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Abstract. This article is concerned with the numerical detection of bifurcation points of non-
linear partial differential equations as some parameter of interest is varied. In particular, we study in
detail the numerical approximation of the Bratu problem, based on exploiting the symmetric version
of the interior penalty discontinuous Galerkin finite element method. A framework for a posteriori
control of the discretization error in the computed critical parameter value is developed based upon
the application of the dual weighted residual (DWR) approach. Numerical experiments are presented
to highlight the practical performance of the proposed a posteriori error estimator.
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1. Introduction. Understanding the nature of solutions to nonlinear partial dif-
ferential equations (PDEs) remains one of the greatest challenges in modern scientific
computing. Some fundamental questions include: “How many solutions exist as some
parameter of interest is varied?”; “Are the solutions linearly stable?”; and “At what
critical parameter value does a bifurcation occur?”. In this article we consider the
latter question and in particular address the issue concerning the accuracy of com-
puted critical value by means of a posteriori error estimation. For this purpose we
investigate the Bratu problem, see, for example, Wazwaz [29], which can be viewed as
a model of some phenomenon exhibiting diffusion with exponential growth. Although
the Bratu problem is essentially of academic interest, it serves as an excellent model
situation in which to demonstrate the computational approach developed in this ar-
ticle, as it contains many of the key features inherent in the study of more general
nonlinear PDEs of practical interest.

In the numerical study of nonlinear PDEs, the estimation of the critical parameter
at which a bifurcation may occur can be performed by discretizing a suitable extended
system of PDEs; see, for example, Seydel et al. [24, 25] and Moore and Spence [22]. In
essence, this process involves determining the parameter value and associated solution
at which the Jacobian of the underlying nonlinear PDE has a zero eigenvalue. For
the discretization of the extended system we propose to exploit the symmetric version
of the interior penalty discontinuous Galerkin (DG) method [2], primarily due to
the benefits in terms of the ease of implementation of automatic mesh adaptation
procedures.

Over the past few decades, tremendous progress has been made in the area of a
posteriori error estimation and adaptive finite element approximation of partial dif-

∗ School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7
2RD, UK, email: Andrew.Cliffe@ nottingham.ac.uk.

† School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7
2RD, UK, email: Edward.Hall@ nottingham.ac.uk. The research of this author was supported by
the EPSRC under grant EP/E013724/1.

‡ School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7
2RD, UK, email: Paul.Houston@ nottingham.ac.uk.

§Computer Science Research Institute, Sandia National Laboratories, Albuquerque, New Mexico,
email: etphipp@sandia.gov.

¶Computer Science Research Institute, Sandia National Laboratories, Albuquerque, New Mexico,
email: agsalin@sandia.gov.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/9403754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 K.A. CLIFFE et al.

ferential equations; for a review of some of the main developments in the subject
we refer to the recent monographs [1, 26, 28], and the articles [15, 5]. Despite a
number of significant advances in the field, much of the research to date has focused
on source problems. In the context of eigenvalue error estimation for determining
whether a solution to a PDE is linearly stable or not, we mention the recent arti-
cles [13, 14, 20, 23] for the finite element approximation of second–order self-adjoint
elliptic eigenvalue problems. For related work, based on considering the eigenvalue
problem as a parameter–dependent nonlinear equation, see Verfürth [27, 28], for ex-
ample. More recently, in the article [9], we considered the a posteriori estimation of
the error in the leading eigenvalue for the hydrodynamic stability problem. In par-
ticular, we employed a dual weighted residual (DWR) a posteriori error estimator,
see [4, 16], for example, specifically tailored to assess the accuracy of the computed
leading eigenvalue. Here, the discretization error stemming from both the numerical
approximation of the steady incompressible Navier-Stokes equations, as well as the
error arising from the approximation of the corresponding eigenvalue problem itself
was controlled. The purpose of this article is to consider the natural extension of
these ideas to bifurcation problems. More precisely, we derive computable a posteri-
ori bounds on the error in the DG approximation of the critical parameter value for
the Bratu problem, based on exploiting the general DWR methodology.

