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Abstract 
 
We develop in this paper a general econometric methodology referred to as 
the Simulated Asymptotic Least Squares (SALS). It is shown that this 
approach provides a unifying theory for “approximation-based” or simulation-
based inference methods and nests the Simulated Nonlinear Least Squares 
(SSNLS), the Simulated Pseudo Maximum Likelihood (SPML), the Simulated 
Method of Moments (SMM) in both parametric and semiparametric settings, 
the Indirect Inference (II) and the Efficient Method of Moments (EMM). 
 
We produce a new notion of Efficiency Bounds in Direction and provide a 
general study of the efficiency in the SALS framework. 
 
In the particular case of the II and the EMM methods and when the 
instrumental model is of a GMM type, we characterise a new weighting matrix 
for a more efficient estimation about the structural parameters of interest θ0. 
This new weighting matrix does no longer correspond, in the general case, to 
the classical one as characterised by Hansen (1982). Generalized global 
specification tests extending the previous existing ones are also proposed. 
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1 Introduction

Econometric models often lead nowadays to a complex formulation of either conditional probability dis-

tribution function (p.d.f. hereafter) of the endogenous variables given the exogenous and predetermined

ones in the fully parametric setting or more generally to a complex formulation of the so-called estimat-

ing equations in the semiparametric setting. Optimizing behavior and optimizing subroutines are such

that one cannot directly write the functional forms associated with a given parametrization.

In this context, several approaches depending on the primitive setting and circumventing such diÆculties

have been introduced in the literature: the Simulated Pseudo Maximum Likelihood (SPML hereafter) by

Laroque and Salani�e (1989), the Simulated Method of Moments (SMM hereafter) by McFadden (1989),

Pakes and Pollard (1989), Ingram and Lee (1991), DuÆe and Singleton (1993), the Simulated Nonlinear

Least Squares (SNLS hereafter) by La�ont, Ossard and Vuong (1995) and more recently the Indirect In-

ference (II hereafter) and the EÆcient Method of Moments (EMM hereafter) respectively by Gouri�eroux,

Monfort and Renault (1993) and Gallant and Tauchen (1996).

However, it turns out, on the one hand, that so far no general econometric theory enabling the uni�cation

of all the aforementioned methodologies has been proposed. On the other hand, there are now cases aris-

ing from the macroeconometric as well as the econometric literature where the sole application of such

approaches does not fully exploit the information brought about by the available estimating equations.

This occurs, for instance, when one has at his disposal overidentifying moment restrictions de�ning a set

of instrumental parameters in conjunction with a fully speci�ed parametric structural model.

In this respect, we propose in this paper a general econometric theory referred to as the Simulated

Asymptotic Least Squares (SALS hereafter). It is shown that this approach provides a unifying theory

for simulation-based or more generally approximation-based inference methods and nests the SPML, the

SMM both in parametric and semiparametric settings, the II, the EMM and the SNLS approaches.

It can indeed be regarded, on the one hand, as a simulated or approximate extension of the earlier

ALS theory introduced by Gouri�eroux, Monfort and Trognon (1985) to the case where the estimating

equations are intractable but can be approximated in some sense either by simulations or more generally

by approximation methods such as for instance the quadrature-based methods or Marcet parametrized

expectations type procedures.

But on the other hand, it can also be regarded as a generalization of the ALS theory to the case where

the number of estimating equations r (say) is bigger than the number of auxiliary parameters q (say),

that is r > q. Indeed, we stress in this paper that while in Gouri�eroux, Monfort and Trognon (1985) the

ALS theory is developed in the particular case where r � q, there are now numerous examples where

r > q. We provide here a general study dealing with both issues. In this respect we think that the (S)ALS

theory should enjoy some renewal especially in light of the now increasing literature in macroeconometrics

and more generally in econometrics often leading to restrictions or estimating equations that are poorly

handled by the common simulation-based methods.

Besides, it enables the exact and precise characterization of what is now abusively referred to as the

\matching" in the approximation methods through the use of the estimating equations. Each existing

methodology (SPML, SMM, II, EMM, SNLS) is thus characterized by particular \matching characteris-

tics" or particular estimating equations.
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The paper is organized as follows. We �rst recall in section 2 and prove under weaker stochastic equicon-

tinuity conditions the available results from the II. In section 3, we develop the Generalized Indirect

Inference (GII) seen as a particular and introductory illustration to the SALS theory. While analyzing

the eÆciency gains brought about by additional constraints (such as Euler conditions) on the instrumen-

tal criterion in the II framework, we show that Hansen (1982) theory of eÆcient overidenti�ed moments

estimation is no longer available here and characterize the new weighting matrix for performing a more

eÆcient indirect estimation about the structural parameters of interest. In section 4, we develop the SALS

theory and provide the general eÆciency study in the SALS framework. We are thus led to introduce

a new notion of EÆciency Bounds in Direction. Section 5 proposes a battery of generalized global

speci�cation tests extending the previous existing ones. We state some concluding remarks in section 6.
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2 Asymptotic Properties of Indirect Inference

Extending Gouri�eroux, Monfort and Renault (1993) and Gouri�eroux and Monfort (1995b), we consider

the parametric nonlinear simultaneous equations model de�ned by:

r(yt; yt�1; xt; ut; �) = 0; (2.1)

'(ut; ut�1; "t; �) = 0; (2.2)

� 2 � a compact subset of IRp
;

where the process fyt; t 2 ZZg corresponds to the dependent variables and fxt; t 2 ZZg is the vector of

exogenous observable variables. The variables fut; t 2 ZZg and f"t; t 2 ZZg are not observed.1
fxt; t 2 ZZg is independent of f"t; t 2 ZZg (and fut; t 2 ZZg). The process f"t; t 2 ZZg is a white noise

whose distribution GÆ is known.

The data consist in the observations of a stochastic process f(yt; xt); t 2 ZZg at dates t = 1; : : : ; T . The

range of xt and yt are respectively X � IRp(x) and Y � IRp(y). We denote by PÆ the true unknown

probability distribution (as characterized by Kolmogorov's theorem) of f(yt; xt); t 2 ZZg and FÆ denotes
the p.d.f. of fxt; t 2 ZZg.
Assumption (A1):

PÆ belongs to the family fP�; � 2 �g of probability distributions on (X � Y)ZZ delineated by the model

(2:1) � (2:2).

In this case there exists a true unknown value of the structural parameters �Æ such that PÆ = P�Æ ,

we assume that �Æ 2 Æ
�. We also denote the probability distribution function of the joint process

f("t; xt); t 2 ZZg: �Æ. With a slight abuse of notations, we will also write �Æ as the product of FÆ and GÆ:

�Æ = FÆ 
GÆ. We can then rewrite PÆ and P� as follows:

PÆ = �(�Æ; �
Æ);

P� = �(�Æ; �);

for each � 2 � and where �(�; �) is implicitly de�ned through (2:1) � (2:2).

As pointed out by Gouri�eroux, Monfort and Renault (1993) the knowledge of the distribution of

f"t; t 2 ZZg is not a real assumption, in the parametric case, since f"t; t 2 ZZg can always be consid-

ered as a function of a white noise with a known distribution function and of additional parameters

which can be incorporated into �. DGP with more than one lag in y, x, u can be included in this frame-

work by increasing the dimension of the processes.

Note also, that it is not required that r and ' are known in a closed form. The only requirement is that,

r and ' are computable at each point. This, for instance, can be achieved through optimization routine

re
ecting optimizing behavior.

This formulation encompasses the one proposed in Gouri�eroux, Monfort and Renault (1993). This allows

indeed the treatment of a broader class of models as for instance the models stemming from the stochastic

1Note that by construction of (2:1)� (2:2) the variables fxt; t 2 ZZg correspond here to strictly exogenous ones. However

the case of weakly exogenous variables is not ruled out here and in that case one has to specify the conditional p.d.f. of u

given X. Throughout the paper we just maintain the weak exogeneity assumption and when it is required we will stress the

strong exogeneity assumption.
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growth literature (see JBES January 1990, vol 8, n01 for an in-depth discussion of such models).

However, this theory turns out to be relevant as soon as one has at his disposal a family of p.d.f.

fP�; � 2 �g on (X � Y)ZZ for which expectations of nonlinear functions are easily computed by sim-

ulation, by quadrature or by analytic expressions. In this respect the results proposed in this paper

straightforwardly extend to the case of quadrature computation or analytic expressions. We just focus

here on the simulation-based inference for sake of presentational convenience and consistency with the

earlier papers.

For each given value of the parameters �, it is possible to simulate a path

fey1(�; zÆ); : : : ; eyT (�; zÆ)g conditionally on the observed path of the exogenous variables fx1; : : : ; xT g and
for given initial conditions zÆ = (yÆ; uÆ). This is done by simulating values fe"1; : : : ; e"T g from GÆ. Then

by repeatedly solving equation (2:2) in the unknown variables eut(�; uÆ):(
'(eut(�; uÆ); eut�1(�; uÆ); e"t; �) = 0; t = 1; : : : ; T;

uÆ;

we get eu1(�; uÆ); : : : ; euT (�; uÆ). Finally by solving equation (2:1) in the unknown variables eyt(�; zÆ):(
r(eyt(�; zÆ); eyt�1(�; zÆ); xt; eut(�; uÆ); �) = 0; t = 1; : : : ; T;

yÆ;

we obtain a simulated path fey1(�; zÆ); : : : ; eyT (�; zÆ)g. This implicitly assumes that, for each value of

the parameters �, for the observed exogenous variables fx1; : : : ; xT g and for the initial conditions zÆ,

equations (2:1) � (2:2) uniquely de�ne the process f(yt; ut); t 2 ZZg.
A direct estimation of the true unknown value of the structural parameters �Æ is in practice impossible

since the conditional p.d.f of fy1; : : : ; yT g given fzÆ; x1; : : : ; xT g is computationally intractable. The idea
is then to replace the intractable log-likelihood function of the structural model:

LT (�) =
TX
t=1

log ft(yt=yt�1; xT ; �); (2.3)

by an instrumental criterion which involves a vector � of q instrumental parameters:

QT

�
y
T
; xT ; �

�
;

� 2 B a compact set of IRq�
2 (2.4)

Assumption (A2):

(A2)

1) 8� 2 �; � 2 B; �Æ lim
T!+1

���QT

�eys
T
(�; zsÆ); xT ; �

�
� q(�; �)

��� = 0;

2) 8� 2 �; " > 0; � > 0; 9 e�sT (�; "; �) ; e� s (�; "; �) such that 8T � e� s (�; "; �) :
� �Æ

�e�sT (�; "; �) > "

�
< �;

� 8� 2 B; 9 Os
�;�;";� an open set containing � with :

Sup

�2Os
�;�;";�

���QT

�eys
T
(�; zsÆ); xT ; �

�
�QT

�eys
T
(�; zsÆ); xT ; �

���� � e�sT (�; "; �) ;
for s = 1; : : : ; S and z

s
Æ�

3

2We focus here on compact sets � and B. However, other assumptions can be formulated so as to avoid such compactness

hypotheses. See Andrews (1994) and Newey and McFadden (1994) for an in-depth discussion.
3We denote by �Æ lim

T!+1

the limit in probability (with respect to �Æ) when T goes to in�nity.
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feys1(�; zsÆ); : : : ; eysT (�; zsÆ)g correspond to simulated paths of the dependent variable according to the model
(2:1) � (2:2) conditionally on fx1; : : : ; xT g and zsÆ, for s = 1; : : : ; S.

Assumption (A2:2) expresses a stochastic equicontinuity property about the instrumental criterion

QT

�eys
T
(�; zsÆ); xT ; �

�
computed for the simulated paths eys

T
(�; zsÆ).

4

Proposition 2.1 : Under assumptions (A1) � (A2), we have:

�Æ lim
T!+1

Sup
�2B

���QT

�
y
T
; xT ; �

�
� q (�Æ; �)

��� = 0;

�Æ lim
T!+1

Sup
�2B

���QT

�eys
T
(�; zsÆ); xT ; �

�
� q (�; �)

��� = 0�
5

Proof : This result is obtained by simply applying Newey (1991) theorem 2.1. to the simulated paths

feys1(�; zsÆ); : : : ; eysT (�; zsÆ)g.
Assumption (A3):

q(�; �) is a non stochastic twice di�erentiable function not depending on the initial condition zsÆ and with

a unique minimum with respect to � for each value of � 2 �. Let �Æ = e�(�Æ) and e�(�) be respectively
the minimum of q(�Æ; �) and q(�; �), that is:

�
Æ = e�(�Æ) = Argmin

�2B
q(�Æ; �);

e�(�) = Argmin
�2B

q(�; �)�

We also assume that 8� 2 �; e�(�) 2 Æ
B.

Let us introduce the following estimators:

b�T = Argmin
�2B

QT

�
y
T
; xT ; �

�
;

e�sT (�) = Argmin
�2B

QT

�eys
T
(�; zsÆ); xT ; �

�
;

e�TS(�) = 1

S

SX
s=1

e�sT (�)�
(2.5)

4Note that the observed path y

T
can always be regarded under correct speci�cation as a simulated one for the value

� = �
Æ. Thus, it is also implicitly assumed that the instrumental criterion obeys a stochastic equicontinuity property when

computed on the observed path y

T
.

5Note that:

PÆ lim
T!+1

Sup

�2B

���QT

�
y

T
; xT ; �

�
� q (�

Æ
; �)

��� = �Æ lim
T!+1

Sup

�2B

���QT

�
y

T
; xT ; �

�
� q (�

Æ
; �)

��� = 0;

P� lim
T!+1

Sup

�2B

���QT

�eys
T
(�; z

s
Æ); xT ; �

�
� q (�; �)

��� = �Æ lim
T!+1

Sup

�2B

���QT

�eys
T
(�; z

s
Æ); xT ; �

�
� q (�; �)

��� = 0�
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Proposition 2.2 : Under assumptions (A1) � (A3), these estimators converge to:

�Æ lim
T!+1

b�T = e� (�Æ) = �
Æ
;

�Æ lim
T!+1

e�sT (�) = �Æ lim
T!+1

e�TS(�) = e�(�)�

Proof : See appendix A.1.

Assumption (A4):

(A4)

8" > 0; � > 0;9 e�s
T ("; �) ; e� s ("; �) such that 8T � e� s ("; �) :

� �Æ

�e�s
T ("; �) > "

�
< �;

� 9 N s
�;";� an open set containing � with :

Sup

�2N s
�;";�




e�sT (�)� e�sT (�)



q
� e�s

T ("; �) ;

for s = 1; : : : ; S and z
s
Æ�

Assumption (A4) expresses a stochastic equicontinuity property about e�sT (�).
Proposition 2.3 : Under assumptions (A1) � (A4), we have:

�Æ lim
T!+1

Sup
�2�




e�sT (�)� e�(�)



q
= 0�

Proof : This result is obtained by simply applying Newey (1991) theorem 2.1. to e�sT (�).
Assumption (A5): e�(�) is one-to-one.
The class of indirect estimators is thus indexed by a choice of a positive6 weighting matrix 
 of size q�q.
For a given 
, the indirect inference estimator is de�ned by:

b�TS(
) = Argmin
�2�

hb�T � e�TS(�)i0
 h b�T � e�TS(�)i � (2.6)

Under assumptions (A1) � (A5), b�TS(
) is a consistent estimator of �Æ. The same kind of proof as

sketched for proposition 2:2 can be developed. We make in addition the following assumptions:

(A6)
p
T
@QT

@�

�
y
T
; xT ; �

Æ
�
;

6We will refer in all the paper to a positive matrix A of size q� q as a symmetric matrix such that Sp (A) 2 (IR
�

+)
q
. This,

of course, implies that A is non singular. A is referred to as a non negative matrix if Sp (A) 2 (IR+)
q
.
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is asymptotically normally distributed with mean zero and with an asymptotic covariance matrix IÆ of

full rank q.

