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Abstract 
 

We propose an easy to use derivative based two-step estimation procedure for semi-
parametric index models. In the first step various functionals involving the derivatives 
of the unknown function are estimated using nonparametric kernel estimators. The 
functionals used provide moment conditions for the parameters of interest, which are 
used in the second step within a method-of-moments framework to estimate the 
parameters of interest. The estimator is shown to be root N consistent and 
asymptotically normal. We extend the procedure to multiple equation models. Our 
identification conditions and estimation framework provide natural tests for the 
number of indices in the model. In addition we discuss tests of separability, additivity, 
and linearity of the influence of the indices. 
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1 Introduction

We consider the multiple index mean regression model

E(yjx) = H(xT�1; ::; xT�P ); (1)

with dependent variable y 2 RS and explanatory variables x 2 RL. H is an unknown, but

su¢ ciently smooth function, and B = (�1; :::; �P ) is the matrix containing all unknown

parameters. Many econometric models can be regarded this way. With y 2 R; the model

generalizes the usual linear regression model, but it also encompasses binary choice models,

disequilibrium models, duration models with competing risks and sample selection models.

In the more general case of y 2 RS; the model includes multivariate and multinomial choice

models, with y containing indicator functions for each possible alternative, and the sample

selection model with y containing the selection variable as well as an outcome variable.

Various root N consistent asymptotically normal estimators of B for the multiple index

model have been proposed, among others, by Ichimura and Lee (1991) for the case of y 2 R,

Lee (1995) for the multinomial choice model, and Picone and Butler (2000) for the y 2 RS

case.

Since the multiple index model provides a general and �exible modelling strategy, one

would expect to see numerous applications of the multiple index model given the existence

of these estimation methods. A simple explanation for the absence of these applications

could be that these advantages are o¤set by the computational complexity of the proposed

methods. Much of the computational burden arises from the non-parametric regressions

that have to be performed at each iteration in the optimization process for the objective

function. The advantage of our method is that it only involves a single nonparametric step:

computation of nonparametric estimates of various functionals involving the derivatives of

the unknown function. Another advantage of the proposed estimator is that it provides

a natural framework to test for the number of indices. This advances the literature on

semiparametric index models as the number of indices, so far, has been assumed known.

Lastly, our estimator provides for a simple test for the additivity and/or linearity of the

in�uence of an index formulated as simple parameter restrictions.
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While our exposition mainly focusses on the case of y 2 R; we extend our results to the

multiple equation setting. Unless indicated otherwise, our notation is therefore based on

y being a scalar variable.1 Let g(x) = E(yjx). The derivative of this unknown function,

g0(x); by application of the chain rule of di¤erentiation, is a weighted average of the true

coe¢ cients �p; p = 1; ::; P;

@g(x)

@x
=

PX
p=1

�
@H

@(xT�p)

�
�p: (2)

For single index models this property is su¢ cient to identify the parameters �up-to-scale�.

Properties of the average derivative estimator (henceforth ADE) are given by Powell, Stock

and Stoker (1989), Robinson (1989), Härdle and Stoker (1989) and Stoker (1991). For mul-

tiple index models the average derivative does not provide enough information to identify

�p; p = 1; ::; P �up-to-scale�unless the indices have no variables in common.

The estimator we propose uses a larger set of average derivative functionals to rem-

edy this identi�cation problem. Each of these average derivative functionals (e.g., E(g0);

E(g0g0T ); E(g00), or V ar(g0)) provides information on the parameters of interest. Consider,

for example, the average of the outer product of derivatives (gradient). It provides the

following (additional) moment conditions for the parameters of interest

E(g0(x)g0(x)T ) =
PX

p;q=1

E

�
@H

@(xT�p)

@H

@(xT�q)

�
�p�

T
q : (3)

By including a larger set of moment conditions, our estimator provides a more e¢ cient

estimate for single index models than the regular ADE. More important, though, is the

result that with these additional average derivative functionals the parameters in multiple

index models can be estimated as well.

We develop the asymptotic theory for the parameter estimates for B using the results of

Samarov (1993), which indicate that root N consistent, asymptotically normal, estimates

of a large set of average derivative functionals can be obtained by kernel regression meth-

1To clarify our use of notation, 0 denotes the derivative of a function with respect to its argument,

typically the vector x; 00 denotes the matrix of second order derivatives, and T denotes the transposed of a

matrix.
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ods. These average derivative functionals provide moment conditions for the parameters

of interest. We therefore incorporate Samarov�s results within the generalized methods of

moments framework (Newey and McFadden, 1994). We show that the parameter estimates

for B are root N consistent and asymptotically normal. This method of moments frame-

work facilitates the use of information from multiple equations, as it is straightforward to

combine the moment conditions that result from each equation. It also facilitates the use of

cross-equation restrictions, as the parameters in all equations are estimated simultaneously.

An important issue we address, preceding the estimation of the parameters, concerns

parameter identi�cation in semiparametric muliple index models. The traditional set of

identifying restrictions, see Ichimura and Lee (1991), are a combination of normalization

and exclusion restrictions. We allow for a more general set of identi�cation restrictions,

based on the idea that only the space spanned by the indices is identi�ed.2 We discuss

parameter identi�cation in detail articulating the identi�cation conditions in terms of the

parameters and the link function.

The identi�cation conditions reveal the equivalence of the number of indices in the

model and the rank of the outerproduct of the gradient. Consequently, existing tests on

the rank of a matrix (e.g. Cragg and Donald 1996, 1997, Robin and Smith, 2000) can

be used to test for the number of indices. This idea carries over to the multiple equation

setting, where the number of indices equals the rank of the sum of the outerproduct of

the gradient for each equation. Alternatively, restrictions on the number of indices can be

tested using overidentifying restrictions tests within the method of moments framework.

We note that the multiple index model is also treated in the statistics literature, where

it is interpreted as a regression-type model for dimension reduction that can be used to

overcome the �curse of dimensionality�(P is smaller than the dimension of X): Xia et al.

(2002) and Hristache et al. (2001) show that the e¤ective dimension reduction directions

can be estimated at the parametric root N rate. However, they do not develop the as-

ymptotic theory for the estimated parameters, nor do they provide a test on the number

2For related results, see the literature on factor models (Nunnally and Bernstein, 1994, and Philips,

1994), dimension reduction (Xia et al, 2002, and Li, 1991), and cointegration (Johansen, 1988).
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of indices.

The paper is organized as follows. In Section 2, we discuss root N consistent, asymptot-

ically normal nonparametric estimators of functionals of derivatives. In Section 3, we show

how these nonparametrically estimated functionals can be used within a GMM framework

to yield a root N consistent, asymptotically normal estimator for the parameters of interest.

In Section 4, we discuss testing procedures for the number of indices and provide testing

procedures for the separability, additivity and linearity of the in�uence of an index. In

addition to theoretical results, we illustrate the estimator�s usefulness in Section 5 with a

simulation study. In particular, we consider the estimation of the parameters in a multino-

mial choice model. Section 6 concludes. An Appendix contains the assumptions we make

to ensure root N consistency and asymptotic normality of the nonparametric estimators of

functionals of derivatives adapted from Samarov (1993).

2 Estimating average derivative functionals

Our initial aim is to obtain root N consistent estimates of average derivative functionals.

These average derivative functionals include, among numerous other possibilities, the aver-

age �rst order derivative (AD), the average hessian (AH) and the average outerproduct of

the gradient (AOPG). Other functionals can be used, where one can think of higher order

derivatives or higher order products of the �rst order derivatives. In this paper, we restrict

ourselves to the aforesaid set of average derivative functionals for two reasons. First, these

functionals guarantee identi�cation and are informative about most properties of H(�) that

are of interest, such as additivity, linearity and separability, see Samarov (1993). Second,

the conditions that need to be satis�ed to obtain root N consistent estimates of the addi-

tional quantities, in general, are stronger and include, for example, the use of higher order

kernels than currently required.