The article is structured as follows. In the next section we discuss the calculation
of simple fold points, specifically we shall be interested in quadratic fold points. In
section 3 we then recall the DWR error estimation technique applied to a general
Galerkin finite element method and propose its application for the control of the error
in the computed critical parameter. Computation of critical parameters involves the
solution of an extended system for the base solution, null-function and the critical
parameter; similarly, the error estimation involves the computation of an associated
dual solution which satisfies a corresponding adjoint extended system. In section 4
we therefore discuss how the solution of these extended systems may be computed in
an efficient manner. The Bratu problem and its DG discretization are presented in
section 5 and an error representation formula for the error in the computed critical
parameter is developed. Numerical experiments for the Bratu problem in one– and
two–dimensions are then carried out in section 6 before we draw some conclusions in
section 7.

2. Calculation of Simple Fold Points. Consider a nonlinear problem of the
form

F (u, λ) = 0, (2.1)

where F is a map from V ×R → V , for some Hilbert space V , with norm ‖·‖ and inner
product (·, ·). For the purposes of this article, we shall primarily be concerned with
the case when F is a partial differential operator defined over a given computational
domain Ω, subject to appropriate boundary/initial conditions. We assume that F is
smooth, that is,

F : V × R → V is a Cp mapping for p ≥ 3.

In applications, it is often of interest to compute paths or branches of solutions of (2.1),
where λ is some distinguished parameter, e.g., the flow rate or Reynolds number, and
u is a state variable, e.g., the temperature or velocity field. We denote the Fréchet
derivative of F with respect to u at a fixed point (w,χ) ∈ V × R by F ′

u(w,χ; ·) and
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similarly the derivative with respect to λ by F ′
λ(w,χ). Here and throughout the paper,

we use the convention that in semi-linear forms such as F ′
u(·, ·; ·), the form is linear

with respect to all arguments to the right of the semicolon. We will assume that
F ′

u(u, λ; ·) : V → V is Fredholm of index 0 for all (u, λ) ∈ V ×R. For convenience, at
a given point (u0, λ0), we define

F 0 = F (u0, λ0), F 0
u (·) = F ′

u(u0, λ0; ·) and F 0
λ = F ′

λ(u0, λ0).

Higher order Fréchet derivatives are expressed in much the same way, for example,
the Fréchet derivative of F ′

u(w,χ; ·) with respect to u at a fixed point v is denoted by
F ′′

uu(w,χ; ·, v) and similarly, at a given point (u0, φ0, λ0), we define

F 0
uuφ

0(·) = F ′′
uu(u0, λ0; ·, φ0) and F 0

uλφ
0 = F ′′

uλ(u0, λ0;φ0).

Let us denote the set S by

S = {(u, λ) ∈ V × R : F (u, λ) = 0}.

If (u0, λ0) ∈ S with F 0
u an isomorphism on V , then the Implicit Function Theorem

(IFT) ensures the existence of a unique smooth path of solutions u(λ) ∈ Cp satisfying
F (u(λ), λ) = 0 for λ in a neighbourhood of λ0, with F ′

u(u, λ; ·) an isomorphism. In
this article we consider only the case of simple singular points, i.e., where (u0, λ0)
satisfies

F 0 = 0, and dim ker(F 0
u ) = 1. (2.2)

Furthermore, these singular points will be quadratic fold points and thus the additional
side constraints

(F 0
λ , ψ

0) 6= 0 and (F 0
uuφ

0(φ0), ψ0) 6= 0, (2.3)

will also hold, where ψ0 ∈ ker((F 0
u )∗) and (F 0

u )∗ denotes the adjoint of F 0
u . For

notational simplicity, in the sequel we suppress the superscript ‘0’, when it is clear
from the context that the solution under consideration is indeed a singular (quadratic
fold) point of (2.1). With this in mind, to determine the quadratic fold point of (2.1),
we seek to compute the solution of the following extended system: find u = (u, φ, λ) ∈
V = V × V × R such that

T (u) ≡





F (u, λ)
F ′

u(u, λ;φ)
(φ, c) − 1



 = 0, (2.4)

where c ∈ V satisfying (φ, c) 6= 0, see [24, 25, 22].
The following lemma will prove useful.
Lemma 2.1 (‘ABCD’ Lemma). Let V be a Hilbert Space with inner product (·, ·),

and consider the linear operator M : V × R → V × R of the form

M =

(

A b
(·, c) d

)

, (2.5)

where A : V → V , b ∈ V \{0}, c ∈ V \{0}, d ∈ R. Then,
1. If A is an isomorphism on V , then M is an isomorphism on V × R if and

only if d− (A−1b, c) 6= 0.
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2. If dimker(A) = codimRange(A) = 1, then M is an isomorphism if and only
if
(a) (b, ψ) 6= 0 ∀ψ ∈ ker(A∗)\{0},
(b) (φ, c) 6= 0 ∀φ ∈ ker(A)\{0}.

