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Abstract 
 

 
In this paper we introduce a transformation of the Edgeworth-Sargan series 
expansion of the Gaussian distribution, that we call Positive Edgeworth-Sargan 
(PES). The main advantage of this new density is that it is well defined for all values 
in the parameter space, as well as it integrates up to one. We include an illustrative 
empirical application to compare its performance with other distributions, including 
the Gaussian and the Student’s t, to forecast the full density of daily exchange-rate 
returns by using graphical procedures. Our results show that the proposed function 
outperforms the other two models for density forecasting, then providing more 
reliable value-at-risk forecasts. 
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1 Introduction

In the last years, it seems to have achieved a consensus in the financial
econometrics literature on the greater convenience to evaluate the ability of
models for forecasting down-side risk in terms of the full forecasted density
rather than in terms of point or interval forecasts. Specifically because the
latter depend on the election of a proxy for the unobservable “true” value
of the target variable, which may be either very costly to obtain —as in the
case of the realised volatility, or very noisy —as in the case of the squared
or absolute residual; see Andersen and Bollerslev (1998) and Hansen and
Lunde (2003), among others. Thus, the evaluation of models according
to their accuracy for density forecasting —estimation of the full probability
distribution of the random variable, based on the methodology in Rosenblatt
(1952) can provide more reliable results.

The problem of fitting the probability distribution of financial asset
returns has been widely addressed in the literature by using different families
of probability densities, including: a) parametric estimation: e.g. the
Student’s t (Bollerslev, 1987), the Normal Gaussian and mixtures of Normals
(Hamilton, 1991), the Pareto Stable (Mittnik and Rachev, 1993), the
Generalised Beta (McDonald and Xu, 1995), the skewed Student’s t (Harvey
and Siddique, 1999; Lambert and Laurent, 2001), the GED (León and Mora,
1999), and the Pearson type IV distribution (Premaratne and Bera, 2001),
among others; b) non-parametric estimation (Engle and Gonzalez-Rivera,
1991) and, c) semi-non-parametric estimation: e.g. the Edgeworth-Sargan
(hereafter ES) (Sargan, 1976; Gallant and Tauchen, 1989; Mauleón, 1997;
and Mauleón and Perote, 2000). A common characteristic of all these
approaches is that they can account for the well-known thick tails feature
of financial data.

However, it is a well-known fact that a better fit does not guarantee
more accurate predictions (see e.g. Nelson, 1976). Furthermore, from a
practical perspective, the out-of-sample performance of a model is of greater
concern in the financial markets, e.g. for policy makers or risk managers of
financial institutions, who are due to decide on the model (among hundreds of
alternatives) used to build the risk predictions of their investment portfolios,
on which to update their decisions on capital allocation.

On the other hand, there also are many papers in the literature that deal
with forecasting market risk, in which, usually, some or various distributions,
able to capture leptokurtosis, are assumed for the returns and evaluated
according to their performance; see e.g. Mittnik and Paolella (2000), Giot
and Laurent (2003, 2004), and Ñíguez (2003, 2004). It is worth noting that,
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the ES density has been much less used, despite its proven flexibility for
fitting the thick tails of financial return distributions; some examples include
Perote and Del Brío (2003), and Baixaulí and Alvarez (2003) for value-at-risk
(VaR hereafter) forecasting; and Mauleón (1998), and Bao et al. (2004) for
density forecasting.

The main purpose of this study is to compare the out-of-sample density
forecasting performance of a transformation of the ES distribution that
we call Positive Edgeworth-Sargan (hereafter PES), with other densities,
most notably the Student’s t. This is because both functions can capture
leptokurtosis; possibly the main feature of financial returns distributions.
This new formulation is really a density because cannot take negative
values, overcoming the well-known shortcoming of the ES distribution, and
integrates up to one.

After a preliminary comparison of the models according to their
performance for volatility forecasting by using loss functions, we evaluate
density forecasts considering graphical procedures, including: the probability
integral transformation in Diebold et al. (1998) and the p-value and p-value
discrepancy plots in Davidson and MacKinnon (1998); see also Crnkovic and
Drachman (1997); Diebold et al. (1999), Granger (1999a, 1999b), Granger
and Pesaran (1999a, 1999b), Berkowitz (2001), Raaij and Raunig (2002) and
Bao et al. (2004), among others, for alternative procedures on evaluating
density forecasts; and Tay and Wallis (2000) for a complete survey on density
forecasting.