(A7) JÆ = �Æ lim
T!+1

@
2
QT

@�@�
0

�
y
T
; xT ; �

Æ
�
is of full rank q:

(A8) lim
T!+1

Cov
Æ

�p
T
@QT

@�

�eys
T
(�Æ; zsÆ); xT ; �

Æ
�
;

p
T
@QT

@�

�ey`
T
(�Æ; z`Æ); xT ; �

Æ
��

= KÆ;

independent of the initial values zsÆ and z
`
Æ, for s 6= `:

(A9)

�Æ lim
T!+1

@ e�sT
@�

0 (�
Æ) =

@ e�
@�

0 (�
Æ);

@ e�
@�

0 (�
Æ) is of full column rank p�

As usual, the indirect inference estimator b�TS(
) is computed while replacing 
 by a consistent estimatorb
T of 
 but the asymptotic normal probability distribution of b�TS(
) will not depend on the choice of

this estimator. In order to minimize the asymptotic covariance matrix of b�TS(
), an optimal choice of 


as characterized by Gouri�eroux, Monfort and Renault (1993) and Gouri�eroux and Monfort (1995b) is:


� = JÆ�Æ
�1
JÆ; (2.7)

where:

JÆ = �Æ lim
T!+1

@
2
QT

@�@�
0

�
y
T
; xT ; �

Æ
�
;

and:

�Æ = V ar
Æ as

�p
T
@QT

@�

�
y
T
; xT ; �

Æ
�
�E

Æ

�p
T
@QT

@�

�
y
T
; xT ; �

Æ
�
=xT

��
= IÆ �KÆ�

(2.8)

The corresponding asymptotic distribution of the eÆcient II estimator b�TS(JÆ�Æ�1JÆ) = b��TS is then:

p
T

�b��TS � �
Æ
�

D������!
T!+1

N (O;WS) ;

WS =

�
1 +

1

S

�"
@ e� 0
@�

(�Æ)JÆ�Æ
�1
JÆ
@ e�
@�

0 (�
Æ)

#�1
�

(2.9)
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3 Generalized Indirect Inference

3.1 Indirect Inference and matching moments

The �rst point we want to stress here is that, in spite of Gallant and Tauchen (1996) paper title, a

new theory is needed when one is interested in an instrumental criterion which matches general moment

conditions:

Assumption (A10):

E
Æ
[g(wt; �

Æ)] = 0; (3.1)

where wt = (yt; yt�1; xt�1; : : : ; yt�K ; xt�K) (for a �xed number of K lags) and �
Æ is the true unknown

value of a vector � 2 Æ
B a compact subset of IRq of instrumental parameters. To the best of our knowledge,

the only case considered until now in the literature is the just-identi�ed and separable one where the

dimension of g (the number of moment conditions) is exactly equal to q and the instrumental model

QT

�
y
T
; xT ; �

�
corresponds to:

QT

�
y
T
; xT ; �

�
=

1

2

"
1

T

TX
t=1

g(wt)� �
#0 "

1

T

TX
t=1

g(wt)� �

#
7�

Indeed, the original papers by Gouri�eroux, Monfort and Renault (1993) and Gallant and Tauchen (1996)

were only interested in M-estimation of the instrumental model in such a way that, �rst order conditions

could be interpreted as just-identifying moment conditions. But we want to argue that:

� On the one hand, it turns out that in many circumstances, one wants to use an instrumental model

(3:1) which is de�ned by overidentifying moment restrictions (dim(g) = r > q) (See subsection 3:2).

� On the other hand, the classical Hansen's (1982) theory of eÆcient overidenti�ed GMM does no longer

apply when one is interested in indirect eÆcient estimation of �Æ and not in direct eÆcient estimation of

�
Æ. In light of this, we will argue that this result does di�er from the ones obtained by Kodde, Palm and

Pfann (1990) (See section 4: Simulated Asymptotic Least Squares, for more details).

With respect to these two arguments, we will develop in subsection 3:3 a general asymptotic theory for

this setting, which provides answers to the two following related issues:

� First, what is the optimal weighting matrix � when one considers as an instrumental criterion for

indirect inference:

QT

�
y
T
; xT ; �

�
=

1

2

"
1

T

TX
t=1

g(wt; �)

#0
�

"
1

T

TX
t=1

g(wt; �)

#
;
8 (3.2)

that is an overidentifying GMM type criterion.

Of course the \optimality" of the weighting matrix refers to the asymptotic covariance matrix of the

deduced indirect estimator of �Æ. Moreover, it is clear that as usual, this covariance matrix will not be

modi�ed if � is replaced by a consistent estimator b�T .

� Second, how can we interpret this optimal choice as a selection of a just-identifying set of moment

conditions? However we will argue in subsection 3:4 that this does not prevent us from being interested

in a set of overidentifying instrumental moment conditions.

7The case of just-identifying moment conditions, whether separable or not, is extensively studied in subsection 3:4.

8For sake of computational convenience, we have rescaled the instrumental GMM criterion by the factor
1

2
.
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Finally, it is worth noticing that the theory of such \a Generalized Indirect Inference" (GII hereafter)

goes further in generalizing the Simulated Method of Moments (SMM) as proposed by McFadden (1989)

for i.i.d. environments, and by Ingram and Lee (1991) and DuÆe and Singleton (1993) for a time series

environment.

While in Gouri�eroux, Monfort and Renault (1993), it is shown that SMM with \separable" moment

restrictions:

g(wt; �) = h(wt)� �; (3.3)

is tantamount to Indirect Inference with an instrumental criterion:

QT

�
y
T
; xT ; �

�
=

1

T

TX
t=1




h(wt)� �




2
q
; (3.4)

where



�




q
is any norm on IRq, GII opens the door to simulated moment restrictions which are overiden-

ti�ed with respect to �.

Indeed since the moment restrictions de�ned by (3:3) are just-identifying and separable, they can be

interpreted as �rst order conditions corresponding to the M-estimator de�ned by the criterion (3:4). But,

the general case of overidentifying instrumental moment restrictions, is not nested within the standard

Indirect Inference, based on an instrumental M-estimator. However as Gouri�eroux, Monfort and Renault

(1993) we do not include within the GII framework the Simulated Method of Moments as developed in

the semiparametric setting by Pakes and Pollard (1989) (See however section 4: Simulated Asymptotic

Least Squares).

3.2 Examples

We propose in this subsection to motivate the GII approach through two examples based on Stochastic

Volatility (SV hereafter) models estimation and on Asset Pricing models estimation introducing overi-

dentifying moment restrictions as de�ned by (3:1).

3.2.1 Stochastic volatility models

Empirical �nancial studies have found strong evidence that the stock market returns present strong con-

ditional heteroskedasticity, asymmetry, leptokurtosis patterns at the high frequency data level. In order

to provide appropriate valuation of �nancial equities, it is essential to answer the question about the

modelling of such patterns.

In this respect, the SV model has been introduced by Clark (1973), Tauchen and Pitts (1983), Taylor

(1986-1994) among many other authors. These models appear as an alternative speci�cation to the Au-

toregressive Conditionally Heteroskedastic (ARCH) model as introduced by Engle (1982) and Bollerslev

(1986).

The SV models turn out to be more appealing for many reasons: broad general features of the data can

be reproduced (persistent volatility, volatility clustering e�ect, leverage e�ect, asymmetries and leptokur-

tosis), less parameters have to be estimated, and SV models (3:5) are closed under temporal aggregation.
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We focus in this subsection on SV models fyt; t 2 ZZg de�ned by Meddahi and Renault (1997) as follows:8><>:
yt = �t�1"t;

�
2
t = ! + 
�

2
t�1 + �t;

9 (3.5)

where we take for stationarity and positivity considerations on the volatility process the following as-

sumptions: 0 < 
 < 1 and 0 < !. The range of yt is Y � IR.

In order to complete the previous semiparametric speci�cation (3:5), the innovation processes f"t; t 2 ZZg
and f�t; t 2 ZZg are assumed to share the following properties:

E
Æ
["t= It�1] = 0; E

Æ

�
"
2
t = It�1

�
= 1; E

Æ

�
"
3
t = It�1

�
= �

Æ
3;

E
Æ

�
"
4
t = It�1

�
= �

Æ
4; E

Æ
[�t= It�1] = 0; E

Æ

�
�
2
t = It�1

�
= �

Æ2
;

E
Æ
["t�t= It�1] = �

Æ
�
Æ
; E

Æ

�
"
2
t �t= It�1

�
= 0;

10 (3.6)

where the information set It = � ("t; "� ; �� ; � < t) is the �-�eld generated by ("t; "� ; �� ; � < t).

Moreover, the empirical �nancial studies have laid the emphasis on the important asymmetric behavior of

the stock market returns. Within the framework delineated by (3:5)�(3:6), this stylized fact is explained

by the skewness of the standardized innovation process f"t; t 2 ZZg (�Æ3 6= 0) and also by the so-called

leverage e�ect (�Æ < 0) (see Dridi and Renault (2000) for more details).

In order to estimate the previous SV model, one can use the following set of moment restrictions:

E
Æ

�
y
2
t

�
=

!
Æ

1� 
Æ
;

E
Æ

�
y
2
t y

2
t�k

�
=

!
Æ2

(1� 
Æ)2
+ 


Æk �
Æ2

1� 
Æ
2
; k 2 IN�;

E
Æ

�
y
4
t

�
= �

Æ
4

 
!
Æ2

(1� 
Æ)2
+

�
Æ2

1� 
Æ
2

!
;

E
Æ

�
y
2
t � !Æ � 


Æ
y
2
t�1= It�2

�
= 0�

(3.7)

However, this set of moment restrictions enables only the identi�cation and thus the estimation of the true

unknown value
�
!
Æ
; 

Æ2
; �
Æ2
; �
Æ
4

�0
of the parameters of interest ; and as already pointed out by Drost and

Meddahi (1998), within the semiparametric SV speci�cation (3:5)�(3:6) and without further assumptions
on the p.d.f. of the innovation process f�t; t 2 ZZg one cannot identify the asymmetry parameters (�; �3).
In this context, Dridi and Renault (2000) suggest, �rst, to choose a speci�cation for the p.d.f. of the

joint process f("t; �t) ; t 2 ZZg and second to perform an indirect inference on the parameters of interest�
!
Æ
; 

Æ2
; �
Æ2
; �
Æ
4; �

Æ
3; �

Æ
; �
Æ0

2

�0
, where �Æ2 correspond to the additional parameters introduced in the fully

9For sake of notational simplicity, we have written �
2
t rather than log �2t . However all the results extend if one considers

log �2t (to ensure the positivity of the conditional variance process).
10The symmetry assumption E

Æ

�
"
2
t�t= It�1

�
= 0 is made for sake of computational simplicity and can easily be ful�lled by

setting:

�t = ��"t + �t;

where the process f�t; t 2 ZZg is such that E
Æ

[�t= It�1] = 0 and f�t; t 2 ZZg ?? f"t; t 2 ZZg .
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parametric SV model (deduced from the semiparametric SV model and the additional assumptions)11.

We have, thus to specify an instrumental model based for example on an ARCH SNP expansion or

alternatively on an ARCH(q1) speci�cation introducing instrumental parameters �1. But here we also

have at our disposal a set of moment restrictions as de�ned by (3:1):

E
Æ
(g(wt; �

Æ)) = 0;

g (�; �) = (g1
0 (�; �) ; g20 (�; �))0 ;

� =
�
�1
0
; �2

0
�0
; �2 = (�21; : : : ; �24)

0
;

g2 (wt; �2) =

2666666666666666666666666666666664

y
2
t � �21

y
2
t y

2
t�1 � �

2
21 � �23�22

�
�
�

y
2
t y

2
t�k � �

2
21 � �

k
23�22

�
�
�

y
2
t y

2
t�K � �

2
21 � �

K
23�22

y
4
t � �24

�
�
2
21 + �22

�
�
y
2
t � �21 (1� �23)� �23y

2
t�1

�
 Zt�2

3777777777777777777777777777777775

;

(3.8)

where K is a given integer and Zt�2 2 It�2 corresponds to any set of instrumental variables belonging to
It�2 and where we have also de�ned the one-to-one mapping:

IR�+�]0; 1[�IR�
2

+ �! IR�
2

+�]0; 1[�IR�+;�
!; 
; �4; �

2
�0 �! �2 = (�21; : : : ; �24; )

0
;

�21 =
!

1� 

;

�22 =
�
2

1� 
2
;

�23 = 
;

�24 = �4�

(3.9)

11Note that Dridi and Renault (2000) have focused on robust indirect estimation of the parameters of interest�
!
Æ
; 

Æ
2

; �
Æ
2

; �
Æ

4; �
Æ

3; �
Æ

�
0

in the presence of misspeci�cation both in the asymmetry parameters and in the additional as-

sumptions on the joint process f("t; �t) ; t 2 ZZg: �2 (say). Here we focus on more eÆcient indirect estimation in the context

of correct speci�cation.
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3.2.2 Asset pricing models

There is nowadays a large literature focusing on equilibrium theory based asset pricing models. This

dates back to the �rst work by Lucas (1978). The basic ingredients for all the various asset pricing

models start with an agent who is a utility maximizer under her budget constraint and across time. The

equilibrium path corresponding to such an economy leads to �rst order conditions or Euler equations,

which can generally be expressed in terms of moment conditions:

E
Æ
(g2(wt; �

Æ
2)) = 0; (3.10)

where �Æ2 corresponds in general to taste or preference parameters12. The moment restrictions (3:10)

provides also the pricing of any �nancial equity.

In the context of the estimation and implementation of a nonlinear equilibrium model of exchange rates

and interest rates at the weekly frequency, Bansal, Gallant, Hussey and Tauchen (1995) suggests making

a \complete speci�cation of the model, including the law of motion of the latent driving processes,

so that simulated realizations can be generated given candidate parameter settings. The criterion of �t

involves comparing the time series properties of simulated versus observed realizations on exchange rates

and interest rates".

The instrumental criterion is built upon a seminonparametric score generator while Marcet's parametrized

expectations procedure is used for imposing the Euler constraints. They advocate this strategy rather

than focusing directly on the Euler equations as done in the usual GMM settings, because reliable data

on consumption, endowments and the money supply are not available at the weekly frequency.

Basically, we have on the one hand a fully parametric speci�ed structural model from which it is possible

to simulate path of the endogenous variables and on the other hand an instrumental model g introducing

instrumental parameters �1 through the sub-instrumental criterion g1 which corresponds here to the SNP

score generator and to which we have added the restrictions g2 introducing in turns additional parameters

�2 as delineated by (3:10). So that again we can write:

E
Æ
(g(wt; �

Æ)) = 0;

g(�; �) = (g1(�; �)0; g2(�; �)0)0 �
(3.11)

3.3 Asymptotic theory for Generalized Indirect Inference

We have to reconsider the asymptotic theory sketched in section 2 in the case where the instrumental

criterion is of a GMM-type:

QT

�
y
T
; xT ; �

�
=

1

2

"
1

T

TX
t=1

g(wt; �)

#0 b�T

"
1

T

TX
t=1

g(wt; �)

#
; (3.12)

where b�T is a positive r�r (r > q) matrix converging in �Æ-probability to a positive matrix �: �Æ lim
T!+1

b�T =

�.

We maintain assumptions (A1)� (A9) and naturally impose here that:

q(�; �) = E
�
[g( ewt(�); �)]

0 �E
�
[g( ewt(�); �)] �

12See Kocherlakota (1996) for an extensive review of the state of the art.
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Under assumptions (A1)� (A10) we have:

�
1

2 E
Æ
[g(wt; �)] = 0 =) � = �

Æ and �
1

2 E
Æ

�
@g

@�
0 (wt; �

Æ)

�
is of full column rank q.

We have now to consider matrices �Æ(�) and JÆ(�) according to the general de�nitions (2:8):

�Æ(�) = V ar
Æ as

�p
T
@QT

@�

�
y
T
; xT ; �

Æ
�
�E

Æ

�p
T
@QT

@�

�
y
T
; xT ; �

Æ
�
=xT

��
;

and:

JÆ(�) = �Æ lim
T!+1

@
2
QT

@�@�
0

�
y
T
; xT ; �

Æ
�
�

But, it is important to notice that the matrices �Æ(�), JÆ(�) and the binding function e�(�; �) generally
depend on the weighting matrix � chosen for the instrumental GMM model (3:12). Of course, under

correct speci�cation, the true value �Æ will, not depend on � but the derivatives of the binding function

which appear in the asymptotic covariance do depend on �. Without expliciting this dependence at this

stage, we have under assumptions (A1) � (A10) and (A11):

Assumption (A11):

(A11) �Æ lim
T!+1

1

T

TX
t=1

@g
0

@�
(wt; �

Æ) = E
Æ

"
@g

0

@�
(wt; �

Æ)

#
;

that:

�Æ(�) = E
Æ

"
@g

0

@�
(wt; �

Æ)

#
�V ar

Æ as

"
1p
T

TX
t=1

g
�
t (wt; �

Æ)

#
�E
Æ

�
@g

@�
0 (wt; �

Æ)

�
; (3.13)

where:

g
�
t (wt; �

Æ) = g(wt; �
Æ)�E

Æ
[g(wt; �

Æ)=xT ];

and:

JÆ(�) = E
Æ

"
@g

0

@�
(wt; �

Æ)

#
�E
Æ

�
@g

@�
0 (wt; �

Æ)

�
� (3.14)

The corresponding asymptotic covariance matrix of the eÆcient II estimator b��TS(�) is then:
WS(�) =

�
1 +

1

S

�"
@ e�0
@�

(�Æ;�)JÆ(�)�Æ(�)
�1
JÆ(�)

@ e�
@�

0 (�
Æ
;�)

#�1
� (3.15)

As already noticed, the accuracy of b��TS(�) depends through �Æ(�), JÆ(�) and
@ e�
@�

0 (�
Æ
;�) on the initial

choice � of the weighting matrix in the instrumental moment conditions (3:12). We call GII estimator

any II eÆcient estimator b��TS(��) associated with a weighting matrix �� such that, for any �, WS(�)�
WS(�

�) is a non negative matrix. The main contribution of this subsection is to prove the existence of

such optimal weighting matrices �� and to characterize them. For such a characterization we have to

explicit the dependence of
@ e�
@�

0 (�
Æ
;�) on the choice of �. Under assumptions (A1) � (A3), the binding

function is characterized by: e�(�;�) = �Æ lim
T!+1

e�TS(�;�);
e�(�;�) = Argmin

�2B
z(�; �)0�z(�; �);

z(�; �) = E
�
[g( ewt(�); �)] ;

(3.16)
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where the notation z(�; �) = E
�
[g( ewt(�); �)] means that the value of the structural parameters governing

ewt(�) is �. Under assumption (A3), e�(�;�) is de�ned as the unique solution to the �rst order conditions:
@z

0

@�

�
�; e�(�;�)��z ��; e�(�;�)� = 0 � 13 (3.17)

By di�erentiating (3:17) with respect to � and taking into account that:

z(�Æ; �Æ) = 0;

we get:

@z
0

@�
(�Æ; �Æ)�

"
@z

@�
0 (�

Æ
; �
Æ) +

@z

@�
0 (�

Æ
; �
Æ)
@ e�
@�

0 (�
Æ
;�)

#
= 0�

We have then proved14:

Lemma 3.1 : Under assumptions (A1)� (A5), (A7), and (A9) � (A11), we have:

@ e�
@�

0 (�
Æ
;�) = �JÆ(�)�1

@z
0

@�
(�Æ; �Æ)�

@z

@�
0 (�

Æ
; �
Æ)�

By replacing the result of lemma 3:1 into the general expression (3:15) of WS(�), we get the asymptotic

covariance matrix of b��TS(�) as:
WS(�) =

�
1 +

1

S

�"
@z

0

@�
(�Æ; �Æ)�

@z

@�
0 (�

Æ
; �
Æ)�Æ(�)

�1 @z
0

@�
(�Æ; �Æ)�

@z

@�
0 (�

Æ
; �
Æ)

#�1
; (3.18)

The key point is then to notice that WS(�) can be written:

WS(�) =

�
1 +

1

S

�"
@z

0

@�
(�Æ; �Æ)V �

1

2X(�)
�
X(�)0X(�)

��1
X(�)0V �

1

2
@z

@�
0 (�

Æ
; �
Æ)

#�1
; (3.19)

where V = V ar
Æ as

"
1p
T

TX
t=1

g
�
t (wt; �

Æ)

#
and X(�) is a square root of �Æ(�) : (�Æ(�) = X(�)0X(�)):

X(�) = V
1

2�
@z

@�
0 (�

Æ
; �
Æ)�

Therefore for any �, WS(�)�W
�
S is a non negative matrix where:

W
�
S =

�
1 +

1

S

�"
@z

0

@�
(�Æ; �Æ)V �1

@z

@�
0 (�

Æ
; �
Æ)

#�1
� (3.20)

Moreover, the lower bound W �
S will be reached if and only if the weighting matrix � (and thus X itself)

is chosen so that the columns of V �
1

2

@z

@�
0 (�

Æ
; �
Æ) belong to the vectorial space ImX(�) spanned by the

columns of X(�).

