
 
 
 

SEMIPARAMETRIC ESTIMATION OF A BINARY 
RESPONSE MODEL WITH A CHANGE-POINT  

DUE TO A COVARIATE THRESHOLD∗ 

 
Sokbae Lee 

Department of Economics 
University College London 

London, WC1E 6BT 
United Kingdom 

 
And 

 
Myung Hwan Seo 

Department of Economics 
London School of Economics 

London, WC2A 2AE 
United Kingdom 

 
 
 
 
 
 
 
    The Suntory Centre 

Suntory and Toyota International Centres for 
Economics and Related Disciplines 
London School of Economics and Political Science 

Discussion paper   Houghton Street 
No. EM/2007/516   London WC2A 2AE 
February 2007   Tel:  020 7955 6679 
 
 
                                                 
∗ Lee thanks the Leverhulme Trust through the funding of the Centre for Microdata Methods and 
Practice (http://cemmap.ifs.org.uk) and the research programme Evidence, Inference and Inquiry 
(http://www.evidencescience.org). Seo thanks the Economic and Social Research Council (ESRC) 
for .nancial support. 
 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by LSE Research Online

https://core.ac.uk/display/94039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 

Abstract 
 

 
This paper is concerned with semiparametric estimation of a threshold binary 
response model. The estimation method considered in the paper is semiparametric 
since the parameters for a regression function are finite-dimensional, while 
allowing for heteroskedasticity of unknown form. In particular, the paper considers 
Manski (1975, 1985)’s maximum score estimator. The model in this paper is 
irregular because of a change-point due to an unknown threshold in a covariate. 
This irregularity coupled with the discontinuity of the objective function of the 
maximum score estimator complicates the analysis of the asymptotic behavior of 
the estimator. Sufficient conditions for the identification of parameters are given 
and the consistency of the estimator is obtained. It is shown that the estimator of 
the threshold parameter is n-consistent and the estimator of the remaining 
regression parameters is cube root n-consistent. Furthermore, we obtain the 
asymptotic distribution of the estimators. It turns out that a suitably normalized 
estimator of the regression parameters converges weakly to the distribution to 
which it would converge weakly if the true threshold value were known and 
likewise for the threshold estimator. 
 
Key Words:    Binary response model, maximum score estimation, semiparametric 
estimation, threshold regression, nonlinear random utility models. 
 
JEL Classification: C25 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
©  The authors.  All rights reserved.  Short sections of text, not to exceed two paragraphs, 
may be quoted without explicit permission provided that full credit, including © notice, is 
given to the source. 



1 Introduction

A binary response model is very commonly used in a number of �elds. In this model,

an observable binary outcome Y is modelled typically as Y = 1(Y � � 0), where 1(A)

denotes the indicator function, i.e., 1(A) = 1 if A is true and zero otherwise, and Y � is an

unobservable continuous variable that determines the binary outcome Y (see e.g. Manski,

1988). In most applications, Y � has the following form:

(1.1) Y � = X 0�0 + U;

where X is a vector of observed random variables including an intercept term, �0 is a vector

of unknown parameters, and U is an unobserved random variable.

In this paper, we consider a threshold regression model for Y � instead of the linear

regression model (1.1). In particular, the model is

(1.2) Y � =

�
W 0
1�10 +W

0
2�20 + U; if D � 0;

W 0
1�10 +W

0
2�30 + U; if D > 0;

or equivalently

Y � =W 0�0 + Z
0�01 fD > 0g+ U;

where W = (W 0
1;W

0
2)
0 ; Z = W2; �0 =

�
�010; �

0
20

�0
; and �0 = �30 � �20: In particular, D is

the observed threshold variable and 0 is the threshold parameter. We denote by X the set

of regressors (W 0; D)0 and by �0 =
�
�00; �

0
0

�0 the set of regression parameters excluding 0.
The threshold variable D can be an element of W: The literature on the threshold model

(also called change-point model, two-phase regression, or sample splitting) is vast. It has

been studied for autoregressive models (e.g. Tong, 1990; Chan, 1993), for linear regression

models (e.g. Hansen, 2000; Koul and Qian, 2002), for nonparametric models (e.g. Delgado

and Hidalgo, 2000), and more recently for transformation models (e.g. Pons, 2003; Kosorok

and Song, 2007).

Threshold binary regression models have a wide variety of applications. For example,

in biostatistics, dose-response models are modelled with threshold parameters (see, e.g.
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Cox, 1987; Schwartz et al., 1995). In epidemiology, logistic regressions with change-points

are used to model the relationship between the continuous exposure variable and disease

risk (see Pastor and Guallar, 1998; Pastor-Barriuso et al., 2003). In economics, �nance,

and management, random utility models that are nonlinear in income and/or price are

commonly employed (see, e.g. Herriges and Kling, 1999; Dagsvik and Karlstrom, 2005) and

Terui and Dahana (2006) adopted asymmetric market response model with the threshold

due to price based on consumer behavior theory. The e¤ect of �nancial contagion (see,

e.g. Forbes and Rigobon, 2002) can also be modelled as a discontinuous threshold e¤ect

as in Pesaran and Pick (in press). While the threshold model is easier to interpret than

more complex nonlinear models, the irregular feature of the model makes estimation of

the unknown change-point complicated. To our best knowledge, all existing methods for

estimating a change-point according to a covariate threshold assumes that the distribution

of U in (1.2) belongs to a family of parametric distributions.