Before we discuss the asymptotic distribution of the joint set of moments we introduce

some notation. Let the observed data zi = (yi; x
T
i )
T i = 1; :::; N constitute a random

sample from a distribution with density f �(y; x); y is an endogenous variable and x is a L
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dimensional vector of explanatory variables. Let f(x) denote the marginal density of x; and

f 0(x) its derivative. Let G(x) denote the function
R
yf �(y; x)dy, then g(x) = G(x)=f(x):

The regression derivative, g0(x); can be expressed as

g0(x) =
G0(x)

f(x)
� G(x)f

0(x)

f(x)2
: (4)

Similarly an expression for the second order derivatives can be obtained. Estimates of

such derivatives can be obtained after estimation of its constituents, f(x); f 0(x); f 00(x);

G(x); G0(x); and G00(x):We use the Nadaraya-Watson leave-one-out kernel estimators given

by

f̂(xi) =
1

(N�1)hL
NP

j=1;j 6=i
K
�xi�xj

h

�
; f̂ 0(xi) =

1
(N�1)hL+1

NP
j=1;j 6=i

K 0 �xi�xj
h

�
;

f̂ 00(xi) =
1

(N�1)hL+2
NP

j=1;j 6=i
K 00 �xi�xj

h

�
; Ĝ(x) = 1

(N�1)hL
NP

j=1;j 6=i
K
�xi�xj

h

�
yj;

Ĝ0(xi) =
1

(N�1)hL+1
NP

j=1;j 6=i
K 0 �xi�xj

h

�
yj; Ĝ

00(xi) =
1

(N�1)hL+2
NP

j=1;j 6=i
K 00 �xi�xj

h

�
yj;

(5)

where K(�) is a kernel function, h is the bandwidth parameter and h! 0 as N !1:

To avoid very imprecise contributions to the average derivative functionals for obser-

vations with low densities we need to introduce some trimming. The need for this is

highlighted by the presence of an estimate of the density in the denominator of these func-

tionals. In our particular setting, the presence of this trimming function does not bias the

parameter estimates for B, it only a¤ects estimates of auxiliary parameters, denoted by �

in the sequel. While various trimming functions have been considered in the literature, for

the present purpose we have decided to apply the �xed trimming (or weighting) function

w(x); where w(x) is supported on a subset of the support of f(x) on which f(x) is bounded

away from 0. To deal meticulously with stochastic trimming3 would detract from the main

3Hardle ad Stoker (1989), amongst others, consider stochastic trimming on the basis of the density, say

wN (x) = 1(f(x) > bN ) where bN ! 0 (or a smoothed version thereof). This typically requires imposing

conditions, needed to ensure that the bias vanishes su¢ ciently fast in the tails of f(x), that are particularly

strong (see also Laverne and Vuong (1996) and Lewbel (1997)). Quantile trimming is considered by Lee

(1995), where the quantile is strictly bounded away from zero to account for the di¢ culty to control the

rate of divergence of 1=f̂N (x). See also Donkers and Schafgans (2003).
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Moment Kernel estimator

AD = Efw(x)@g(x)
@x
g 1

N

NP
i=1

w(xi)
�
Ĝ0(xi)

f̂(xi)
� Ĝ(xi)f̂

0(xi)

f̂2(xi)

�
AOPG = Efw(x)@g(x)

@x
@g(x)
@x

T
g 1

N

NP
i=1

w(xi)
�
Ĝ0(xi)

f̂(xi)
� Ĝ(xi)f̂

0(xi)

f̂2(xi)

��
Ĝ0(xi)

f̂(xi)
� Ĝ(xi)f̂

0(xi)

f̂2(xi)

�T
:

AH = Efw(x) @g(x)
@x@xT

g 1
N

NP
i=1

w(xi)
�
Ĝ00(xi)

f̂(xi)
� Ĝ(xi)f̂

00(xi)+Ĝ0(xi)f̂ 0(xi)T+f̂ 0(xi)Ĝ0(xi)T

f̂2(xi)

+2Ĝ(xi)f̂
0(xi)f̂ 0(xi)T

f̂3(xi)

�
Table 1: Moments of interest and their kernel estimates.

contribution of this paper and is left to a separate paper. Density weighting has been

suggested as an alternative to trimming (e.g., Powell, Stock, and Stoker, 1989). The higher

order moments in our case would require weighting with the density to the fourth power,

however. This results in large variation in the weights given to each observation, with most

weight being given to a small fraction of the data thereby harming e¢ ciency.

The (weighted) moments of interest and their kernel estimates are summarized in Ta-

ble 1. Under conditions given by Samarov (1993) root N consistent estimates of each

element of these moments can be obtained. In general, the assumptions concern smooth-

ness properties of the densities and the conditional expectations, boundedness of a number

of variances, and the use of higher order kernels in combination with restrictions on the

bandwidth used. The details of the conditions required for each moment are presented in

the Appendix. It should be noted that when a kernel of order L+3 is used in combination

with h = c � N� 1
2L+5 ; the assumptions on both the rate of convergence and the order of

the kernel are satis�ed for all moments.

When combining all moments used to estimate the parameters of interest, we need the

joint distribution of these moment estimators. For this, Theorem 1 of Samarov (1993) is

of interest, as it states that each estimated element of the moments can be written as a

sample average. More speci�cally, each typical element can be written as

m̂N =
1

N

NX
i=1

�m(xi; f̂(xi); f̂
k(xi); f̂

l(xi); f̂
kl(xi); ĝ(xi); ĝ

k(xi); ĝ
l(xi); ĝ

kl(xi)) (6)

with �m satisfying necessary smoothness properties, see Corollary 1 in the Appendix. Here,
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and below, the superscripts k and l denote the derivatives with respect to the kth and lth

element of the L dimensional x vector; respectively. Samarov�s theorem then states that

as N !1; the following asymptotic expansion holds

m̂N �m =
1

N

NX
i=1

D�m(xi; yi)� EfD�m(xi; yi)g+ op(N�1=2); (7)

with m the particular moment under consideration and D�m its in�uence function. Similar

results have been obtained and used by Härdle and Stoker (1989) and Powell, Stock and

Stoker (1989), see also Donkers and Schafgans (2003).

Let cM denote the vector containing all nonparametric estimates of the (unique) average

derivative functionals of interest, so cM = (dADT
;vech( dAOPG)T ;vech(dAH)T )T :We can now

conclude that �cM �M
�
=
1

N

NX
i=1

R(xi; yi)� EfR(xi; yi)g+ op(N�1=2); (8)

with R(xi; yi) the vector with all stacked in�uence functions, D�m. Applying the Lindeberg

Levy central limit theorem yields the root N consistency and asymptotic normality of cM
with

p
N
�cM �M

�
d! N(0;�M) (9)

and �M = Var(R(xi; yi)): The in�uence functions of the (weighted) average derivative,

average outerproduct of gradient, and average hessian have been derived using second

order U�statistics theory (Hoe¤ding, 1948, Powell, Stock and Stoker, 1989) and are given in

Table 2. A consistent estimator for �M ; �̂M ; can be obtained by taking the sample variance

of R̂(xi; yi); where R̂(xi; yi) is the nonparametric estimator of R(xi; yi): Alternatively, a

bootstrap estimator for �M can be used (as in Samarov, 1993, and Buchinsky, 1994),

which is obtained as
1

B

BX
b=1

�cMb � cM��cMb � cM�0 ; (10)

where for each of the B bootstrapped samples an estimator cMb is obtained.

With y 2 RS; let g(x) = (g1(x); :::; gS(x))
T : Upon extending our estimator to the

multiple equation setting, one should realize that the set of moment conditions may include

7



Moment In�uence Function

AD RAD(x; y) = w(x)
n
g0(x)� (y � g(x))f

0(x)
f(x)

o
AOPG RAOPG(x; y) = w(x)

n
g0(x)g0(x)T � (y � g(x))

h
f 0(x)g0(x)T

f(x)
+ g0(x)f 0(x)T

f(x)
+ 2g00(x)

io
AH RAH(x; y) = w(x)

n
g00(x) + (y � g(x))f

00(x)
f(x)

o
Table 2: Moments of interest and their in�uence functions.

all moments of each equation separately. In addition, cross-equation moments such as

AOPGs;t = Efw(x)@gs(x)
@x

@gt(x)
@x

T
g; t 6= s = 1; :::; S can be included. Root N consistent,

asymptotically normal, estimators for this functional can be de�ned in a similar way. The

associated in�uence function is given by

RAOPGs;t (x; y) = w(x)

�
g0s(x)g

0
t(x)

T � (ys � gs(x))
�
f 0(x)g0t(x)

T

f(x)
+ g00t (x)

�
(11)

�(yt � gt(x))
�
f 0(x)g0s(x)

T

f(x)
+ g00s (x)

��
:

The main asymptotic result for the joint distribution of the stacked nonparametric

estimators of the (unique) average derivative functions holds suitably augmented.

3 Parameter identi�cation and estimation

The previous section discussed how various moments involving average derivative func-

tionals of the unknown regression function can be estimated root N consistently using

nonparametric kernel estimation methods. This section deals with the ultimate objective

of estimating the parameters in the multiple index model with the use of these asymptot-

ically normal estimates. The method of moments estimator provides a natural framework

for this, as each average derivative functional (moment) contains particular information

about the parameters of interest. Table 3 presents this information, which can be de-

rived by application of the chain rule of di¤erentiation. The expectations of the relevant

(weighted) properties of the link function H(�) are incorporated in a vector or matrix of

auxiliary parameters that we refer to as �:
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Moment Parameter information

AD
PP

p=1E
h
w(x)@H(x

T �1;::;x
T �P )

@(xT �p)

i
�p � B�D

AOPG
P

p;q E
h
w(x)@H(x

T �1;::;x
T �P )

@(xT �p)
@H(xT �1;::;x

T �P )
@(xT �q)

i
�p�

T
q � B�OPGBT

AH
P

p;q E
h
w(x)@

2H(xT �1;::;x
T �P )

@(xT �p)@(x
T �q)

i
�p�

T
q � B�HBT

Table 3: Average derivative functional moments and the model parameters.

