we need to establish the importance of the asymptotic bias relative to the asymp-

totic variance to select our estimator, which of course will depend on the behaviour

of this conditional expectation. From Theorem 2 in AS and Theorem 1 in this paper,

the asymptotic variance (avar) of the estimator b¹s (or b¹I for s(¢) = 1(¢)) is given by

avar(b¹s) =
¾2E [Dis2(Wi ¡ °n)]
n [EDis(Wi ¡ °n)]2

: (9)

Proposition 1 shows that there may be a trade-o¤ between asymptotic variance

and asymptotic bias depending on the choice of function s(¢) (or 1(¢)). Here and

below, “a(x) ¼ b(x)” is de…ned to mean that a(x) = b(x)(1 + o(1)) as x! 1.

Proposition 1: Under Assumptions 1–7 of AS and Assumption A, for a given

sequence °n

(a) avar(b¹s) ¸ avar(b¹I)

(b) jabias(b¹s)j · jabias(b¹I)j ; if E1(Wi > °n)=E1(Wi > °n + b) ¼ 1 ( » = 0 in

Assumption 4 of AS ) and !(Wi) ¸ 0 8Wi > °n (or !(Wi) · 0 8Wi > °n):

Proof: See Appendix B. 2

If there is no asymptotic bias, naturally the Heckman estimator is preferred based

on asymptotic MSE (and variance).

We can characterize the tail behaviour of the selection index Wi as “fat-tailed”

if Assumption 4 of AS is satis…ed with » = 0; if Assumption 4 of AS is satis…ed

only with » > 0, we say that Wi is “thin-tailed”. Examples of fat tails of Wi are

Pareto upper tails (i.e., 1¡F (W ) ¼ cWW¡¸; ¸ > 0) or Weibull (¸; c) upper tails (i.e.,

1 ¡ F (W ) ¼ cW exp(¡¸W c); ¸ > 0) with c · 1: For Pareto and fat Weibull tails of

W the condition in (b) is satis…ed.

Proposition 2 shows that for fat-tailed distributions ofWi the choice of the function

s(¢) or 1(¢) does not a¤ect the asymptotic variance; the asymptotic bias if una¤ected

if additionally !(Wi) does not go to zero too fast.
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Proposition 2: Under Assumptions 1–7 of AS and Assumption A,

(a) If E1(Wi > °n)=E1(Wi > °n+b) ¼ 1 ( » = 0 in Assumption 4 of AS) avar(b¹s) ¼
avar(b¹I):

(b) If additionally to (a), jE!(W )1(W > °n + b)j = jE!(W )1(W > °n)j ¼ 1 and

!(Wi) ¸ 0 8Wi > °n (or !(Wi) · 0 8Wi > °n); then abias(b¹s) ¼ abias(b¹I):

Proof: See Appendix B. 2

Unlike the assumptions encompassed in our Proposition 2, it is frequently assumed

that Wi has thinner upper tails, e.g., the normal (Lee (1982)). We next examine the

AS and Heckman estimators for a class of models with tails of the selection index

1¡F (W ) ¼ cWW
®e¡¸W

c
and !(W ) ¼ c!W

&e¡¹W
d
where the parameters ®; ¸; c; &; ¹; d

are such that the functions 1¡F (W ) and !(W ) ! 0 asW ! 1: This class of models

includes the Pareto, Weibull (with c · or c > 1) as well as “combined” tails. If U; "

and W are jointly normally distributed d = c = 2; ® = ¡1; ¸ = 1
2¾2W

; ¹ = 1
2¾2"
; and

& = 0.4 In order to facilitate the derivation of the asymptotic mean squared error

for this class of distributions, we restrict our attention to s(¢) functions satisfying the

following assumption

Assumption S: Let s(¢) be a function satisfying Assumption 3 of AS. For some q

its derivatives at zero are such that

s(i)(0) =

8
><
>:

0 i < q

aq 6= 0 i = q

exists i = q + 1:

Note that any function that satis…es AS for which the lowest order of non-zero deriv-

ative is q · 2 satis…es Assumption S as well; it is only functions with two (or more)

zero derivatives at 0 that require this additional assumption.

The following proposition provides expressions for the asymptotic variance and

asymptotic bias. To simplify the expressions in Proposition 3 we omit the constant

4In AS it was mistakenly claimed that the normal distribution has a Weibull tail with c = 2; in

fact its tail is W¡1 exp(¡ 1
2¾2

W
W 2)(1 + o(W¡1)):
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factors, if they are present the expressions below for avar acquire c¡1W and for abias

c! as a factor. Furthermore, we omit the subscript n on °.

Proposition 3: Under Assumptions 1, 2, 5–7 of AS, Assumptions A and S

(a) If 1¡ F (W ) ¼ W ® exp(¡¸W c)

avar(¹̂s) =

(
avar(¹̂I) = ¾

2n¡1°¡® exp(¸°c) if c · 1

¾2n¡1
¡
2q
q

¢
°¡® exp(¸°c) if c > 1;

where avar(¹̂I) when c > 1 obtains for q = 0 (
¡
0
0

¢
= 1).

(b) If additionally to (a) !(W ) ¼W & exp(¡¹W d)

abias(¹̂s) =

8
>>>>>>>>>>>>><
>>>>>>>>>>>>>:

abias(¹̂I) = ¡°& exp(¡¹°d) if c · 1; d · 1; d < c

abias(¹̂I) = ¡ ¸
¸+¹
°& exp(¡¹°c) if c · 1; d · 1; c = d5

abias(¹̂I) = ¡¸c
¹d
°&+c¡d exp(¡¹°d) if c · 1; d · 1; d > c6

¡ aq¸c

(¹d)q+1
°&+(c¡d)(1+q) exp(¡¹°d) if c · 1; d > 16

¡°& exp(¡¹°d) if c > 1; d < c;

¡
³

¸
¸+¹

´q+1
°& exp(¡¹°c) if c > 1; d = c

¡
³
¸c
¹d

´q+1
°&+(c¡d)(1+q) exp(¡¹°d) if c > 1; d > c;

where abias(¹̂I) obtains for q = 0 ( 0! = 1) where it is not de…ned explicitly and

a0 ´ 1.

Proof: See Appendix B. 2

We see that under our assumptions on s(x), the asymptotic MSE is a¤ected by the

choice of function s(¢) via q and the value of the derivative s(q)(0) only. When avar(¹̂s)

depends on q it is an increasing function of q, while if abias(¹̂s) depends on q, its

absolute value declines with q.