The purpose of this paper is to develop a method for estimating (�0; 0) in (1.2) without

imposing the parametric distribution on U . First, we establish identi�cation of (�0; 0),

allowing for conditional heteroskedasticity of unknown form, under the conditional median

independence assumption. This is substantially weaker than the typical assumption such

that the distribution of U is parametric and U and X are independent. The conditional

heteroskedasticity is particularly important in random utility models as shown in Brown

and Walker (1989). Manski (1988) has shown that if the distribution of X has su¢ ciently

rich support, the �nite-dimensional parameters in a binary regression model with (1.1)

are identi�ed up to scale. As in Manski (1988), (�0; 0) in (1.2) is identi�ed (up to scale

with respect to �0) under some regularity conditions, which will be given in Section 2.

Once (�0; 0) is identi�ed via the conditional median independence assumption, a natural

estimation strategy for (�0; 0) in (1.2) is to apply Manski (1975, 1985)�s maximum score

estimator to the threshold model (1.2). Section 3 describes the corresponding maximum

score estimator and section 4 establishes the consistency of the estimator.
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We also develop convergence rates and asymptotic distributions, which are highly non-

standard due to mixed irregularities of the model and maximum score estimation. In Section

5, it is shown that ̂n is n
�1-consistent and �̂n is n�1=3-consistent. It is interesting to �nd

that the fast rate of convergence for the threshold estimator is preserved for the maximum

score estimation. Section 6 gives the asymptotic distributions of n(̂n�0) and n1=3(�̂n��0).

It turns out that both estimators ̂ and �̂ are adaptive in that n(̂n� 0) and n1=3(�̂n� �0)

converge weakly to the distributions to which they would converge weakly if the other pa-

rameters were known. In fact, it is shown that the error due to the estimation converges

in probability to zero at a rate of n�1=6: Section 7 discusses the subsampling inference that

enables us to carry out inference, although the distributions of n(̂n�0) and n1=3(�̂n��0)

are nonstandard and cannot be tabulated. Concluding remarks are given in Section 8. The

proofs of theorems are given in the main text and the proofs of lemmas are in Appendix.

2 Identi�cation of �0 and 0

This section provides regularity conditions under which �0 and 0 are identi�ed. Let

FU jX(ujx) and fU jX(ujx), respectively, denote the cumulative distribution function and

probability density function of U conditional on X = x.

Assumption 1. Assume that k�0k = 1 and �0 6= 0.

As in the linear binary response model (1.1), the scale of �0 is not identi�ed since the

distribution of U conditional on X = x is unknown. In this paper, the scale normalization

on �0 is given by k�0k = 1. If �0 is zero, then 0 is unidenti�ed.

Assumption 2. The distribution of U conditional on X = x is absolutely continuous

with respect to Lebesgue measure and the corresponding conditional density is uniformly

continuous and positive everywhere with probability one. In addition, FU jX(0jx) = 0:5 for

almost every x.

This assumption allows for an arbitrary form of dependence between U and X as long
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as the conditional median independence assumption is satis�ed. For the purpose of identi-

�cation, any other quantile independence assumption would work as well (see, Assumption

QI in Manski, 1988).

Assumption 3. The support of W 2 Rq is not contained in any proper linear subspace of

Rq.

Assumption 4. There exists at least one k 2 [1; : : : ; q] such that the k-th element of �0 is

non-zero and such that, for almost every value of ~w � (w1; : : : ; wk�1; wk+1; : : : ; wq) and d,

Pr[a1 < Wk < a2j ~W = ~w;D = d] > 0 for all open intervals (a1; a2) 2 R.

Assumptions 3 and 4 are simply the restatement of Conditions X1 and X3 of Manski

(1988), respectively.

Assumption 5. D is continuously distributed with support containing 0.

This condition ensures the identi�cation of 0. If 0 were not contained in the support

of D, then the threshold model (1.2) would not have a two-phase feature in observed data.

Theorem 1. Let Assumptions 1-5 hold. Then �0 and 0 are identi�ed.

Proof. Note that by Assumptions 2, 3 and 4, for each �xed D = d, �0 and �0(d) � �01(d >

0) are identi�ed by Corollary 2 of Manski (1988). Thus, �0 is identi�ed as �0 = �0(d) for

any d such that �0(d) 6= 0. Finally, given Assumption 5, 0 is identi�ed as the in�mum of

d�s satisfying �0(d) 6= 0 or as the supremum of d�s satisfying �0(d) = 0.