The remainder of the paper proceeds as follows. Section 2 introduces
our proposed PES probability distribution. Section 3 lays out the setting for
the evaluation of the density forecasts. Finally, we present an illustrative
empirical application, including VaR calculations, to exchange-rate (FX
hereafter) returns in Section 4, followed by our conclusions.

2 The Positive Edgeworth-Sargan density

In this section we introduce the PES probability distribution. It is a
reparameterised transformation of the ES density to guarantee positivity for
all values of its parameters.1 The family of ES densities is generally defined
in terms of the derivatives of the standard normal, g(x), (Eq. (1)); or more
usually in terms, directly, of weighted sums of s order Hermite polynomials,

1Note that the so-called ES density is only a real density for a subset of the parameter
space.
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Hs(x) (Eq. (2)),2

dsg(x)

dxs
= (−1)sHs(x)g(x), (1)

Hs(x) = xs − s!

2(s− 2)!x
s−2 +

s!

222!(s− 4)!x
s−4 − ..., s = 1, 2, ... (2)

These Hermite polynomials satisfy interesting theoretical properties that
allow to define density functions in terms of their weighted sums. In
particular, the Hs(x) are orthogonal with respect to the scalar product
weighted with the normal density (Eq. (3)). Moreover, when considering
the squared polynomials the corresponding integral is s! (Eq. (4)). On the
other hand, the derivatives of the Gaussian distribution vanish as the variable
tends to infinitive (Eqs. (5)), whilst the derivatives ofHs(x) can be expressed
in terms of the lower order polynomials (Eq. (6)),3Z

Hs(x)Hj(x)g(x)dx = 0 ∀s ≥ 0, ∀j ≥ 0 and s 6= j; (3)

Z
Hs(x)

2g(x)dx = s!, ∀s ≥ 0; (4)

Hs(x)g(x) →
x→±∞

0, ∀s ≥ 0; (5)

dHs(x)

dxs
= sHs−1(x), ∀s ≥ 1. (6)

Given these properties, it is shown, fairly easily, that the standard ES
distribution (defined in Eq. (7)) integrates up to one, and its moments are
directly related to the density parameters, δs; see Mauleón and Perote (2000)
for further details on this density.

h(x) =

"
1 +

qX
s=1

δsHs(x)

#
g(x). (7)

Nevertheless, as we have mentioned above this distribution is not strictly
a density since positive definiteness is not guaranteed.

2The Hermite expansions are based on Gram-Charlier (1905) or Edgeworth (1907)
series.

3See Kendall and Stuart (1977) for further details on these theoretical properties.
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On the other hand, ensuring positivity is of crucial importance from an
applied perspective, since evaluating out-of-sample forecasting performance
requires estimation stability through long samples which may have extreme
values or structural changes, as e.g. asset returns data. Consequently,
there are different papers in the literature that try to give a solution to
this still unsolved problem; e.g. Mauleón and Perote (2000) emphasised
on the optimization procedure, Jondeau and Rockinger (2001) focused on
parameter constraints, and León et al. (2004) on reformulations based on
the methodology of Gallant and Tauchen (1989).4 In this paper we adopt
the latter strategy to propose the standard PES density,5 which is defined as
follows,

f(x,θ) =
1

w

"
1 +

qX
s=1

d2sHs(x)
2

#
g(x), (8)

where θ is a vector of parameters, θ =(d1, ...., dq), and w the constant that
makes the density to integrate up to one and is given by,

w =

Z "
1 +

qX
s=1

d2sHs(x)
2

#
g(x)dx = 1 +

qX
s=1

d2ss!. (9)

Note that this density is well defined for all values of the θ parametric
space and integrates up to one. Even more, its probability distribution
function can be also computed according to the Eq. (10) as a direct
application of the properties (3) to (6), see Proof 1 in the Appendix.

Z a

−∞

1

w

"
1 +

qX
s=1

d2sHs(x)
2

#
g(x)dx

=

Z a

−∞
g(x)dx+

g(a)

w

qX
s=1

s−1X
i=0

d2s
s!

(s− i)!
Hs−1(a)Hs−i−1(a). (10)

In Section 4, we carry out an empirical application to show that this
representation is more useful than other functions widely used in financial
econometrics (such as e.g. the Student’s t), to forecast the full density of
high-frequency asset returns .

4See also Barton and Dennis (1952) for the conditons under which Edgeworth
expansions are positive.

5Note that the standard PES as defined in Eq. (8), as the general ES density and
unlike the standard normal, has not unit variance.
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3 Evaluating density forecasts

This section sets up the framework for the evaluation of the models
according to their ability for density forecasting. Firstly, we use the
graphical procedures in Diebold et at. (1998) which are based on the
statistical properties of the probability integral transformations established
in Rosenblatt (1952). Secondly, the results are complemented by using the
graphical techniques proposed in Davidson and MacKinnon (DMc hereafter)
(1998), which are more powerful to discriminate among good performer
models.