3. If dimker(A) ≥ 2, then M is singular.

Proof. See [19] for details.

3. A Posteriori Error Estimation. In this section we develop a general theo-
retical framework for the derivation of computable a posteriori estimates for the error
in the computed bifurcation point when the extended system (2.4) is numerically ap-
proximated by a general Galerkin finite element method. To this end, we exploit the
duality–based a posteriori error estimation techniques developed by C. Johnson and
R. Rannacher and their collaborators. For a detailed discussion, we refer to the series
of articles [5, 18, 15, 21], and the references cited therein.

We begin by first introducing a suitable finite element approximation of the bifur-
cation problem (2.4). To this end, we consider a sequence of finite element spaces Sh,p

consisting of piecewise polynomial functions of degree p on a partition Th, of gran-
ularity h. The Galerkin finite element approximation consists of finding the triple
uh = (uh, φh, λh) ∈ Sh,p = Sh,p × Sh,p × R such that

N (uh;vh) ≡ N̂ (uh, λh; vh) + N̂ ′
u(uh, λh;φh, ϕh)

+ χh((c, φh) − 1) = 0 ∀vh ∈ Sh,p, (3.1)

where vh = (vh, ϕh, χh), N̂ (·; ·) is the semi-linear form associated with the discretiza-
tion of the underlying partial differential equation (2.1) and N̂ ′

u(·, ·; ·, ·) is the Jacobian
of N̂ (·, ·; ·) with respect to u. Further, we assume that (uh, φh, λh) also satisfies the
properties of a quadratic fold point, i.e.,

N̂ ′
λ(uh, λh;ψh) 6= 0, N̂ ′′

uu(uh, λh;φh, φh, ψh) 6= 0, (3.2)

where ψh ∈ ker(N̂ ′
u(uh, λh; ·, ϕh) for all ϕh ∈ Sh,p. Finally, we also assume that (3.1)

is a consistent discretization of (2.4); namely that the analytical solution u = (u, φ, λ)
to (2.4) satisfies

N (u,vh) = 0 ∀vh ∈ Sh,p, (3.3)

and moreover, we assume that, as the mesh is refined, uh converges to u with respect
to some appropriate norm. These assumptions are very reasonable; indeed, for a
standard conforming Galerkin finite element method, Brezzi et al. [6, 7, 8] have
shown their validity, while in the context of discontinuous Galerkin methods we refer
the reader to [10].

Remark 3.1. We remark that, in a slight variation to the standard approach of
the location of critical parameters, we have recast the equation (c, φh) − 1 = 0 in the
weak form χh((c, φh) − 1) = 0 for all χh ∈ R. As R = span{1}, this has no effect
when calculating the approximate critical parameter, but this formulation is required
for the error estimation which follows.

3.1. DWR approach for functionals. For a linear target functional of prac-
tical interest J(·), we briefly outline the key steps involved in estimating the approx-
imation error J(u) − J(uh) employing the DWR technique. We write M(·, ·; ·, ·) to
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denote the mean value linearization of N (·; ·), defined by

M(u,uh;u− uh,w) = N (u;w) −N (uh;w)

=

∫ 1

0

N ′
u
(θu + (1 − θ)uh;u − uh,w) dθ, (3.4)

for some w ∈ V. We now introduce the following (formal) dual problem: find z ∈ V

such that

M(u,uh;w, z) = J(w) ∀w ∈ V. (3.5)

We assume that (3.5) possesses a unique solution. This assumption is, of course,
dependent on both the definition of M(u,uh; ·, ·) and the target functional under
consideration. For the proceeding error analysis, we must therefore assume that (3.5)
is well–posed. By using the linearity of J(·), combining (3.4), and (3.5) and using the
consistency condition (3.3) we arrive at the following error representation formula

J(u) − J(uh) = J(u − uh) = M(u,uh;u− uh, z)