3 The Maximum Score Estimator

We consider estimation with an independent and identically distributed sample f(Yi; Xi) :

i = 1; : : : ; ng of (Y;X). To describe the maximum score estimator, for any � = (�0; �0)0, 

and x = (w; z; d), de�ne

(3.1) Sn(�; ) =

nX
i=1

(2Yi � 1)1 fG(Xi; �; ) � 0g ;
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where

G(x; �; ) = w0� + z0�1(d > ):

Then Manski (1975, 1985)�s maximum score estimator (�̂n; ̂n) of (�0; 0) can be obtained

in two steps. In the �rst stage, for �xed , obtain

�̂n() = argmax�Sn(�; )

with the scale normalization on � with k�k = 1. In the second stage, let Ŝn() = Sn(�̂n(); ).

Obtain ̂n = inffn : n = argmaxŜn()g. Then the maximum score estimator of �0 is

�̂n = �̂n(̂n). Since there could be in�nitely many �s at which Ŝn() is maximized, ̂n is

de�ned as the in�mum of those.

The discontinuity of Sn with respect to (�; ) complicates the analysis of the asymptotic

behavior of the maximum score estimator. There exist two distinct sources of discontinuity:

on the one hand, the discontinuity arises because of the presence of the indicator function

1 fG(Xi; �; ) � 0g in (3.1); on the other hand, it may occur because of a possible change-

point in (1.2) due to an unknown threshold 0. We now turn to the asymptotic properties

of the maximum score estimator.

4 Consistency of the Estimator

This section gives conditions under which the maximum score estimator is consistent.

Assumption 6. Assume that �0 and 0 are in a compact subset of Rp, where p is the

dimension of (�0; 0).

Assumption 7. Assume that f(Yi; Xi) : i = 1; : : : ; ng is independent and identically dis-

tributed.

These are standard assumptions in the literature. The following theorem gives the

consistency result.

Theorem 2. Let Assumptions 1-7 hold. Then (�̂n; ̂n)!p (�0; 0).
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Proof. De�ne

H�(x) = E [1 fG(X; �0; 0) + U � 0g � 1 fG(X; �0; 0) + U < 0g jX = x]

and

��(�; ) = n�1E[Sn(�; )� Sn(�0; 0)]:

Then it can be shown that

��(�; ) = E
h
H�(X)

�
1 fG(X; �; ) � 0 > G(X; �0; 0)g

� 1 fG(X; �0; 0) � 0 > G(X; �; )g
�i
:

Note that

H�(x) = 1� 2FU jX [�G(x; �0; 0)jx]:

By the assumption that FU jX [0jx] = 0:5, note that H�(x) � 0 when G(x; �0; 0) � 0 and

that H�(x) < 0 when G(x; �0; 0) < 0. De�ne

Q(�; ) =
h
x 2 supp(X) : fG(x; �; ) � 0 > G(x; �0; 0)g [ fG(x; �0; 0) � 0 > G(x; �; )g

i
:

By arguments identical to those used to prove Proposition 2 of Manski (1988), (�0; 0) are

identi�ed if and only if Pr(X 2 Q(�; ) > 0 for any (�; ) 6= (�0; 0). Therefore, �
�(�; )

is non-positive everywhere and is equal to zero only when (�; ) = (�0; 0). Also, notice

that G(S; �; ) is continuous at each � and  with probability one. Thus, Sn(�; ) converges

in probability to E[Sn(�; )] uniformly over (�; ) by Lemma 2.4 of Newey and McFadden

(1994). Then the consistency of the estimator follows from Theorem 2.1 of Newey and

McFadden (1994).

5 Rates of Convergence

This section establishes the rates of convergence in probability of (�̂n; ̂n) to (�0; 0). First,

we show that ̂n is n
�1-consistent for 0. To do so, we begin with the following lemma,

which is similar to Claim 2 in the proof of Proposition 1 of Chan (1993) and Lemma 3.2 of

Koul and Qian (2002). The proof of the lemma is given in Appendix.
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Lemma 1. For any random variables (V;D) satisfying E[V jD] = 0 and E[V 2jD] < C <1

almost surely, assume that f(Vi; Di) : i = 1; : : : ; ng is a random sample of (V;D) and that D

is continuously distributed and has a bounded, continuous, positive density in a neighborhood

of x 2 R. Then, for each � > 0 and " > 0, there exists a positive constant B <1 such that

for all 0 < � < 1 and for all n > B=�,

(a) Pr

8<: sup
B
n
<r<�

����� 1n
nX
i=1

1 fx < Di < x+ rg
Pr fx < D < x+ rg � 1

����� > �
9=; < "

(b) Pr

8<: sup
B
n
<r<�

����� 1n
nX
i=1

Vi
1 fx < Di < x+ rg
Pr fx < Di < x+ rg

����� > �
9=; < ":

We make the following additional assumptions.