As an example of Proposition 3, if U; " and W are jointly normally distributed

(c = d = 2), the asymptotic bias and variance of ¹̂s (including all relevant constant

6If c = d = 0, the constant ¸
¸+¹

becomes ®
®+&

:
6If c = 0, then the expression ¸c in the constant becomes ¡®:
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factors) equals

abias(¹̂s) = ¡ ¾"Up
2¼¾"

(
¾2"

¾2" + ¾
2
W

)q+1 exp(¡ 1

2¾2"
°2)

avar(¹̂s) =
¾2

n

p
2¼

¾W
°

µ
2q

q

¶
exp(

1

2¾2W
°2):

The asymptotic bias and variance of ¹̂I under the joint normality assumption obtains

for q = 0:

If all the parameters determining the tail behaviour of W and the function !(W )

were known a solution that would provide an optimal °¤ = argmin(MSE) as a function

of n, q (the s(¢) function) and all those parameters could be obtained (at least via

a numerical algorithm) from the formulae in Proposition 3. If the asymptotic bias

is not present (in which case one would choose the Heckman estimator based on

Proposition 1) the bandwidth parameter arising from reducing MSE (or equivalently

avar) as ° ! 1 can be presented as °¤ = ( µ
¸
lnn)1=c if c 6= 0 and °¤ = n¡µ=®

if c = 0 with µ close to zero and would result in a MSE proportional to n¡1+µ.

Proposition 4 deals with situations where an asymptotic bias is present and may be

severe. It characterizes the bandwidth parameter °¤ and the best possible rate for

MSE depending on the relation between the rate of decline in the tail of W and

the function !(W ); we also provide simple bounds on °¤ which bring MSE close to

achieving the best possible rate.

Proposition 4: Under Assumptions 1, 2, 5–7 of AS and Assumptions A and S, if

1¡ F (W ) ¼ cWW
®e¡¸W

c
and !(W ) ¼ c!W

&e¡¹W
d

as W ! 1:

(a) There exists a sequence °¤n unique up to o(°¤¡v) for some v > 0 that minimizes

the asymptotic MSE(¹s) (or ¹I):

(b) The optimal asymptotic MSE¤ can be represented as a product of a polynomial

component n¡¿ ; ¿ ¸ 0 and a logarithmic component O ((lnn)º) ; where ¿ depends only

on the parameters which characterize the leading term in the tail of W , i.e. ® for a

Pareto and ¸; c for a Weibull or combined tail, and parameters of the leading term of

!(W ):

(c) There exist bounds °H and °L such that °L < °¤ < °H; where °H and °L are
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functions of the coe¢cients of the leading terms in tail of W and !(W ) only and

MSE(°H), MSE(°L) decline at a rate with the polynomial component n¡¿ (H); n¡¿(L)

with one (or both) of ¿ (H) and ¿ (L) either equal to ¿ ; or arbitrarily close to ¿ :

(d) When 0 · d < c, that is !(W ) goes to zero exponentially slower than the tail of

W distribution, ¿ = 0 and only a logarithmic rate of decline (at best) can be obtained

for MSE. When, conversely, 0 · c < d, ¿ = 1:

Proof: See Appendix B. 2

Appendix B also provides the speci…c form ¿; ¿ (L); and ¿ (H) take for all cases

considered in Proposition 3.

As an example of Proposition 4, if U; " and W are jointly normally distributed

(c = d = 2), °¤ is bounded by °L = (µLlnn)
1=2 ; µL < 2¾2"¾

2
W=(¾

2
" + 2¾

2
W ), and

°H = (µH lnn)
1=2 ; µH > 2¾2"¾

2
W=(¾

2
" + 2¾

2
W ). The optimal asymptotic MSE has the

polynomial component n¡¿ with ¿ = 1 ¡ ¾2"=(¾
2
" + 2¾

2
W ). We note that ¿ can get

arbitrarily close to 1 if ¾2W À ¾2": (In general, if c = d, ¿ can be made arbitrarily

close to 1 given ¸ ¿ ¹).The MSE(°H) ¼ avar(b¹s) with ¿H = 1 ¡ µH=(2¾2W ), and

MSE(°L) ¼ abias(b¹s) with ¿L = µL=¾2": Both ¿L and ¿H are arbitrarily close to ¿

when µL; µH are close to 2¾2"¾
2
W=(¾

2
" + 2¾

2
W ):

After characterizing the optimal bandwidth parameter, it remains to determine

the “optimal” choice of function s(¢) (or 1(¢)) in situations where an asymptotic bias

is present. Following Proposition 4, if all the parameters of the tail distribution of W

and in the function !(W ) are known solving the …rst-order condition for ° and then

substituting into the MSE and minimizing over q (where it appears) as well would

give us the “optimal” estimator. When the bounds °H , or °L, are used instead of

°¤ they imply dominance of MSE by asymptotic variance or abias, correspondingly.

This in turn implies preference for the function 1(¢) or function s(¢) with large value

of q (where it matters) correspondingly.

The use of the bounds °H , or °L, as the desired bandwidth (bringing MSE close or

equal to its best possible rate) might be more practical since the bounds are functions

of the leading terms of the tails of Wi and !(Wi) only. For fat tailed distributions,

we can estimate the upper tail index of a distribution e.g., using Hill (1975) and
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Danielsson and De Vries (1997) (see Huisman et al. (1997) for its estimation in

small samples). Alternatively, a probability weighted moment estimator (or maximum

likelihood) of the parameters from the generalized extreme value distribution can be

considered (Hosking et al. (1985)).

5 Conclusions

The paper presents the asymptotic behaviour of the intercept in the sample selection

model based on “identi…cation at in…nity,” which was …rst proposed by Heckman

(1990). Technical problems in derivations arise from the non-di¤erentiability of the

indicator function. This problem was circumvented by AS via introduction of a dif-

ferentiable function to replace the indicator function. Here we deal with the problem

by introducing an assumption on the p.d.f. that essentially permits to obtain the

expectation of the “derivative” of the indicator function.