= M(u,uh;u − uh, z− zh)

= −N (uh, z − zh) ∀zh ∈ Sh,p. (3.6)

As it stands, the error representation formula (3.6) is still non-computable, since
z is unknown. Instead, we must seek a finite dimensional approximation ẑh to z.
Unfortunately it is not possible to seek ẑh ∈ Sh,p, otherwise the resulting error rep-
resentation would be identically zero due to (3.1). A number of possible alternatives
exist. The first involves keeping the degree p of the approximating polynomial the
same as that for uh, but computing ẑh on a sequence of dual finite element meshes T̂

ĥ

which, in general, differ from the “primal meshes” Th. Alternatively ẑh ∈ Sh,p̂ may
be computed using polynomials of degree p̂ > p on the same finite element mesh Th

employed for the primal problem. A variant of this second approach is to compute the
approximate dual solution using the same polynomial degree p as used for the primal
problem and to extrapolate the resulting approximate dual solution ẑh. Although this
latter approach is the cheapest of the three methods, and is still capable of producing
adaptively refined meshes specifically tailored to the selected target functional, the
quality of the resulting approximate error representation formula may be poor. On
the basis of numerical experimentation, we favour the second approach due to its
computational simplicity of implementation.

In our case we are interested in controlling the error in the critical bifurcation
parameter and hence the target functional of interest is simply J(u) = λ. Calculating
the linearization performed in (3.4) at uh, the (approximate) dual problem for the
estimation of the error in the computed critical parameter is defined by: find ẑh =
(zu, zφ, zλ) ∈ Sh,p̂ such that

N̂ ′
u(uh, λh; vh, zu) + N̂ ′

λ(uh, λh; zu)χh

+ N̂ ′′
uu(uh, λh; vh, φh, zφ) + N̂ ′

u(uh, λh;ϕh, zφ) (3.7)

+ N̂ ′′
uλ(uh, λh;φh, zφ)χh + zλ(c, ϕh) = 1 ∀vh ∈ Sh,p̂,

where vh = (vh, ϕh, χh).

4. Solution Procedure. In this section we discuss how to solve the primal
and dual problems in an efficient manner by reducing the extended problems to a
succession of smaller ones.
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4.1. Primal Problem. To determine the numerical solution uh to the nonlinear
system of equations (3.1), we employ a damped Newton method. This nonlinear
iteration generates a sequence of approximations un

h, n = 1, 2, . . . , to the actual
numerical solution uh using the following algorithm. Given an iterate un

h, the update
dn

h = (dun
h, dφ

n
h , dλ

n
h , ) for un

h to get to the next iterate

un+1

h = un
h + ωndn

h, 0 < ωn ≤ 1,

is defined by: find dn
h such that

N̂ ′
u(un

h, λ
n
h; dun

h, vh) + N̂ ′
λ(un

h, λ
n
h; vh)dλn

h = rn
1 (vh),

N̂ ′′
uu(un

h, λ
n
h ; dun

h, φ
n
h, ϕh)

+ N̂ ′
u(un

h, λ
n
h; dφn

h , ϕh) + N̂ ′′
uλ(un

h, λ
n
h ;φn

h, ϕh)dλn
h = rn

2 (ϕh), (4.1)

χh(dφn
h , c) = rn

3 (χh)

for all vh = (vh, ϕh, χh) ∈ Sh,p Here, rn
1 (·), rn

2 (·) and rn
3 (·) are residuals given,

respectively, by

rn
1 (vh) = −N̂ (un

h, λ
n
h; vh), rn

2 (ϕh) = −N̂ ′
u(un

h, λ
n
h ;φn

h, ϕh),

rn
3 (χh) = −χh((φn

h , c) − 1).