Clearly, there is a close link between the parameters of interest and each of the moments

based on the average derivative functionals. The relationships in Table 3 can be used to

construct the moment conditions, e.g., AOPG�B�OPGBT = 0; or in generalM�MB;� = 0:

The method of moment estimator selects those parameters (B and �) for which the sample

analogue of these moments holds as closely as possible.

While each of the moment conditions can provide information on the indices, for AD

and AH this is not necessarily the case as both E
h
w(x) @H

@(xT �p)

i
and E

h
w(x) @2H

@(xT �p)@(x
T �q)

i
can equal zero. In particular, this occurs in the situation of a symmetric function in combi-

nation with x being distributed symmetrically around zero for the AD moments and for a

linear contribution of an index for the AH moment conditions. We will therefore prove iden-

ti�cation of the parameters of interest focusing on the AOPG moments, as these moments

conditions provide identi�cation under a minimal set of identifying restrictions. In many

situations, one might be willing to make additional assumptions and use restrictions on the

AD or AH moments to gain identi�cation. For instance, a possible set of assumptions one

could consider is �D = (1; ::; 1)T ; which imposes a normalization ensuring that all indices

have equal marginal e¤ect on y (see also Stoker, 1991). Once identi�cation is established,

we continue with a discussion of the GMM framework to estimate the parameters.

3.1 Identi�cation

In order to establish conditions for identi�cation of the parameters, we �rst turn to the

number of indices to be estimated, P . This is an important determinant of the number of

parameters in the model. Any assumption on the number of indices in the model should

9



therefore contain information about the number of parameters that can be estimated.

Recall that g(x) can be written in the �multiple index� form g(x) = H(xT�1; ::; x
T�P ):

The assumption that P is the minimum number of indices required to appropriately model

E(yjx) as H(xT�1; ::; xT�P ) can be formalized with two assumptions, that have to hold

simultaneously. The �rst assumption is on the parameters B and the second is on the

shape of the function H(�).

Assumption 1 Rank(B) � rank((�1; ::; �P )) = P:

Assumption 2 The function H(�) satis�es

rank

 
E

(�
@H

@(xT�p)

@H

@(xT�q)

�
1�p;q�P

)!
= P:

Assumption 1 assures that no fewer than P indices are needed by ruling out multi-

collinearity of the indices. The exclusion restrictions usually applied in semi-parametric

multi-index models, see, among others, Ichimura and Lee (1991), are su¢ cient for this as-

sumption to hold, but other restrictions are also possible. Assumption 2 asserts that each

of the indices provides unique information on the shape of H(�), that is, the derivatives of

H(�) with respect to each of the indices are not linearly dependent, almost everywhere, see

also Ichimura and Lee (1991), Lemma 3, condition 3.

To ensure that the number of indices is not a¤ected by w(x); the trimming (weighting)

function used in our kernel based nonparametric estimators, we strengthen Assumption 2 :

Assumption 20 The function H(�) satis�es

rank

 
E

(�
w(x)

@H

@(xT�p)

@H

@(xT�q)

�
1�p;q�P

)!
= P:

Assumptions 1 and 2 ensure that only P indices have to be estimated.4 However,

without further assumptions on either B orH(�) the parameters in B are still not identi�ed.

To illustrate the well known scaling and rotation problems present in semiparametric index

models, we rewrite H(xT�1; ::; x
T�P ) as H(x

TB). Let B� denote a given L � P matrix

4Assumptions 2 and 20 are used interchangeably.
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with columns spanning the column space of B and de�ne H�(�) as the unique function that

satis�es g(x) = H�(xTB�): The identi�cation problem stems from the fact that for any

P�P matrix � of full rank it holds thatH�(xTB�) = H�(x
TB��) withH�(z) = H�(z��1):

It is therefore not clear whether one estimates B� in combination with the properties of

H� or B�� in combination with the properties of H�; they are observationally equivalent.

However, once � is �xed, both B�� and H� are uniquely determined and can be estimated.

Consequently, P 2 restrictions need to be made to fully identify the remaining parameters.

The traditionally used exclusion and normalization restrictions discussed in Ichimura and

Lee (1991) and Lee (1995), in accordance, impose P normalization and P (P � 1) exclusion

restrictions.

For reasons mentioned before, we focus on the AOPG moments in discussing identi�ca-

tion. In particular, AOPG =
P

p;q E
h
w(x) @H

@(xT �p)
@H

@(xT �q)

i
�p�

T
q = B�

OPGBT ; with �OPG =

E

�h
w(x) @H

@(xT �p)
@H

@(xT �q)

i
1�p;q�P

�
a matrix of auxiliary parameters. How does the lack of

identifying information a¤ect this moment condition? Consider the AOPGmoments for the

general case with Efyjxg = H�(xTB��); which then read as AOPG = B���OPG� �TB�T ;

with �OPG� = ��1��OPG(��1)T : The exclusion and normalization restrictions from Ichimura

and Lee (1991) and Lee (1995) impose the identifying restrictions on � as follows. Let,

without loss of generality, the �rst P variables in x denote the variables used for the ex-

clusion and normalization restriction, and correspondingly partition BT = [BT1 jBT2 ]; with

B1 a square matrix of dimension P: The exclusion and normalization restrictions impose

B1 = IP : This indeed achieves identi�cation as it �xes � = (B�1)
�1 and subsequently we

estimate B = B�� and �OPG = �OPG� . However, it is possible to incorrectly specify an

exclusion or normalization restriction �leading to B�1 being singular �with the result that

identi�cation will not be achieved. This is illustrated by the following simple example:

With P = 2; let �1 = (1 1 0 0)
T and �2 = (1 1 1 0)

T : In this case one cannot use x1 and x2

for the normalization and exclusion restrictions. Another problem arises when x4 is used

for exclusion or normalization. It should be noted that Assumption 1 guarantees that a

valid set of exclusion and normalization restrictions does exist.
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Given the possible existence of these problems, it is desirable to estimate the model using

a more general set of identifying restrictions, i.e. a set of restrictions that does not impose

more structure than what is imposed by the identi�cation assumptions 1 and 2. Such a

set of identifying restrictions is given by the orthonormality of the ��s (Xia et al., 2002),

so BTB = I; and diagonality of �OPG; i.e., �OPG = D; a matrix with positive elements on

its diagonal and zeroes everywhere else. To �x the ordering of the indices, an additional

assumption could be that the elements on D are ordered in decreasing order. Taking

into account the symmetry of BTB and �OPG, this again imposes exactly P 2 restrictions.

Once the matrix B is estimated satisfying this set of identifying restrictions it is always

possible, ex-post, to estimate B with the normalization and exclusion restrictions imposed

by computing (B̂1)�1B̂2; where the validity can be tested beforehand.5

We now verify that this set of identifying restrictions �xes �. Let � =
�
B�TB�

��1=2
�?;

where �? denotes any orthonormal P � P matrix. This choice, with B = B��; ensures

BTB = I is satis�ed. Clearly, orthonormality of the ��s puts some restrictions on the

model, but not enough to �x � completely. This is achieved by applying the restriction that

�OPG = D: With �OPG = �OPG� = ��1��OPG(��1)T and ��1 = �?T
�
B�TB�

�1=2
it follows

that �? has to contain the orthonormal eigenvectors of
�
B�TB�

�1=2
��OPG(

�
B�TB�

�1=2
)T

that correspond to the eigenvalues that appear on the diagonal of D. The uniqueness of

the eigenvalue decomposition (Magnus and Neudecker, 1988) then assures that �? and

therefore � is uniquely de�ned.

The results in Phillips (1994) suggest that when knowledge on exclusion and normal-

ization restrictions is available, they should be used in light of the superior small sample

performance when using these identifying restrictions over the orthonormality assumption.

Asymptotically, though, they are equivalent.

We summarize these identi�cation restrictions in the following assumption.

Assumption 3 When P indices are estimated with the use of at least the AOPG moments,
5These ideas are similar to the ideas in Johansen (1988, Theorem 1) on cointegrating vectors, where

maximum likelihood estimation of the space spanned by � is considered.
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either

(i) Each index xT�p, p = 1; ::; P , contains one explanatory variable which does not enter

the other P � 1 indices. The parameters on these variables are normalized to equal 1; or

(ii) The ��s are orthonormal, i.e., BTB = I; and �OPG is a diagonal matrix.