Next, the paper examines the selection of the bandwidth and choice of the estima-

tor of the intercept (Heckman 1990 versus AS 1998) using as a criterion the asymptotic

MSE. Two characteristics of the model are of importance for such a choice: the tail

behaviour of the selection index, Wi, and the tail behaviour of a function !(W ) that

determines the asymptotic bias of the estimator. A wide class of distributional as-

sumptions for the model is investigated, speci…cally, 1 ¡ F (W ) ¼ cWW ®e¡¸W
c

and

!(W ) ¼ c!W &e¡¹W
d
: This class of models includes Pareto, Weibull as well as “com-

bined” tails.

We have shown that for fat-tailed distributions of Wi the choice of the function

s(¢) or 1(¢) does not a¤ect the asymptotic variance; the asymptotic bias if una¤ected

if additionally !(Wi) does not go to zero too fast. In general, however, the asymptotic

MSE may be a¤ected by the choice of function s(¢) but then via q and the value of

the derivative s(q)(0) only, where q is the order of the …rst non-zero derivative of s(¢)
at zero.

If all the parameters determining the tail behaviour of W and the function !(W )

were known a solution that would provide an optimal °¤ = argmin(MSE) as a

function of n, q (the s(¢) function) and all those parameters could be obtained (at

least via a numerical algorithm) from the formulae in Proposition 3. Similarly, the

12



“optimal” choice of function s(¢) (or 1(¢)) can be obtained. Since the solution for

the optimal bandwidth (and choice of function s(¢) (or 1(¢)) may not be practical,

we provide simpler bounds on the optimal bandwidth parameter; using a bound may

imply preference for either AS or the Heckman estimator.

Asymptotically, we give preference to the Heckman estimator in cases where there

is no asymptotic bias and reveal the equivalence of the two estimators under fat-tailed

distributions of Wi if additionally !(Wi) does not go to zero too fast. For thinner-

tailed distributions the decision is less clear, nevertheless, we argue that the optimal

selection of the bandwidth is of primary importance. For …nite samples, the AS

estimator might still have advantages over the Heckman estimator, in that the trade-

o¤ between bias and variance, like in nonparametric estimation problems, is better

for smooth “kernels”. Nevertheless, only observations at the margin are a¤ected by

the choice of the function s(¢). In Schafgans (1998b) simulations are presented that

reveal these …ndings clearly.

Appendix A: Asymptotic normality result for the
Heckman estimator

To prove asymptotic normality, all we need to show is that (5) holds. We start

by deriving a few su¢cient conditions for (5). As in the proof of Theorem A-1 of AS

the left hand side of (5) can be written as C( bA
bB ¡ A

B
) = C

bA¡A
B

B
bB ¡ C bB¡B

B
A
B
B
bB , where

C =
p
nEDi1(Wi > °n)=¾, A =

Pn
i=1(Yi ¡ Z 0iµ0)Di1(Wi > °n), bA =

Pn
i=1(Yi ¡

Z 0ibµ)Di1(X 0
i
b̄ > °n), B =

Pn
i=1Di1(Wi > °n), and bB =

Pn
i=1Di1(X

0
i
b̄ > °n). To

show (5), therefore, it su¢ces to show that

(i) bB=B p! 1

(ii) C( bA¡ A)=B p! 0

(iii) A=B = Op(1)

(iv) C( bB ¡B)=B p! 0:

(A.1)

From Assumption 7 and Lemma A-2 of AS it follows that C ! 1 which means

that (iv) implies (i) in (A.1). From Lemmas A-1 and A-2 of AS one gets that ¾C=B

equals n¡1=2 Pr(Wi > °n)
¡1=2 in probability and thus (ii) is implied by the following

su¢cient conditions.

13



1p
n

Pn
i=1(Ui + ¹0)Di®in

Pr(Wi > °n)
1=2

p! 0 ; (A.2)

¡(bµ ¡ µ0)0 1pn
Pn

i=1 ZiDi®in

Pr(Wi > °n)
1=2

p! 0 ; and (A.3)

¡(bµ ¡ µ0)0 1pn
Pn

i=1 ZiDi1(Wi > °n)

Pr(Wi > °n)
1=2

p! 0 ; (A.4)

where ®in is given by (6).

Condition (iii) has been shown to hold in the proof of Theorem A-1 in AS, it is

equivalent to
1
n

Pn
i=1 UiDi1(Wi > °n)

Pr(Wi > °n)
= Op(1) : (A.5)

Finally, Condition (iv) would follow if we show that

1p
n

Pn
i=1Di®in

Pr(Wi > °n)
1=2

p! 0 : (A.6)

Note that under Assumptions 1, 5 and 6 of AS and using Hölder’s inequality the

expression in (A.4) is bounded by

Op(1)E kZik 1(Wi > °n)

Pr(Wi > °n)
1=2

· Op(1)
¡
E kZik3

¢1=3
(Pr(Wi > °n))

2=3¡1=2 ! 0 : (A.7)

The proof of Theorem 1, therefore, requires us to show that (A.2), (A.3) and (A.6)

which involve the discontinuous function ® hold.

We do this in three steps: …rst, a technical lemma is given (Lemma 1), then a

lemma is given which examines terms in the expressions of interest (Lemma 2) and

…nally we give the proofs of the theorems which combine the intermediate results.

Lemma 1: Under Assumptions 1, 2, 6, 7 of AS and Assumption A, there exists a

su¢ciently slowly increasing fMng such that n¡1=2Mn < 1 and

sup
k¯¡¯0k<Mnp

n

E(
p
nkik®n(¯;Wi;Xi))

Pr(Wi>°n)
1=2 ! 0 as n ! 1 for i = Zi=

p
n, i = Ui, or i = 1; 8i:

Proof of Lemma 1:

14



It will be su¢cient to show that for the sequence fn 1
3g

sup
k¯¡¯0k<Mnp

n

p
nE

³
kik ¢ j®n(¯;Wi; Xi)j ¢ 1(kXik > n 1

3 )
´

Pr(Wi > °n)
1=2

! 0; (A.8)

and

sup
k¯¡¯0k<Mnp

n

p
nE

³
kik ¢ j®n(¯;Wi; Xi)j ¢ 1(kXik · n

1
3 )

´

Pr(Wi > °n)
1=2

! 0: (A.9)

Noting that j®n(¯;Wi; Xi)j · 1, we get for (A.8) in the case i = Ui (using the

independence condition of Assumption 2(b) of AS) and similarly for i = 1, under

Assumptions 1 and 7 of AS
p
nE(kik¢j®n(¯;Wi;Xi)j¢1(kXik>n1=3))