If the finite element space Sh,p is of dimension N , then the system defined in (4.1)
is of size 2N + 1, which may be extremely large for problems of engineering interest.
Instead, we would like to reduce it to a collection of smaller problems, though, we point
out that, a block LU -decomposition is not applicable since it will lead to the inversion
of N̂ ′

u(un
h, λ

n
h ; ·, ·) which is singular at the bifurcation point. Instead, we follow the

proceeding steps: we assume a Galerkin type approximation of uh, in which case un
h =

∑N
i=1

Un
i ϕi, φ

n
h =

∑N
i=1

Φn
i ϕi and similarly dun

h =
∑N

i=1
dUn

i ϕi, dφ
n
h =

∑N
i=1

dΦn
i ϕi,

where {ϕi}N
i=1 is the set of linearly independent finite element basis functions which

span Sh,p. We let φn
h = {Φi}N

i=1, du
n
h = {dUn

i }N
i=1, dφ

n
h = {dΦn

i }N
i=1 and, in an abuse

of notation, we can rewrite (4.1) as





Fn
u 0 F n

λ

Fn
uu Fn

u F n
uλ

0⊤ l⊤ 0









dun
h

dφn
h

dλn
h



 =





rn
1

rn
2

rn
3



 , (4.2)

where the matrices Fn
u and Fn

uu are given, respectively, by

{Fn
u}N

i,j=1 = N̂ ′
u(un

h, λ
n
h ;ϕi, ϕj),

{Fn
uu}N

i,j=1 = N̂ ′′
uu(un

h, λ
n
h ;ϕi, φ

n
h , ϕj)

and the vectors F n
λ and F n

uλ are given, respectively, by

{F n
λ }N

i=1 = N̂ ′
λ(un

h, λ
n
h ;ϕi),

{F n
uλ}N

i=1 = N̂ ′′
uλ(un

h, λ
n
h ;φn

h, ϕi).
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Finally, l is the vector given by {l}N
i=1 = (ϕi, c) and {rn

1 }N
i=1 = rn

1 (ϕi), and so on. We
introduce the auxiliary variable µ = l⊤dun

h and consider the following equation

[

Fn
u F n

λ

l⊤ 0

] [

dun
h

dλn
h

]

=

[

rn
1

µ

]

≡
[

rn
1

0

]

+

[

0
1

]

µ. (4.3)

Using Lemma 2.1 and the conditions of a quadratic fold point (2.2) and (2.3) we see
that, even at the fold point, the matrix in (4.3) is non-singular. Hence, the following
holds

[

dun
h

dλn
h

]

=

[

a

α

]

+

[

b

β

]

µ, (4.4)

where

[

a

α

]

=

[

Fn
u F n

λ

l⊤ 0

]−1 [

rn
1

0

]

and

[

b

β

]

=

[

Fn
u F n

λ

l⊤ 0

]−1 [

0

1

]

.

Using (4.4), the second and third equations of (4.2) can then be rewritten as

[

Fn
u F n

λ

l⊤ 0

] [

dφn
h

µ

]

=

[

rn
2 + F n

λ µ− F n
uλdλ

n
h − Fn

uudu
n
h

rn
3

]

≡
[

rn
2 − F n

uλα− Fn
uua

rn
3

]

+

[

F n
λ − F n

uλβ − Fn
uub

0

]

µ,

which, in turn, implies

[

dφn
h

µ

]

=

[

c

γ

]

+

[

d

δ

]

µ, (4.5)

where

[

c

γ

]

=

[

Fn
u F n

λ

l⊤ 0

]−1 [

rn
2 − F n

uλα− Fn
uua

rn
3

]

and

[

d

δ

]

=

[

Fn
u F n

λ

l⊤ 0

]−1 [

F n
λ − F n

uλβ − Fn
uub

0

]

.

Hence, µ is given in closed form by

µ =
γ

1 − δ
,

which can then be used in (4.4) and (4.5) to compute dun
h, dλn

h and dφn
h. It then

remains to show that δ 6= 1.
Lemma 4.1. Consider δ as given in (4.5). At a quadratic fold bifurcation point

(uh, φh, λh), we have that δ 6= 1.
Proof. We have that

[

Fu Fλ

l⊤ 0

] [

b

β

]

=

[

0

1

]

, (4.6)
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where the superscript ‘n’ have been dropped to indicate evaluation at the bifurcation
point. We premultiply the above equation by (ψ⊤

h , 0), where ψh ∈ ker(Fu)⊤ to obtain

β = 0.

Hence, (4.6) becomes
[

Fu Fλ

l⊤ 0

] [

b

0

]

=

[

0

1

]

, (4.7)

from which we deduce that b = φh. Furthermore,
[

Fu Fλ

l⊤ 0

] [

d

δ

]

=

[

Fλ − Fuuφh

0

]

. (4.8)

Premultiplying this equation by (ψ⊤
h , 0) then gives

ψ⊤
h Fλδ = ψ⊤

h Fλ −ψ⊤
h Fuuφh.