3.2 Extension to multiple equations

In the multiple equation setting with y 2 RS; let H(xTB) = (H1(x
TB); ::; HS(x

TB))T .

One set of identifying assumptions, imposed, for example, by Picone and Butler (2000),

is to impose Assumption 20 for each link function Hs(xTB), s = 1; ::; S: This might be

much too strong, as one index could play a role in one equation, but not in another

one. The requirement instead is that each index plays a role in at least one equation

and that the contributions of the indices in each equation, @Hs
@(xT �p)

; s = 1; ::; S; do not

have the same linear dependencies in all equations. Formally, we require that the columns

in
�

@H
@(xT �1)

� � � @H
@(xT �P )

�
�

0BBB@
@H1

@(xT �1)
� � � @H1

@(xT �P )
...

. . .
...

@HS
@(xT �1)

� � � @HS
@(xT �P )

1CCCA have no linear dependence rela-

tionships almost everywhere. We ensure this by imposing

Assumption 200 The function H(�) satis�es

rank

 
SX
s=1

E

(�
@Hs

@(xT�p)

@Hs
@(xT�q)

�
1�p;q�P

)!
= P:

Clearly a much weaker assumption than imposing Assumption 2 for each equation.

Assumptions 1 and 200 (suitably adjusted for trimming) indicate that P indices need

to be estimated, but they do not guarantee parameter identi�cation. The discussion of

identi�cation based on the frequently used exclusion and normalization restrictions on B

translates directly to the multiple equation setting. Some more discussion is warranted

for the set of normalization restrictions based on BTB = I and diagonality of �OPG.

Diagonality of �OPG in the single equation setting was needed to �x the rotation of B. In

the multiple equation situation, if one equation is known to be a function of all indices, say

equation s; imposing diagonality on �OPGs will be a su¢ cient restriction on the rotation of

13



the indices in the multiple index setting. Since one cannot guarantee the existence of an

equation in which all indices should be included, it will not always be su¢ cient to impose

diagonality on �OPGs for a single equation.

A general approach to �x the rotation of B in the multiple equation setting is to

sequentially consider equations and �x the rotation of the indices that appear for the �rst

time in the equation at hand. Suppose that the rotation of the �rst p indices has been

obtained by the s equations that have been considered so far. For the next equation, only

the rotation of additional indices, whose rotation has not been restricted yet, needs to be

�xed. This amounts to requiring diagonality of �OPGs+1 ; with the exception of the top-left

p � p submatrix. Suppose now that one additional index is normalized in this step. This

causes p zeroes in the (p + 1)th row (and also in the column, due to symmetry) of �OPGs+1 .

The subsequent rows and columns only contain zeroes as these indices do not (yet) play

a role in the model. In case more than one additional index is relevant, this will result,

for the jth additional index, in p + j � 1 zeroes in the (p + j)th row. In doing so, we have

imposed for index p; p = 1; ::; P; exactly (p� 1) zero restrictions in �OPGs , with s being the

equation where index p �rst appeared. Once the rotation of all P indices has been �xed,

the desired
PP

p=1(p � 1) = P (P � 1)=2 restrictions are imposed. The other P (P + 1)=2

restrictions result from BTB = I:

3.3 Estimation

We now turn to the GMM framework used to estimate the parameters of interest �p;

p = 1; ::; P and the auxiliary parameters;�. The relationship between the average derivative

functional (moment) and the parameters of interest, summarized in Table 3, provide the

moment conditions on which our estimator is based. The (unique) moment conditions used

in estimation, in its general form are denoted by M �MB;� = 0: Let us write the moment

conditions as

m(�0) �M �MB;� = 0:

14



Here �0 denotes the vector of all free parameters in B and � (identi�ability), which we

assume to be an element of a compact parameter space �:

Assumption 4 �0 2 � , where � is compact.

Given a valid set of identifying restrictions, it now holds that m(�) = 0 if and only

if � = �0; where m(�) � M �MB;� with (B;�) determined by � 2 �. Let m̂(:) denote

the estimated sample analogue of m(:); based on nonparametric kernel estimates. Using

Section 2, we note that, for � = �0,

p
N
�cM �MB;�

�
=
p
Nm̂(�0)

d! N(0;�M):

The e¢ ciently weighted generalized method of moments estimator (or minimum distance

estimator) for estimating �0; therefore, is given by

b� = argmin
�2�

m̂(�)T [�M ]
�1 m̂(�); (12)

where we assume �M to be positive de�nite. To implement the e¢ ciently weighted GMM

estimator we can use the consistent estimator for �M presented in the previous section.

To prove consistency of our parameter estimates, b�; we need to show that the regularity
conditions ensuring identi�cation and uniform convergence are satis�ed, see, for example,

Theorem 2.6 in Newey and McFadden (1994). Under Assumptions 1 and 2 and a set of

identi�cation assumptions we showed that the parameters are uniquely determined.6 This

uniqueness result in combination with the continuity of m(�) on � and the compactness

Assumption 4 ensures identi�cation of our estimator �̂:Uniformweak convergence is ensured

by the consistency of M̂ and b�M and the compactness of the parameter space (Assumption

4).

6The uniqueness discussion above assumed the inclusion of AOPG in the set of moments used in the

estimation. Once �AOPG and B are identi�ed, �AD and �AH are uniquely identi�ed as well: in the case

of orthonormality �AD = BT [AD] and �AH = BT [AH]B; in the case of exclusion and normalisation

restrictions �AD = AD1 and �AH = AH11 where AD and AH are partitioned conform B = [B1jB2] where

B1 = I:
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Provided we assume that �0 lies in the interior of �; the only additional condition that

needs to be considered to ensure that all regularity conditions required for our asymptotic

normality result of �̂ are satis�ed (see Theorem 3.2 in Newey and McFadden (1994)), is

that m0(�0)
T��1M m

0(�0) is nonsingular. Given the nonsingularity of �M , we need to show

that m0(�0) has full column rank. This condition, also called the rank condition (necessary)

for local identi�cation, follows directly from the uniqueness result on the parameters.

By satisfying all regularity conditions of GMM estimators, our �nal result is given by

Theorem 1 Given that
p
N
�
M̂ �M

�
d! N(0;�M), with �M positive de�nite, �0 in the

interior of �, Assumptions 1, 20; 3, and 4

p
N(�̂ � �0)

d! N(0;
)

with 
 =
�
m0(�0)

T��1M m
0(�0)

��1
:

For the moment conditions we consider, it is straightforward to see that @m(�)
@�

is con-

tinuous in �: With �̂ a consistent estimate for �; 
 can therefore be consistently estimated

by
h
m0(�̂)T �̂�1M m

0(�̂)
i�1

:

Even though our estimator uses more information than, for example, the ADE estimator,

it might not attain the semiparametric e¢ ciency bound under our conditional mean index

assumption, see also Ai and Chen (2003). When strenghtening our conditional mean index

assumption to a conditional distribution index assumption, our root N consistent estimator

can be followed by a one-step update, as suggested by Delecroix et al. (2003). This yields

a simple three step estimator that attains the semiparametric e¢ ciency bound. Without

this strenghtening of the conditional mean index assumption, our estimator will provide a

very good starting point for existing iterative procedures that are asymptotically e¢ cient

(Ichimura and Lee, 1991 and Newey, 2004). Obviously, the more moment conditions we

incorporate, the less of a concern this loss in e¢ ciency should be in light of the spanning

condition argument in Newey (2004).
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4 Inference

In this section we discuss various model speci�cation tests. First, we discuss a test for

the number of indices in our model, a test which logically precedes the estimation of the

index parameters B (and �): Indeed, our two-step estimation procedure provides a natural

framework for this as we provide a test based on our �rst-step estimators which does not

involve the estimation of the index parameters. Obviously, the GMM framework used in the

second-step allows for the veri�cation of the correct speci�cation of the number of indices

by using an overidentiying restriction test as well. Second, we discuss model speci�cation

tests for separability, additivity and linearity of the in�uence of an index, based on our root

N consistent, asymptotically normal parameter estimates of the auxiliary parameters �.

4.1 Testing for the number of indices

Estimation of the index parameters in B can only be performed conditional on the number

of indices to be estimated. So far, the number of indices has been imposed, either by

economic theory, or by the researcher. This section o¤ers a test on the number of indices

that can be performed prior to parameter estimation. It thereby advances the literature

on semiparametric multiple index models, where so far, the number of indices has been

assumed known. An exception to this is the projection pursuit model (Friedman and

Stuetzle, 1981) where other restrictive assumptions are imposed.