Assumption 8. Assume that D is continuously distributed with full support on R and its

probability density function is strictly positive, bounded and continuous in a neighborhood

of 0.

This assumption is needed to utilize Lemma 1.

Assumption 9. With positive probability, Z 0�0 6= 0 at D = 0.

This assumption imposes that the regression function in (1.2) is discontinuous. When

the regression function is continuous, then we would have di¤erent rates of convergence and

asymptotic distributions.

The following theorem gives the n�1-consistency of ̂n to 0.

Theorem 3. Let Assumptions 1-9 hold. Then, ̂n = 0 +Op
�
n�1

�
:

Proof. De�ne

�Sn (�; ) = Sn (�; )� Sn (�; 0)

=

nX
i=1

(2Yi � 1) (1 fG (Xi; �; ) � 0g � 1 fG (Xi; �; 0) � 0g) :

Suppose that  > 0. Then if Di >  or Di � 0,

1 fG (Xi; �; ) � 0g � 1 fG (Xi; �; 0) � 0g = 0:
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Suppose now that  < 0. Then if Di > 0 or Di � ,

1 fG (Xi; �; ) � 0g � 1 fG (Xi; �; 0) � 0g = 0:

Using these, we may write

�Sn (�; ) =
nX
i=1

1 f0 < Di � g �+i (�) +
nX
i=1

1 f < Di � 0g ��i (�);(5.1)

where �+i (�) =
�
I+1i(�)� I

+
2i(�) + I

+
3i(�)� I

+
4i(�)

�
with

I+1i(�) = 1
�
W 0
i� � 0;W 0

i� + Z
0
i� < 0;W

0
i�0 + Z

0
i�0 � �Ui

	
I+2i(�) = 1

�
W 0
i� � 0;W 0

i� + Z
0
i� < 0;W

0
i�0 + Z

0
i�0 < �Ui

	
I+3i(�) = 1

�
W 0
i� < 0;W

0
i� + Z

0
i� � 0;W 0

i�0 + Z
0
i�0 < �Ui

	
I+4i(�) = 1

�
W 0
i� < 0;W

0
i� + Z

0
i� � 0;W 0

i�0 + Z
0
i�0 � �Ui

	
and ��i (�) =

�
I�1i(�)� I

�
2i(�) + I

�
3i(�)� I

�
4i(�)

�
with

I�1i(�) = 1
�
W 0
i� � 0;W 0

i� + Z
0
i� < 0;W

0
i�0 < �Ui

	
I�2i(�) = 1

�
W 0
i� � 0;W 0

i� + Z
0
i� < 0;W

0
i�0 � �Ui

	
I�3i(�) = 1

�
W 0
i� < 0;W

0
i� + Z

0
i� � 0;W 0

i�0 � �Ui
	

I�4i(�) = 1
�
W 0
i� < 0;W

0
i� + Z

0
i� � 0;W 0

i�0 < �Ui
	
:

The following lemma, which is proved in Appendix, is useful to prove the theorem.

Lemma 5.1. For any � > 0, de�ne �� = f� : k� � �0k < �g. There exists a su¢ ciently

small � > 0 such that

sup
�2��

E
�
�+i (�)jDi

�
< 0 and sup

�2��
E
�
��i (�)jDi

�
< 0

almost surely.
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Now write

�Sn (�; ) =
nX
i=1

1 f0 < Di � gE[�+i (�)jDi] +
nX
i=1

1 f < Di � 0gE[��i (�)jDi]

+
nX
i=1

1 f0 < Di � g
�
�+i (�)� E[�

+
i (�)jDi]

	
+

nX
i=1

1 f < Di � 0g
�
��i (�)� E[�

�
i (�)jDi]

	
:

Then apply Lemmas 1 and 5.1 to obtain �Sn (�; ) < 0 with probability approaching one

for all j � 0j > B=n and � 2 �� and with some su¢ ciently large B and su¢ ciently small

�. As
�
�̂; ̂
�
is the maximizer of Sn (�; ) ; we conclude that ̂ = 0 +Op (1=n) :

We now turn to the rates of convergence of �̂n to �0. Given the result of Theorem 3 and

Kim and Pollard (1990), it is not surprising that we establish the n�1=3-consistency for �̂n.

To do so, write

Sn(�; ) = Sn1() + Sn2(�) + Sn3(�; );(5.2)

where Sn1() = Sn(�0; )� Sn(�0; 0), Sn2(�) = Sn(�; 0)� Sn(�0; 0), and

Sn3(�; ) = [Sn(�; )� Sn(�; 0)]� [Sn(�0; )� Sn(�0; 0)] :

We �rst give the following lemma, which is proved in Appendix.

Lemma 5.2. For every A > 0, as n!1:

sup
�;
fjSn3(�; )j : nj � 0j � Ag = Op(1):

Assumption 10. As a function of �, E [(2Y � 1)1 fG(X; �; 0) � 0g] has a strictly negative

de�nite second derivative matrix at �0.