Let but denote the residuals obtained by filtering the returns of
a financial asset, rt, which are assumed to follow an autoregressive
moving average (ARMA) process whose disturbances, ut, are distributed
according to either a standardised PES or a standardised Student’s
t (Bollerslev, 1987) distribution, with conditional variance following a
generalised autoregressive conditional heteroskedastic (GARCH) process.
Note that by the standardised PES we denote the density of ut = xt

√
ht

where xt is a variable whose density is given in Eq. (8). Moreover, we
truncate the density in the eight order Hermite polynomial and constrain to
zero all odd parameters.6 Therefore, the whole conditional density of ut is
modelled as shown either in Eqs. (11), (13), (14) and (15) for the PES case;
or in Eqs. (12), (14) and (16) for the Student’s t case,7

ut/Ωt−1 ∼ PES(0, σ2t ); (11)

ut/Ωt−1 ∼ tν(0, ht); (12)

σ2t = kht = kα0 + kα1u
2
t−1 + α2kht−1 = α∗0 + α∗1u

2
t−1 + α2σ

2
t−1; (13)

ht = α0 + α1u
2
t−1 + α2ht−1; (14)

6Hereafter, for the sake of simplicity, when we mention the PES distribution we refer
to this particular PES density which is defined in Eq. (15).

7We also consider the case of the normal distribution, ut/Ωt−1 ∼ N(0, ht), which is
nested on the PES when ds = 0 ∀s, as baseline model.
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f1t (ut,θ) =

·
1 +

P
s

d2sHs

³
ut√
ht

´2¸
·
1 +

P
s

d2ss!

¸√
2πht

e−
1
2

u2t
ht , s = 2, 4, 6, 8; (15)

f2t (ut,ϑ) =
Γ
¡
ν+1
2

¢
Γ
¡
ν
2

¢p
π(ν − 2)ht

·
1 +

u2t
(v − 2)ht

¸−n+1
2

, (16)

where Ωt−1 denotes the information set available at time t − 1, θ and ϑ
are finite-dimension unknown parameter vectors, and k is the variance of a
variable distributed as the standard PES (see Eq. (8)) constrained to ds = 0
for all s 6= 2, 4, 6, 8, which is given by,

k =
1 + 10d22 + 216d

2
4 + 9360d

2
6 + 685440d

2
8

1 + 2d22 + 24d
2
4 + 720d

2
6 + 40320d

2
8

(17)

(see Proof 2 in the Appendix).8

It is worth mentioning that we based on the results in Perote (1999), and
Mauleón and Perote (2000) to define the PES density, since they show that
for many asset return series, the odd parameters in the ES function were not
statistically significant, providing the resulting density a quite parsimonious
description of their full thick-tailed distributions. On the other hand, it is
also important to mention that a better performance could be achieved by
considering ES densities with conditional higher moments (see e.g. Harvey
and Siddique, 1999; Brooks et al., 2002; and León et al., 2004) although we
found that in that case guaranteeing positive definiteness turned out to be
elusive, remaining this issue as very interesting for future research.

The predictive accuracy of these two models, as well as the N(0, ht),
are compared according to the graphical methods proposed by Diebold et al.
(1998) and DMc (1998). These methododologies are based on the cumulative

distribution functions (c.d.f.),
nbF i

t (but)oT+N
t=T+1

i = 1, 2, evaluated at any given

realization of the variable but, of a sequence of density forecasts nbf it (ut)oT+N
t=T+1

,

i = 1, 2 —see Eqs. (15) and (16). Thus, the method focuses on calculating
the probability integral transform, pt, of the realization of the process taken
with respect to the density forecast; see Eq. (18),

8Note that the stationarity conditions of the conditional variance process in Eq. (13)
are different from the ones of the GARCH(1,1) in Eq. (14).
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pit = bF i
t (but) = Z but

−∞
bf it (ut)dut. (18)