Speci�cally, we propose to test for the number of indices by testing the rank conditions

in Assumptions 1 and 2. Indeed, Assumptions 1 and 2 imply that (i) P indices have to be

estimated and (ii) AOPG = B�OPGBT has rank P:7 The null space of AOPG is reduced

with one dimension for each index in the multiple index model. The number of indices

therefore can be tested by testing the rank of the estimated average outer product of the

gradient. This test is related to procedures in the statistical literature �estimating� the

number of e¤ective dimension reduction directions (e.g., Xia et al., 2002), where directions

7In the multiple equation setting, we de�ne AOPG =
PS

s=1AOPGs; where AOPGs is the average

outer product of the gradient of the sth equation. Conformably, �OPG =
PS

s=1 �
OPG
s :
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with an impact below an (arbitrary) cuto¤ level are ignored. The advantage of the proposed

testing procedure is that it quanti�es how likely it is that a small e¤ect actually is zero.

In recent years, there has been a resurgence of interest in the development of tests of

the rank of a matrix. Cragg and Donald (1996, 1997), Gill and Lewbel (1992), and Robin

and Smith (2000) develop tests for the rank of a matrix that is unobserved but for which

a root N consistent asymptotically normal estimator is available. Gill and Lewbel (1992),

the �rst authors to consider this problem, base their test on a Gaussian elimination Lower-

Diagonal-Upper triangular (LDU) decomposition. The rank of AOPG equals the number

of nonzero elements in the diagonal �pivot�matrix D in this decomposition. Consequently

Gill and Lewbel tested for the number of zero elements on the diagonal of D: Recognizing

that their asymptotic theory only holds for k�P = 1; Cragg and Donald (1996) develop a

modi�ed procedure to test the rank of a matrix. This is a Wald type test on a number of

elements in the matrix being zero. This test is asymptotically equivalent to the minimum

chi-squared approach presented in more detail in Cragg and Donald (1997). This test, we

note, is identical to a test for overidentifying restrictions in our GMM framework when

only the AOPG moments are used in estimation. It is distributed asymptotically as �2

with (k�P )(k�P +1)=2 degrees of freedom. An interpretation of the degrees of freedom

easily follows from the number of overidentifying restrictions.

Finally, Robin and Smith (2000) develop a test for the rank of a matrix that involves

the characteristic roots of a quadratic form in AOPG. Again, when rank(AOPG) = P; the

smallest k�P eigenvalues of dAOPG (and the quadratic form) converge to 0 in probability.
Robin and Smith show that N times the sum of the k � P smallest eigenvalues converges

to a weighted sum of independent �21 distributed variables. The advantage of this test is

that the variance-covariance matrix of vec( dAOPG) is not required to be positive de�nite,
which circumvents the di¢ culties that arise from symmetry of the matrix.

A caveat which we see with these tests, in �nite samples, is that they do not take

into account the precision with which the elements in AOPG are estimated. This holds

in particular for the Gaussian elimination procedure in Cragg and Donald (1996) and

the selection of the k � P smallest eigenvalues in Robin and Smith (2000). We partially
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solve this problem by performing both weighted and unweighted variants of these tests.

Instead of testing the rank of AOPG we consider testing the rank of the weighted variant

	(AOPG)	T ; where 	 is a diagonal matrix of full rank which ensures that the diagonal

elements of 	(AOPG)	T are estimated with equal precision. Since 	 is of full rank, the

rank of AOPG equals that of 	(AOPG)	T :

Obviously, our GMM framework itself also provides a natural testing procedure for

the correct speci�cation of the number of indices through the overidentifying restriction

test. Note that the overidentifying restrictions test is a general test for misspeci�cation.

When identi�cation is obtained by assuming BTB = I and �AOPG = D; a diagonal matrix,

the only possible misspeci�cation is too few indices in the model. When exclusion and

normalization restrictions are used, additional structure is imposed on the model, which

will be tested by the overidentifying restrictions test as well.

Theoretical considerations that would favour the use of the overidentifying restriction

test are (i) the tests by Cragg and Donald (1996) and Robin and Smith (2000) do not

deal speci�cally with the positive semide�niteness of the AOPG matrix and (ii) even with

our proposed weighting scheme the Cragg and Donald (1996) and the Robin and Smith

(2000) tests only account for di¤erences in the estimation precision of the diagonal elements

whereas one would prefer to correct for di¤erences in estimation precision of all elements

and for the correlations between the estimates. In the simulation study we compare the

performance of these tests in practice.

A sequential procedure for obtaining a weakly consistent estimator for the rank of a

matrix involves testing sequentially whether the rank of a matrix equals r against the

alternative that the rank exceeds r, r = 0; 1; ::; k� 1; and halting at the �rst value for r for

which the statistics indicates nonrejection of the null rank(AOPG) = r. This requires at

each stage of the sequential procedure an adjustment to the asymptotic size �P of the test

that depends on the sample size. In particular, we require �rN = o(1) and�N ln�rN = o(1)

(see also Cragg and Donald, 1997 and Robin and Smith, 2000).
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4.2 Other model speci�cation tests

In the literature, various tests for additivity and or linearity of the contribution of a single

explanatory variable have been proposed (Härdle, Sperlich and Spokoiny, 2001; Samarov,

1993; Stoker 1989). Our consistent, asymptotic normal, parameter estimator of B and �

allow for similar model speci�cation tests in the context of semiparametric index models.

In particular, we focus here on testing of the additivity (separability) and/or linearity of the

in�uence of an index (instead of a single explanatory variable). These model speci�cation

hypotheses can all be reformulated as linear restrictions on our auxilliary parameters, �.

As such, they can all be carried out using the standard Wald test, yielding asymptotic

chi-squared tests.

First, we consider a test of additivity (separability) of the in�uence of an index. That

is, we are interested in testing whether our conditional mean can be represented as

H(xT�1; :::; x
T�P ) � H1(xT�1) +H

2(xT�2; :::; x
T�P ): (13)

Under such an additivity restriction, it holds that

�AH =

24 E �w(x)@2H1(xT �1)
@2(xT �1)

�
0

0 E
�
w(x)

@2H2(xT ��1)

@(xT ��1)@(x
T ��1)

T

�
35 �

24 �AH11 �AH12

�AH21 �AH22

35 ;
where (xT��1) � (xT�2; :::; x

T�P ): The additive separability can therefore be tested by

verifying whether the relevant o¤-diagonal elements of �AH are statistically signi�cant,

�AH21 = 0 (= �AH12 by symmetry). This test generalizes to the separability of groups of

indices. Testing whether all indices are additively separable (projection pursuit model), an

extreme example of the above, can similary be described as testing whether all o¤-diagonal

elements of �AH are zero, see also Härdle, Sperlich and Spokoiny (2001).

Next, we consider a test of linearity of the in�uence of an index. We can formulate our

conditional mean subject to such a linearity restriction as

H(xT�1; :::; x
T�P ) � (xT�1)H1(xT�2; :::; x

T�P ) +H
2(xT�2; :::; x

T�P ):
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As this linear in�uence model gives rise to �AH =

24 0 �AH12

�AH21 �AH22

35, linearity of the in�uence
of an index can be tested on the basis of the diagonal elements of �AH .

Jointly testing the additivity and linearity of the in�uence of an index, constitutes

a test of the partial linear regression model providing an adequate representation of the

conditional mean. The partial linear regression model, speci�ed as

H(xT�1; :::; x
T�P ) � c � xT�1 +H2(xT�2; :::; x

T�P );

has frequently been used in the sample selection literature and results in �AH =

24 0 0

0 �AH22

35.
This restriction can be tested by jointly testing the signi�cance of the relevant diagonal

and o¤-diagonal elements of �AH .

One caveat of these tests has to be mentioned. As with the average derivative esti-

mator, one could postulate particular speci�cations of our multiple index model which in

combination with, say, a symmetric distribution of X; yield zero elements of the AH matrix

for reasons other than those described above. In these very special settings, the power of

these tests would be negligible. To gain power against such alternatives, one may consider

combining di¤erently weighted versions of AH; following the ideas in Newey and Stoker

(1993), section 5.3.

5 Simulation study

In order to illustrate the estimator�s usefulness, we provide simulation results based on the

multinomial choice model with three choice alternatives. The latent variable representation

of this model is given by

yj =

8<: 1 if y�j = argmax(y
�
1; y

�
2; y

�
3)

0 otherwise
; for j = 1; 2; 3

y�j = zT
j � uj;
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where y�j is the latent variable associated with the random �utilities�associated with each

alternative. Since the observed choices are only informative on the di¤erence of these

�utilities�and not on the �utilities�themselves, it is commonplace to de�ne the multinomial

choice model in di¤erenced form. De�ne xT�1 = zT
1 � zT
3 and xT�2 = zT
2 � zT
3;

where x denotes the vector of all distinct exogenous variables, and e1 = u1�u3 , e2 = u2�u3.