This assumption is necessary to apply Corollary 4.2 of Kim and Pollard (1990), who

also give su¢ cient conditions for the maximum score estimator (see Section 6.4 in Kim and

Pollard, 1990).
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Theorem 4. Let Assumptions 1-10 hold. Then, �̂n = �0 +Op
�
n�1=3

�
.

Proof. In view of Corollary 4.2 of Kim and Pollard (1990), it su¢ ces to show that

n�1Sn(�̂) � sup
�
n�1Sn(�)�Op(n�2=3);

which in turn follows from the same Corollary, Lemma 5.2, and the fact that Sn1 does not

depend on �:

6 The Asymptotic Distribution of the Estimator

Since ̂ is n�1-consistent and �̂ is n�1=3-consistent, it su¢ ces to consider a n�1-neighborhood

of 0 and a n
�1=3-neighborhood of �0. Then Lemma 5.2 can be strengthened by restricting

the parameter space in the following way.

Lemma 6.1. For every A > 0, as n!1:

sup
�;

n
jSn3(�; )j : n1=3 k� � �0k � A;nj � 0j � A

o
= Op(n

�1=6):

To establish the asymptotic distribution of n(̂�0), we now consider the weak conver-

gence of Sn1 as a random variable on the space of cadlag functions, denoted by D, equipped

with the Skorohod topology and on its restrictions to the space of cadlag functions on

[�A;A], denoted by DA, for any A > 0. This approach is similar to that taken in the recent

literature (for example, Chan, 1993; Koul and Qian, 2002; Pons, 2003; Kosorok and Song,

2007). De�ne � = n( � 0). Using (5.1), de�ne a rescaled version of Sn1() as

~Sn1(�) = ~S+n1(�)1(� > 0) +
~S�n1(�)1(� < 0);

where

~S+n1(�) =
nX
i=1

1
�
0 < Di � 0 + n�1�

	
�+i (�0);

~S�n1(�) =
nX
i=1

1
�
0 + n

�1� < Di � 0
	
��i (�0):
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To describe the asymptotic behavior of ~Sn1(�), let fD(d) denote the probability density

function of D, let ~�+ and ~�� denote two independent jump processes on R such that ~�+(s)

is a Poisson random variable with parameter sfD(0) for s > 0 and ~�
+(s) = 0 for s � 0 and

~��(s) is a Poisson random variable with parameter �sfD(0) for s < 0 and ~��(s) = 0 for

s � 0. In addition, let f~�+k : k = 0; 1; : : :g and f~�
�
k : k = 0; 1; : : :g be independent sequences

of i.i.d. random variables with characteristic functions

'+(t) = E
�
exp(it�+)jD = +0

�
and '�(t) = E

�
exp(it��)jD = �0

�
;

respectively, and let ~�
+
0 = ~�

�
0 = 0. Let ~S1(s) = ~S+1 (s)1fs > 0g + ~S�1 (s)1fs < 0g be a

right-continuous jump process on R, where

~S+1 (s) =
X

0�k�~�+(s)

~�
+
k and ~S�1 (s) =

X
0�k�~��(s)

~�
�
k :

The following lemma establishes the weak convergence of ~Sn1.

Lemma 6.2. As n!1, ~Sn1 converges weakly to ~S1 in DA for every A > 0.

Let ��~S1
= inff�� : �� = argmax� ~S1(�)g. As in the literature (see, e.g., Chan, 1993;

Koul and Qian, 2002; Pons, 2003; Kosorok and Song, 2007), ~S1 tends to �1 almost surely

as j�j ! 1, thereby implying that the distribution of ��~S1 is tight. Lemma 6.2 coupled with

Lemma 6.1 gives the main theorem of this paper.

Theorem 5. Let Assumptions 1-9 hold. Then, as n ! 1, n(̂ � 0) converges weakly to

��~S1
. In addition, n1=3(�̂ � �0) and argmax�n�1=3Sn2

�
�0 + n

�1=3�
�
converge weakly to the

same limiting distribution.

Proof. Note that n(̂ � 0) is uniformly tight by Theorem 3. Since Sn2 depends on only

�, Lemmas 6.1 and 6.2 ensure that conditions of the argmax continuous mapping theorem

of van der Vaart and Wellner (1996, Theorem 3.2.2, p.286) are satis�ed. Then the �rst

conclusion follows from the argmax continuous mapping theorem. Similarly, n1=3(�̂� �0) is

uniformly tight by Theorem 4. Since Sn1 depends on only , by Lemma 6.2 and again by

the argmax continuous mapping theorem, the second conclusion follows.
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Theorem 5 implies that the limiting distributions of n(̂ � 0) and n1=3(�̂ � �0) are the

same as if the other parameters were known. The limiting distribution of n1=3(�̂ � �0) is

not shown here since it is already given in Kim and Pollard (1990, Example 6.4).