13Note that it is not assumed or required that z

�
�;
e
�(�;�)

�
= 0.

14Or equivalently by applying the implicit function theorem.

15



Proof : �
W

��1

S �WS(�)
�1
��

1 +
1

S

�
=
@z

0

@�
(�Æ; �Æ)V �1

@z

@�
0 (�

Æ
; �
Æ)�

@z
0

@�
(�Æ; �Æ)V �

1

2X(�)(X(�)0X(�))�1X(�)0V �
1

2
@z

@�
0 (�

Æ
; �
Æ);

=
@z

0

@�
(�Æ; �Æ)V �

1

2

h
Ir �X(�)(X(�)0X(�))�1X(�)0

i
V
� 1

2
@z

@�
0 (�

Æ
; �
Æ) >> 0;

W
�
S �WS(�) = 0;

() @z
0

@�
(�Æ; �Æ)V �

1

2

h
Ir �X(�)(X(�)0X(�))�1X(�)0

i
V
� 1

2
@z

@�
0 (�

Æ
; �
Æ) = 0;

() 8x 2 IRp
;




hIr �X(�)(X(�)0X(�))�1X(�)0
i
V
� 1

2
@z

@�
0 (�

Æ
; �
Æ)x



2
2
= 0;

() 8x 2 IRp
;

h
Ir �X(�)(X(�)0X(�))�1X(�)0

i
V
� 1

2
@z

@�
0 (�

Æ
; �
Æ)x = 0;

()
h
Ir �X(�)(X(�)0X(�))�1X(�)0

i
V
� 1

2
@z

@�
0 (�

Æ
; �
Æ) = 0;

() V
� 1

2
@z

@�
0 (�

Æ
; �
Æ) 2 ImX(�)�
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With a slight abuse of notations, we shall write this condition as:

V
�1 @z

@�
0 (�

Æ
; �
Æ) 2 Im�

@z

@�
0 (�

Æ
; �
Æ)� (3.21)

Two main conclusions from (3:21) are worth noticing:

� First, as already announced, there is no reason why the optimal choice of � should be in any case(
V ar
Æ as

"
1p
T

TX
t=1

g(wt; �
Æ)

#)�1
(which in turns coincides with V �1 in the case without exogenous vari-

ables).

In other words, the eÆcient GMM estimator of the auxiliary parameters � does not provide

in general an optimal way to perform indirect inference about �.

� Such an optimal indirect inference, that we have called GII, corresponds to a choice � = �� solution

to (3:21). We are now able to prove the existence of such a solution and in turns of a GII estimator.

Indeed:

* On the one hand, the columns of V �1
@z

@�
0 (�

Æ
; �
Æ) span a subspace Ep of IR

r of dimension smaller than

or equal to p.

* On the other hand, the columns of
@z

@�
0 (�

Æ
; �
Æ) span a subspace Fq of IR

r of dimension equal to q � p.

Therefore, there exists a (generally in�nite) set of one-to-one linear operators on IRr which transform Ep

in a subset of Fq. Any matrix � representing the inverse of such an operator is a convenient

choice for GII. If we limit ourselves to regular matrices �, one way to represent the set of convenient

choices of � is the set of restrictions:

M��1V �1
@z

@�
0 (�

Æ
; �
Æ) = 0; (3.22)

15We use the symbol >> in the following sense. Let A and B be two square matrices of same size, A >> B () A�B

is a non negative matrix. >> corresponds to the partial order over the symmetric matrices.
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where M = Ir �
@z

@�
0 (�

Æ
; �
Æ)

"
@z

0

@�
(�Æ; �Æ)

@z

@�
0 (�

Æ
; �
Æ)

#�1
@z

0

@�
(�Æ; �Æ) is the matrix of the orthogonal pro-

jection on

�
@z

@�
0 (�

Æ
; �
Æ)

�?
. M is of rank (r � q), which shows that (3:22) de�nes (r � q)p independent

linear restrictions on the coeÆcients of ��1. We have then proved the main result of this section:

Theorem 3.1 : Under assumptions (A1) � (A11), a GII estimator b��TS(��) is obtained for any choice

of a positive matrix �� of size r � r solution to:

M��1V �1
@z

@�
0 (�

Æ
; �
Æ) = 0;

z(�; �) = E
�
[g( ewt(�); �)] ;

V = V ar
Æ as

"
1p
T

TX
t=1

g
�
t (wt; �

Æ)

#
;

and M is the matrix of the orthogonal projection on

�
ImE

Æ

@g

@�
0 (wt; �

Æ)

�?
.

The asymptotic covariance matrix of any GII estimator is:

WS(�
�) =

�
1 +

1

S

�"
@z

0

@�
(�Æ; �Æ)V �1

@z

@�
0 (�

Æ
; �
Æ)

#�1
�

3.4 Generalized Indirect Inference and just identifying instrumental model

The main goal of this subsection is to lay out the link between the previous GII theory and the actual

moments used for the so-called \matching". More precisely, we want to answer the question: To what

extent does the GII method \optimally" use the implicit constraint E
Æ
(g(wt; �

Æ)) = 0 or equivalently

z(�Æ; �Æ) = 0 on the structural parameters �Æ?

We stress in the sequel that the GII theory can be reinterpreted in terms of just-identifying calibrated

moments or in other words as an indirect estimation of the true unknown value of the structural pa-

rameters �Æ through a just-identifying instrumental moment type criterion. However, even though this

reinterpretation of the GII approach in terms of just-identifying instrumental moment type criterion is

appealing for understanding which actual moments are matched, how potential eÆciency gains concern-

ing the indirect estimator of the structural parameters �Æ are allowed through a larger explained variance

of the true unknown conditional score by the regression on g(wt; �
Æ), we will argue in this subsection

that it is in practice infeasible since one cannot precisely identify which subset of moments provides

(just)identi�cation. So that one is, in general, led to use overidentifying restrictions on the instrumental

parameters �Æ. In this respect, the \just-identi�cation trick" is mentioned here just for sake of interpre-

tation and understanding of the GII approach.

We focus here on an overidentifying moment type instrumental criterion (3:1) and have thus at our

disposal r moment conditions de�ning the instrumental parameters �Æ:

E
Æ
[g(wt; �

Æ)] = 0;

dim �
Æ = q � r�

(3.23)

17



We assume that it is possible to disentangle the set of moment restrictions g(�; �) into a subset g1(�; �) (say)
of just-identifying moment restrictions from those providing the overidenti�cation of the instrumental

criterion (3:23): g2(�; �) (say), and we write:

g (wt; �) =

"
g1 (wt; �)

g2 (wt; �)

#
;

dim g1 (�; �) = q; dim g2 (�; �) = r � q;

E
Æ
[g1 (wt; �)] = 0 =) � = �

Æ�

(3.24)

We already know that:

� In order to perform a GII of the structural parameters �Æ through an overidentifying moment type

criterion (3:23), one has to choose a weighting matrix �� according to theorem 3:1. In this case, the

optimal asymptotic covariance matrix of the optimal GII estimator b��TS is:

V ar
Æ as

hp
T

�b��TS � �
Æ
�i

=

�
1 +

1

S

�"
@z

0

@�
(�Æ; �Æ)V �1

@z

@�
0 (�

Æ
; �
Æ)

#�1
;

z(�; �) = E
�
[g( ewt(�); �)] ;

V = V ar
Æ as

"
1p
T

TX
t=1

g
�
t (wt; �

Æ)

#
;

g
�
t (wt; �

Æ) = g(wt; �
Æ)�E

Æ
[g(wt; �

Æ)=xT ] �

(3.25)

� When the instrumental moment type criterion is just-identi�ed for the parameters �, that is r = q,

any weighting positive matrix � is optimal since the estimation of the instrumental parameters, either

performed under the observed paths or performed under the simulated ones, simply corresponds to solving

the following system of q nonlinear equations in the q unknowns �:

1

T

TX
t=1

g ( ewt(�); �) = 0 =) � = e�T (�)� (3.26)

In this case, we have for any choice of a positive weighting matrix � (for instance � = Iq) that the

asymptotic covariance matrix of the GII estimator b�TS(��) = b��TS is:

V ar
Æ as

hp
T

�b��TS � �
Æ
�i

=

�
1 +

1

S

�"
@z

0

@�
(�Æ; �Æ)V �1

@z

@�
0 (�

Æ
; �
Æ)

#�1
;

z(�; �) = E
�
[g( ewt(�); �)] ;

(3.27)

and is thus minimal.

In light of the two previous remarks, we propose to replace the overidentifying instrumental model (3:23)
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by the following just-identifying one introducing a new parametrization � = (�01; �
0
2)
0
de�ned as follows:

� � = (�01; �
0
2)
0 2 B �A2 where A2 � IRr�q

;

� Q�T
�
y
T
; xT ; �

�
=

1

2

"
1

T

TX
t=1

h(wt; �)

#0 "
1

T

TX
t=1

h(wt; �)

#
;

� h (wt; �) =

"
h1 (wt; �1)

h2 (wt; �)

#
with

(
h1 (wt; �1) = g1 (wt; �1) ;

h2 (wt; �) = g2 (wt; �1)� �2�

(3.28)

Proposition 3.1 : Under assumptions (A1) � (A4) and (A10), the instrumental criterion (3:28):

Q
�
T

�
y
T
; xT ; �

�
is just-identi�ed for the instrumental parameters � and associated with the true unknown

value �Æ =
�
�
Æ0
; 00
�0
.

Proof : Since dim � = dim h = r, the instrumental model is at best just-identifying. We just have

then to prove that the instrumental parameters � are actually identi�ed.

E
Æ
[h(wt; �)] = 0;

=)

8>><>>:
E
Æ
[h1(wt; �1)] = 0;

E
Æ
[h2(wt; �)] = 0;

=)

8>><>>:
E
Æ
[g1(wt; �1)] = 0;

E
Æ
[g2(wt; �1)]� �2 = 0;

=)

8><>:
�1 = �

Æ
;

�2 = E
Æ
[g2(wt; �

Æ)] = 0;

since g1 (wt; �) identifies �Æ by assumption (3:24) and the moment

conditions associated with g2 (�; �) are null at the true value �Æ�

=) �
Æ =

�
�
Æ0
1 ; �

Æ0
2

�0
=
�
�
Æ0
; 00
�0 �
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We de�ne the indirect estimator b�hTS performed through the modi�ed instrumental criterion (3:28),

Q
�
T

�
y
T
; xT ; �

�
: b�hTS = Argmin

�2�
[e�TS(�)� b�T ]0 
�h [e�TS(�)� b�T ] ;

b�T = Argmin
�2B�A2

Q
�
T

�
y
T
; xT ; �

�
;

e�sT (�) = Argmin
�2B�A2

Q
�
T

�eys
T
(�; zsÆ); xT ; �

�
;

e�TS(�) = 1

S

SX
s=1

e�sT (�);

�h = J

h�1

Æ �Æ
�1
J
h�1

Æ ;

J
h
Æ ; �Æ are deduced from (3:13) � (3:14).

(3.29)

In this context, we are now able to prove the main result of this subsection:

Proposition 3.2 : Under assumptions (A1) � (A11), the GII estimator b�hTS performed through the in-

strumental just-identifying moment criterion (3:28): Q�T

�
y
T
; xT ; �

�
has the same asymptotic covariance

matrix as the one produced by the optimal GII estimator b�gTS(��) performed through the instrumental

overidentifying moment criterion (3:12): QT

�
y
T
; xT ; �

�
. Thus we have:

V ar
Æ as

hp
T

�b�hTS � �
Æ
�i

=

�
1 +

1

S

�"
@z

0

@�
(�Æ; �Æ)V �1

@z

@�
0 (�

Æ
; �
Æ)

#�1
;

z(�; �) = E
�
[g( ewt(�); �)] ;

V = V ar
Æ as

"
1p
T

TX
t=1

g
�
t (wt; �

Æ)

#
;

g
�
t (wt; �

Æ) = g(wt; �
Æ)�E

Æ
[g(wt; �

Æ)=xT ] �

Proof : We �rst index all the previously de�ned quantities either by g or by h depending on whether

they are performed respectively through the instrumental model (3:23): QT

�
y
T
; xT ; �

�
or through the

modi�ed instrumental model (3:28): Q�T

�
y
T
; xT ; �

�
. We have then with obvious notations and according

to the previous results that:

V ar
Æ as

hp
T

�b�hTS � �
Æ
�i

=

�
1 +

1

S

�"
@z

h0

@�
(�Æ; �Æ)V h�1 @z

h

@�
0 (�

Æ
; �
Æ)

#�1
;

V ar
Æ as

hp
T

�b�gTS(��)� �
Æ
�i

=

�
1 +

1

S

�"
@z

g0

@�
(�Æ; �Æ)V g�1 @z

g

@�
0 (�

Æ
; �
Æ)

#�1
�

We just now have to show the suÆcient following conditions:

� V
g = V

h
;

�� @z
h

@�
0 (�

Æ
; �

Æ) =
@z

g

@�
0 (�

Æ
; �
Æ)�
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� V
h = V ar

Æ as

"
1p
T

TX
t=1

h
�
t (wt; �

Æ)

#
;

�
Æ =

�
�
Æ0
; 00
�0
;

h
�
t (wt; �

Æ) = ht(wt; �
Æ)�E

Æ
[ht(wt; �

Æ)=xT ] �

Since h(wt; �
Æ) =

"
h1(wt; �

Æ
1)

h2(wt; �
Æ)

#
=

"
g1(wt; �

Æ)

g2(wt; �
Æ)

#
, we have h(wt; �

Æ) = g(wt; �
Æ). Thus we have:

V
h = V

g.

�� We start with the de�nition of zh(�; �):

8�; � 2 �� (B �A2) ; z
h(�; �) = E

�
[h( ewt(�); �)] ;

=) 8�; � 2 �� (B �A2) ; z
h(�; �) = E

�

"
g1( ewt(�); �1)

g2( ewt(�); �1)� �2

#
;

=) 8�; � 2 �� (B �A2) ; z
h(�; �) = E

�

"
g1( ewt(�); �1)

g2( ewt(�); �1)

#
�
"

0

�2

#
;

=) 8�; � 2 �� (B �A2) ; z
h(�; �) = z

g(�; �1)� (00; �02)
0
;

=) 8�; � 2 �� (B �A2) ;
@z

h

@�
0 (�; �) =

@z
g

@�
0 (�; �1);

=) @z
h

@�
0 (�

Æ
; �

Æ) =
@z

g

@�
0 (�

Æ
; �

Æ
1) =

@z
g

@�
0 (�

Æ
; �
Æ)�

Note that, although the two indirect estimators b�hTS and b�gTS have the same asymptotic covariance matrix,
they do di�er in general.

In light of proposition 3:2 results, one may argue that, on the one hand it seems that the implicit

constraint z(�Æ; �Æ) = 0 on the structural parameters �Æ is not optimally used since the so-called \just-

identi�cation trick" leads to an indirect estimator b�hTS of minimum variance16. On the other hand, the

use of the modi�ed instrumental criterion Q�T

�
y
T
; xT ; �

�
would avoid computing the optimal weighting

matrix ��.