Under the assumption that the di¤erenced errors ej; j = 1; 2; only depend on the data x

through the indices (xT�1; x
T�2); the choice probabilities conditional on the x�s form the

following multiple index mean regression representation:

g1 � E(y1jx) = Pr(xT�1 � e1; xT�1 � xT�2 � e1 � e2jx) � H1(xT�1; xT�2)

g2 � E(y2jx) = Pr(xT�2 � e2; xT�2 � xT�1 � e2 � e1jx) � H2(xT�1; xT�2):

Since the choices are mutually exclusive and exhaustive, the choice probability associated

with the last alternative, the reference category, is ignored, since it does not add any

information to the model.

In the multinomial choice model, our conditional mean index assumption coincides with

a conditional index assumption on the distribution of the dependent variable. We can there-

fore perform a one-step e¢ cient update to convert our computational e¢ cient estimator

into an estimator that achieves the semiparametric e¢ ciency bound for the multinomial

choice model as given in Lee (1993). We do not pursue this extension in our simulation,

but refer to Delecroix et al. (2003) for more details.

From Assumption 3, suitably adjusted for the multiple equation setting (as discussed

in Section 3.2), we note that for our two index model (P = 2) at least three explana-

tory variables are required. We assume that X � N(0; I3) and let �1 = (1; 0; 1)T and

�2 = (0; 1; 1)
T : We assume that (e1; e2) are distributed independently of X; with bivariate

normal distribution with unit variances and correlation �e1e2 = 0:5 (which conforms the

assumptions of the multinomial probit model with i.i.d. errors on the utilities). With �2
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denoting the CDF of a standard bivariate normal distribution, this yields8

H(xT�1; x
T�2) =

0@ H1(x
T�1; x

T�2)

H2(x
T�1; x

T�2)

1A =

0@ �2(x
T�1;

�
xT�1 � xT�2

�
; 0:5)

�2(x
T�2;

�
xT�2 � xT�1

�
; 0:5)

1A :
The multivariate kernel function K(�) (on R3) is chosen as the product of three univariate

kernel functions. The sample size is set at 1000 and 500 replications are drawn in each

case.

With the number of explanatory variables equal to three (L = 3), our theoretical results

imply the use of a sixth order kernel, p = L+ 3: We consider

K6(x) =
�
45 045
2048

x8 � 31 185
512

x6 + 59 535
1024

x4 � 11 025
512

x2 + 4725
2048

�
1(jxj � 1): (14)

Besides using this higher order kernel (�bias-corrected�kernel) we consider using the second

order quartic kernel (�not bias-corrected�kernel) as well, because of its easier implementa-

tion. Both are bounded, symmetric kernels, which satisfy our assumption that the kernel

and its derivative vanish at the boundary.

Four versions of our estimator are considered, which di¤er according to the moments

we include, with a view to illustrate the potential to increase e¢ ciency in a �nite sample

setting. The �rst version (Estimator 1) includes all AOPG moments, inclusive of the cross-

equation AOPG moment, ensuring identi�cation of our parameters. The second and third

version add to this moment, either the AD moment (Estimator 2) or the AH moment

(Estimator 3). The �nal version incorporates all three moments (Estimator 4) and should

provide the most e¢ cient estimates.

A bandwidth sequence fhng satisfying the assumptions for these versions of our estima-

tor is given by hn = cn�1=(2L+5)[= cn�1=11], where c is a constant factor independent of n;

which we allow to vary for each explanatory variable. The particular parameterization cho-

sen for our multinomial selection model, allows us to treat the bandwidth choice for x1 and

x2 symmetrically, which reduces our selection of bandwidth parameters to two. In light of

8Note that �2e1�e2 = �2e2�e1 = �2e1 + �
2
e2 � 2�e1e2 = 1; �e1;e1�e2 = �2e1 � �e1e2 = 0:5; and �e2;e2�e1 =

�2e2 � �e1e2 = 0:5
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our knowledge of the true data generating process, we decided to optimally select the band-

width by minimizing the mean squared error of the nonparametrically estimated moments.

Using a gridsearch algorithm, and 100 simulations, we arrived at the following bandwidths

for the second and sixth order kernel respectively (1:0; 1:0; 1:0) and (3:0; 3:0; 3:0): There

was no evidence in the simulation that distinct bandwidths for x1 (x2) and x3 are needed.

Alternatively, one could use cross-validation9 or apply a �plug-in�estimator for the optimal

bandwidth as discussed by Powell and Stoker (1996).

In place of the weight function, we used the indicator function w(xi) = 1(f̂(xi) > b);

which trims away the observations with small values of the density estimator (as in Härdle

and Stoker, 1989 and Samarov, 1993). With b = 0:0025, this yielded a trimming of a bit

less than 10 percent of the observations.

As estimator of the covariance matrix of these nonparametrically estimated moments,

�̂M ; we applied the bootstrap estimator (with 500 bootstraps) de�ned in (10). It provided

an estimate of the variance comparable to the empirical variance for all moments. The

theoretical estimate of the variance for the AOPG was remarkably similar to the empirical

one, but for the AD and AH, the empirical variances were considerably underestimated

when using the bias corrected kernel. For AD and AH, the theoretical estimator of the

variance, based on �rst-order asymptotics, apparently su¤ers from a non-ignorable contri-

bution of higher order terms in �nite samples. An exploration of the higher order terms in

the asymptotic expansion could resolve this issue, see Heckman, Ichimura and Todd (1997).

Table 4 presents the results of various tests for the number of indices for our multinomial

choice model with two indices. The results are presented using both second order kernels

(not bias corrected) and sixth order kernels (bias corrected). The table reports the fraction

of the simulations for which we accept that the true number of indices for our multinomial

choice model equals 0, 1 or 2 at the �ve percent signi�cance level, using the sequential

procedure described above.

The �rst four columns report the results based on testing the rank of AOPG (=

9Cross-validation yielded bandwidths similar in magnitude as those obtained by minimizing the mean

squared error of the nonparametrically estimated moments.
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Kernel # Indices CDu CDw RSu RSw OI0 OI1 OI2 OI3 OI4

Not Bias 0 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Corrected [6] [21] [27] [33] [39]

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

[3] [15] [19] [25] [29]

2 0.848 0.840 0.998 0.998 1.000 0.990 0.998 0.972 0.996

[1] [7] [9] [13] [15]

Bias 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Corrected [6] [21] [27] [33] [39]

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

[3] [15] [19] [25] [29]

2 0.880 0.944 0.992 0.992 0.994 0.998 1.000 0.994 0.998

[1] [7] [9] [13] [15]

Table 4: Testing for the number of indices

P
sAOPGs). Since the unweighted versions of the Cragg and Donald and the Robin and

Smith tests do not account for the estimation uncertainty in M̂ in determining the smallest

pivots and eigenvalues, we perform a weighted variant of these tests as well (see section 4).

The columns labelled CDu and CDw relate to the Cragg and Donald test based on the LDU

decomposition (unweighted and weighted) and the columns labelled RSu and RSw relate

to the Robin and Smith test (unweighted and weighted). The remaining columns provide

the results of a number of tests on overidenti�cation restrictions. The column labelled OI0;

is also based on AOPG; which provides the minimal identifying set of moment conditions,

just as the Cragg and Donald and Robin and Smith tests. The columns, labelled OI1; OI2;

OI3 and OI4; are based on the moment conditions used in estimation conform the 4 sets of

moments conditions we use for model estimation. The degrees of freedom of the OI tests

are listed in square brackets.

The notable distinction between these two sets of tests is that the tests for the rank of a

matrix developed by Cragg and Donald and by Robin and Smith do not rely on parameter
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estimates of B and �: The overidenti�cation tests, on the other hand, are all based on

estimation of B and � consistent with the assumed number of indices in the model and

the identifying assumptions. So with ~B and ~� having the appropriate dimensions, the

overidentifying restrictions (or minimum Chi-squared) tests are computed as

min
~B;~�

�
N
h
(M̂ �M ~B;~�)

T �̂�1M (M̂ �M ~B;~�)
i�
:

In particular, for estimator 1 (including only the AOPG as moments) M̂ =
h
vech( dAOPG1)T ;

vech( dAOPG2)T ; vec( dAOPG1;2)TiT and M ~B;~� =
h
vech( ~B~�OPG1

~BT )T ; vech( ~B~�OPG2
~BT )T ;

vec( ~B~�OPG1;2
~BT )T

iT
: Here the subscripts 1 and 2 point to the particular equation it re-

lates to and AOPG1;2 is the cross-equation average outer product of the gradients.