7 Inference

The asymptotic distributions obtained in this paper are nonstandard and cannot be tab-

ulated as they depend on nuisance parameters in complex manners. It is known from

Abrevaya and Huang (2005) that the bootstrap does not estimate the asymptotic distri-

bution of �̂ consistently. While the m out of n bootstrap in Lee and Pun (2006) is more

general and allows for the standard maximum score estimator, their regularity conditions

do not permit threshold models. However, subsampling provides a consistent inferencial

method for the asymptotic distributions of both �̂ and ̂; as in Delgado et al. (2001) and

Gonzalo and Wolf (2005). Con�dence intervals can be constructed following the standard

subsampling procedure, see e.g. Politis et al. (1999).

As our asymptotic development is based on the discontinuity of the regression function

(Assumption 9), the above asymptotics breaks down when the model comes close to a

continuous one. In this case, the subsampling con�dence intervals may be problematic

as their convergences are not uniform around the continuity point, see e.g. Andrews and

Guggenberger (2006).

Another interesting inferential approach can be based on the smoothing of the objective

function. This can be done by replacing the indicator functions in (3:1) with integrated

kernels with smoothing parameters that converge to zero. Horowitz (1992) and Seo and

Linton (2007) have developed the smoothing approach for the maximum score estimation

and threshold estimation, respectively. This method enables the standard normal inference

for both  and � while it causes the convergence rate of �̂ to increase and that of ̂ to

decrease. The smoothing, however, demands more stringent smoothness conditions than

the ones in this paper as demonstrated in Horowitz (1993).

12



8 Conclusions

This paper has considered the maximum score estimator of a binary response model with a

change-point according to the unknown threshold of a covariate, allowing for an arbitrary

from of heteroskedasticity. We have obtained the rates of convergence and asymptotic

distribution of the estimator. It turns out that the estimator of the threshold parameter

is n�1-consistent, the estimator of the remaining regression parameters is n�1=3-consistent,

and the limiting distributions of the estimators normalized by the rates of convergence

are the same as if the other parameters were known. Therefore, an important practical

implication of this paper is that the unknown threshold parameter can be estimated precisely

with a small or moderate sample size and that there is no loss of e¢ ciency of not knowing

other parameters, which are di¢ cult to estimate precisely without a large sample.

A Appendix: Proofs of Lemmas

Proof of Lemma 1. For any r 2 (0;�], there exist 0 < m < M <1 such that

(A.1) mr < Pr fx < D < x+ rg < Mr:

Consider a partition of the interval (B=n;�) � [K�1k=0 Jk, where K is the largest integer

such that bK�1B=n < � for some b > 1; and Jk = (bkB=n; bk+1B=n] ; k = 0; :::;K � 2 and

JK�1 = (b
K�1B=n;�): Here we prove part (b) only as part (a) can be proved in the same

but simpler way. For a r 2 Jk; we have����� 1n
nX
i=1

Vi1 fx < Di < x+ rg
����� � 1

n

nX
i=1

jVij 1
n
x+ bkB=n < Di � x+ bk+1B=n

o
+

����� 1n
nX
i=1

Vi1
n
x < Di � x+ bkB=n

o�����
and

Pr fx < D < x+ rg � Pr
n
x < D < x+ bkB=n

o
:

13



Thus,

sup
B
n
<r<�

����� 1n
nX
i=1

Vi
1 fx < Di < x+ rg
Pr fx < D < x+ rg

����� � max
0�k<K

1

n

nX
i=1

jVij 1
�
x+ bkB=n < Di � x+ bk+1B=n

	
Pr fx < Di < x+ bkB=ng

+ max
0�k<K

����� 1n
nX
i=1

Vi1
�
x < Di � x+ bkB=n

	
Pr fx < D � x+ bkB=ng

����� :

(A.2)

First, consider the second term in (A:2). It follows from the Markov and Cauchy-Schwarz

inequalities that for any �1 > 0,

Pr

(
max
0�k<K

����� 1n
nX
i=1

Vi1
�
x < Di � x+ bkB=n

	
Pr fx < D � x+ bkB=ng

����� > �1
)

� ��21
K�1X
k=0

E

����� 1n
nX
i=1

Vi1
�
x < Di � x+ bkB=n

	
Pr fx < D < x+ bkB=ng

�����
2

� ��21
K�1X
k=0

E[V 2]

n � Pr fx < D � x+ bkB=ng

� E[V 2]

m�21B (1� b�1)
:

(A.3)

Next, note that due to (A:1),

var
�
jV j 1

n
x+ bkB=n < D � x+ bk+1B=n

o�
� Cbk (b� 1)B=n;

for some constant C. Thus, for the �rst term in (A:2), we have that

Pr

(
max
0�k<K

1

n

nX
i=1

jVij 1
�
x+ bkB=n < Di � x+ bk+1B=n

	
Pr fx < D < bkB=ng > �2

)

�
K�1X
k=0

1

n
var

 
jVij 1

�
x+ bkB=n < Di � x+ bk+1B=n

	
Pr fx < D < x+ bkB=ng �2

!