If f it (ut) is correctly specified then the probability integral transform series
associated with the density f it (ut), denoted as {pit}T+Nt=T+1, are distributed as
i.i.d. U(0, 1), so its histogram should reflect that fact. Even more, the null
hypothesis of i.i.d. U(0, 1) can be tested by computing a confidence interval
for every histogram bin (taking into account its binomial structure). In
addition, the potentially linear and non-linear forms of time dependence of
pit may also be analysed by plotting the empirical correlograms of the series
(pit − pi)j, j = 1, 2, 3, 4, as suggested by Diebold et al. (1998). Note that
detected dependence in the powers of (pit−p)may reflect conditional moments
misspecification. Moreover the reinterpretation of this graphical method in
terms of the p-value plots and p-value discrepancy plots proposed by DMc
(1998),9 is useful since pit is the p-value corresponding to the quantile but of the
forecasted density. Therefore, to determine to what extent one specification
perform better than another across every quantile the empirical cumulative
distribution of pit may also be plotted and under the correct specification
the difference between the c.d.f. of pit and the 45

0 line should tend to zero
asymptotically. In particular, the empirical distribution function of pit can
be easily computed as

bP i
pit
(yi) =

1

N

NX
t=1

I(pit ≤ ym), (19)

where I(pit ≤ ym) is an indicator function that takes the value 1 if its
argument is true and 0 otherwise, and ym is an arbitrary grid of m points.10

Alternatively, the p-value discrepancy plot (i.e. plotting bP i
pit
(ym)−ym against

ym) is more revealing when it is necessary to discriminate between alternative
specifications that perform similarly in terms of the p-value plot (see e.g.
Fiorentini et al., 2003). Note that, under correct density specification, the
variable bP i

pit
(ym)− ym must converge to zero.

9Note that DMc (1998) used the method to compare the size and power of hypothesis
tests, while following Fiorentini et al. (2003) we use it to discriminate among alternative
models according to their performance for forecasting the full density of the asset returns.
10We use the following M points grid, ym =

0.001, 0.002, ..., 0.01, 0.015, ..., 0.99, 0.991, ..., 0.999 (M = 215), since it highlights the
goodness-of-fit in the distribution tails.
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4 Empirical application

4.1 Data and inference

The data set consists of continuously compounded daily returns in percentage
of an equally-weighted portfolio based on five major currencies, including: the
Deutsche mark (DEM), the Japanese yen (JPY), the British pound (GBP),
the Swiss franc (SWF) and the Swedish krona (SDK) from January 4, 1983 to
December 17, 2001, for a total of 4, 882 observations, depicted in Figure 4.1.
Descriptive statistics for the portfolio returns, rt, are presented in Figure
4.2, which show that their unconditional distribution is not Normal (the
null of the Jarque-Bera test is rejected at the 0 per cent level), and clearly
leptokurtic (the sample kurtosis is much greater than 3), what justify the
assumption of fat-tailed distributions.

- 4

- 3

- 2

- 1

0

1

2

3

8 4 8 6 8 8 9 0 9 2 9 4 9 6 9 8 0 0

Figure 1: Equally weighted portfolio daily returns series, rt. In-sample
4/01/1983 - 8/18/1986 (observations 882). Out-of-sample 8/11/1986 -

12/17/2001 (observations 4,000).

0

200

400
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800

1000

1200

-3 -2 -1 0 1 2

Series: RT
Sample 4/01/1983 12/17/2001
Observations 4882

Mean      -0.002029
Median   0.013916
Maximum  2.632975
Minimum -3.734626
Std. Dev.   0.565918
Skewness  -0.158940
Kurtosis   4.966794

Jarque-Bera  807.4270
Probability  0.000000

Figure 2: Statistical information of daily portfolio returns.
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The empirical analysis is outlined as follows: The estimation procedure
is performed in two stages: (i) Firstly, the rt series is filtered by using an
AR(1) process, estimated by OLS and selected according to the Information
Criterion of Akaike (AIC), (Akaike, 1973). The resulting series of residuals,but, is split into the in-sample period, which covers the first T= 882

observations, and the out-of-sample period, which includes the last N= 4, 000
observations; (ii) the in-sample but series is then used as the input for the
estimation of the models parameters.11 Then, stage (ii) is repeated N times,
taking a rolling window of size T.

As for the estimation technique, all parameters are estimated by the
quasi-maximum lilkelihood (QML) procedure, which provides consistent and
asymptotically normal estimates for the three models,12 and robust standard
errors according to the methodology of White (1982) and Weiss (1986). It
is worth noting that the sign of the residuals does not affect the parameter
estimation process neither through the conditional variance nor the logarithm
of the likelihood function.

The in-sample performance of the models is measured by using the mean
of the AICs obtained through the N estimations.