However we want to mitigate the two previous criticisms with three respects:

� First, the use of the modi�ed instrumental criterion Q�T

�
y
T
; xT ; �

�
means asymptotically that one is,

roughly speaking, minimizing the following distance criterion:

min
�2�




e�(�)� �
Æ



2


= min

�2�









e�1(�)� �

Æ
1

e�2(�)� �
Æ
2









2




;

�
Æ
1 = �

Æ
; e�1(�) = Argsol

�12B

�
E
�
[g1( ewt(�); �1)] = 0

�
; �

Æ
2 = 0; e�2(�) = E

�
[g2( ewt(�); e�1(�))] �

16Of course, this optimality refers to the given class of instrumental criterion deduced from E

Æ

[g(wt; �
Æ
)] = 0.
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() min
�2�









e�1(�)� �

Æ

E
�
[g2( ewt(�); e�1(�))]









2




; () min
�2�









e�1(�)� �

Æ

E
�
[g2( ewt(�); �

Æ)]









2




;

The last equivalence shed some new lights on the GII approach. Indeed the GII estimator seeks to

reproduce the dimensions along the instrumental parameters �Æ while simultaneously imposing the ad-

ditional implicit constraint E
�
[g2( ewt(�); �

Æ)] = 0.

In this respect, the GII approach can be regarded as a constrained estimation.

� Second, as already mentioned, in practice it is very unlikely that one is able to select a set of just-

identifying moment restrictions. The procedure entails then overidentifying the instrumental criterion in

order to ensure the identi�cation of the instrumental parameters �. In this context and according to our

results, one has to use the GII approach.

� Last but not least, we want to stress here that to the best of our knowledge, so far either in the II or

in the EMM framework, the so-called implicit constraint z(�Æ; �Æ) = 0 on the structural parameters � is

never introduced nor treated in the instrumental criterion. The only treatment that can be found in this

literature is the use of \quadrature-based" methods or numerical approximations for which one scarcely

knows the statistical properties as well as the numerical performance.

This is why one of the messages of this section is that one should use these additional implicit con-

straints introducing in turn additional parameters in the instrumental criterion in order to minimize the

asymptotic covariance matrix of the II estimator17. In order to illustrate this precise point, we show the

following results (proposition 3:3). We �rst introduce a set of moment restrictions de�ning the parameters

�
Æ
1 as follows:

E
Æ
[g1(wt; �

Æ
1)] = 0;

dim (�Æ1) = q1 � dim (g1) = r1�
(3.30)

This corresponds for instance to the case of SNP score generator (q1 = r1). Besides, we have at our

disposal additional moment restrictions, introducing additional parameters �2:

E
Æ
[g2(wt; �

Æ
1 ; �

Æ
2)] = 0;

dim (�Æ2) = q2; dim (g2) = r2�
(3.31)

We de�ne the merged subset of moments associated with g (�; �):

E
Æ
[g(wt; �

Æ)] = 0;

g(�; �) = (g1(�; �)0; g2(�; �)0)0 ; � = (�01; �
0
2)
0 �

(3.32)

With a slight abuse of notations and for sake of presentational convenience, we will refer in the sequel to

(3:30), (3:31) and (3:32) as the instrumental criteria.

Assumption (A12):

8>><>>:
� E

Æ
(g1(wt; �1)) = 0 =) �1 = �

Æ
1 ;

� E
Æ
(g(wt; �)) = 0 =) � = �

Æ�
17This should be done although when using quadrature-based methods.
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This identi�cation assumption of the GMM criterion is however stronger than the usual global one:

E
Æ
(g(wt; �)) = 0 =) � = �

Æ�

We have focused on such an assumption because it does correspond to the set-up of the problem we are

examining. Note also that assumption (A12) implies that r1 � q1 and r2 � q2.

We de�ne the GII estimators b�g1�TS and b�g�TS respectively performed through the instrumental criteria (3:30)
and (3:32). We are now able to prove the following results.

Proposition 3.3 : Under assumptions (A1)� (A12), the GII estimator b�g�TS is always of smaller asymp-

totic covariance matrix than the one obtained for the GII estimator b�g1�TS and we have:

V ar
Æ as

�p
T b�g�TS� =

(�
V ar
Æ as

�p
T b�g�1TS���1 + �1 + 1

S

��1 �
@z2

@�
0 (�

Æ
; �
Æ)� V21V11

�1 @z1

@�
0 (�

Æ
; �
Æ
1)

�0
�

�
V22 � V21V11

�1
V21

0
��1 �@z2

@�
0 (�

Æ
; �
Æ)� V21V11

�1@z1

@�
0 (�

Æ
; �
Æ
1)

���1
;

(3.33)

where:
z(�; �) = (z1

0
; z2

0)
0
(�; �) = E

�

�
g
0
1 ( ewt(�); �1) ; g

0
2 ( ewt(�); �1; �2)

�0
;

V = V ar
Æ as

"
1p
T

TX
t=1

g
�
t (wt; �

Æ)

#
;

g
�
t (wt; �

Æ) = g(wt; �
Æ)�E

Æ
[g(wt; �

Æ)=xT ] ;

V =

"
V11 V12

V21 V22

#
; dim Vij = ri � rj; i; j = 1; 2; Vij

0 = Vji; i; j = 1; 2�

(3.34)

Moreover the two asymptotic covariance matrices are equal if and only if:

@z2

@�
0 (�

Æ
; �
Æ) = V21V11

�1 @z1

@�
0 (�

Æ
; �
Æ
1) � (3.35)

Proof : See appendix A.2.

In other words, as soon as (3:35) is not ful�lled, one should perform a GII estimation b�g�TS on the criterion

(3:32), whether using quadrature-based methods for imposing the implicit constraint on the structural

parameters or not.
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4 Simulated Asymptotic Least Squares

The main goal of this section is to develop a theory referred to as the Simulated Asymptotic Least

Squares (SALS hereafter) corresponding both to a generalization and to a simulated version of the earlier

Asymptotic Least Squares as proposed by Gouri�eroux, Monfort and Trognon (1985).

We �rst lay out the links between the GII approach and the EMM methodology and show how this can

be interpreted in terms of Minimum Distance estimation using a set of particular \estimating equations".

This does correspond to the spirit of the ALS methodology and allows an interpretation of the GII ap-

proach. We then recall the main available results from the ALS procedure and extend it to the Simulated

Asymptotic Least Squares.

Both Indirect Inference and EÆcient Method of Moments as respectively proposed by Gouri�eroux, Mon-

fort and Renault (1993) and Gallant and Tauchen (1996) are nested within the SALS which can be

regarded as the natural generalization of the EMM. Moreover the SALS encompasses the SMM approach

as developed by McFadden (1989), Ingram and Lee (1991) and DuÆe and Singleton (1993), but also the

SMM as proposed by Pakes and Pollard (1989) in the semiparametric setting, the Simulated Pseudo Max-

imum Likelihood as developed by Laroque and Salani�e (1989) and the SNLS as introduced by La�ont,

Ossard and Vuong (1995) and the GII.

4.1 Generalized Indirect Inference and EÆcient Method of Moments

In this subsection we reinterpret the GII approach in terms of the EMM methodology and thus charac-

terize the exact \moment matching" which is performed through GII. We have at our disposal a set of a

priori overidentifying moment restrictions:

E
Æ
[g(wt; �

Æ)] = 0; (4.1)

and we associate to (4:1) the natural extremum estimator QT

�
y
T
; xT ; �

�
:

QT

�
y
T
; xT ; �

�
=

1

2

"
1

T

TX
t=1

g(wt; �)

#0 b�T

"
1

T

TX
t=1

g(wt; �)

#
;

with �Æ lim
T!+1

b�T = �;

and b�T = Argmin
�2B

QT

�
y
T
; xT ; �

�
�

(4.2)

The GII approach leads to de�ne the II estimator b��TS = b�TS(��) (see theorem 3:1):

V ar
Æ as

hp
T

�b��TS � �
Æ
�i

=

�
1 +

1

S

�"
@z

0

@�
(�Æ; �Æ)V �1

@z

@�
0 (�

Æ
; �
Æ)

#�1
;

z(�; �) = E
�
[g( ewt(�); �)] ;

V = V ar
Æ as

"
1p
T

TX
t=1

g
�
t (wt; �

Æ)

#
�

(4.3)
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A natural question is then: Can we build an equivalent indirect estimator in terms of the asymptotic

covariance matrix through an EMM-type estimator?

In order to do so, we introduce the score associated with the instrumental criterion (4:2):

@QT

@�

�
y
T
; xT ; �

�
=

"
1

T

TX
t=1

@g
0

@�
(wt; �)

# b�T

"
1

T

TX
t=1

g(wt; �)

#
; (4.4)

and we de�ne the EMM-type estimator
bb�TS (�;�):

bb�TS (�;�) = Argmin
�2�

"
1

S

TX
t=1

@QT

@�
0 ( ews

t (�);
b�T )
#
�18

"
1

S

TX
t=1

@QT

@�
( ews

t (�);
b�T )
#
; (4.5)

and where b�T is de�ned by (4:2).

Proposition 4.1 : Under assumptions (A1)�(A11), the GII estimator b�TS (��) and the EMM-type onebb�TS (�Æ;��) where �Æ = �Æ (�
�)�1 are asymptotically equivalent.

Proof : The proof is obtained by applying Gouri�eroux and Monfort (1995b) proposition 4.3 to the

extremum criterion (4:2).

Proposition 4:1 enables us to exactly characterize the moment matching. Indeed in light of this result,

the GII estimator corresponds asymptotically to a Minimum Distance estimator minimizing the following

asymptotic criterion:

min
�2�






@z0@�
(�; �Æ)��z(�; �Æ)







2

�

; (4.6)

or equivalently b�TS (��) should solve:

@z
0

@�

�b�TS(��); �Æ���z �b�TS(��); �Æ� = 0� (4.7)

If we introduce the function H��(�; �) as follows:

H
��(�; �) =

@z
0

@�
(�; �)��z(�; �); (4.8)

we can de�ne the estimating equations:

H
��(�; �Æ) = 0;

() @z
0

@�
(�; �Æ)��z(�; �Æ) = 0�

19 (4.9)

In other words, the exact matching corresponds to (4:9) rather than to (4:1). This is the reason why one

may argue that the GII estimator is not fully exploiting the constraint (4:1).20

However, the use of a Minimum Distance estimator b� deduced from estimating equations H��(�; �Æ) = 0

corresponds precisely to the estimation principle developed within the ALS theory. In this respect, the

main purpose of the following subsection is to recall the results available for the latter methodology and

to extend them to the simulation-based case.

18Note that the asymptotic properties of
bb
�TS (�;�) are not modi�ed if we replace � by a consistent estimator.

19Note that the estimating equations do depend on � and this explains why our results di�er from the ones obtained by

Kodde, Palm and Pfann (1990) in the common ALS literature.
20See next subsection for alternative procedures.

26



4.2 Simulated Asymptotic Least Squares

We �rst start with the ALS as proposed by Gouri�eroux, Monfort and Trognon (1985) and extend them

to the SALS approach.

4.2.1 Asymptotic Least Squares theory

We �rst consider T vectors y1; : : : ; yT whose size is n. These vectors can be seen as the �rst T terms of

an in�nite sequence fyt; t 2 ZZg whose probability distribution PÆ belongs to some given family P.
We assume that there exists a vector of parameters � (P ), called the auxiliary (or the instrumental)

parameters, de�ned for any P 2 P whose values belong to B � IRq a compact set, and for which a

consistent asymptotically normal estimator b�T is available; therefore we have:

Assumption (A13): p
T

�b�T � �
Æ
�

D������!
T!+1

N (0;
Æ) ; (4.10)

where �Æ = � (PÆ) is the true unknown value of �, and 
Æ is some symmetric positive matrix. Besides

we have at our disposal a set of r \estimating equations" also referred to as the null hypothesis HÆ:

Assumption (A14):

H (�Æ; �Æ) = 0;

�
Æ 2 Æ

� � IRp a compact subset; �Æ 2 Æ
B;

and we assume: H (�; �Æ) = 0 =) � = �
Æ
;

and H(�; �) is continuously di�erentiable on Æ
��

Æ
B �

(4.11)

� is referred to as the structural parameters or the parameters of interest. �Æ is the true unknown value

of these parameters of interest.

In this framework, one may consider two statistical problems:

� How to test the null hypothesis HÆ.

� How to estimate � under HÆ
21.

The problem of the estimation of � under HÆ has been treated by Gouri�eroux, Monfort and Trognon

(1985): b�T = Argmin
�2�

H

�
�; b�T�0 b�TH

�
�; b�T� ; (4.12)

where �Æ lim
T!+1

b�T = � is an r � r positive matrix22.

Under assumptions (A13) � (A15), it is shown that �Æ lim
T!+1

b�T = �
Æ, b�T is asymptotically normal and the

21In fact the third problem is the estimation of �Æ under HÆ.
22For sake of computational consistency we have decided to refer to the �Æ-probability without any loss of generality.

Moreover the assumption of de�niteness can be relaxed and in that case the identi�cation assumption is : �
1
2H (�; �Æ) =

0 =) � = �
Æ.
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optimal choice �� of � is:

�� =

"
@H

@�
0 (�

Æ
; �
Æ)
Æ

@H
0

@�
(�Æ; �Æ)

#�1
;

V ar
Æ as

hp
T

�b��T � �
Æ
�i

=

"
@H

0

@�
(�Æ; �Æ)��

@H

@�
0 (�

Æ
; �
Æ)

#�1
�

(4.13)

b��T = b�T (��) corresponds to the optimal ALS estimators and the regularity conditions that are required

are:

Assumptions (A15):

� @H
0

@�
(�Æ; �Æ) is of full rank p,23

� @H
0

@�
(�Æ; �Æ) is of rank r.

Note that since the sizes of
@H

0

@�
(�Æ; �Æ) and

@H
0

@�
(�Æ; �Æ) are respectively p � r and q � r, assump-

tion (A15) implies that p � r � q.

In order to test the null hypothesis HÆ, in Monfort and Rabemananjara (1990) it is shown that under

HÆ and assumptions (A13) � (A15) and additional regularity conditions the statistic �T :

�T = T min
�2�

H

�
�; b�T�0 b�TH

�
�; b�T� ; (4.14)

where �Æ lim
T!+1

b�T = �� is asymptotically distributed as a chi-square with (r � p) degrees of freedom and

the critical region associated with the asymptotic level � is de�ned by:

W� =
n
�T > �

2
1��(r � p)

o
� (4.15)

4.2.2 Simulated Asymptotic Least Squares

The main goal of this subsubsection is to extend the previous ALS principles to a simulation-based

inference referred to as the Simulated Asymptotic Least Squares (SALS). We want to stress here that the

ALS approach or more precisely the extended SALS one should enjoy some renewal especially in light of

the now increasing literature in macroeconometrics and more generally in econometrics often leading to

restrictions or \estimating equations" of the type (4:11) which are however intractable or for which it is

cumbersome to derive an analytical expression but it is still possible and easy to \approximate" them in

some sense through the use of simulations (including Marcet parametrized type expectations procedures)

or quadrature-based methods.

We �rst maintain assumptions (A13)� (A15)24 , however since in now most cases H (�; �) is not known in

a closed form (see subsection 3.2 for examples), we will assume that there exists a simulator eHTS (�; �)

such that:

23In the case where � is not de�nite, we assume that �
1
2
@H

@�
0
(�Æ; �Æ) is of column rank p.

24See however the forthcoming remark concerning assumption (A15).
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Assumption (A16):

(A16)

� 8�; � 2 �� B;



 eHTS (�; �)�H (�; �)





r

�Æ���������!
k�(T;S)k2

2
!+1

0;

� eHTS (�; �) is continuously di�erentiable (a.s.);

� 8" > 0; � > 0; 9 e�S
T ("; �) ; e�S ("; �) such that 8T � e�S ("; �) :

� �Æ

� e�S
T ("; �) > "

�
< �;

� 8�; � 2 �� B; 9 OS
�;�;";� an open set containing (�; �) with :

Sup

�;�2OS
�;�;";�




 eHTS

�
�; �

�
� eHTS (�; �)





r
� e�S

T ("; �) �

25

The subscript T refers to the T length data the econometrician has at her disposal and the subscript S

refers indi�erently to the number of replications in the case of simulations or to the number of grid points

used in the case of quadrature-based methods. � (�; �) is a non decreasing function in both arguments

on IR2
+. This notation allows us indeed to encompass the SNLS, Indirect Inference, EMM, GII, SMM

methods for which S is �xed and T goes to in�nity ; but also the SPML where both S and T goes

to in�nity at some proper rate. The only thing that really matters is the existence of a simulator as

de�ned by (A16) and which, as shown in proposition 4:2, converges uniformly with respect to �; � in

�Æ-probability to H (�; �).

Proposition 4.2 : Under assumptions (A16) and the compactness of � � B, the simulator eHTS (�; �)

converges uniformly with respect to �; � in �Æ-probability to H (�; �), that is:

Sup
�;�2��B




 eHTS (�; �)�H (�; �)




r

�Æ���������!
k�(T;S)k2

2
!+1

0�

Proof : The proof of proposition 4:2 is obtained by simply applying Newey (1991) theorem 2.1. to the

vectorial criterion eHTS (�; �).