The �rst test on overidentifying restrictions, OI0; is based on the minimal identifying

set of moment conditions and has the smallest degrees of freedom. Clearly the degrees of

freedom of the overidentifying restrictions tests increases as we add more unique moment

conditions to our estimator, and decreases as we increase the hypothesized number of in-

dices. In determining the degrees of freedom of these overidentifying restrictions we take

account of the symmetry of the AOPG and AH matrices. In estimating the parameters,

we use a set of normalization and exclusion restrictions. With the overidentifying restric-

tions tests we also test these assumptions but in our simulation setting we know these

assumptions are satis�ed.

All tests clearly demonstrate their ability to �nd the true number of indices for our

multinomial choice model. The power against accepting the null of too few indices is

close or equal to one in all cases. Without bias correction, all except for the Cragg and

Donald tests accept that the true number of indices equals 2 in excess of the 95% level

of signi�cance at which we performed these tests. With bias correction, the results of the

(weighted) Cragg and Donald test improve, where for the weighted version in 95% of the

cases the correct number of indices is accepted in accordance with the size of the test.

Without the weighting to take account of the estimation uncertainty in M̂ we still accept

in most of the cases (88%) the true number of indices with the Cragg and Donald test.

Without bias correction, the testing results using the theoretical variance (not reported) of
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M̂ are comparable to those above using the bootstrapped variance. With bias correction,

the testing results based on the theoretical variance are at odds with our knowledge of

the true number of indices, clearly a consequence of the underestimated variance. The

e¢ ciently weighted GMM approach used in estimation of the parameters of interest uses

the bootstrap estimator of �M for this reason.

Table 5 presents an analysis of the parameter estimates for [~�
T

1 ; ::;
~�
T

P ]
T for the four

versions of our estimator, where the number of indices; P; equals the true number of indices.

With our normalisation and exclusion restrictions we have ~�
T

1 = �1;3 and ~�
T

2 = �2;3:
10

For comparison, the multinomial probit parameter estimates are reported as well, where

the same exclusion restrictions have been imposed. To ensure comparability with the

semiparametric estimates, where �1;1 and �2;1 are standardized to 1, we report �̂
(p)

1;3=�̂
(p)

1;1

and �̂
(p)

2;3=�̂
(p)

2;1 for the MNP regressions, where �̂
(p)
are the MNP parameter estimates.

The tables present the following summary statistics for the 500 replications: the sample

mean, the sample variance, the average of the theoretical variance (based on the boot-

strapped variance of M̂), lower quartile (LQ), median, upper quartile (UQ), and mean

absolute error (MAE). From Table 5 it is clear that the parameters can be obtained from

the nonparametrically estimated moment conditions quite accurately. The resulting para-

meter estimates for �1;3 and �2;3 are close to their true values with a small upward bias,

comparable to the parametric estimates.

The most prominent �nding is that adding the AD and the AH moments to the AOPG

does not improve the e¢ ciency of the estimates very much. In fact, in our simulation

adding the AH moment slightly worsens the estimation precision. This holds both for the

bias corrected and the non-bias corrected estimates. A loss in e¢ ciency arising from not

knowing the distribution of the disturbances occurs as expected, but is within reason; the

variance of the semiparametric estimates is less than double that of the parametric ones.

A comparison of the theoretical variance and the sample variance of the estimates reveals

a slight underestimation for the theoretical variance.

10A table containing the numerous auxilliary parameter estimates for the four version of our estimator

can be obtained from the authors.
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Parametric Estimation

True MEAN Var
sample

Var
theory

LQ Median UQ MAE

Multinomial probit

�1;3 1.000 1.000 0.008 0.007 0.937 0.996 1.055 0.070

�2;3 1.000 1.009 0.007 0.007 0.955 1.005 1.061 0.064

Semiparametric Estimation: Not bias corrected

True MEAN Var
sample

Var
theory

LQ Median UQ MAE

Estimator 1 (AOPG)

�1;3 1.000 1.007 0.014 0.011 0.917 0.995 1.077 0.096

�2;3 1.000 1.015 0.013 0.011 0.939 1.010 1.084 0.089

Estimator 2 (AOPG/AD)

�1;3 1.000 1.007 0.014 0.011 0.920 0.997 1.078 0.096

�2;3 1.000 1.015 0.013 0.011 0.938 1.007 1.088 0.089

Estimator 3 (AOPG/AH)

�1;3 1.000 1.007 0.014 0.010 0.922 1.000 1.079 0.096

�2;3 1.000 1.015 0.013 0.011 0.938 1.004 1.091 0.090

Estimator 4 (AOPG/AD/AH)

�1;3 1.000 1.007 0.015 0.010 0.923 1.005 1.079 0.096

�2;3 1.000 1.015 0.013 0.010 0.936 1.004 1.088 0.091

Table 5: Parameter estimates multinomial selection model
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Semiparametric Estimation: bias corrected

True MEAN Var
sample

Var
theory

LQ Median UQ MAE

Estimator 1 (AOPG)

�1;3 1.000 1.006 0.015 0.013 0.921 1.004 1.081 0.098

�2;3 1.000 1.013 0.013 0.013 0.928 1.014 1.090 0.092

Estimator 2 (AOPG/AD)

�1;3 1.000 1.006 0.014 0.012 0.922 0.998 1.079 0.096

�2;3 1.000 1.012 0.013 0.012 0.934 1.010 1.080 0.089

Estimator 3 (AOPG/AH)

�1;3 1.000 1.006 0.016 0.013 0.924 1.003 1.074 0.098

�2;3 1.000 1.013 0.014 0.013 0.930 1.012 1.090 0.093

Estimator 4 (AOPG/AD/AH)

�1;3 1.000 1.006 0.015 0.012 0.923 1.001 1.078 0.096

�2;3 1.000 1.012 0.013 0.012 0.931 1.012 1.086 0.092

Table 5: Parameter estimates multinomial selection model (continued)
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The di¤erences between the bias corrected and not bias corrected estimates are as

expected. The bias in the estimates when the higher order kernel is used is smaller than

that of the not bias corrected estimates. Clearly, this comes at the cost of a higher variance,

as is well know. Looking at the total error using MAE (or MSE), the estimators without

bias correction have the best performance.

Finally Table 6, reports the results of the speci�cation tests on the linearity and ad-

ditivity of the indices in our multinomial choice model. The tests are performed for the

version of our estimator which includes all moments (Estimator 4). For each equation,

the table reports the fraction of the simulations for which we accept the null of linearity

or additivity of the index in addition to the parameter estimates on which these tests are

based. The tests are all performed equation by equation and for the system of the two

equations together.

As discussed, these tests can be described as linear restrictions on the auxiliary pa-

rameters �AH1 and �AH2 : The test of linearity of the �rst equation with respect to the

�rst index, xT�1; is identical to testing whether E
�
w(x)@

2H1(xT �1;x
T �2)

@2(xT �1)

�
� �AH1;11 = 0:

Similarly, the test of linearity of the �rst equation with respect to the second index,

xT�2; is performed by testing �
AH
1;22 = 0: Using the Wald test, all simulations gave ev-

idence against the linearity of our �rst equation in the index, xT�1; while we rejected

linearity of the �rst equation in the index xT�2 in 64 percent of the simulations. The

nonlinearity of our �rst equation H1(xT�1; x
T�2) = �2(x

T�1; x
T�2 � xT�1; 0:5) in terms

of our index xT�1 is clearly easier to identify (mixed impact) than that of x
T�2: The

test results for the second equation are similar, resulting from a symmetry imposed by

our speci�cation of the simulation. In particular, comparing the expressions for the two

equations, the two indices are simply interchanged. This results in, among other things,

�AH1;11 � E
�
w(x)@

2H1(xT �1;x
T �2)

@2(xT �1)

�
= E

�
w(x)@

2H2(xT �1;x
T �2)

@2(xT �2)

�
� �AH2;22, �

AH
1;22 = �AH2;11; and

�AH1;12 = �
AH
2;21: Indeed, this is con�rmed by the similarity of the parameter estimates in the

simulations.