Using the side constraints (3.2) we have ψ⊤
h Fλ 6= 0 and ψ⊤

h Fuuφh 6= 0, thus we can
be sure that δ is well defined and δ 6= 1.

Remark 4.2. A continuity argument shows that in a neighbourhood of (uh, φh, λh)
Newton’s method can be used in the manner proposed above without the matrices
present in the inner (linear) iteration becoming singular. The solution of the primal
problem thus requires four solves with the same matrix for each Newton iteration.

Remark 4.3. The second derivatives Fn
uua and Fn

uub can be approximated via a
directional finite differencing technique. For example,

Fn
uua ≈ Fu(un

h + ǫφn
h)a− Fn

ua

ǫ
,

where ǫ = ε(ε+ ‖un
h‖/‖φn

h‖), for ε = 10−6 and Fu(·) is the matrix such that

{Fu(·)}N
i,j=1 = N̂ ′

u(·, λn
h ;ϕi, ϕj).

4.2. Dual Problem. In this section we outline the numerical procedure em-
ployed to compute the solution of the (approximate) dual problem defined in (3.7).

To this end, we first write zu =
∑N̂

i=1
Zu,iϕ̂i and zφ =

∑N̂
i=1

Zφ,iϕ̂i, where {ϕ̂i}N̂
i=1 is

the set of linearly independent finite element basis functions which span Ŝh,p̂. Defin-

ing zu = {Zu,i}N̂
i=1 and zφ = {Zφ,i}N̂

i=1 , we rewrite the dual problem (3.7) as: find
the triple (zu, zφ, zλ) such that





(F̂u)⊤ (F̂uu)⊤ 0

0 (F̂u)⊤ l̂

(F̂λ)⊤ (F̂uλ)⊤ 0









zu

zφ

zλ



 =





0

0

1



 . (4.9)

Here, F̂u is the Jacobi matrix defined on the space Sh,p̂ evaluated at uh, and so on.
In analogy to the solution of the primal problem, we reduce (4.9) to a collection of
smaller matrix problems. First, we introduce an auxiliary variable zµ = (F̂λ)⊤zφ and
consider the set of equations

[

(F̂u)⊤ l̂

(F̂λ)⊤ 0

] [

zφ

zλ

]

=

[

0

1

]

zµ. (4.10)
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Once again, Lemma 2.1 can be used to show that the matrix on the left-hand side of
(4.10) is non-singular at a quadratic fold point. We point out that in this case, as the
dual solution belongs to a finite element space consisting of higher order polynomials
than that used for the numerical approximation of the primal solution, F̂u may not
necessarily be singular, though it is expected to be highly ill-conditioned, particularly
as the finite element mesh is enriched. Hence, we first write

[

zφ

zλ

]

=

[

az

αz

]

zµ, (4.11)

where

[

az

αz

]

=

[

(F̂u)⊤ l̂

(F̂λ)⊤ 0

]−1 [

0
1

]

.

Thus, the first and third equations of (4.9) can be rewritten as

[

(F̂u)⊤ l̂

(F̂λ)⊤ 0

] [

zu

zµ

]

=

[

zµ l̂− (F̂uu)⊤zφ

1 − (F̂uλ)⊤zφ

]

=

[

0

1

]

+

[

l̂− (F̂uu)⊤az

−(F̂uλ)⊤az

]

zµ.

Hence,
[

zu

zµ

]

=

[

az

αz

]

+

[

bz

βz

]

zµ, (4.12)

where

[

bz

βz

]

=

[

(F̂u)⊤ l̂

(F̂λ)⊤ 0

]−1 [

l̂− (F̂uu)⊤az

−(F̂uλ)⊤az

]

.

Therefore,

zµ =
αz

1 − βz

and (4.11) and (4.12) can be used to calculate zu, zφ and zλ. We now seek to show
that βz 6= 1.