For most of the examples26 given in this paper assumption (A16) can be replaced by the stronger ones

(A1) and (A17): there exists a function eHT

�
y
T
; xT ; �

�
such that for s = 1; : : : ; S:

25As already pointed out by Pakes and Pollard (1989), assumption (A16b) is restrictive especially when it has been reported

that for several simulators the assumption of continuity itself is not ful�lled. However the same kind of technics and weaker

assumptions on the simulator can be formulated so as to avoid such a drawback. What is then required is that the limit

H(�; �) is continuously di�erentiable. The extension of the SALS theory relaxing assumption (A16b) is being processed.
26See proposition 5:2 for examples corresponding strictly to assumption (A16).
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Assumption (A17):

(A17)

� 8�; � 2 �� B;



 eHT

�eys
T
(�; zsÆ); xT ; �

�
�H (�; �)





r

�Æ������!
T!+1

0;

� eHT

�eys
T
(�; zsÆ); xT ; �

�
is continuously di�erentiable (a.s.);

� 8" > 0; � > 0; 9 e�s
T ("; �) ; e� s ("; �) such that 8T � e� s ("; �) :

� �Æ

�e�s
T ("; �) > "

�
< �;

� 8�; � 2 �� B; 9 Os
�;�;";� an open set containing (�; �) with :

Sup

�;�2Os
�;�;";�




 eHT

�eys
T
(�; zsÆ); xT ; �

�
� eHT

�eys
T
(�; zsÆ); xT ; �

�



r
� e�s

T ("; �) �

In this case we will have:

8s = 1; : : : ; S; Sup
�;�2��B




 eHT

�eys
T
(�; zsÆ); xT ; �

�
�H (�; �)





r

�Æ������!
T!+1

0;

for S �xed and eys
T
(�; zsÆ) corresponds to a simulated path of the endogenous variables according to (A1)

conditionally on the observed path of the exogenous variables xT and zsÆ some initial conditions.

Note however that (A16) corresponds to the semiparametric setting whereas (A17) corresponds to the

fully parametric one. For sake of simplicity, we will focus on assumptions (A1) and (A17) rather than on

(A16), however the results extend straightforwardly. We de�ne the SALS estimator b�TS(�) as follows:
b�TS(�) = Argmin

�2�

"
1

S

SX
s=1

eHT

�eys
T
(�; zsÆ); xT ;

b�T�
#0 b�T

"
1

S

SX
s=1

eHT

�eys
T
(�; zsÆ); xT ;

b�T�
#
; (4.16)

where b�T is de�ned according to (4:10), �Æ lim
T!+1

b�T = � an r � r positive matrix.27

Note that the SALS estimator b�TS(�) does not in general collapse to a SMM one since H (�; �) can

di�er from a set of moment conditions for instance through the use of a general extremum instrumental

criterion in the Indirect Inference framework. We are now able to derive the consistency of the SALS

estimator.

Proposition 4.3 : Under assumptions (A1), (A13) � (A14) and (A17), the SALS estimator b�TS(�) is
consistent to �Æ when T goes to in�nity, that is: �Æ lim

T!+1

b�TS(�) = �
Æ.

Proof : See appendix A.3.

We assume in addition that:

Assumption (A18):

(A18)
p
T eHT

�
y
T
; xT ; �

Æ
�

D������!
T!+1

N (0; IÆ) ;

27Again, in the case where � is singular, we assume rather that �
1
2H (�; �Æ) = 0 =) � = �

Æ.
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where IÆ is of full rank r.

Assumption (A19):

(A19)

� �Æ lim
T!+1

@

@�

h eH 0
T

�ey
T
(�; zÆ); xT ; �

Æ
�i

�=�Æ
=
@H

0

@�
(�Æ; �Æ) ;

� �Æ lim
T!+1

@ eHT

0

@�

�
y
T
; xT ; �

Æ
�
=
@H

0

@�
(�Æ; �Æ) �

Assumption (A20):

(A20)

� lim
T!+1

Cov
Æ

np
T eHT

�eys
T
(�Æ; zsÆ); xT ; �

Æ
�
;

p
T eHT

�ey`
T
(�Æ; z`Æ); xT ; �

Æ
�o

= KÆ;

� lim
T!+1

Cov
Æ

�p
T eHT

�eys
T
(�Æ; zsÆ); xT ; �

Æ
�
;
@H

@�
0 (�

Æ
; �
Æ)
p
T

�b�T � �
Æ
��

= LÆ;

independent of the initial values zsÆ and z
`
Æ, for s 6= ` and eys

T
(�Æ; zsÆ) corresponds to a simulated path of

the endogenous variables conditionally on the observed path of the exogenous variables and for the initial

conditions zsÆ. Note that in the more general case LÆ 6= LÆ
0 and LÆ 6= 0 (see for instance the Indirect

Inference where LÆ = LÆ
0 6= 0).

We are now able to derive the asymptotic distribution of the SALS estimator b�TS(�).
Proposition 4.4 : Under assumptions (A1), (A13) � (A14) and (A17) � (A20), the SALS estimatorb�TS(�) is asymptotically normal and its asymptotic covariance matrix is given by:

p
T

�b�TS(�)� �
Æ
�

D������!
T!+1

N (0;WS(�)) ;

WS(�) =

"
@H

0

@�
(�Æ; �Æ) �

@H

@�
0 (�

Æ
; �
Æ)

#�1
@H

0

@�
(�Æ; �Æ)�e�Æ(S)�@H

@�
0 (�

Æ
; �
Æ)�"

@H
0

@�
(�Æ; �Æ) �

@H

@�
0 (�

Æ
; �
Æ)

#�1
;

e�Æ(S) = 1

S
(IÆ �KÆ) +KÆ + LÆ + LÆ

0 +
@H

@�
0 (�

Æ
; �
Æ)
Æ

@H
0

@�
(�Æ; �Æ) �

(4.17)

Proof : See appendix A.4.1.

As usual there is an optimal choice �� of the weighting matrix � in order to derive the more accurate

SALS estimator b��TS = b�TS(��).
Proposition 4.5 : Under assumptions (A1), (A13) � (A15) and (A17) � (A20), the optimal SALS

estimator b��TS = b�TS(��) is obtained when � = �� = e�Æ(S)�1 and its asymptotic covariance matrix W �
S

is given by:

W
�
S =WS(�

�) =

"
@H

0

@�
(�Æ; �Æ) e�Æ(S)�1@H

@�
0 (�

Æ
; �
Æ)

#�1
� (4.18)

Proof : See appendix A.4.2.

31



It is worth noticing that it is implicitly assumed that e�Æ(S) is invertible rather than
@H

@�
0 (�

Æ
; �
Æ)
Æ

@H
0

@�
(�Æ; �Æ). In other words, we no longer require assumption (A15b) namely

@H
0

@�
(�Æ; �Æ)

is of full rank r. As a consequence, it is no longer required that r � q and this corresponds in our opinion

to a new useful result extending Gouri�eroux, Monfort and Trognon (1985) for which r � q
28. This latter

requirement is in some sense very ad hoc since one cannot really understand (besides the mathematical

restrictions) why the implicit constraint on the structural parameters �Æ: H (�Æ; �Æ) = 0 should be such

that the auxiliary parameter vector �Æ is of higher dimension than the restrictions H (�; �) of which num-

ber is r.

Moreover, the case where r > q is now widespread in the macroeconometric literature for instance it

corresponds to the SALS estimator that can be deduced from Euler Equations of the type (3:1).

These are the reasons why we advocate the following strategy in order to circumvent the problem of

non-invertibility of e�Æ(S).
� First, in the simulated ALS framework and in the case where e�Æ(S) is invertible, the above theory
can be applied without having to perform any transformation. However in the case where e�Æ(S) is not
invertible, we suggest to modify the simulator eHTS(�; �) and to use a deduced simulator

eeHTS(�; �; "; �):

eeHTS(�; �; "; �) = eHTS(�; �) + �e"TS(�; �);
such that e"TS(�; �) ? eHTS(�; �);

@H

@�
0 (�

Æ
; �
Æ)
p
T

�b�T � �
Æ
�
;

eeHTS(�; �; "; �) satis�es assumption (A16) and � is any given scalar.

29 (4.19)

In this context, it is easy to see that the transformed asymptotic covariance
ee�Æ(S; "; �) associated with

the deduced simulator
eeHTS(�; �; "; �) (and thus with the deduced SALS) is given by:

ee�Æ(S; "; �) = e�Æ(S) + �
2 ee	Æ(S; ");

ee	Æ(S; ") = V ar
Æ as

hp
T e"TS (�Æ; �Æ)i ; (4.20)

and takes the form
1

S

ee	1

Æ(") +

�
1� 1

S

� ee	2

Æ(") under the more restrictive assumptions (A1) and (A17)30.

We now use the fact that the equation:

det

�ee�Æ(S; "; �)� = det

�e�Æ(S) + �
2 ee	Æ(S; ")� = 0;

in � 2 IR+ admits a maximum of r solutions (polynomial equation of maximum order r) or is equal to the

polynom 0. In the case where e�Æ(S) is singular, � = 0 is one of those solutions. Moreover the polynom

in �2 is not reduced to the polynom 0 otherwise it would imply that Tr

�e�Æ(S) + �
2 ee	Æ(S; ")� = 031, so

that since e�Æ(S) and ee	Æ(S; ") are non negative matrices, we would have e�Æ(S) = ee	Æ(S; ") = 0 which

is ruled out here. As a consequence, since there is a maximum of r solutions, it is possible to build a

28We are going to make this statement clearer since so far we still have the requirement that e�Æ(S) is invertible. We show

indeed that it is possible to modify the simulator such that this condition is ful�lled without any eÆciency loss or more

precisely with an eÆciency loss that can be made as small as desired.
29This assumption is done for sake of simplicity but can be relaxed.
30See appendix A.4.1.
31Since it corresponds to the factor appearing for the monom of order r � 1.
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sequence f�n; n 2 INg such that lim
n!+1

�n = 0 and
ee�Æ(S; "; �n) is non singular.

Thus we are led to the �rst case where
ee�Æ(S; "; �n) is non singular and the SALS theory can be applied

with a loss of eÆciency that can be made as small as desired since lim
n!+1

�n = 0. We make this statement

clearer in the sequel (see theorems 4:1� 4:2).

The principle, which underlies this modi�ed simulator is that we have introduced some extra random-

ness which can be made as small as desired lim
n!+1

�n = 0 and such that the deduced SALS criterion or

estimating equations lead to desirable or smooth properties such as the invertibility of
ee�Æ(S; "; �n).32

� Second, we want to stress here that the aforementioned principle still holds when one is performing ALS
estimation. Indeed, Gouri�eroux, Monfort and Trognon (1985) has proposed an eÆcient ALS only in the

case where
@H

@�
0 (�

Æ
; �
Æ) is of full rank r (and thus r � q), we suggest here and although H (�; �) is known

in a closed form to use modi�ed estimating equations
eeH(�; �) (that is an SALS estimator) introducing

some extra randomness vanishing at the limit and such that the modi�ed asymptotic covariance matrixee�Æ(S; "; �n) is non singular and close to �Æ =
@H

@�
0 (�

Æ
; �
Æ) 
Æ

@H
0

@�
(�Æ; �Æ).

We now state and prove one of the main mathematical result of this paper enabling a rigorous mathe-

matical statement of the previous intuitive strategy.

Theorem 4.1 : Let A (r � p), � (r � r), � (r � r) be three matrices such that r � p, � and � are

symmetric non negative, we do not impose any invertibility assumption on either � or on � except that

rank

�
�

1

2A

�
= p. Then the following program:

Inf

�2Sr(IR)

n
W (A;�;�) =

�
A
0�A

��1
A
0���A

�
A
0�A

��1o
; (4.21)

where Sr (IR) is the set of symmetric non negative matrices (and we have imposed rank
�
�

1

2A

�
= p) is

such that:

I. In the case where � is singular, 4:21 does not admit in general a unique minimal element. Thus

4:21 is written with an abuse of notations and has no unique solution in the \Zorn" sense. However,

we have the following properties. For all 	 symmetric, non negative and non null matrix:

(i) there exists a symmetric non negative matrix B
� (A;�;	) such that for all � 2

Sr (IR) and rank
�
�

1

2A

�
= p:

W (A;�;�) >> B
� (A;�;	) �

(ii) 8 " > 0; 9 e�(�;	; ") ; e�(�;	; ") two positive matrices such that:

� e�(�;	; ") =
he�(�;	; ")

i�1
;

�



e�(�;	; ")� �





r
< ";

�



B� (A;�;	)�W

�
A; e�(�;	; ") ; e�(�;	; ")

�



r
< ";

where k�kr is any norm on Mr (IR) the space of square matrices of size r � r.

We will refer to B� (A;�;	) as the lower eÆciency bound in the direction of 	 and associated with

32Note that
ee�Æ(S; "; �n) can be made as close as desired to e�Æ(S) but we have ee�Æ(S; "; �n) >> e�Æ(S).
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given (estimating equations) A; �. The word direction has to be taken here stricto sensu. Indeed, we

focus here on e�(�;	; ") which are convex combinations of � and 	. However extensions of this theorem

to the case where the direction is not the straight line (in the
r(r + 1)

2
dimension) are straightforward

and the same kind of proofs are available. In those cases, one is implicitly specifying a particular way of

reaching the target �: any curvilinear direction in the
r(r + 1)

2
dimension is a priori possible. We have

decided here to start with the most natural one: the straight line.

Of course, we have that for any 	1 and 	2 non negative (symmetric) matrices that B� (A;�;	1)

and B
� (A;�;	2) are either not comparable or equal. We cannot have indeed B

� (A;�;	�i) <<

B
� (A;�;	i) ; i = 1 or 2; and where << is here taken strictly. Moreover, if there exist �1 > 0 and

�2 > 0 such that �1	2 << 	1 << �2	2, then B
� (A;�;	1) = B

� (A;�;	2).

II. In the case where � is invertible, the in�nimum is unique and reached as follows:

Inf

�2Sr(IR)
fW (A;�;�)g =W

�
A;�;��1

�
=
h
A
0��1A

i�1 � (4.22)

In other words, theorem 4:1 extends the latter results to the case where � is non invertible.

The proof proceeds in three steps:

1) We �rst show that for any symmetric non negative and non null r � r matrix 	, there exists a

decreasing sequence f�n; n 2 INg with lim
n!+1

�n = 0 and such that e�(�;	; �n) = � + �n	 is invertible,

decreasing in n with respect to the order >> and has a limit when n goes to in�nity that we denote

B
� (A;�;	) = lim

n!+1
W

�
A; e�(�;	; �n) ;

he�(�;	; �n)
i�1�

.

2) Second we show that, 8 � 2 Sr (IR) (rank
�
�

1

2A

�
= p); 8n 2 IN:

W

�
A; e�(�;	; �n) ;�

�
>> W

�
A; e�(�;	; �n) ;

he�(�;	; �n)
i�1� �

3) Third, we prove that:

lim
n!+1

W

�
A; e�(�;	; �n) ;�

�
=W (A;�;�) ;

and since we know that B� (A;�;	) = lim
n!+1

W

�
A; e�(�;	; �n) ;

he�(�;	; �n)
i�1�

, we conclude by

analyzing the spectra that, 8 � 2 Sr (IR) and rank

�
�

1

2A

�
= p, 8 	 symmetric, non null and non

negative r � r matrix:

W (A;�;�) >> B
� (A;�;	) ;

lim
n!+1

W

�
A; e�(�;	; �n) ;

he�(�;	; �n)
i�1�

= B
� (A;�;	) �

33

Of course, in the case where r = p and thus A is invertible, we have:

8	 2 Sr (IR) ; B
� (A;�;	) = B

� (A;�) = A
�1�A0

�1 �

Proof : 1) Let 	 be any non null non negative matrix of size r�r. We de�ne e�(�;	; �) = �+�	 and

we restrict � � 0 without any loss of generality. Taking into consideration that the equation in � � 0 :

33The proof of II is provided in appendix A.4.2.
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det

�e�(�;	; �)
�
= det (� + �	) = 0 has a maximum of r solutions and that the polynom det (� + �	) is

not reduced to 0 (since Tr
�e�(�;	; �)

�
= Tr (� + �	) = Tr (�) + �Tr (	) � �Tr (	) > 0 for � > 0),

we have that there exists a sequence f�n; n 2 INg such that lim
n!+1

�n = 0, f�n; n 2 INg is a decreasing

sequence and 8 n 2 IN, e�(�;	; �n) is non singular. Indeed take any sequence f�n; n 2 INg such that

lim
n!+1

�n = 0 and f�n; n 2 INg is a decreasing sequence, then take a suitable subsequence �n = �'(n) such

that 8 n 2 IN; �n 6= �
�
i i = 1; : : : ; r, where ��i are the solutions to the equation det (� + �	) = 0. In so

doing, you will only have to avoid a maximum of r points. Moreover:

� e�(�;	; �n+1)� e�(�;	; �n) = (�n+1 � �n) 	 << 0; n 2 IN;

and where the inequality is a strict one.