Pr(Wi>°n)
1=2 ·

p
nE(kik¢1(kXik>n1=3))

Pr(Wi>°n)
1=2

·
p
nEkik¢Pr(kXik>n1=3)

Pr(Wi>°n)
1=2 ·

p
nEkik¢EkXik3=n
Pr(Wi>°n)

1=2

= Ekik¢EkXik3
(nPr(Wi>°n))

1=2 ! 0

(A.10)

using Jensen’s and Markov’s inequalities. In the case i = Zi=
p
n; (A.8) converges

to zero even faster, since similarly

E(kZik¢j®n(¯;Wi;Xi)j¢1(kXik>n1=3))
Pr(Wi>°n)

1=2 · (EkZik3)
1=3
(EkXik3)2=3

n1=6¢(nPr(Wi>°n))
1=2 ! 0: (A.11)

The left hand side of (A.9) for i = Zi=
p
n is bounded by

¡
E kZik2

¢1
2

(nPr(Wi > °n))
1=4

0
@ sup
k¯¡¯0k<Mnp

n

p
nE j®n(¯;Wi; Xi)j 1(kXik < n1=3)

Pr(Wi > °n)
1=2

1
A
1=2

(A.12)

using Hölder’s inequality. Given Assumptions 1 and 7 of AS, therefore, it remains

only to show (A.9) for i = 1 and Ui.

Using the independence of i and Xi for i = 1 and Ui (by Assumption 2(b) of

AS) we can rewrite the denominator of (A.9) as

E (kik) ¢ sup
k¯¡¯0k<Mnp

n

p
nE j®n(¯;Wi; Xi)j 1(kXik < n1=3): (A.13)

By examining the function ®n(¯;Wi; Xi); (6), we can see that j®n(¯;Wi; Xi)j equals 1

if either °n < Wi < °n+jX 0
i(¯ ¡ ¯0)j for negative X 0

i(¯¡¯0) or if °n¡jX 0
i(¯ ¡ ¯0)j <
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Wi < °n for positive X 0
i(¯ ¡ ¯0) and zero otherwise. In view of the restrictions on

k¯ ¡ ¯0k and kXik we have jX 0
i(¯ ¡ ¯0)j < Mn

n1=6
, which impliesWi > °n¡ Mn

n1=6
. Hence,

sup
k¯¡¯0k<Mnp

n

p
nE j®n(¯;Wi; Xi)j 1(kXik < n1=3)

= sup
k¯¡¯0k<Mnp

n

p
nE j®n(¯;Wi; Xi)j 1(Wi > °n ¡ Mn

n1=6
)1(kXik < n1=3):

(A.14)

Consider the linear transformation L : X !
¡
W
¡

¢
, where ¡ = X(¡1) is the vector

of all components of X except the …rst (NB the matrix of this transformation is

L =

Ã
¯01 ::: ¯0k
0 Ik¡1

!
; which is non-singular). Then X = L¡1

¡
W
¡

¢
and X 0(¯ ¡

¯0) = W (L0¡1(¯ ¡ ¯0))(1)+¡0 (L0¡1(¯ ¡ ¯0))(¡1), where subscript (1) denotes the …rst

component of a vector. We denote (L0¡1(¯ ¡ ¯0))(1) = b7 and (L0¡1(¯ ¡ ¯0))(¡1) = B.

Re-examining, for negative X 0
i(¯¡¯0); the condition °n < Wi < °n+ jX 0

i(¯ ¡ ¯0)j =
°n¡W (L0¡1(¯ ¡ ¯0))(1)¡¡0 (L0¡1(¯ ¡ ¯0))(¡1) we realize that for negativeX 0

i(¯¡¯0)
j®n(¯;Wi; Xi)j equals 1 for °n < Wi <

°n¡¡0B
1+b

. Similarly for positive X 0
i(¯ ¡ ¯0)

j®n(¯;Wi; Xi)j equals 1 for °n¡¡0B
1+b

< Wi < °n. Thus (A.14) equals

sup
k¯¡¯0k<Mnp

n

p
nE

2
4
Z °n¡¡0B

1+b

°n

1(X 0
i(¯ ¡ ¯0) < 0)1(kXik < n1=3)p:d:f:W;¡j¡(W;¡)dW+

Z °n

°n¡¡0B
1+b

1(X 0
i(¯ ¡ ¯0) > 0)1(Wi > °n ¡ Mn

n1=6
)1(kXik < n1=3)p:d:f:W;¡j¡(W;¡)dW

#
:

(A.15)

The p.d.f.W;¡j¡ exists for large enough n, since the expression under the integrals is

non-zero only ifWi > °n¡ Mn

n1=6
and thus as °n ! 1 forMn = O(n

1=6) becomes greater

than A; the conditional p.d.f.W;¡j¡ declines monotonically in W: Denote °n ¡ Mn

n1=6
by

~°n: The …rst integral on the right hand side of (A.15) is bounded by p:d:f:W;¡j¡(~°n;¡)¢h
°n¡¡0B
1+b

¡ °n
i
, the second can be bounded by p:d:f:W;¡j¡(~°n;¡) ¢

h
°n ¡ °n¡¡0B

1+b

i
: Thus

the sum is bounded by

sup
k¯¡¯0k<Mnp

n

2
p
n

Z µ
p:d:f:W;¡j¡(~°n;¡)

¯̄
¯̄ ¡

0B

1 + b

¯̄
¯̄
¶
dPr¡ (A.16)

7Note: jbj ·
°°L¡1

°° ¢ k¯ ¡ ¯0k ·
°°L¡1

°° Mnp
n

. Assume that Mn is such that
°°L¡1

°° Mnp
n

· G < 1.
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· 2Mn

1+b

Z
k¡kp:d:f:W (~°n)dPr¡jW=~°n

= 2Mn

1+b
p:d:f:W (~°n)EjW=~°n

k¡k ;

where ¡ = X(¡1) and kBk =
°°°(L¡1(¯ ¡ ¯0))(¡1)

°°° ´ 8
°°(¯ ¡ ¯0)(¡1)

°° · Mn

n1=2
using

the restriction on k¯ ¡ ¯0k : The notation dPr¡ indicates that a Stiltjes integral with

respect to the cumulative probability function ¡ is taken, if a marginal density exists

dPr¡ = p:d:f:¡(¡)d¡. By Jensen’s inequality, and in view of Assumption A(b) this is

bounded almost surely by

2Mn

1+b
¢ p:d:f:W (~°n) ¢ EjW=~°n

³°°X(¡1)
°°3

´1=3
: (A.17)

Let us consider EjW=~°n

³°°X(¡1)
°°3

´
. By Assumption 1 of AS, we know that the

unconditional expectation E
³°°X(¡1)

°°3
´

is bounded; this implies that for the …xed

A of Assumption A E
³°°X(¡1)

°°3 1(W > A)
´

is bounded as well.