Table 1 shows the models estimation results. We observe the usual small
structure in the conditional mean of rt; the slope is statistically significant
although the coefficient for the unconditional mean, i.e. φ0, is not statistically
different from 0. It is worth pointing out that the three models provide similar
significant estimates of the conditional variance equation. The sum of the
estimates of either α1 (or α∗1 in the PES model) and α2 is near 0.98 in all cases
indicating covariance stationarity and strong persistence in the conditional
variance.13

It is interesting to note that although the three models provide a very
similar estimation of the dynamics of the conditional variance, it is observed
a slight difference betwen the estimates of the variance equation from the
Gaussian model and the ones obtained when the thick-tailed distributions
are assumed. Thus, there are changes in the magnitude of bα1, bα∗1, and bα2
with respect to the Gaussian model, although their sums (i.e. bα1+bα2 for the
11The AIC is calculated as 2 ∗ (n−lnL)/T, where n denotes the number of model

parameters, and lnL the value of the likelihhod function in the parameter estimates.
12Note that the first and second moments are well defined for all models.
13The estimates of k, bα∗0 and bα∗1 are: 1.25033, 0.00493 and 0.05616, respectively.
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Gaussian and the Student’s t, and bα∗1 + bα2 for the PES) remain unchanged.
In relation to the fit of the distribution tails, we can see that the

estimated degrees of freedom, bν, is around 10, even after correcting for
volatility clustering. It is also found that the estimation of the Hermite
polynomial weights in the PES distribution (with only the coefficient d6 not
statistically significant) corroborates the existence of leptokurtosis in the
returns conditional distribution.

It is worth mentioning that although d6 is not significant for the first in-
sample window (4/01/1983 - 8/10/1986), we detect that all four d coefficients
are significant for many in-sample windows through the out-sample period,
what points out that those sample present more extreme values, showing
the model itself flexible enough to capture the higher kurtosis of those
distributions. This fact would justify the inclusion of this parameter or
even others weighting higher order Hermite polynomials. It also proves the
great flexibility of the PES density to fit the tails in the density, in what
constitutes the main difference from the Student’s t distribution, all even for
the small size of the in-sample window used in this application. Moreover,
the optimization of the likelihood function based on the PES density function
do not present convergence difficulties even for initial values far away for the
optimum, overcoming the usual convergence problems presented by other ES
expansions of the normal density proposed in the literature.

In relation to the overall in-sample goodness-of-fit (N estimations), we
observe that according to the mean of the AICs, the Student’s t and the
PES models provide a very similar fit, being the one of the former slightly
better and both clearly outperforming the one provided by the Gaussian
model. Note that the fact of that either d6 or d8, or both, are not significant
for some in-sample windows, may lead to misleading conclusions regarding
the in-sample goodness-of-fit according to the AIC. Observe that, from a
practical perspective, if one/some estimates are found to be not significant
they may be ruled out, and re-estimate the model without it/them, what
may change the magnitude of the AIC in favour of the PES model. This
flexibility is one the advantages of the ES-type distributions in relation to
the Student’s t.

Next, we measure the forecasting ability of the models for density and
VaR forecasting. The aim is to shed light on the appropriateness of the three
distributions for practical risk management applications.
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Table 1: Estimation results.

Mean Equation: rt = φ0 + φ1rt−1 + ut; ut = h
1/2
t xt; ut/Ωt−1 ∼ N(0, ht);

ut/Ωt−1 ∼ tν(0, ht); ut/Ωt−1 ∼ PES(0, σ2t );
Variance Equations: ht = α0 + α1u

2
t−1 + α2ht−1;

σ2t = kht = α∗0 + α∗1u2t−1 + α2σ
2
t−1.

Parameters Gaussian Student’s t PES

Mean
equation

φ0
-0.0019
(-0.23)

-0.0019
(-0.23)

-0.0019
(-0.23)

φ1
0.0394
(2.75)

0.0394
(2.75)

0.0394
(2.75)

Variance
equation

α0
0.0052
(1.96)

0.0047
(1.76)

0.0039
(1.78)

α1
0.0642
(4.28)

0.0574
(3.81)

0.0449
(3.83)

α2
0.9227
(50.51)

0.9302
(52.06)

0.9309
(53.62)

Weights d2 - -
0.1499
(3.34)

d4 - -
0.0161
(1.67)

d6 - -
0.0000
(0.00)

d8 - -
-0.0002
(-1.80)

DoF ν -
10.173
(3.24)

-

AIC 1.6557 1.6154 1.6184

The Table presents the models estimation results. The reported coefficients shown
in the first two rows of the table are OLS estimates of the AR(1) process for the
percentage daily returns from January 4, 1983 to December 17, 2001, of an equally-
weighted portfolio based on five currencies, including: the Deutsche mark (DEM),
the Japanese yen (JPY), the British pound (GBP), the Swiss franc (SWF) and
the Swedish krona (SDK). The coefficients shown in the rest rows of the table are
QML estimates of the GARCH(1,1) model under the Gaussian, the Student’s t or
the PES distribution for the AR(1) in-sample residuals, 4/01/1983 - 8/10/1986.
ds, s = 2, 4, 6, 8, denotes the weight parameter of the order s Hermite polynomial
in the PES distribution. DoF denotes degrees of freedom, and AIC is the mean of
the AICs of the N estimations through the whole out-of-sample period. See Eq.
(17) for the function of k on the ds. QML t-statistics are in parenthesis below the
parameter estimates.