� W

�
A; e�(�;	; �n) ; e�(�;	; �n)

�1
�
=
h
A
0 e�(�;	; �n)

�1
A

i�1
�

Since e�(�;	; �n+1) << e�(�;	; �n) (with a strict inequality), we have:

W

�
A; e�(�;	; �n+1) ; e�(�;	; �n+1)

�1
�
<< W

�
A; e�(�;	; �n) ; e�(�;	; �n)

�1
�
; n 2 IN�

We thus de�ne, applying lemma 4:134 to the ordered chainn
W

�
A; e�(�;	; �n) ; e�(�;	; �n)

�1
�
; n 2 IN

o
, the minimal element B� (A;�;	):

B
� (A;�;	) = Inf

n2IN

n
W

�
A; e�(�;	; �n) ; e�(�;	; �n)

�1
�o

;

= lim
n!+1

W

�
A; e�(�;	; �n) ; e�(�;	; �n)

�1
�
�

2) The proof of 8 � 2 Sr (IR) (rank
�
�

1

2A

�
= p); 8n 2 IN:

W

�
A; e�(�;	; �n) ;�

�
>> W

�
A; e�(�;	; �n) ;

he�(�;	; �n)
i�1�

;

corresponds to the application of the result proved in appendix A:4:2: and where:

e�Æ(S) �! e�(�;	; �n) ; n 2 IN;

@H
0

@�
(�Æ; �Æ) �! A

0
;

� �! �;

and the arrow means \is replaced by".

3) 


W �
A; e�(�;	; �n) ;�

�
�W (A;�;�)





r
=




[A0�A]�1A0� he�(�;	; �n)� �
i
�A [A0�A]

�1




r
=



[A0�A]�1A0�	�A [A0�A]

�1




r
�n;

34This lemma states that any decreasing sequence of non negative symmetric matrices with respect to the partial order

<< has a unique limit which is a symmetric non negative matrix. See appendix A:4:3: for the proofs.
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=)

� lim
n!+1




W �
A; e�(�;	; �n) ;�

�
�W (A;�;�)





r
= 0;

� lim
n!+1




W �
A; e�(�;	; �n) ; e�(�;	; �n)

�1
�
�B

� (A;�;	)




r
= 0;

� 8� 2 Sr (IR) ; rank
�
�

1

2A

�
= p;

W

�
A; e�(�;	; �n) ;�

�
>> W

�
A; e�(�;	; �n) ; e�(�;	; �n)

�1
�
�

We deduce that W
�
A; e�(�;	; �n) ;�

�
� W

�
A; e�(�;	; �n) ; e�(�;	; �n)

�1
�

is a non negative ma-

trix for all n 2 IN and converging to W (A;�;�) � B
� (A;�;	) when n goes to in�nity. We

de�ne � (A;�;�;	) = W (A;�;�) � B
� (A;�;	) and �n (A;�;�;	) = W

�
A; e�(�;	; �n) ;�

�
�

W

�
A; e�(�;	; �n) ; e�(�;	; �n)

�1
�
.

�n (�; �; �; �) is a symmetric, non negative matrix for all n 2 IN, �(�; �; �; �) is a symmetric matrix

and we also have that lim
n!+1

�n (A;�;�;	) = � (A;�;�;	). Therefore lim
n!+1

Sp [�n (A;�;�;	)] =

Sp [� (A;�;�;	)]. We know that Sp [�n (A;�;�;	)] 2 (IR+)
r
= f0; : : : ; 0g =) Sp [� (A;�;�;	)] 2

(IR+)
r ; or in other words that � (A;�;�;	) >> 0.

The proofs of the eÆciency bounds properties, namely that they do not depend on the chosen se-

quence f�n; n 2 INg and that if there exist �1 > 0, �2 > 0 such that �1	2 << 	1 << �2	2=)
B
� (A;�;	1) = B

� (A;�;	2), are given in appendix A:4:4:

This corresponds to the results announced in theorem 4:1. The principal diÆculties come here from the

fact, that we have an order >> over the square symmetric matrices set, which is not total, therefore and

as usual the Zorn lemma does not ensure the existence of the in�nimum (4:21), that the passage at the

in�nity limit is thus no longer straightforward and that � is singular. We have decided to take the point

� as the heliocenter and then build ordered chains which here correspond to the radiuses (�;	). This

circumvents the problem of unordered space with respect to >>. Then along those radiuses, we have

de�ned the eÆciency bounds in the direction of 	: B� (A;�;	). It is important to realize that a priori

B
� (A;�;	) does depend on the \walk" from 	 to � (linear, curvilinear,. . . )

Moreover, we also want to stress that:

� On the one hand, the proof sketched above straightforwardly extend when rather than focusing one�(�;	; �n) of the form � + �n	, one uses general forms e�n (�) such that lim
n!+1

e�n (�) = � andne�n (�) ; n 2 IN
o
is non singular. In this case, what is required is that the chain

ne�n (�) ; n 2 IN
o
is

ordered with respect to >>.

� On the other hand, one may wrongly think that theorem 4:1 is solely due to the particular functional

form of W (A;�;�). However, it turns out that this functional form plays a subordinate role in the proof

and what really matters is that: W (A; �;�) is continuous with respect to � and W
�
A;�;��1

�
respects

the order >> whenever � is non singular: �1 >> �2 =)W

�
A;�1;�1

�1
�
>> W

�
A;�2;�2

�1
�
.

In light of the two previous remarks, we are now able to state the following generalization of theorem 4:1.

Theorem 4.2 : The following program:

Inf

�2Sr(IR)
fW (�;�)g ; (4.23)
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where Sr (IR) is the set of symmetric non negative matrices and W (�;�) is a non negative matrix such

that:

� 8� 2 S�r (IR) ; 9 B (�) = 8� 2 Sr (IR) ; W (�;�) >> B (�) =W
�
�; �

�
��1

��
;

where � is some known function, � : S�r (IR) �! Sr (IR) ; S
�
r (IR) is the set of

symmetric, positive matrices,

� W (�;�) is continuous in � for all � 2 Sr (IR),

� W
�
�; �

�
��1

��
is compatible with the order >>, that is: �1 >> �2 =)

W

�
�1; �

�
�1

�1
��

>> W

�
�2; �

�
�2

�1
��
;

is such that:

I. In the case where � is singular, 4:23 does not admit in general a unique minimal element. How-

ever, we have the following properties:

(i) For all ordered and decreasing chain
ne�n; n 2 IN

o
(with respect to the partial order >>) and such

that lim
n!+1

e�n = �, there exists a symmetric non negative matrix eB� (�)35 such that for all � 2 Sr (IR):

W (�;�) >> eB� (�) �
(ii) 8 " > 0; 9 nÆ; e�n a positive matrix such that for all n � nÆ:

� e�n = e��1n ;

�



e�n � �





r
< ";

�



 eB� (�)�W

�e�n; �

�e��1n ��



r
< ";

where k�kr is any norm on Mr (IR) the space of square matrices of size r � r.

II. In the case where � is invertible, the in�nimum is unique and reached as follows:

Inf

�2Sr(IR)
fW (�;�)g =W

�
�; �

�
��1

��
= B (�) � (4.24)

In other words, theorem 4:2 extends the latter results to the case where � is non invertible.

Proof :

1) Since
ne�n; n 2 IN

o
is a decreasing ordered chain, we have e�n+1 << e�n; n 2 IN. Moreover

W
�
�; �

�
��1

��
is compatible with the order. This implies that

n
W

�e�n; �

�e��1n ��
; n 2 IN

o
is a decreasing

ordered chain. By lemma 4:1:, there exists therefore a non negative matrix eB� (�) such that:

eB� (�) = Inf

n2IN

n
W

�e�n; �

�e��1n ��o
;

= lim
n!+1

W

�e�n; �

�e��1n ��
�

2) 8� 2 Sr (IR) ; W
�e�n;�

�
>> W

�e�n; �

�e��1n ��
�

3) 8� 2 Sr (IR) ; W (�;�) is continuous =) lim
n!+1

W

�e�n;�
�
=W (�;�).

35Therefore a priori depending on the sequence itself or in other words on the way one reaches the target �.
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To summarize, we have:

� lim
n!+1




W �e�n;�
�
�W (�;�)





r
= 0;

� lim
n!+1




W �e�n; �

�e��1n ��
� eB� (�)




r
= 0;

� 8� 2 Sr (IR) ; W
�e�n;�

�
>> W

�e�n; �

�e��1n ��
�

We de�ne � (�;�) =W (�;�)� eB� (�) and �n (�;�) =W

�e�n;�
�
�W

�e�n; �

�e��1n ��
.

�n (�; �; �; �) is a symmetric, non negative matrix for all n 2 IN, �(�; �; �; �) is a symmetric matrix and we

also have that lim
n!+1

k�n (�;�)� � (�;�)kr = 0. Therefore lim
n!+1

Sp [�n (�;�)] = Sp [� (�;�)]. We know

that Sp [�n (�;�)] 2 (IR+)
r
= f0; : : : ; 0g =) Sp [� (�;�)] 2 (IR+)

r ; or in other words that � (�;�) >> 0.

Endowed with theorems 4:1� 4:2, we are now able to rigorously state the remarks stressed below propo-

sition 4:5.

Theorem 4.3 : We consider the SALS estimator
ee��TS ("; �n) deduced from the modi�ed simulator (4:19):

ee��TS("; �n) = Argmin
�2�

� eeHTS

�
�; b�T ; "; �n��0 b��T � eeHTS

�
�; b�T ; "; �n�� ; (4.25)

where �Æ lim
T!+1

b��T =
ee�� =

ee�Æ (S; "; �n)�1 =

�e�Æ (S) + �
2
n

ee	Æ (S; ")��1 and f�n; n 2 INg is a decreasing

sequence converging to 0.

Then under assumptions (A1); (A13); (A14); (A15a) and that the modi�ed simulator
eeHTS (�; �; "; �)

is such that for all f�n; n 2 INg, (A17), (A19a) are ful�lled and the earlier assumptions (A18), (A19b),

(A20) on the initial simulator eHTS (�; �) are ful�lled, the SALS estimator
ee��TS ("; �n) is consistent, and

asymptotically normal. Moreover its asymptotic covariance matrix V ar
Æ as

�p
T

�ee��TS ("; �n)� �
Æ

��
is

decreasing with n and we have:

lim
n!+1

V ar
Æ as

�p
T

�ee��TS ("; �n)� �
Æ

��
= B

�

�
@H

@�
0 (�

Æ
; �
Æ) ; e�Æ (S) ; ee	Æ (S; ")� � (4.26)

In other words, the SALS estimator
ee��TS ("; �n) can be made as close as desired to the eÆciency bound

in the direction of
ee	Æ (S; ").

Proof :

1) The consistency and the
p
T -asymptotic normality follow from the application of proposition 4:4 to

the modi�ed simulator
eeHTS (�; �; "; �n) and thus to the modi�ed SALS

ee��TS ("; �n).
2) The eÆciency property follows from the application of theorem 4:1 and where A =

@H

@�
0 (�

Æ
; �
Æ) ; � =

e�Æ (S) ; 	 =
ee	Æ(S; ").

It is clear that the choice of a particular
ee	Æ (S; ") leads to a particular eÆciency bound

B
�

�
@H

@�
0 (�

Æ
; �
Æ) ; e�Æ (S) ; ee	Æ (S; ")�, the one corresponding to the direction ee	Æ (S; "). In the case where
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the eÆciency bound varies with the direction or with the type of direction itself (straight line versus

curvilinear), we already know that the di�erent eÆciency bounds are not comparable. Therefore one is

implicitly specifying a particular loss function.

As already announced the SALS estimation nests several other estimation methods and this result is

stated in proposition 4:6.

Proposition 4.6 : The II, the EMM, the GII, the SMM, the SNLS and the SPML estimators are

particular SALS estimators respectively associated with the following estimating equations:

� H
II (�; �Æ) = e�(�)� �

Æ
; and where e�(�) and �Æ are de�ned by (A3);

� H
EMM (�; �Æ) = E

�
[sN (�Æ)] ; sN (�

Æ) is the seminonparametric score generator;

� H
GII (�; �Æ) = e� (�;��)� �

Æ
; where e� (�;��) and �Æ are de�ned by (3:16) and (3:1);

� H
SMM (�; �Æ) = E

Æ
[g(wt; �)] ; where E

Æ
[g(wt; �)] is computed through a simulatoreHTS(�; �) obeying to assumption (A16);

� H
SNLS (�) = E

Æ
[bw` �m`(�)] ; where b

w
` is the winning bid and m`(�) the associated

moments for the given distribution F� of the private values,

� H
SPML (�; �Æ) = E

�
[es (�Æ)] ; es(�Æ) is the score associated with the exponential

p.d.f. family. �Æ correspond to nuisance parameters and again the simulatoreHTS(�; �) corresponds to assumption (A16)�

Moreover the indirect and the GII estimators are respectively asymptotically equivalent to the following

SALS estimators associated with the following estimating equations:

� H
II (�; �Æ) =

@q

@�
(�; �Æ) ; and where q (�; �) is de�ned by (A2);

� H
GII (�; �Æ) = H

�� (�; �Æ) =
@z

0

@�
(�; �Æ) ��z (�; �Æ) ; z(�; �) is de�ned by (3:16);

and where the natural estimator for the auxiliary parameters b�T is the one provided by the direct es-

timation of the instrumental criterion de�ned respectively for the Indirect Inference, the EMM, the GII

and the SPML approaches.

Proof : The proofs of these results are straightforward and omitted here, it is indeed just a question of

replacement of each expression by each particular form and of usual asymptotic expansions (see however

the proof of proposition 5:2).

In other words, either SPML, SMM, SNLS, Indirect Inference, EMM or GII estimation just correspond to

a particular selection of \estimating equations" which are not tractable and thus replaced by simulation-

based approximation.
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5 Speci�cation Tests

As for the Indirect Inference and the EMM, we propose a generalized global speci�cation test. We de�ne

the statistic �SALSTS as follows:

�
SALS
TS = T min

�2�

"
1

S

SX
s=1

eHT

�eys
T
(�; zsÆ); xT ;

b�T �
#0 b��T

"
1

S

SX
s=1

eHT

�eys
T
(�; zsÆ); xT ;

b�T�
#
; (5.1)

where b�T is de�ned according to (4:10), �Æ lim
T!+1

b��T = �� = e�Æ(S)�1.
Proposition 5.1 : Under the assumption that the structural model (2:1) � (2:2) is well-speci�ed and

assumptions (A1), (A13)� (A15) and (A17)� (A20), the statistic �SALSTS is asymptotically distributed as

a chi-square with (r � p) degrees of freedom �
2(r � p).

Therefore the test of asymptotic level � is associated with the critical region:

WSALS
� = f�SALSTS > �

2
1��(r � p)g� (5.2)

Proof : See appendix A.5.

In the case of the GII approach, we advocate the following testing strategy. A speci�cation test for the

structural model (2:1) � (2:2) when the instrumental model is of a GMM type is based on a two-steps

procedure.

First, in our general setting, we have to test the overidentifying moment restrictions:

E
Æ
[g(wt; �

Æ)] = 0; (5.3)

that is the existence of a unique �Æ such that these restrictions are ful�lled. This implicitly assumes that

one is performing an overidenti�ed estimation for the parameters �Æ that is r > q. Following Hansen

(1982) overidentifying test we de�ne the statistic �1T by:

�
1
T = T min

�2B

"
1

T

TX
t=1

g(wt; �)

#0
�T

"
1

T

TX
t=1

g(wt; �)

#
; (5.4)

where �T is a consistent estimator of � =

(
V ar
Æ as

"
1p
T

TX
t=1

g(wt; �
Æ)

#)�1
. Indeed, the overidentifying

test has to be performed with an optimal estimator b��T of �Æ. Under assumptions 3:1 � 3:6 of Hansen

(1982), the statistic �1T converges in distribution to a chi-square distributed random variable with (r� q)
degrees of freedom: �2(r � q). The test of asymptotic level � is associated with the critical region:

W1
� = f�1T > �

2
1��(r � q)g� (5.5)

Second, after having tested the overidentifying restrictions, a speci�cation test for the structural model

(2:1) � (2:2) may be based on the optimal value of the objective function used in the second step of the

indirect estimation method. Indeed we have:
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Proposition 5.2 : Under the null hypothesis that the structural model (2:1)� (2:2) is well speci�ed and

assumptions (A1) � (A11), the statistics:

�
2
TS =

S

1 + S
min
�2�

8>>>>>>><>>>>>>>:

"
1

TS

SX
s=1

TX
t=1

@g
0

@�

� ews
t (�);

b�T� b��T 1p
TS

SX
s=1

TX
t=1

g

� ews
t (�);

b�T�
#0

b�T"
1

TS

SX
s=1

TX
t=1

@g
0

@�

� ews
t (�);

b�T� b��T 1p
TS

SX
s=1

TX
t=1

g

� ews
t (�);

b�T�
#

9>>>>>>>=>>>>>>>;
; (5.6)

�
3
TS =

S

1 + S
min
�2�

8>>>>>>><>>>>>>>:

"
1

T

TX
t=1

@g
0

@�

�
wt;

b�T� b��T 1p
TS

SX
s=1

TX
t=1

g

� ews
t (�);

b�T�
#0

b�T"
1

T

TX
t=1

@g
0

@�

�
wt;

b�T� b��T 1p
TS

SX
s=1

TX
t=1

g

� ews
t (�);

b�T�
#

9>>>>>>>=>>>>>>>;
; (5.7)

�
4
TS =

S

1 + S
min
�2�

8>>>>>>><>>>>>>>:

"
1

S

SX
s=1

" 
1

T

TX
t=1

@g
0

@�

� ews
t (�);

b�T�
! b��T

 
1p
T

TX
t=1

g

� ews
t (�);

b�T�
!##0

b�T"
1

S

SX
s=1

" 
1

T

TX
t=1

@g
0

@�

� ews
t (�);

b�T�
! b��T

 
1p
T

TX
t=1

g

� ews
t (�);

b�T�
!##

9>>>>>>>=>>>>>>>;
; (5.8)

are asymptotically equivalent and distributed as chi-squares with (q � p) degrees of freedom �
2(q � p),

where �Æ lim
T!+1

b�T = �Æ = �Æ (�
�)�1 as de�ned by (3:13) and �Æ lim

T!+1

b��T = �� .