The test of additive separability of our two indices in the �rst equation is equivalent
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Semiparametric Estimation (Estimator 4)

Not Bias Corrected Bias Corrected

Estimates
[Mean,Var]

Test
Rejection Rate

Estimates
[Mean,Var]

Test
Rejection Rate

Test for Linearity

Index (xT�1)

Equation 1 �AH1;11 0:055
[0:133e�3]

1.000 0:066
[0:133e�3]

1.000

Equation 2 �AH2;11 �0:027
[0:138e�3]

0.672 �0:033
[0:142e�3]

0.644

System 0.998 0.996

Index (xT�2)

Equation 1 �AH1;22 �0:027
[0:138e�3]

0.648 �0:033
[0:138e�3]

0.630

Equation 2 �AH2;22 0:055
[0:133e�3]

0.998 0:067
[0:131e�3]

1.000

System 0.998 1.000

Test for Additivity

Equation 1 �AH1;12 �0:028
[0:070e�3]

0.902 �0:033
[0:104e�3]

0.922

Equation 2 �AH2;12 �0:028
[0:070e�3]

0.890 �0:034
[0:104e�3]

0.930

System 1.000 1.000

Table 6: Speci�cation tests for the multinomial selection model
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to testing whether �AH1;12 � E
�
w(x)@

2H1(xT �1;x
T �2)

@(xT �1)@(x
T �2)

�
= 0. The evidence against additive

separable indices in the multinomial choice model is strong with a 90%-93% rejection rate.

The test for additive separability of the indices in both equations simultaneously is soundly

rejected, independent of the type of kernel used in estimation. Given the strong evidence

agains linearity and additivity, we do not consider testing the validity of the partial linear

model speci�cation.

6 Conclusions

In this paper we consider the estimation of semiparametric multi-index models for single

and multiple equation models. Although estimation methods for these models are avail-

able for quite some time, these methods all are rather computationally intensive. The

advantage of our method is that it only involves a single non-parametric step, which is

the computation of the various average derivative functionals and their covariance matrix.

Parameter estimation is then based on the nonparametrically estimated moments using a

GMM approach. This step involves a simple minimization problem where, importantly, no

additional kernel based calculations are required. The estimator is shown to be root N

consistent and asymptotically normal.

Parameter estimation in multiple index models is only feasible when the number of

indices is given. So far, the number of indices has been imposed, either by economic

theory, or by the researcher � no data driven procedures were considered to determine

this. We advance the literature by providing such a procedure. For single equation models,

we show that the rank of the outer product of the gradient equals the number of indices

required in the semiparametric model. For multiple index models this generalizes such that

the number of indices equals the rank of the sum of the outerproduct of the gradient of

the separate equations. Application of existing tests for the rank of a matrix then provides

the desired testing procedure. The GMM framework used for estimating the parameters

of interest provides an alternative way to test the appropriateness of the number of indices

chosen through the overidentifying restrictions test.
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In our simulation study, the tests on the number of indices required were very success-

ful in determining the appropriate dimension. The parameters of interest were also rather

precisely retrieved from the moment conditions we consider. In particular the outerproduct

of the gradient, which we showed to contain su¢ cient information for parameter identi�-

cation, already produced accurate estimates. Adding the moment conditions implied by

the average derivative and average hessian did not substantially improve the estimation

results. Adding further moment conditions could be considered, at the cost of stronger

conditions on the regression function and the kernels. Given the small e¢ ciency gains from

adding moments to the outerproduct of the gradient, adding more moments might not be

worthwhile. Better ways to increase e¢ ciency, or in fact attain e¢ ciency, would be to use

our estimator as a starting value for the iterative procedures of Ichimura and Lee (1991)

or Newey (2004). More interesting is the one-step e¢ cient update procedure of Delecroix

et al. (2003), but this requires the stronger conditional index distribution assumption.

As our method is derivative based, parameter estimation is only feasible for contin-

uous explanatory variables. Future research could consider an extension of the work by

Horowitz and Härdle (1996) for the ADE framework to deal with discrete variables in the

multiple index setting. Another interesting avenue for further research is to obtain analyti-

cal expressions for an estimator of the variance of the nonparametrically estimated moment

conditions that work well in small samples, i.e. that incorporate higher order terms in the

asymptotic expansion.

7 Appendix

The assumptions presented in this appendix are based on Samarov (1993) and specialized

for our application. In particular, the assumptions relating to the kernels have been modi-

�ed, where, unlike Samarov, we de�ne higher order kernels in line with Härdle and Stoker

(1989) and Powell, Stock and Stoker (1989). For each assumption we specify its formula-

tion for each of the three moment conditions discussed, AD; AOPG; and AH; in case they

di¤er.
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Let U be a convex open-bounded set in RL: The trimming function, w(x); is supported

on this set, U:We denote with D�+1(U) the set of functions whose derivatives up to order �

satisfy the following Lipschitz condition on U : supu;u+v2U;jjvjj�v0 ja(u)� a(u+ v)j=jjvjj <1

for some v0 > 0:

Assumption A.1 Let zi = (yi; xTi )
T ; i = 1; ::; N be a random sample drawn from f �(y; x);

with f �(y; x) the density of (y; x): The underlying measure of (y; x) can be written as vy�vx,

where vx is Lebesque measure. Let f(x) denote the density of x:

Assumption A.2 Density bounded away from zero on U

For some " > 0; infx2U f(x) � "; and U" = fz : jjz � xjj � "; x 2 Ug � supp(f):

The assumptions on the kernel and bandwidth are given in Assumptions (A.3) and

(A.4). Instead of using the kernel proposed in Samarov (1993), we de�ne our higher order

kernel, in line with Härdle and Stoker (1989) and Powell, Stock and Stoker (1989) to make

the assumptions comparable. The modi�cations needed in the proof of Samarov (1993)

in particular relate to the proof of Lemma 1. In addition to standard Taylor expansion

arguments (as applied in Levit (1978)), the revised proof makes use of integration by parts

as in Härdle and Stoker (1989), amongst others. This modi�cation does call for a slight

strengthening of the di¤erentiability requirement (with one order, see also Assumption

(A.5)), making it in line with di¤erentiability assumptions given in Härdle and Stoker

(1989) and Donkers and Schafgans (2003). At the same time the assumptions on the order

of the kernel are weakened.

Assumption A.3 Kernel de�nition.

The kernel function K(u) has bounded support fu : juj � 1g ; is symmetric, di¤erentiable

up to the order r (to be de�ned in the next assumption) and has r moments. The kernel

and its derivative, K 0(u); vanish at the boundary. K(u) is of order r; so with (l1; ::; lk) an
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index set Z
K(u)du = 1;Z
ul11 :::u

lk
k K(u)du = 0 l1 + :::+ lk < rZ

ul11 :::u
lk
k K(u)du 6= 0 l1 + :::+ lk = r:

Assumption A.4 Bandwidth selection.

With N !1; h! 0 and

(i) Nh2r = o(1); and

(ii) for some " > 0;

� AD: N1��h2L+2 !1 (or r � L+ 2)

� AOPG and AH: N1��h2L+4 !1 (or r � L+ 3)

Condition (i) on the bandwidth, Nh2r = o(1), ensures that the bias vanishes su¢ ciently

fast. Condition (ii) ensures that the linearization used in the proof is su¢ ciently close.

These conditions are derived by adapting Samarov�s proof of his Lemma 1 to follow that

of Härdle and Stoker (1991), see also Donkers and Schafgans (2003).11

Assumption A.5 Existence and boundedness of derivatives.

Partial derivatives of f and G up to the order r + 1 are bounded and f;G 2 Dr+2(U)

Assumptions (A.1), (A.2), (A.3), and (A.5) ensure smoothness properties, see condition

6 in Samarov (1993), for the average derivative functionals under consideration, as indicated

by the following Corrolary.

Corrolary 1 Let the average derivative function be denoted as
R
�m(x; u(x))f(x)dx, with

�m : R
L�W ! R; for someW 2 R8; and u(x) = (f(xi); fk(xi); f l(xi); fkl(xi); g(xi); gk(xi),

gl(xi); g
kl(xi)): �m incorporates the trimming function w(x) supported on U; conform the

11While the results for AD and AOPG can be found in Härdle and Stoker (1991) and Donkers and

Schafgans (2003), respectively, the formal derivation of the proof for the AH will be provided upon request.
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main text. Assumptions (A.1), (A.2), (A.3), and (A.5) then ensure

(i) �m and its partial derivatives �
k
m = d�=duk; k = 1; ::; 8; are bounded and � 2 D2(RL �

W ):

(ii) �kmf 2 Dr+2(RL) as a function for x; for k = 1; ::; 8:

Finally, we make an assumption to ensure that asymptotically the variance of the esti-

mators of the derivative functionals under consideration vanishes.

Assumption A.6 Finite variance of the components that need to be estimated.

� AD: Components of the random vector RAD(X; Y ) = w(X)fg0(X)�(Y �g(X))[f
0(X)
f(X)

]g

have �nite variances.

� AOPG: Components of the random matrix RAOPG(X; Y ) = w(X)fg0(X)g0T (X) �

(Y � g(X))[(f 0(X)g0T (X) + g0(X)f 0T (X))=f(X) + 2g00(X)]g have �nite variances.

� AH: Components of the random matrix RAH(X; Y ) = w(X)f(Y�g(X))f 00(X)=f(X)+

g00(X)g have �nite variances.
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