11



4.2 Forecasting analysis

The out-of-sample forecasting performance is analysed preliminarily for the
conditional volatility variable, by using the usual symmetric loss functions,
i.e. the mean squared prediction error (MSPE) and the mean absolute
prediction error (MAPE), with respect to the squared residuals, bu2t+i, i =
1, ...,N. To conclude this preliminary part, the significativity of the difference
between the loss functions is checked by performing the test of Diebold and
Mariano [DM] (1995). This test assumes no differences between the loss-
functions of two alternative models under the null hypothesis. The test

statistic is DMs = y/
q
2πbϕy (ω = 0) /N, where y is the sample mean of the

differences in the forecasting errors, and bϕy (ω = 0) is the spectral density
function of the forecasting error differences evaluated at the zero frequency
(long run variance). This statistic is asymptotically distributed as a standard
normal under the null. We compute bϕy (ω = 0) using the heteroskedasticity
and autocorrelation consistent estimator of Newey and West (1987).14

Table 2 shows the values of the loss functions and their corresponding
DM’s test t statistics. The “best” to “worst” performance models ranking
in relation to the prediction error functions is: Gaussian, PES and Student’s
t. However, the null of the DM’s test is accepted in all cases except for the
case of the MAPE from the Student’s t and PES models. As a conclusion,
we find that the three models provide, overall, the same performance, being
very difficult to discriminate among them, in accordance to their similarity
in the estimation conditional variance dynamics.

We note that this result might seem counterintuitive since one would, a
priory, expect significant differences between the forecasting capacity of the
PES and the Student’s t models in relation to the Gaussian. A possible
explanation for that, is that the daily squared residuals constitute very noisy
proxies for the “true” volatility, so its use may give misleading results; see
e.g. Andersen and Bollerslev (1998), and Andersen et al. (2001). This
fact has led to the development of alternative techniques for providing
more reliable evaluations of volatility models, including the aforementioned
graphical procedures.

Thus, it seems that the higher flexibility of the Student’s t and PES
distributions would help only to forecast measures related to the distribution
tails of the variable. As mentioned in the introduction, one of the reasons
for using these densities is because they are capable of capturing the

14Note that as the forecast horizon is one period ahead, the Newey and West estimator
of bϕy(ω = 0) is given by the sample variance.
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Table 2: Out-of-sample volatility forecasting performance.

Gaussian Student’s t PES
MSPE 0.3373 (-0.049)† 0.3384 (0.003)∗ 0.3383 (-0.046)∗∗

MAPE 0.3305 (-0.265)† 0.3353 (0.202)∗ 0.3311 (-0.030)∗∗

Out-of-sample volatility forecasting performance. Sample 8/11/1988 - 12/17/2001.
Predictions 4,000. The table reports the mean squared prediction error (MSPE)
and mean absolute prediction error (MAPE), for one-period ahead forecasts of the
conditional variance.
† Denotes t-statistics of the DM’s test for the significativity of the difference
between the loss functions from the Gaussian and Student’s t models.
∗ Denotes t-statistics of the DM’s test for the significativity of the difference
between the loss functions from the Student’s t and PES models.
∗∗ Denotes t-statistics of the DM’s test for the significativity of the difference
between the loss functions from the Gaussian and PES models.

leptokurtosis shown by the data, what is crucial when computing the
quantiles of the one-period-ahead predictive distributions of portfolio returns
required in VaR calculations. To determine to what extent the PES is
more useful than the Student’s t (and the Normal) we have calculated the
probability integral transform, pt, of ut with respect to density forecasts
produced under the assumptions of that ut is conditionally distributed either
as a PES, Student’s t or Normal, whose conditional variances are modelled
to follow a GARCH(1,1) process. Thus, if the model is correctly specified, pt
should be uniformly distributed, pt ∼ U(0, 1).