E
³°°X(¡1)

°°3 1(W > A)
´
=

ZZ °°X(¡1)
°°3 1(W > A)p:d:f:W;¡jW (¡)p:d:f:W (W )d¡dW

=

Z
J(W )p:d:f:W (W )1(W > A)dW; (A.18)

where J(W ) =
R °°X(¡1)

°°3 p:d:f:W;¡jW (¡)d¡ is a function of W only. Since the in-

tegral
R
J(W )p:d:f:W (W )dW ´ E

³°°X(¡1)
°°3

´
exists, it implies that as W ! 1

J(W )p:d:f:W (W ) = o(W
¡1), or

J(W ) = o
¡
W¡1 (p:d:f:W (W ))

¡1¢ : (A.19)

Equation (A.17), can then be rewritten as follows

2Mn

1+b
¢ p:d:f:W (e°n) ¢ J(e°n)1=3 = 2Mn

1+b
¢ p:d:f:W (°n ¡ Mn

n1=6
)2=3o(°¡1=3n ): (A.20)

This implies that for i = 1 and Ui (A.9) can be bounded as

E (kik) 2Mn

1+b
¢ p:d:f:W (°n ¡ Mn

n1=6
)2=3o(°

¡1=3
n )

Pr(Wi > °n)
1=2

· E (kik) 2Mn

1+b

Ã
p:d:f:W (°n ¡ Mn

n1=6
)

Pr(Wi > °n)
3=4

!2=3

o(°¡1=3n ): (A.21)

8Here we use the fact that L¡1 =

Ã
1

¯01

¡¯02

¯01
¢ ¢ ¢ ¡¯0k

¯01

0 Ik¡1

!
.
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Set Mn = minfdn1=6; °1=3g with d > 0 as in Assumption A. Using Assumptions 1 and

6 of AS and Assumption A(a) the right-hand side of (A.21) converges to zero for Mn.

2

The next lemma will help to show that terms, involving ®in; which appear in

(A.2), (A.3), and (A.6) have a zero probability limit.

Lemma 2: Under Assumptions 1, 2, 5–7 of AS, and Assumption A
1p
n

Pkikj®inj
Pr(Wi>°n)

1=2

p! 0 as n ! 1 for i = Zi=
p
n, i = Ui, or i = 1; 8i:

Proof of Lemma 2:

We would like to show that for any ³ > 0

Pr

Ã
1p
n

P kik j®inj
Pr(Wi > °n)

1=2
> ³

!
! 0 as n ! 1: (A.22)

From Lemma 1, let Mn satisfy Mno(°
¡1=3
n ) ! 0 and Mn

n1=6
· d. The left hand side of

(A.22) is equal to

Pr

µ
1p
n

Pkikj®inj
Pr(Wi>°n)

1=2 > ³;
°°°b̄ ¡ ¯0

°°° · Mnp
n

¶
+ Pr

µ
1p
n

Pkikj®inj
Pr(Wi>°n)

1=2 > ³;
°°°b̄ ¡ ¯0

°°° > Mnp
n

¶

· Pr

µ
1p
n

Pkikj®inj
Pr(Wi>°n)

1=2 > ³;
°°°b̄ ¡ ¯0

°°° · Mnp
n

¶
+ Pr

³°°°b̄ ¡ ¯0
°°° > Mnp

n

´
: (A.23)

The second expression on the right hand side of (A.23) converges to zero by Assump-

tion 5 of AS, since
p
n(b̄ ¡ ¯0) = Op(1) implies

p
n(b̄ ¡ ¯0)=Mn = op(1). The …rst

expression on the right hand side of (A.23) is bounded by

sup
k¯¡¯0k·Mnp

n

Pr

µ
1p
n

Pkikj®n(¯;Wi;Xi)j
Pr(Wi>°n)

1=2 > ³

¶
(A.24)

· sup
k¯¡¯0k·Mnp

n

E

µ
1p
n

Pkikj®n(¯;Wi;Xi)j
Pr(Wi>°n)

1=2

¶

³
= sup

k¯¡¯0k·Mnp
n

p
nE kik j®n(¯;Wi; Xi)j
³ Pr(Wi > °n)

1=2
;

where the inequality is based on Markov’s inequality. This term converges to zero for

all ³ > 0 by Lemma 1. 2

Proof of Theorem 1: For our proof it is su¢cient to show (A.2), (A.3), and (A.6).

By Assumptions 1 and 5 for bµ¡µ0 of AS, the left-hand sides of (A.2), (A.3) can be
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bounded by:
1p
n

Pn
i=1 jUij ¢ j®inj

Pr(Wi > °n)
1=2

+ j¹0j
1p
n

Pn
i=1 j®inj

Pr(Wi > °n)
1=2
; (A.25)

Op(1)
1
n

Pn
i=1 kZik ¢ j®inj

Pr(Wi > °n)
1=2

; (A.26)

respectively. From Lemma 2, (A.25) and (A.26) have zero probability limits.

Finally, to prove (A.6), we note that its left-hand side can be bounded by

1p
n

Pn
i=1 j®inj

Pr(Wi > °n)
1=2
; (A.27)

which by Lemma 2 again converges in probability to zero. This completes the proof

of our theorem. 2

Proof of Theorem 2: By Cramer-Wold device, this result follows directly from

(5) and Theorem A-4 in AS. In the latter, the result in Theorem 2 is shown for the

case where b¹I is replaced by b¹I;0. 2

Appendix B: Asymptotic variance and bias:
Selection of Bandwidth and Estimator

In this Appendix we provide the asymptotic bias, variance, and mean squared

error of the AS and Heckman estimator. Using Lemma A–2 of AS and Theorem 1 of

this paper, we write the asymptotic bias and variance as

abias(b¹s) ¼ ¡E!(Wi)s(Wi ¡ °n)
Es(Wi ¡ °n)

; abias(b¹I) ¼ ¡E!(Wi)1(Wi > °n)

E1(Wi > °n)
;(B.1)

avar(b¹s) ¼ ¾2n¡1
Es2(Wi ¡ °n)
[Es(Wi ¡ °n)]2

; avar(b¹I) ¼ ¾2n¡1 (E1(Wi > °n))
¡1
: (B.2)

In the following we let !(Wi) ¸ 0 8Wi > °n (similar proofs can be given when

!(Wi) · 0 8Wi > °n).