+ max
0�k<K

E

 
jV j 1

�
x+ bkB=n < D � x+ bk+1B=n

	
Pr fx < D < x+ bkB=ng �2

!

�
K�1X
k=0

1

n

Cbk (b� 1)B=n
(�2mbkB=n)

2 + E[V 2] (b� 1) =�2m

=
C (b� 1)

(�2m)
2 (1� b�1)B

+ E[V 2] (b� 1) =�2m:

Therefore, we can choose b close enough to 1 and then B large enough so that these two

quantities and (A:3) can be made arbitrarily small for any �1; �2 > 0:

14



Proof of Lemma 5.1. We �rst show that E sup�2��
�
I+1i(�)� I

+
2i(�)jDi

�
< 0 for � su¢ -

ciently small. Let " > 0; 1=2 < � < 1; and 0 < � < (4"� � 2") = (1 + 4"� � 2") : In view of

Assumption 2, Choose � to be small enough so that jW 0
i (�0 � �) + Z 0i (�0 � �)j � a < 1

for all � 2 �� with probability 1 � �; for a > 0 such that Pr fUi < ajXig � 1=2 + " and

Pr fUi > �ajXig � 1=2� " almost surely and that Pr fAi;ajAi; Dig = � > 1=2, where

Ai = 1
�
W 0
i� > 0;W

0
i� + Z

0
i� � 0

	
Ai;a = 1

�
W 0
i� > 0;W

0
i� + Z

0
i� � �2a < 0

	
:

Then for all � 2 ��, we have

E
�
I+1i(�)jAi; Di

�
� � + (1� �) ((1=2� ") � + (1=2 + ") (1� �))

E
�
I�2i(�)jAi; Di

�
� (1� �) ((1=2 + ") � + (1=2� ") (1� �)) ;

almost surely, which in turn yields that

E
�
I+1i(�)� I

+
2i(�)jAi; Di

�
� � + (1� �) (�2"� + 2" (1� �))

= � + (1� �) (2"� 4"�)

< 0

almost surely. Similarly, E sup�2��
�
I+3i(�)� I

+
4i(�)jDi

�
< 0 almost surely for � su¢ ciently

small. Therefore, sup�2�� E
�
�+i (�)jDi

�
< 0 almost surely for � su¢ ciently small. The

proof for ��i (�) is similar.

Proof of Lemma 5.2. It follows from (5.1) that

Sn3(�; ) =

nX
i=1

1 f0 < Di � g
�
�+i (�)� �

+
i (�0)

�
+

nX
i=1

1 f < Di � 0g
�
��i (�)� �

�
i (�0)

�
:

Since �+i (�) and �
�
i (�) consists of just several indicator functions, there exists a universal

constant C <1 such that

jSn3(�; )j � C
"
nX
i=1

1 f0 < Di � g+
nX
i=1

1 f < Di � 0g
#

15



uniformly over �. Thus, it su¢ ces to show that for every A > 0,

(A.4)

sup
:nj�0j�A

nX
i=1

1 f0 < Di � g = Op(1) and sup
:nj�0j�A

nX
i=1

1 f < Di � 0g = Op(1):

To show the �rst claim of (A.4), consider a class of functions indexed by , MA =

f1 f0 < D � g : nj � 0j � Ag. Then MA is a VC class of functions with an enve-

lope function MA = 1 f0 < D � 0 +A=ng. By Theorem 2.14.1 of Van der Vaart and

Wellner (1996, p.239), there exists a universal constant C <1 such that

E

"
sup

:nj�0j�A

�����
nX
i=1

[1 f0 < Di � g � E1 f0 < D � g]
�����
#
� Cn1=2J(1;MA)(EM

2
A)
1=2;

where J(1;MA) is the uniform entropy integral de�ned in Van der Vaart and Wellner (1996,

p.239). Since J(1;MA) is bounded for a VC class and (EM2
A)
1=2 = O(n�1=2),

sup
:nj�0j�A

�����
nX
i=1

[1 f0 < Di � g � E1 f0 < D � g]
����� = Op(1):

The desired result follows since

(A.5) sup
:nj�0j�A

E1 f0 < D � g = O(n�1):

The proof of the second claim of (A.4) is similar.