Figures 3a, 4a and 5a provide estimates of the density of pt under
the different distributional assumptions. The figures show that there is a
significant difference between the performance of the PES and Student’s
t models and the Gaussian, the latter providing clearly the least accurate
density forecasts (as revealed by the butterfly shape of its histogram), and
the PES distribution showing itself as the most appropriate for forecasting
the full density of the portfolio. Observe that for the 5 per cent confidence
levels shown in the tables, the PES model provides the histogram of pt that
better adjust to the one of a uniformly distributed variable, since it remains
within the corresponding confidence interval bounds. Moreover, this analysis
is complemented with the study of the correlograms of the first four powers
of the series pt−p (displayed in Figures 3b, 4b and 5b) which reveal that the
conditional mean and variance processes adequately capture the moments
conditional dynamics.15

15Observe that in our case it would not be necessary to model conditional skewness and
kurtosis dynamics; see Harvey and Siddique (1999) and León et al. (2004) for details.
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Figure 3a: Estimates of the density of the probability integral transform of but
with respect to density forecasts obtained with the Gaussian model.
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Figure 3b: Panels (a) to (d) show autocorrelations of series (pt − p), (pt − p)2,
(pt − p)3, (pt − p)4 where pt is the probability integral transform of but with

respect to density forecasts obtained with the Gaussian model.
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Figure 4a: Estimates of the density of the probability integral transform of but
with respect to density forecasts obtained with the Student’s t model.
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Figure 4b: Panels (a) to (d) show autocorrelations of series (pt − p), (pt − p)2,
(pt − p)3, (pt − p)4 where pt is the probability integral transform of but with

respect to density forecasts obtained with the Student’s t model.
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Figure 5a: Estimates of the density of the probability integral transform of but
with respect to density forecasts obtained with the PES model.
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Figure 5b: Panels (a) to (d) show autocorrelations of series (pt − p), (pt − p)2,
(pt − p)3, (pt − p)4 where pt is the probability integral transform of but with

respect to density forecasts obtained with the PES model.

Furthermore, we use DMc’s (1998) p-value discrepancy plots to try to
discriminate better between the best performer models and complement
the former findings. Figures 6 and 7 show that the Gaussian distribution
performs much worst than the other two, but do not provide enough
information to allow us to chose between the Student’s t and the PES. So,
according to this criteria the PES and the Student’s t provide very similar
accurate forecasts of the full conditional distribution.
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Figure 6: P Value Plot of the empirical c.d.f. of the probability integral
transform of but obtained under the Gaussian, Student’s t and PES models.

Figure 7: P Value Discrepancy Plot of the empirical c.d.f. of the probability
integral transform of but obtained under the PES, Student’s t and Gaussian

models.

As a conclusion the graphical analysis show that it is difficult to decide on
the PES and the Student’s t as the most accurate distribution for forecasting
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the conditional density of the portfolio returns. They both seem to forecast
very well the full density including the shape of the tails, although given the
results in Figures 3 to 5 the PES would be slightly more appropriate.

Finally, we compute one-day-ahead VaR forecasts, denoted as[V aR
α

m,T+1,
under the different specifications, m, through the whole out-sample period,
for various confidence levels α = 0.1, 0.05, 0.025, 0.01. The aim of this
application is to comment further on the specific models differences in
forecasting the FX returns distribution tails, what may be of great interest
for financial risk practitioners. VaR forecasts are calculated as the 100 · α
order quantile of the one-day-ahead forecasted conditional distribution of the
returns when model m is assumed, so it is given by,

[V aR
.01

m,T+1 = bµT+1 − bh1/2m,T+1 · bδm,T+1, (20)

where bµT+1 and bh1/2m,T+1 are the forecasts of the conditional mean and
conditional standard deviation, respectively, of the distribution under model
m,16 and bδm,T+1 is the quantile of the forecasted standard distribution under
model m. The calculation of bδm,T+1 under either the Gaussian or the
Student’s t conditional distributions is quite straightforward; see e.g. Tsay
(2002). On the other hand when the PES is assumed, bδm,T+1 is given by the
upper limit of the integral in Eq. (10) for a given probability level α and for
s = 2, 4, 6, 8.

Table 3: Value-at-Risk forecasting.

Gaussian Student’s t PES
l1 l2 l1 l2 l1 l2

V aR
.1
s -0.8006 -0.6245 -0.7781 -0.6051 -0.7540 -0.5830

V aR
.05
s -1.0224 -0.8035 -1.0429 -0.8172 -1.0243 -0.7904

V aR
.025
s -1.2147 -0.9587 -1.3079 -1.0285 -1.2961 -1.0128

V aR
.01
s -1.4383 -1.1392 -1.6747 -1.3193 -1.6538 -1.3125

The table reports the means of the one-day-ahead VaR forecasts for the confidence
level α = 0.1, 0.05, 0.025, 0.01, denoted as V aR

α
, obtained with the different

models. The out-of-sample period is split into two equal subperiods, li, i = 1, 2,
and the means of the VaR forecasts are calculated for each li.