Lemma 4.4. Consider βz as defined in (4.12), but with Sh,p̂ = Sh,p, then βz 6= 1.
Proof. We have

[

(F̂u)⊤ l̂

(F̂λ)⊤ 0

] [

bz

βz

]

=

[

l̂− (F̂uu)⊤az

−(F̂uλ)⊤az

]

(4.13)

and
[

(F̂u)⊤ l̂

(F̂λ)⊤ 0

] [

az

αz

]

=

[

0

1

]

. (4.14)

We premultiply (4.13) by ((φh)⊤, 0), with φh the null-function of Fu (and therefore
also of F̂u, as Sh,p̂ = Sh,p), to obtain

βz = 1 − (φh)⊤(F̂uu)⊤az = 1 − (F̂uuφh)⊤az.
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Hence, we must now show that (F̂uuφh)⊤az 6= 0. We premultiply (4.14) by ((φh)⊤, 0)
to obtain αz = 0 and hence az 6= 0, but we must have

(F̂u)⊤az = 0,

or, in other words, az is in the null-space of the operator (F̂u)⊤ and hence, by the
constraint (3.2), (F̂uuφh)⊤az 6= 0.

Remark 4.5. We notice that as φh → φ then zλ → 0, which will be witnessed in
the proceeding numerical examples. Although the dual problem requires the solution
on an enriched finite element space, only two solves with the same matrix is required,
as opposed to four for each Newton iteration of the primal problem.

Remark 4.6. As with the primal problem, finite differencing can be used for the
calculation of the second order derivatives. For example,

(F̂uu)⊤az = (a⊤
z (F̂uu))⊤ ≈





a⊤
z

(

F̂u(uh + ǫφh) − F̂u

)

ǫ





⊤

, (4.15)

where ǫ = ε(ε+ ‖uh‖/‖φh‖), for ε = 10−6.

5. Bratu Problem and DG Discretization. The Bratu problem on an open
bounded domain Ω ∈ R

d, d ≥ 1, with boundary Γ = ∂Ω, is defined by

∆u+ λeu = 0, x ∈ Ω, (5.1)

subject to homogeneous boundary conditions

u = 0, x ∈ Γ. (5.2)

Computing the Fréchet derivative of (5.1) with respect to u in the direction φ, we
deduce that at a singular point (u0, φ0, λ0) the following holds

Lu(u0, λ0) ≡ ∆u0 + λ0eu0

= 0, x ∈ Ω,

Lφ(u0, λ0;φ0
h) ≡ ∆φ0 + λ0eu0

φ0 = 0, x ∈ Ω, (5.3)

subject to the homogeneous boundary conditions

u0 = 0, x ∈ Γ

φ0 = 0, x ∈ Γ, (5.4)

and the normalisation condition

(φ0, g) = 1,

for some g ∈ L2(Ω); for simplicity we select g = 1.

5.1. Meshes and traces. In this section we introduce the notation needed to
define the symmetric interior penalty DG discretization of the primal problem (5.3)–
(5.4). Specifically, we consider Ω ∈ R

d, d ≥ 2, with the definition for d = 1 following
in a natural manner.

To this end, we assume that Ω can be subdivided into shape-regular meshes
Th = {κ} (with possible hanging nodes) consisting of tensor–product elements κ
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(quadrilaterals, when d = 2). For the sake of simplicity, we shall suppose that the
mesh is 1–regular in the sense that there is at most one hanging node per element–
face, which we assume to be the barycenter of the face. We denote by h the piecewise
constant mesh function with h(x) ≡ hκ = diam(κ) when x is in element κ. An interior
face of Th is defined as the (non-empty) (d−1)–dimensional interior of ∂κi∩∂κj , where
κi and κj are two adjacent elements of Th, not necessarily matching. A boundary face
of Th is defined as the (non-empty) (d−1)–dimensional interior of ∂κ∩Γ, where κ is a
boundary element of Th. We denote by Γint the union of all interior faces of Th. Given
a face f ⊂ Γint, shared by the two elements κi and κj , where the indices i and j satisfy
i > j, we write nf to denote the (numbering–dependent) unit normal vector which
points from κi to κj ; on boundary faces, we put nf = n. Further, for v sufficiently
smooth, we define the jump of v across f and the mean value of v on f , respectively,
by [v] = v|∂κi∩f − v|∂κj∩f and 〈v〉 = 1

2

(

v|∂κi∩f + v|∂κj∩f

)

. On a boundary edge
f ⊂ ∂κ, we set [v] = v|∂κ∩f and 〈v〉 = v|∂κ∩f . Finally, given a smooth function v
and an element κ ∈ Th, we denote by v+

κ (respectively, v−κ ) the interior (respectively,
exterior) trace of v defined on ∂κ (respectively, ∂κ\Γ). Since below it will always be
clear from the context which element κ in the subdivision Th the quantities v+

κ and
v−κ correspond to, for the sake of notational simplicity, we shall suppress the letter κ
in the subscript and write, respectively, v+ and v− instead.