Proof of Lemma 6.1. The proof of this lemma is similar to that of Lemma 5.2. It su¢ ces

to show that

nX
i=1

1 f0 < Di � g
�
�+(�)� �+(�0)

�
= Op(n

�1=6)(A.6)

and

nX
i=1

f < Di � 0g
�
��(�)� ��(�0)

�
= Op(n

�1=6):(A.7)

uniformly over (�; ) satisfying n1=3j���0j � A and nj�0j � A. We will prove only (A.6)

since the proof of (A.7) is similar. Consider a class of functions indexed by (�; ), LA =

f1 f0 < D � g
�
�+(�)� �+(�0)

�
: n1=3j���0j � A and nj�0j � Ag. Then LA is a VC

16



class of functions with an envelope function LA = sup�;f1 f0 < D � g
�
�+(�)� �+(�0)

�
:

n1=3j� � �0j � A and nj � 0j � Ag. Then as in the proof of Lemma 5.2, (A.6)

follows from Theorem 2.14.1 of Van der Vaart and Wellner (1996, p.239), the fact that

(EL2A)
1=2 = O(n�1=2n�1=6), (A.5), and

sup
�:n1=3j���0j�A

E
�
�+(�)� �+(�0)

�
= O(n�1=6):

Proof of Lemma 6.2. Since ~S+n1 and ~S�n1 are independent and similarly de�ned, we prove

the convergence of ~S+n1. De�ne ~S
+
n1(�) = Sn1(0 + n

�1�). We �rst prove the tightness of

~S+n1(�). By the D-tightness criterion of Billingsley (1968, equation (15.21)), it su¢ ces to

show that there exists a �nite, universal constant C <1 such that

(A.8) E
��� ~S+n1(�)� ~S+n1(�1)

��� ��� ~S+n1(�2)� ~S+n1(�)
��� � C(�2 � �1)2

for any �, �1 and �2 satisfying 0 < �1 < � < �2. Note that

E
��� ~S+n1(�)� ~S+n1(�1)

��� ��� ~S+n1(�2)� ~S+n1(�)
���

� 4E
nX
i=1

nX
j=1

1
n
0 +

�1
n
< Di � 0 +

�

n

o
1
n
0 +

�

n
< Dj � 0 +

�2
n

o
� 4E

nX
i=1

nX
j=1;j 6=i

1
n
0 +

�1
n
< Di � 0 +

�2
n

o
1
n
0 +

�1
n
< Dj � 0 +

�2
n

o
� 4n(n� 1)

h
FD

�
0 +

�2
n

�
� FD

�
0 +

�1
n

�i2
� 4CFD

n(n� 1)
n2

(�2 � �1)2;

where the �rst inequality comes from the fact j�+i (�0)j � 2 for all i, the second inequality

follows since 1f1 < Di � g and 1f < Dj � 2g are disjoint, and 1f1 < Di � 2g

is nondecreasing as 1 decreases or as 2 increases, the third inequality is obvious since

Di are i.i.d. with the common distribution FD, and the fourth inequality follows from the

assumption that FD is Lipschitz continuous with the constant CFD . Then (A.8) follows

immediately by taking C = 4CFD .
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We now consider the weak convergence of the �nite-dimensional distributions of ~S+n1(�).

To use the Cramér-Wold device, let 0 < �1 < : : : < �J for J 2 N and q1; : : : ; qJ be constants.

Instead of obtaining the weak convergence of
PJ
j=1 qj

~S+n1(�j), we will show below the weak

convergence of �Sn1, where �Sn1 is de�ned as

�Sn1 =

JX
j=1

qj

h
~S+n1(�j)� ~S+n1(�j�1)

i
:

As shown in the proof of Theorem 4 of Pons (2003), it is easier to deal with �Sn1. Speci�cally,

since �Sn1 is a linear combination of f ~S+n1(�1); : : : ; ~S
+
n1(�J)g, the weak convergence of the

�nite-dimensional distributions of ~S+n1(�) follows if we show that its characteristic function

converges to the characteristic function of

JX
j=1

qj

h
~S+1 (�j)� ~S+1 (�j�1)

i
:

We now consider the characteristic function of �Sn1, which has the form

' �Sn1(t) =

8<:E
24exp

0@it JX
j=1

qjInj(D)�(�0)

1A359=;
n

:

Note that as in the proof of Theorem 4 of Pons (2003), using the fact that for each i, there

is at most one index j such that Inj(Di) 6= 0, write

exp

0@it JX
j=1

qjInj(D)�(�0)

1A = 1 +
JX
j=1

[exp (itqjInj(D)�(�0))� 1] ;

so that

E

24exp
0@it JX

j=1

qjInj(D)�(�0)

1A35
= 1 +

JX
j=1

n�1
�
(�j � �j�1)fD(0)

�
E
�
exp (itqj�(�0))� 1jD = +0

�	
+ o(1)

�
:

Then using the fact that An = exp(n logA) for any A > 0 and that log(1+an) = an+o(an)

for any an ! 0, we have

lim
n!1

' �Sn1(t) =

JX
j=1

(�j � �j�1)fD(0)
�
E
�
exp (itqj�(�0))� 1jD = +0

�	
:
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Then the lemma follows from the fact that the characteristic function ' ~S1(s)(t) of
~S1(s) is

' ~S1(s)(t) = exp [sfD(0) f'
+(t)� 1g], as in Lemma 5 of Pons (2003).
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