Proof of Proposition 1: For (a), we note that by Cauchy-Schwartz inequality

Es(Wi¡°n) = Es(Wi¡°n)1(Wi > °n) · [Es2(Wi¡°n)]1=2[E1(Wi > °n)]
1=2: (B.3)
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This inequality combined with (B.2) gives the result that (a) holds for any sequence

°n.

Next we turn to (b). Using (B.1), we get

jabias(b¹s)j ¼ E!(Wi)s(Wi ¡ °n)
Es(Wi ¡ °n)

· E!(Wi)1(Wi > °n)

E1(Wi > °n + b)

¼ jabias(b¹I)j
E1(Wi > °n)

E1(Wi > °n + b)
:

(B.4)

Since E1(Wi > °n)=E1(Wi > °n + b) ¼ 1 (b) follows. 2

Proof of Proposition 2: From Proposition 1(a), we know

Es2(Wi ¡ °n)
[Es(Wi ¡ °n)]2

¸ [E1(Wi > °n)]
¡1 : (B.5)

Furthermore as Es2(Wi ¡ °n) · Es(Wi ¡ °n) and Es(Wi ¡ °n) ¸ E1(Wi > °n + b);

Es2(Wi ¡ °n)
[Es(Wi ¡ °n)]2

· [E1(Wi > °n + b)]
¡1 ¼ [E1(Wi > °n)]

¡1 ; (B.6)

and (a) follows.

Under the same assumptions, we know from Proposition 1(b) that

E!(Wi)s(Wi ¡ °n)
Es(Wi ¡ °n)

· E!(Wi)1(Wi > °n)

E1(Wi > °n + b)
¼ E!(Wi)1(Wi > °n)

E1(Wi > °n)
: (B.7)

In addition, we have

E!(Wi)s(Wi ¡ °n)
Es(Wi ¡ °n)

¸ E!(Wi)1(Wi > °n + b)

E1(Wi > °n)
¼ E!(Wi)1(Wi > °n)

E1(Wi > °n)
: (B.8)

Combining these inequalities we obtain (b). 2

For the remainder of this appendix we have omitted the subscript n on ° to

simplify notation. For the proof of Proposition 3, we make use of the following

technical lemma:

Lemma 3: As ° ! 1,

(a)
R1
°
¸c(W ¡ °)iW vexp(¡¸W c)dW = ° i+v¡c+1¡ciexp(¡¸°c)(¸c)¡ii!(1 + o(°¡c))
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(b) For a>f,
R 1
°
¹a(W ¡ °)iW vexp(¡¹W a ¡ ¸W f)dW =

°i+v¡a+1¡aiexp(¡¹°a ¡ ¸°f)(¹a)¡ii!(1 + o(°¡a)):

Proof: The integral in (a), I , can be rewritten as

I =

1Z

°

¸c
iX

j=0

µ
i

j

¶
(¡1)i+j°i¡jW j+v exp(¡¸W c)dW

=
iX

j=0

µ
i

j

¶
(¡1)i+j°i¡j

1Z

°

¸cW j+v exp(¡¸W c)dW: (B.9)

By setting W c = z, we get

I =
iX

j=0

µ
i

j

¶
(¡1)i+j°i¡j ¢ ¸

Z 1

°c
z
j+v¡c+1

c exp(¡¸z)dz: (B.10)

Combining 3.381#3 and 8.357 in Gradshteyn and Ryzhik (1994)9 we obtain

I =
iX

j=0

µ
i

j

¶
(¡1)i+j°i¡j¸ ¢ ¸¡ j+v+1

c ¡(
j + v + 1

c
; ¸°c)

=
iX

j=0

µ
i

j

¶
(¡1)i+j°i¡j¸ ¢ °j+v¡c+1exp(¡¸°c) ¢

Ã
L¡1X

m=0

(¡1)m¡(1¡ j+v+1
c

+m)

°cm¸m¡(1¡ j+v+1
c
)

+ o(°¡cL)

!
(B.11)

= (¡1)i°i+v¡c+1 exp(¡¸°c)
iX

j=0

µ
i

j

¶
(¡1)j

Ã
L¡1X

m=0

Pm
s=0 ·s(

j
c
)s

°cm¸m
+ o(°¡cL)

!
;

where we have substituted (¡1)m¡(1¡ j+v+1
c
+m)=¡(1¡ j+v+1

c
) =

Pm
s=0 ·s(

j
c
)s, with

·s = 1 for s = m and some known constant for s = 0; :::;m¡ 1: Using the fact that
iP

j=0

¡
i
j

¢
(¡1)jjm = 0 for i ¸ m+1 ¸ 1; 00 ´ 1 (see 0.154#3 in Gradshteyn and Ryzhik

9There is a typographical error in 3.381#3 in G&R; the correct formula reads
R 1
u

xv¡1e¡¹xdx =

¹¡v¡(v; ¹u):
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(1994)), we get

I = (¡1)i°i+v¡c+1exp(¡¸°c)
iX

j=0

µ
i

j

¶
(¡1)j

Ã
( j
c
)i

°ci¸i
(1 + o(°¡c))

!

= °i+v¡c+1¡ci exp(¡¸°c)(¸c)¡ii!(1 + o(°¡c)); (B.12)

where the second equality uses 0.154#4 in Gradshteyn and Ryzhik (1994).

Next consider the integral (b), I 0, for a > f . We notice that I 0 can be rewritten

as follows,

I 0 = exp(¡¸°f )
Z 1

°

¹a(W ¡ °)iW vexp(¡¹W a)
¡
exp(¡¸(W f ¡ °f ))

¢
dW (B.13)

= exp(¡¸°f )
Z 1

°

¹a(W ¡ °)iW vexp(¡¹W a)

Ã 1X

r=0

(¡1)r¸r(W f ¡ °f)r
r!