Therefore the tests of asymptotic level � are associated with the critical regions Wi
�; i = 2; 3; 4:

Wi
� = f�iTS > �

2
1��(q � p)g; i = 2; 3; 4� (5.9)

Proof : These results correspond just to an application of proposition 5:1, see however appendix A.6.

Note however, that under the joint null hypothesis that (2:1) � (2:2) is well speci�ed and (3:1) holds,

the result of proposition 5:2 is available whatever choice of �. But the power of the test against local

alternatives does depend on this choice and is still an issue. In this respect, the test statistic �iTS; i = 2; 3; 4

should be jointly performed with the test statistic �1T . This test can be seen as a generalized global

speci�cation test as proposed by Gallant and Tauchen (1996) to the case of overidentifying moment type

instrumental criterion. This test can also be regarded as a particular generalized global speci�cation test

as developed for the SALS estimator.
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6 Concluding Remarks

The main messages of this paper are twofold:

� The SMM, SPML, SNLS, Indirect Inference and EMM are particular cases of the SALS approach and

therefore to each simulation-based estimation correspond particular estimating equations.

� The SALS approach enables the treatment of new problems arising from the macroeconometric and

econometric literature which cannot be properly handled within the common simulation-based methods.

For instance, substantial eÆciency gains are achieved when one introduces constraints (overidentifying

moment conditions) on the instrumental model. The weighting matrix does no longer correspond to the

classical GMM one.
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Appendices

A.1. Proof of proposition 2:2:

Since the observed endogenous variables y
T
can always be regarded as a simulated path of the en-

dogenous variables at the value � = �
Æ and because of the exogeneity assumption on fxt; t 2 ZZg, it

suÆces to prove that e�sT (�) converges to e�(�).
We have thanks to proposition 2:1:

8� 2 �; 8s = 1; : : : ; S;

�Æ lim
T!+1

Sup
�2B

���QT

�eys
T
(�; zsÆ); xT ; �

�
� q (�; �)

��� = 0;

() 8� 2 �; 8s = 1; : : : ; S; 8" > 0; 8� > 0; 9T�;";� = 8T � T�;";�; 8� 2 B :

�Æ

����QT

�eys
T
(�; zsÆ); xT ; �

�
� q (�; �)

��� < �

3

�
> 1� "

2
;

=) 8� 2 �; 8s = 1; : : : ; S; 8" > 0; 8� > 0; 9T�;";� = 8T � T�;";� :

(i) �Æ

�
q

�
�; e�sT (�)� < QT

�eys
T
(�; zsÆ); xT ;

e�sT (�)�+ �

3

�
> 1� "

2
;

(ii) �Æ

�
QT

�eys
T
(�; zsÆ); xT ;

e�(�)� < q

�
�; e�(�)�+ �

3

�
> 1� "

2
;

We also have:

8� > 0; QT

�eys
T
(�; zsÆ); xT ;

e�sT (�)� < QT

�eys
T
(�; zsÆ); xT ;

e�(�)�+ �

3
;

since e�sT (�) corresponds to the Argmin of (2:5). We now de�ne the probability 	:

	 = �Æ

��
q

�
�; e�sT (�)� < QT

�eys
T
(�; zsÆ); xT ;

e�sT (�)�+ �

3

�
and

�
QT

�eys
T
(�; zsÆ); xT ;

e�(�)� < q

�
�; e�(�)�+ �

3

�
and

�
QT

�eys
T
(�; zsÆ); xT ;

e�sT (�)� < QT

�eys
T
(�; zsÆ); xT ;

e�(�)�+ �

3

��
;

	 = �Æ

��
q

�
�; e�sT (�)� < QT
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T
(�; zsÆ); xT ;

e�sT (�)�+ �

3

��
+

�Æ

��
QT

�eys
T
(�; zsÆ); xT ;

e�(�)� < q

�
�; e�(�)�+ �

3

��
�

�Æ

��
q

�
�; e�sT (�)� < QT

�eys
T
(�; zsÆ); xT ;

e�sT (�)�+ �

3

�
or

�
QT

�eys
T
(�; zsÆ); xT ;

e�(�)� < q

�
�; e�(�)�+ �

3

��
;
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	 � �Æ

��
q

�
�; e�sT (�)� < QT

�eys
T
(�; zsÆ); xT ;

e�sT (�)�+ �

3

��
+

�Æ

��
QT

�eys
T
(�; zsÆ); xT ;

e�(�)� < q

�
�; e�(�)�+ �

3

��
� 1�

Using (i) and (ii) we deduce that:

8� 2 �; 8s = 1; : : : ; S; 8" > 0; 8� > 0; 9T�;";� = 8T � T�;";� :

	 >

�
1� "

2

�
+

�
1� "

2

�
� 1 = 1� "�

��
q

�
�; e�sT (�)� < QT

�eys
T
(�; zsÆ); xT ;

e�sT (�)�+ �

3

�
and

�
QT

�eys
T
(�; zsÆ); xT ;

e�(�)� < q

�
�; e�(�)�+ �

3

�
and

�
QT

�eys
T
(�; zsÆ); xT ;

e�sT (�)� < QT

�eys
T
(�; zsÆ); xT ;

e�(�)�+ �

3

��
;

=)
nh
q

�
�; e�sT (�)� < q

�
�; e�(�)�+ �

io
;

so that:

�Æ

nh
q

�
�; e�sT (�)� < q

�
�; e�(�)�+ �

io
�  > 1� ";

In other words we have:

8� 2 �; 8s = 1; : : : ; S; 8" > 0; 8� > 0; 9T�;";� = 8T � T�;";� :

�Æ

nh
q

�
�; e�sT (�)� < q

�
�; e�(�)�+ �

io
�  > 1� "�

Let now N� be any open subset of B containing e�(�) (we have assumed that e�(�) 2 Æ
B). B \ N c

� is

a compact set. We de�ne e��(�) by:
e��(�) = Argmin

�2B\N c
�

q (�; �) �

We have: 8� 2 �; q

�
�; e��(�)� > q

�
�; e�(�)� ;

since e�(�) is the unique minimizer of q (�; �) and e��(�) 2 B \ N c
� . (e�(�) 2 N�). Let us de�ne

�
�(�) = q

�
�; e��(�)�� q

�
�; e�(�)� > 0. For this particular value of � we have:
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8� 2 �; 8s = 1; : : : ; S; 8" > 0; 9T�;" = 8T � T�;" :

�Æ

nh
q

�
�; e�sT (�)� < q

�
�; e�(�)�+ �

�(�)
io

> 1� ";

=) 8� 2 �; 8s = 1; : : : ; S; 8" > 0; 9T�;" = 8T � T�;" :

�Æ

nh
q

�
�; e�sT (�)� < q

�
�; e��(�)�io > 1� ";

since ��(�) = q

�
�; e��(�)�� q

�
�; e�(�)� > 0,

=) 8� 2 �; 8s = 1; : : : ; S; 8" > 0; 9T�;" = 8T � T�;" :

�Æ

ne�sT (�) 62 B \ N c
�

o
> 1� ";

since e��(�) = Argmin
�2B\N c

�

q (�; �) ;

and ��(�) = q

�
�; e��(�)�� q

�
�; e�(�)� > 0�

Or in other words, with a probability approaching 1, e�sT (�) 62 B \ N c
� () e�sT (�) 2 N� for each N� open

subset of B containing e�(�). We have thus with probability aproaching 1 e�sT (�) 2 N� i.e.:

8� 2 �; 8s = 1; : : : ; S; :

e�sT (�) �Æ�!
T!+1

e�(�)�
A.2. Proof of proposition 3:3:

We have: �
V ar
Æ as

�p
T b�g�TS���1 �1 + 1

S

�
=
@z

0

@�
(�Æ; �Æ) V �1

@z

@�
0 (�

Æ
; �
Æ) ;

�
V ar
Æ as

�p
T b�g�1TS���1 �1 + 1

S

�
=
@z1

0

@�
(�Æ; �Æ1) V11

�1@z1

@�
0 (�

Æ
; �
Æ
1) �

We �rst use the following matrix lemma:

Lemma: Let V11 (r1 � r1), V12 (r1 � r2), V21 (r2 � r1), V22 (r2 � r2), X1 (p1 � r1), X2 (p1 � r2),

Y1 (r1 � p2), and Y2 (r2 � p2), then:"
X1;

X2

#0 "
V11 V12

V21 V22

#�1 "
Y1

Y2

#
= X1V

�1
11 Y1+

h
X2 �X1V

�1
11 V12

i h
V22 � V21V

�1
11 V12

i�1 h
Y2 � V21V

�1
11 Y1

i
�

Proof:

Indeed the block-inverse formula gives:"
V11 V12

V21 V22

#�1
=

"
(V �1)11 (V �1)12
(V �1)21 (V �1)22

#
;

51



with:
(V �1)11 = V11

�1 + V11
�1
V12(V

�1)22V21V11
�1
;

(V �1)12 = �V11�1V12(V �1)22;

(V �1)21 = �(V �1)22V21V11�1;

(V �1)22 =
�
V22 � V21V

�1
11 V12

��1 �
So that:

(X1; X2)

"
V11 V12

V21 V22

#�1  
Y1

Y2

!
=

(X1; X2)

2664
V11

�1
Y1 � V11

�1
V12(V

�1)22

�
Y2 � V21V11

�1
Y1

�
(V �1)22

�
Y2 � V21V11

�1
Y1

�
3775 ;

= X1V11
�1
Y1 +

�
X2 �X1V11

�1
V12

� �
V
�1
�
22

�
Y2 � V21V11

�1
Y1

�
;

= X1V11
�1
Y1 +

�
X2 �X1V11

�1
V12

��
V22 � V21V11

�1
V12

��1 �
Y2 � V21V11

�1
Y1

�
�

We apply the latter lemma to:

X1 =
@z1

0

@�
(�Æ; �Æ1) ; X2 =

@z2
0

@�
(�Æ; �Æ) ; V = V ar

Æ as

"
1p
T

TX
t=1

g
�
t (wt; �

Æ)

#
; Y1 = X

0
1; Y2 = X

0
2�

Noticing also that V12 = V
0
21, we thus obtain the result. Since V

0
11 = V11; V

0
12 = V21 and�

V22 � V21V11
�1
V12

��1
>> 0 (inverse of a positive matrix), we have:�

V ar
Æ as

�p
T b�g�TS���1 �1 + 1

S

�
�
�
V ar
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�p
T b�g�1TS���1 �1 + 1

S

�
=

�
@z2

@�
0 (�

Æ
; �
Æ)� V21V11

�1@z1

@�
0 (�

Æ
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Æ
1)

�0 �
V22 � V21V11

�1
V
0
21

��1 �@z2
@�

0 (�
Æ
; �
Æ)� V21V11�1

@z1

@�
0 (�

Æ
; �
Æ
1)

�
= 	0	;

where: 	 = A
1

2

�
@z2

@�
0 (�

Æ
; �
Æ)� V21V

�1
11

@z1

@�
0 (�

Æ
; �
Æ
1)

�
; A =

�
V22 � V21V11

�1
V
0
21

��1 �
	0	 is a non negative matrix and null if and only if

@z2
0

@�
(�Æ; �Æ) =

@z1
0

@�
(�Æ; �Æ1) V11

�1
V12.

A.3. Proof of proposition 4:3:

We have thanks to assumption (A17):
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8s = 1; : : : ; S; �Æ lim
T!+1

Sup
�;�2��B




 eHs
T (�; �)�H(�; �)





r
= 0;

where: eHs
T (�; �) =

eHT

�eys
T
(�; zsÆ); xT ; �

�
;

=) 8 S �xed, �Æ lim
T!+1

Sup
�;�2��B






 1S
SX
s=1

eHs
T (�; �)�H(�; �)







r

= 0;

We de�ne:

eQTS(�; �) =

"
1

S

SX
s=1

eHs
T (�; �)

#0 b�T

"
1

S

SX
s=1

eHs
T (�; �)

#
;

q(�; �) = H(�; �)0�H(�; �);

We have (obvious): �Æ lim
T!+1

Sup
�;�2��B

��� eQTS(�; �)� q(�; �)
��� = 0;

() 8" > 0; 8� > 0; 9T 1
";� = 8T � T

1
";�; 8�; � 2 �� B :

�Æ

���� eQTS (�; �)� q (�; �)
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6

�
> 1� "

5
;
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1
";� :
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�
q

�e�TS(�); b�T� < eQTS

�b�TS(�); b�T�+ �

6

�
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5
;
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� eQTS

�
�
Æ
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�
�
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�
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5
;

We also have: 8� > 0; eQTS

�b�TS(�); b�T� < eQTS

�
�
Æ
; b�T� + �

6
; since b�TS(�) corresponds to the unique

minimum of eQTS

�
�; b�T�.

We now de�ne the probability 	:
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q
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Using (i) and (ii) we deduce that:

8" > 0; 8� > 0; 9T 1
";� = 8T � T

1
";� : 	 >
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�
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In other words we have:
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��
q
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�
�
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5
�

Let b�'(T )S(�) be any subsequence of b�TS(�) converging in �Æ-probability to �
�
'(�) when T goes to

in�nity ('(�) is an increasing function from IN onto IN). We are going to show that ��'(�) = �
Æ and since

� is compact this ends the proof of proposition 4:3.

Indeed since '(�) is increasing and T and '(T ) belong to IN, we have 8T 2 IN; '(T ) � T (proved by

induction) and:

8" > 0; 8� > 0; 9T 1
";� = 8T � T

1
";� :
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��
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��
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5
�

Since H(�; �) is assumed to be continuous, q(�; �) is also continuous. Moreover since�b�'(T )S(�); b�'(T )� �Æ������!
T!+1

�
�
�
'(�); �

Æ
�
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�
�
�
'(�); �

Æ
�
, we have:
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�����q �b�'(T )S(�); b�'(T )�� q

�
�
�
'(�); �

Æ
���� < �

6

��
> 1� "

5
�

� �Æ

�����q �b�'(T )S(�); �Æ�� q ���'(�); �Æ���� < �

6

��
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5
�

We de�ne the probability � as follows:
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� = �Æ

�����q �b�'(T )S(�); b�'(T )�� q

�
�
�
'(�); �

Æ
���� < �

6

�
and

����q �b�'(T )S(�); �Æ�� q

�
�
�
'(�); �

Æ
���� < �

6

��
;

� = �Æ

�����q �b�'(T )S(�); b�'(T )�� q

�
�
�
'(�); �

Æ
���� < �

6

��
+ �Æ

�����q �b�'(T )S(�); �Æ�� q

�
�
�
'(�); �

Æ
���� < �

6

��
�

�Æ

�����q �b�'(T )S(�); b�'(T )�� q

�
�
�
'(�); �

Æ
���� < �

6

�
or

����q �b�'(T )S(�); �Æ�� q

�
�
�
'(�); �

Æ
���� < �

6

��
;

8" > 0; 8� > 0; 9T 2
";� = 8T � T

2
";� : � >

�
1� "

5

�
+

�
1� "

5

�
� 1 = 1� 2"

5
�

Moreover: �����q �b�'(T )S(�); b�'(T )�� q

�
�
�
'(�); �

Æ
���� < �

6

�
and

h���q �b�'(T )S(�); �Æ�� q

�
�
�
'(�); �

Æ
���� < �

6

i�
;

=)
�����q �b�'(T )S(�); b�'(T )�� q

�b�'(T )S(�); �Æ���� < �

3

��
�

So that we have:

8" > 0; 8� > 0; 9T 2
";� = 8T � T

2
";� : �Æ

�����q �b�'(T )S(�); b�'(T )�� q

�b�'(T )S(�); �Æ���� < �

3

��
> 1� 2"

5
;

=) 8" > 0; 8� > 0; 9T 2
";� = 8T � T

2
";� : �Æ

��
q

�b�'(T )S(�); �Æ� < q

�b�'(T )S(�); b�'(T )�+ �

3

��
> 1� 2"

5
�

By using exactly the same kind of arguments, we also have:

8" > 0; 8� > 0; 9T 3
";� = 8T � T

3
";� : �Æ

��
q

�
�
Æ
; b�'(T )� < q (�Æ; �Æ) +

�

6

��
> 1� "

5
�

We now de�ne T";� = max
i=1;2;3.