16It is worth mentioning that bµt+1 is obtained recursively through a T size rolling window
using the selected AR(1) process for rt, so it is given by: Et(rt+1) = bµt+1 = bφ0 + bφ1rt,
where Et(·) denotes the mathematical expectation conditional on all information avalaible
at time t.
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Figure 8: One-day-ahead VaR forecasts for 10, 5, 2.5 and 1 per cent confidence
levels obtained with the different models through the whole out-of-sample period

8/11/1986 - 12/17/2001 (forecasts 4,000).

Table 3 above reports the means of the one-day-ahead VaR forecasts
obtained with the different models. The out-of-sample period is split into
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two equal subperiods and the means of the VaR forecasts are calculated for
each of then and for the different confidence levels. It is found that the
portfolio risk (VaR in absolute value) forecast obtained under the Gaussian
distribution is greater than the one obtained under the other two distributions
only for α = 0.1. On the other hand, under the Student’s t distribution the
risk is over-forecasted in relation to the PES distribution for all confidence
levels. These results can also be observed in the plots of the VaR forecasts,
through the whole out-of-sample period presented in Figures 8.

5 Concluding remarks

The Edgeworth-Sargan (ES) density has been proved to fit accurately the
density of returns for most high-frequency financial variables, specifically
for its flexibility to describe the tails shape of leptokurtic distributions.
Nevertheless, it presents an important drawback because positivity is not
guaranteed for all values in the parametric space. When the ES is used for
fitting densities, it is a minor shortcoming, but in the density forecasting
context, it requires a further general solution.

In this paper we have tackled this problem by proposing a transformation
of the ES distribution that we call Positive Edgeworth-Sargan (PES). More
specifically, we study its statistical properties and provide an expression to
calculate its probability distribution function. In addition we examine its
practical applicability by discussing an empirical example for exchange-rates
returns.

Our results show that the PES distribution perform quite well in fitting
and forecasting the full conditional distribution of the portfolio returns in
relation to other widely used distributions in empirical finance, such as the
Student’s t and the Normal. The analysis was carried out by using the
graphical methods proposed in Diebold et al. (1998) and Davidson and
MacKinnon (1998). Furthermore, as one of the reasons for using the PES
distribution may be to calculate the quantiles of the forecasted distributions
of portfolio returns required in VaR analysis, and to determine to what
extent the PES is more useful than the Student’s t and the Normal, we have
computed 4,000 one-day-ahead VaR forecasts for the FX portfolio returns by
using the three distributions. The PES is found to provide less conservative
measures of downside risk in relation to the Student’s t distribution for all
confidence levels, and in relation to the Gaussian for 5, 2.5 and 1 per cent
levels.
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Appendix

This appendix includes the proofs of some interesting properties concerning
the PES density proposed in this paper.

Proof 1:
The proof provides an explicit form for the standard PES probability

distribution function in terms of the c.d.f. of the standard normal, g(x), as
follows
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where the integral
R
Hs(x)Hs(x)g(x)dx is solved by parts as indicated below,

Z
Hs(x)Hs(x)g(x)dx

= −Hs(x)Hs−1(x)g(x) +
Z

Hs−1(x)g(x)
dHs(x)

dx
dx

= −Hs(x)Hs−1(x)g(x) + s

Z
Hs−1(x)Hs−1(x)g(x)dx,

since,

Z
Hs(x)g(x)dx

=

Z
(−1)sd

s(x)

dxs
dx = (−1)sd

s−1(x)
dxs−1

= (−1)s(−1)s−1Hs−1(x)g(x) = −Hs−1(x)g(x).

21



Therefore, by repeating the same argument recursively we obtain,

Z
Hs(x)Hs(x)g(x)dx =

s−1X
i=0

s!

(s− i)!
Hs−1(x)Hs−i−1(x)g(x) +

Z
g (x) dx.

Proof 2:
The variance of the standard PES constrained to ds = 0 for all s 6=

2, 4, 6, 8, denoted by k, is given by,
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where E(·) is the unconditional mathematical expectation.17

17Note that if x ∼ N(0, 1) then µs = E [x
s] = s!

(s/2)!
1

2s/2
for all s even.
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