!
dW;

where we have substituted the series representation for the last exponential function

in the integral. By dominating convergence theorem, we can interchange the integral

and summation, giving

I 0 = exp(¡¸°f)
1X

r=0

(¡1)r¸r
r!

Z 1

°

¹a(W f ¡ °f )r(W ¡ °)iW vexp(¡¹W a)dW: (B.14)

To complete the proof, we need to reapply the steps taken in (B.9)–(B.12). The …nal

result is obtained by setting r = 0 (all remaining terms converge to zero faster). A

detailed proof of this can be obtained from the authors. 2

Proof of Proposition 3: In this proof we will not attempt to formally show

all cases considered, but indicate the method used to derive the results, pointing

primarily to the more complex derivations.

Using the results from Proposition 2, avar(¹I) ¼ avar(¹s) if 1¡F (W ) ¼W ®e¡¸W
c

with c · 1, since Assumption 4 of AS holds with » = 0 and E1(W > °)=E1(W >

°+b) ¼ 1. The variance in these cases can be easily derived using ¾2=(nE1(Wi > °));

see (B.2).10

When on the other hand 1 ¡ F (W ) ¼ W ®e¡¸W
c

with c > 1 we need to derive

avar(¹s) using the de…nition in (B.2) (Assumption 4 of AS does not hold with » = 0).

10For W > ° the p:d:f:(W ) equals ¸cW®+c¡1 exp(¡¸W c)(1 + o(°¡c)), where ® = ¡¸ if c = 0

(Pareto tail case).
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For this we need to apply Lemma 3(a). Notice that for any ² > 0 we can write

Es(Wi ¡ °) as

Es(Wi ¡ °) = aq
q!

Z 1

°

(W ¡ °)q¸cW ®+c¡1 exp(¡¸W c)dW

¡aq
q!

Z 1

°+²

(W ¡ °)q¸cW ®+c¡1 exp(¡¸W c)dW (B.15)

+

Z °+²

°

h
s(W ¡ °)¡ aq

q!
(W ¡ °)q

i
¸cW ®+c¡1 exp(¡¸W c)dW

+

Z 1

°+²

s(W ¡ °)¸cW ®+c¡1 exp(¡¸W c)dW:

By Lemma 3(a), the …rst integral is ¼ aq°q+®¡cq(¸c)¡q exp(¡¸°c); the second is

similarly ¼ ¡aq(° + ²)q+®¡cq(¸c)¡q exp(¡¸(° + ²)c) which goes to zero at an expo-

nentially faster rate than the …rst as long as ²°c¡1 ! 1 since exp(¡¸(° + ²)c) =
exp(¡¸°c) exp(¡¸c²°c¡1(1 + o( ²

°
))). Using Assumption S and Lemma 3(a), the ab-

solute value of the third integral can be bounded by O(1)²q+1°® exp(¡¸°c)(1+o(°¡c))
(we apply a (q + 1)th order Taylor expansion to s(¢) around zero). If ²q+1°(c¡1)q ! 0

this implies that the third integral goes to zero faster than the …rst. Finally, the

fourth integral can be bounded by one where the function 1(¢) is substituted for s(¢),
thus by Lemma 3(a) it is bounded by (° + ²)® exp(¡¸(° + ²)c)(1 + o(°¡c)) and (sim-

ilarly to the second integral) goes to zero exponentially faster than the …rst one if

²°c¡1 ! 1. If the conditions are met, the …rst integral dominates Es(Wi ¡ °), i.e.,

Es(Wi ¡ °) ¼ aq°
q+®¡cq(¸c)¡q exp(¡¸°c): (B.16)

For Es2(W ¡°), we get similarly four terms, the …rst of which ¼ a2q
¡
2q
q

¢
°2q(1¡c)+®¢

(¸c)¡2q exp(¡¸°c); the second is the corresponding integral from °+ ² to in…nity and

requires "°c¡1 ! 1 to go to zero exponentially faster. The third one can analogously

be bounded by
Z °+"

°

¯̄
¯̄s2(W ¡ °)¡

³
aq
q!

´2
(W ¡ °)2q

¯̄
¯̄ p:d:f:W (W )dW

· O(1)²2q+1°® exp(¡¸°c)(1 + o(°¡c))

and thus needs ²2q+1°(c¡1)2q ! 0: And …nally, the fourth integral can be bounded

again by replacing s2(¢) by 1(¢), which using Lemma 3(a) goes to zero exponentially
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faster than the …rst one if ²°c¡1 ! 1. For ² = °¡
(c¡1)(2q+{ )

2q+1 with 0 < { < 1 the …rst

integral dominates Es2(Wi ¡ °), i.e.,

Es2(Wi ¡ °) ¼ a2q
¡
2q
q

¢
°2q+®¡2cq(¸c)¡2q exp(¡¸°c): (B.17)

This ² also satis…es the requirement for (B.16) to hold. Combining (B.16) and (B.17)

give avar(¹s):

Concerning the results presented in (b), if 1¡ F (W ) ¼W ®e¡¸W
c

with c · 1 and

!(W ) ¼W & exp(¡¹W d) with d · 1 all assumptions in Proposition 2 are satis…ed and

abias(¹I) ¼ abias(¹s). The derivations of the asymptotic bias in that case requires

us to compute ¡E(!(Wi)1(Wi > °)) (see (B.1)). Substituting 1¡ F (W ) and !(W )

E(!(Wi)1(Wi > °)) = ¸c

Z 1

°

W &+®+c¡1 exp(¡¹W d ¡ ¸W c)(1 + o(°¡c)dW: (B.18)

When d = c, this expectation can be obtained straightforwardly using the analysis of

the asymptotic variance given above. When d 6= c, Lemma 3(b) gives

E(!(Wi)1(Wi > °)) ¼
(

¸c
¹d
°&+®+c¡d exp(¡¹°d ¡ ¸°c)(1 + o(°¡c)) d > c

°&+® exp(¡¹°d ¡ ¸°c)(1 + o(°¡c) d < c:
(B.19)

When c or d (or both) exceed 1, the asymptotic bias of the Heckman and AS

estimator are not equal any more. In that case we need to extend the analysis above

to derive ¡E(!(Wi)s(Wi ¡ °)). As in (B.15), we write E(!(Wi)s(Wi ¡ °)) as a sum

of four integrals, where ² > 0

E(!(Wi)s(Wi ¡ °))
= aq

q!