�
T
i
";�

�
and we have: 8" > 0; 8� > 0; 9T";� = 8T � T";� :

� �Æ

��
q

�b�'(T )S(�); b�'(T )� < q

�
�
Æ
; b�'(T )�+ �

2

��
> 1� 2"

5
;

� �Æ

��
q

�b�'(T )S(�); �Æ� < q

�b�'(T )S(�); b�'(T )�+ �

3

��
> 1� 2"

5
;

� �Æ

��
q

�
�
Æ
; b�'(T )� < q (�Æ; �Æ) +

�

6

��
> 1� "

5
�

=) 8" > 0; 8� > 0; 9T";� = 8T � T";� : �Æ

nh
q

�b�'(T )S(�); �Æ� < q (�Æ; �Æ) + �

io
> 1� "�

Let now N�Æ be any open subset of � containing �Æ (we have assumed that �Æ 2 Æ
�). � \ N c

�Æ is a

compact set and we have q (�Æ; �Æ) = 0. We de�ne �� by: �� = Argmin
�2�\N c

�Æ

q (�; �Æ) �

We have: q (��; �Æ) > 0 since �Æ is the unique minimizer of q (�; �Æ) and �� 2 � \ N c
�Æ. (�

Æ 2 N�Æ). Let

us de�ne ��(�) = q (��; �Æ) > 0. For this particular value of � we have:
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8" > 0; 9T" = 8T � T" : �Æ

nh
q

�b�'(T )S(�); �Æ� < q (��; �Æ)
io

> 1� ";

=) 8" > 0; 9T" = 8T � T" : �Æ

nb�'(T )S(�) 62 � \N c
�Æ

o
> 1� ";

since �
� = Argmin

�2�\N c
�Æ

q (�; �Æ) ;

Or in other words, with a probability approaching 1, b�'(T )S(�) 62 � \N c
�Æ () b�'(T )S(�) 2 N�Æ for each

N�Æ open subset of � containing �Æ. We have thus with probability approaching 1, b�'(T )S(�) 2 N�Æ i.e.:b�'(T )S(�) �Æ�!
T!+1

�
Æ
; that is: ��'(�) = �

Æ�

A.4.1. Proof of proposition 4:4:

We start with the �rst order conditions associated with the minimization program (4:16):

@

@�

h eHTS

�
�; b�T�i0

�=b�TS(�)

b�T

p
T eHTS

�b�TS(�); b�T� = 0�

Expanding the latter expression around the point (�Æ; �Æ) we have:

@H
0

@�
(�Æ; �Æ)�

�p
T eHTS (�

Æ
; �
Æ) +

@H

@�
0 (�

Æ
; �
Æ)
p
T

�b�TS(�)� �
Æ
�
+
@H

@�
0 (�

Æ
; �
Æ)
p
T

�b�T � �
Æ
��

+ o�Æ (1) = 0�

p
T

hb�TS(�)� �
Æ
i
=

"
@H

0

@�
(�Æ; �Æ)�

@H

@�
0 (�

Æ
; �
Æ)

#�1
@H

0

@�
(�Æ; �Æ) ���p

T eHTS (�
Æ
; �
Æ) +

@H

@�
0 (�

Æ
; �
Æ)
p
T

�b�T � �
Æ
��

+ o�Æ (1) ��p
T eHTS (�

Æ
; �
Æ) +

@H

@�
0 (�

Æ
; �
Æ)
p
T

�b�T � �
Æ
��

is under assumptions (A13) � (A16), (A18) � (A20)

asymptotically normal with an asymptotic zero mean and an asymptotic covariance matrix given bye�Æ(S) and:
WS(�) =

"
@H

0

@�
(�Æ; �Æ) �

@H

@�
0 (�

Æ
; �
Æ)

#�1
@H

0

@�
(�Æ; �Æ)�e�Æ(S)�@H

@�
0 (�

Æ
; �
Æ)

"
@H

0

@�
(�Æ; �Æ) �

@H

@�
0 (�

Æ
; �
Æ)

#�1
�

In the semiparametric setting (A16), we have:

e�Æ(S) = V ar
Æ as

�p
T eHTS (�

Æ
; �
Æ) +

@H

@�
0 (�

Æ
; �
Æ)
p
T

�b�T � �Æ�� ;
= V ar

Æ as

hp
T eHTS (�

Æ
; �
Æ)
i
+
@H

@�
0 (�

Æ
; �
Æ)
Æ

@H
0

@�
(�Æ; �Æ) + LÆ + L0Æ;

where LÆ = lim
T!+1

Cov
Æ

�p
T eHTS (�

Æ
; �
Æ) ;

@H

@�
0 (�

Æ
; �
Æ)
p
T

�b�T � �
Æ
��

. This general formula collapses in

the fully parametric case (A1), (A17) to:

eHTS (�
Æ
; �
Æ) =

1

S

SX
s=1

eHs
T

�eys
T
(�Æ; zsÆ) ; xT ; �

Æ
�
;

V ar
Æ as

hp
T eHTS (�

Æ
; �
Æ)
i
=

1

S2
V ar
Æ as

"
SX
s=1

p
T eHs

T

�eys
T
(�Æ; zsÆ) ; xT ; �

Æ
�#
;

=
1

S2

�
SV ar

Æ as

hp
T eHs

T

�eys
T
(�Æ; zsÆ) ; xT ; �

Æ
�i

+ S(S � 1)Cov
Æ as

hp
T eHs

T

�eys
T
(�Æ; zsÆ) ; xT ; �

Æ
�
;

p
T eH`

T

�ey`
T

�
�
Æ
; z

`
Æ

�
; xT ; �

Æ
�ii

=
1

S
IÆ +

�
1� 1

S

�
KÆ; s 6= `�
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LÆ = lim
T!+1

Cov
Æ

(
1

S

SX
s=1

p
T eHs

T

�eys
T
(�Æ; zsÆ) ; xT ; �

Æ
�
;
@H

@�
0 (�

Æ
; �
Æ)
p
T

�b�T � �
Æ
�)

;

= lim
T!+1

Cov
Æ

�p
T eHs

T

�eys
T
(�Æ; zsÆ) ; xT ; �

Æ
�
;
@H

@�
0 (�

Æ
; �
Æ)
p
T

�b�T � �
Æ
��

= LÆ�

Therefore e�Æ(S) = 1

S
IÆ +

�
1� 1

S

�
KÆ + LÆ + L

0
Æ +

@H

@�
0 (�

Æ
; �
Æ)
Æ

@H
0

@�
(�Æ; �Æ).

ee�Æ(S) = V ar
Æ as

�p
T eHTS (�

Æ
; �
Æ) +

p
T�e"TS (�Æ; �Æ) + @H

@�
0 (�

Æ
; �
Æ)
p
T

�b�T � �
Æ
��
;

= V ar
Æ as

hp
T eHTS (�

Æ
; �
Æ)
i
+ �

2
V ar
Æ as

hp
T e"TS (�Æ; �Æ)i+ @H

@�
0 (�

Æ
; �
Æ) 
Æ

@H
0

@�
(�Æ; �Æ) + LÆ + L0Æ;

since e"TS (�; �) ? eHTS (�; �) ;
@H

@�
0 (�

Æ
; �
Æ)
p
T

�b�T � �
Æ
�
, therefore:

ee�Æ(S) = e�Æ(S) + �
2 ee	Æ(S; "); withee	Æ(S; ") = V ar

Æ as

hp
T e"TS (�Æ; �Æ)i.

In the parametric case, we have:
ee	Æ(S; ") =

1

S

ee	1

Æ(") +

�
1� 1

S

� ee	2

Æ("); with
ee	1

Æ(") =

V ar
Æ as

hp
T e"sT (�Æ; �Æ)i and ee	2

Æ(") = Cov
Æ as

hp
T e"sT (�Æ; �Æ) ;pT e"`T (�Æ; �Æ)i s 6= `.

A.4.2. Proof of proposition 4:5:

We �rst prove that:

"
@H

0

@�
(�Æ; �Æ) �

@H

@�
0 (�

Æ
; �
Æ)

#�1
@H

0

@�
(�Æ; �Æ)�e�Æ(S)�@H

@�
0 (�

Æ
; �
Æ)�"

@H
0

@�
(�Æ; �Æ) �

@H

@�
0 (�

Æ
; �
Æ)

#�1
>>

"
@H

0

@�
(�Æ; �Æ) e�Æ(S)�1@H

@�
0 (�

Æ
; �
Æ)

#�1
;

and then sinceWS

�e�Æ(S)�1� =
"
@H

0

@�
(�Æ; �Æ) e�Æ(S)�1@H

@�
0 (�

Æ
; �
Æ)

#�1
, we thus prove the result of propo-

sition 4:5.

We �rst de�ne:
A = �e�Æ(S)�;
B = A

1

2

@H

@�
0 (�

Æ
; �
Æ) ;

P =
@H

0

@�
(�Æ; �Æ) �

@H

@�
0 (�

Æ
; �
Æ) �

We know that:
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Ir �B (B0B)
�1
B
0
>> 0;

=) A
�1

>> A
� 1

2B (B0B)
�1
B
0
A
� 1

2 ;

=) A
�1

>>
@H

@�
0 (�

Æ
; �
Æ)

"
@H

0

@�
(�Æ; �Æ)A

@H

@�
0 (�

Æ
; �
Æ)

#�1
@H

0
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(�Æ; �Æ) ;

=) ��1 e�Æ(S)�1��1 � @H

@�
0 (�

Æ
; �
Æ)

"
@H

0
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@�
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Æ
; �
Æ)

#�1
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0
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=) @H
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8<:��1 e�Æ(S)�1��1 � @H

@�
0 (�

Æ
; �
Æ)

"
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@�
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Æ)

#�1
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Æ) >> P
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Æ)

#�1
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"
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(�Æ; �Æ) e�Æ(S)�1@H
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Æ
; �
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#�1
<< P

�1@H
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@�
(�Æ; �Æ)�e�Æ(S)�@H
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0 (�

Æ
; �
Æ)P�1�

A.4.3. Proof of Lemma 4:1:

Lemma 4.1:

Let fWn; n 2 INg a decreasing sequence of non negative (symmetric) matrices with respect to the partial

order << over the square symmetric matrices set of order r, then there exists a unique symmetric non

negative matrix W � such that lim
n!+1

Wn =W
�.36

Proof : Indeed, since fWn; n 2 INg is decreasing with respect to <<, we have:

8n 2 IN; Wn << WÆ;

() 8n 2 IN; Sp (Wn) � Sp (WÆ) ;

=) 8n 2 IN; kWnk1 � kWÆk1 ;

where kWk1 = Sup
i=1;:::;r

j�ij.
We now consider M = fW 2Mr (IR) = kWnk1 � kWÆk1g and where Mr (IR) is the vectorial space of

symmetric matrices. M is a compact subspace of Mr (IR) and fWn; n 2 INg 2 M . Then, we just need

to show that card fV (Wn)g � 1.

Let '1 and '2 two increasing functions from IN onto IN, lim
n!+1

'1(n) = lim
n!+1

'2(n) = +1 and such

36The norm is any norm on IR
r(r+1)

2 since in �nite dimension, all norms are equivalent. We will focus here on kWk
1
=

Sup

i=1;:::;r

j�ij, where f�i; i = 1; : : : ; rg correspond to the spectra of W.
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that there exist W �
'1

and W �
'2

such that:

lim
n!+1

W'1(n) =W
�
'1
;

lim
n!+1

W'2(n) =W
�
'2
�

We show that W �
'1

=W
�
'2

and this ends the proof of lemma 4:1.

8" > 0; 9 nÆ= 8 n � nÆ;




W'1(n) �W �
'1





1
< ";




W'2(n) �W �
'2





1
< "�

We have W �
'i
<< W'i(n); i = 1; 2 for n 2 IN, since Sp

n
W'i(n)

o
; i = 1; 2 is a decreasing subsequence

of IR+
r. Let now for each n 2 IN there exists n0 2 IN= '1(n

0) > '2(n) (since '1(n) is increasing and

lim
n!+1

'1(n) = +1). Since fWn; n 2 INg is decreasing with respect to <<, we have W'1(n0) << W'2(n).

We also know that W �
'1
<< W'1(n0), therefore:

=) W
�
'1
<< W'2(n); for n 2 IN;

=) W
�
'1
<< W

�
'2
;

again this is just a consequence of the limit of the spectra of W'2(n) �W
�
'1
.

Using exactly the same tricks and because of the symmetry in the proofs, we also have:

W
�
'2
<< W

�
'1
;

=) W
�
'1

=W
�
'2
�

A.4.4. Proof of the eÆciency bounds properties:

� We now show that the eÆciency bound in the direction of 	 does not depend on the sequence

f�n; n 2 INg. Let f�n; n 2 INg and f�n; n 2 INg two decreasing sequences such that lim
n!+1

�n =

lim
n!+1

�n = 0. We denote B� (A;�;	; �) and B
� (A;�;	; �) the two associated eÆciency bounds and

we show that B� (A;�;	; �) = B
� (A;�;	; �).

Indeed:

B
� (A;�;	; �) = lim

n!+1
W

�
A; e�(�;	; �n) ; e�(�;	; �n)

�1
�
;

B
� (A;�;	; �) = lim

n!+1
W

�
A; e�(�;	; �n) ; e�(�;	; �n)

�1
�
;

W

�
A; e�(�;	; �n) ; e�(�;	; �n)

�1
�
=
h
A
0 e�(�;	; �n)

�1
A

i�1
;

W

�
A; e�(�;	; �n) ; e�(�;	; �n)

�1
�
=
h
A
0 e�(�;	; �n)

�1
A

i�1
�

8 n 2 IN 9 '(n) 2 IN= �'(n) < �n. Therefore 8 n 2 IN; e���;	; �'(n)� << e�(�;	; �n).

=) 8 n 2 IN; W

�
A; e���;	; �'(n)� ; e���;	; �'(n)��1� << W

�
A; e�(�;	; �n) ; e�(�;	; �n)

�1
�
�
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We thus obtain at the limit or equivalently by analyzing the spectra that:

lim
n!+1

W

�
A; e���;	; �'(n)� ; e���;	; �'(n)��1� << lim

n!+1
W

�
A; e�(�;	; �n) ; e�(�;	; �n)

�1
�
;

=) B
� (A;�;	; �) << B

� (A;�;	; �) �

Symmetrically it is easy to prove that: B� (A;�;	; �) << B
� (A;�;	; �) and therefore B� (A;�;	; �) =

B
� (A;�;	; �).

� We now show that B� (A;�; �	) = B
� (A;�;	) for all � > 0. Indeed endowed with the previous no-

tations we have B� (A;�; �	) = B
� (A;�;	; �), with �n = ��n, therefore the result is straightforward.

� Let now 	1 and 	2 two non negative (symmetric) matrices. Suppose that B
� (A;�;	1) <<

B
� (A;�;	2) and where the inequality is a strict one. Then 8 � > 0; � > 0 B

� (A;�; �	1) <<

B
� (A;�; �	2) since B

� (A;�; �	) = B
� (A;�;	). This implies that:

9 nÆ= 8 n � nÆ; 8 � > 0; � > 0;

W

�
A; e�(�; �	1; �n) ; e�(�; �	1; �n)

�1
�
<< W

�
A; e�(�; �	2; �n) ; e�(�; �	2; �n)

�1
�
�

It is crucial to note that this is only true because B� (A;�;	1) << B
� (A;�;	2) with a strict inequality.

Therefore:

9 nÆ= 8 n � nÆ; 8 � > 0; � > 0;
h
A
0 e�(�; �	1; �n)

�1
A

i�1
<<

h
A
0 e�(�; �	2; �n)

�1
A

i�1
;

=) 9 nÆ= 8 n � nÆ; 8 � > 0; � > 0; e�(�; �	1; �n) << e�(�; �	2; �n) ;

=) 9 nÆ= 8 n � nÆ; 8 � > 0; � > 0; �	1 << �	2;

=) 8 � > 0; � > 0; �	1 << �	2;

=) 	1 = 0;

which is ruled out here.

Therefore we cannot have B� (A;�;	�i) << B
� (A;�;	i) ; i = 1; or 2; and where the inequality is

strict. Consequently for all 	1 and 	2 non negative matrices either B� (A;�;	1) = B
� (A;�;	2) or

B
� (A;�;	1) and B

� (A;�;	2) are not comparable.

We now assume that there exist �1 > 0 and �2 > 0 such that �1	2 << 	1 << �2	2 then B
� (A;�;	1) =

B
� (A;�;	2). Indeed:

�1	2 << 	1;

=) B
� (A;�; �	2) << B

� (A;�;	1) ;

=) B
� (A;�;	2) << B

� (A;�;	1) �
For exactly the same arguments, we have B� (A;�;	1) << B

� (A;�;	2) and therefore B� (A;�;	1) =

B
� (A;�;	2).

A.5. Proof of proposition 5:1:

�
SALS
TS =

"
1

S

p
T

SX
s=1

eHT

�eys
T
(b�SALS�TS ; z

s
Æ); xT ;

b�T�
#0 b��T

"
1

S

SX
s=1

p
T eHT

�eys
T
(b�SALS�TS ; z

s
Æ); xT ;

b�T�
#
;
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where �Æ lim
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Q is the orthogonal projector on the orthogonal space spanned by the columns of e�Æ(S)� 1

2
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@�
0 (�

Æ
; �
Æ).

Thus we have:
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this proves the result of proposition 5:1.

A.6. Proof of proposition 5:2:

We start with the statistics �iTS; i = 2; 3; 4:
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The expansion of bAi
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The �rst order conditions are:
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Expanding the latter expression around the point �Æ, we have:
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Using the same kind of expansions we have:
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Indeed it is easy to show that the three estimators are asymptotically equivalent and that their asymptotic

expansion corresponds to the latter one. Here we have privileged the GII expression which is actually

the common one by virtue of asymptotic equivalence.
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Plugging the di�erent relations into the expression of
p
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N (0; Iq), this ends the proof of proposition 5:2.
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