Z 1

°

(W ¡ °)q¸cW &+®+c¡1 exp(¡¹W d ¡ ¸W c)dW (B.20)

¡aq
q!

Z 1

°+²

(W ¡ °)q¸cW &+®+c¡1 exp(¡¹W d ¡ ¸W c)dW

+

Z °+²

°

h
s(W ¡ °)¡ aq

q!
(W ¡ °)q

i
¸cW &+®+c¡1 exp(¡¹W d ¡ ¸W c)dW

+

Z 1

°+²

s(W ¡ °)¸cW &+®+c¡1 exp(¡¹W d ¡ ¸W c)dW:

In the case where c = d the result follows directly from Lemma 3(a). Using a similar

discussion when c 6= d, Lemma 3(b) gives us
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E(!(Wi)s(Wi ¡ °))

¼
(
aq

¸c
(¹d)q+1

exp(¡¸°c ¡ ¹°d)°q+&+®+c¡d¡dq d > c

aq(¸c)
¡q exp(¡¸°c ¡ ¹°d)°q+&+®¡cq d < c:

(B.21)

This completes the derivations required for the proof. 2

Proof of Proposition 4: According to Proposition 3, the asymptotic MSE for

all cases to be considered has the form

MSE = an¡1°¡® exp(¸°c) + b°2´ exp(¡2¹°d); (B.22)

where

´ =

8
><
>:

& + (c¡ d)(1 + q) if d > c; d > 1

& + (c¡ d) if d > c; d · 1

& otherwise.

(B.23)

Thus

@MSE

@°
= an¡1°¡®¡1 exp(¸°c)(¡®+¸c°c)+b°2´¡1 exp(¡2¹°d)(2´¡2¹d°d): (B.24)

The optimal bandwidth °¤ solves the …rst order condition in which we ignore terms

that go to zero faster than the ones we keep, i.e., °¤ solves:

(i) ¡®a exp(¸)n¡1°¤¡®¡1 + 2´b exp(¡2¹)°¤2´¡1 = 0 if c = 0; d = 0 (®; ´ < 0)

(ii) ¸can¡1°¡®+c¡1 exp(¸°c) + 2´b exp(¡2¹)°2´¡1 = 0 if c > 0; d = 0 (´ < 0))

(iii) ¡®a exp(¸)n¡1°¡®¡1 ¡ 2¹db°2´+d¡1 exp(¡2¹°d) = 0 if c = 0; d > 0 (® < 0)

(iv) ¸can¡1°¡®+c¡1 exp(¸°c)¡ 2¹db°2´+d¡1 exp(¡2¹°d) = 0 if c > 0; d > 0:

We discuss each case separately.

Case (i). In this case we get an analytic solution °¤ = (2´b exp(¡2¹)
®a exp(¸)

n)
1

¡®¡2& and

MSE(°¤) = a exp(¸)(2´b exp(¡2¹)
®a exp(¸)

)
®

®+2& n¡
2´

®+2´
)(1 + b exp(¡2¹)

a exp(¸)
), so ¿ = 2´

®+2´
: Here for

any ° = µn
1

¡®¡2& , the corresponding rate equals ¿ .

Case (ii). Substituting from the …rst order conditions we can express MSE(°¤) as

¼ b°¤2´ exp(¡2¹)(1 + 2´
¸c
°¤¡c) ¼ b°¤2´ exp(¡2¹). If ° = (µ ln n)1=c the …rst term in
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the derivative is proportional to n¡1+¸µ(ln n)
¡®+c¡1

c while the second is proportional

to (lnn)
2´¡1
c ; thus for °L = (µL ln n)

1=c with µL < 1
¸
, the second negative term domi-

nates the growth in the derivative (abias2 dominates MSE(°L)) and ¿ (L) = 0. For

°H = (µH ln n)
1=c µH > 1

¸
, the …rst term dominates the derivative (avar dominates

MSE(°H)) and ¿ (H) = 1¡ ¸µH (note: only if µ = 1
¸

does the variance not increase

with n). Since °L < °
¤ < °H , we get (a), (b), (c), and (d).

Case (iii). Here similarly,MSE(°¤) = an¡1°¤¡® exp(¸)(1¡ ®a
2¹d
°¤¡d)¼ an¡1°¤¡® exp(¸).

If °L = (µL lnn)
1=d and µL < 1

2¹
the derivative is negative, MSE(°L) is dominated by

abias2 and declines at a rate with polynomial component n¡¿(L) with ¿(L) = 2¹µL. If

°H = (µH lnn)
1=d and µH > 1

2¹
the derivative is positive, avar dominates and declines

with ¿ (H) = 1; (a), (b), (c), and (d) follow.

Case (iv). Note that substituting from the …rst order condition here MSE(°¤) ¼
an¡1°¤¡® exp(¸°¤c) ¼ ¡2¹d

¸c
°¤2´+d¡c exp(¡2¹°¤d). If c < d, set °L = (µL ln n)

1=d; 0 <

µL <
1
2¹

and °H = (µH lnn)
1=c; 0 < µH <

1
¸
, then for MSE(°L) ¼ abias2 we have

¿L = 2¹µL; MSE(°H) ¼ avar we have ¿L = 1 ¡ ¸µH . As µL (µH) is selected

close to 1
2¹

(0) we approach ¿ = 1 and (a), (b), (c), and (d) follow. If c > d,

°L = (µL lnn)
1=c; 0 < µL <

1
¸

and °H = (µH ln n)
1=d; 0 < µH <

1
2¹

. We get ¿ (L) =

¿ (H) = 0: Since here the expression for MSE(°¤) for °¤ > °L grows faster than

n¡1 exp(¸µL lnn) = n¡1+¸µL for any µL, ¿ = 0. Thus (a), (b), (c) and (d) follow. For

c = d, set °L = (µL ln n)
1=c; 0 < µL <

1
¸+2¹

and °H = (µH lnn)
1=c; 1

¸+2¹
< µH <

1
¸
. In

the expression for MSE(°¤) with °¤ > °L we have ¿ < 1¡ µL¸ for all 0 < µL < 1
¸+2¹

,

therefore considering µL arbitrarily close to 1
¸+2¹

we get ¿ = 2¹
¸+2¹

: Thus (a), (b),

(c), and (d) follow. If ¡® = 2´ an analytic solution °¤ = ( 1
¸+2¹

)1=c(ln n+ ln(2¹b
¸a
))1=c

obtains.

This completes the proof. 2
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