Given that κ is an element in the subdivision Th, we denote by ∂κ the union of
(d− 1)–dimensional open faces of κ. Let x ∈ ∂κ and suppose that nκ(x) denotes the
unit outward normal vector to ∂κ at x.

For a given mesh Th and polynomial degree p ≥ 1, we introduce the following
finite element space

Sh,p = {v ∈ L2(Ω) : v|κ ∈ Qp(κ) ∀κ ∈ Th}.

Here, Qp(κ) denotes the space of tensor product polynomials on κ of degree at most
p in each coordinate direction. We then define the space Sh,p by

Sh,p = Sh,p × Sh,p × R,

with which we shall approximate the base solution, the null-function and the critical
parameter value.

5.2. Symmetric interior penalty DG method. The symmetric interior penalty
DG approximation of (5.3), (5.4) is defined as follows, where again for notational sim-
plicity we have suppressed the superscript ‘0’: find uh = (uh, φh, λh) in Sh,p such
that

N (uh;vh) = 0 (5.5)

for all vh = (vh, ψh, χh) ∈ Sh,p, where

N (uh;vh) = −Ba(uh, vh) +Bf (vh, uh) +Bf (uh, vh) −Bϑ(uh, vh)

+ λh

∫

Ω

euhvh dx

−Ba(φh, ψh) +Bf (ψh, φh) +Bf (φh, ψh) −Bϑ(φh, ψh)

+ λh

∫

Ω

euhφhψh dx+ χh((φh, g) − 1),
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and

Ba(w, v) =
∑

κ∈Th

∫

κ

∇w · ∇v dx ,

Bf (w, v) =

∫

Γint∪Γ

〈(∇w) · nf 〉[v] ds , Bϑ(w, v) =

∫

Γint∪Γ

ϑ[w][v] ds.

Here, ϑ is called the discontinuity-penalization parameter and is defined by ϑ|f = ϑf

for f ⊂ Γint ∪ Γ, where ϑf is a non-negative constant on face f . We select ϑf as
follows: writing h ∈ L∞(Γint ∪ Γ) to denote the mesh function defined by

h(x) =

{

min{hκ, hκ′}, x ∈ f = ∂κ ∩ ∂κ′ ⊂ Γint,
hκ, x ∈ f = ∂κ ∩ Γ,

we set

ϑf = Cϑ

p2

h
.

Here, Cϑ is a positive constant which is independent of the mesh size and polynomial
degree p. Selecting Cϑ to be sufficiently large guarantees the well–posedness of the
interior penalty DG method (5.5). For details concerning the construction of the DG
method (5.5), we refer the reader to the article [17], for example.

5.3. A Posteriori Error Estimation. We are now in a position to apply the
DWR a posteriori error estimation technique outlined in section 3 to the DG method
proposed in the previous section. To this end, we have the following result.

Proposition 5.1 (Error Representation Formula). Let u and uh denote the
solutions of (5.3)–(5.4) and (5.5), respectively, and suppose that the corresponding
dual problem (3.5) is well posed, with solution denoted by z = (z′u, z

′
φ, z

′
λ). Then,

λ− λh = εΩ(u,uh; z − zh) ≡
∑

κ∈Th

ηκ (5.6)

for all zh = (zu,h, zφ,h, zλ,h) ∈ Sh,p. Here, ηκ = ηu
κ + ηφ

κ ,

ηu
κ =

∑

κ∈Th

∫

κ

Lu(uh, λh)wh dx+
1

2

∫

∂κ\Γ

{

[uh]∇w+

h · nκ − w+

h [∇uh · nκ]
}

ds

−
∫

∂κ\Γ

ϑ[uh]w+
h ds+

∫

∂κ∩Γ

Ru
D(uh)∇w+

h · n ds

−
∫

∂κ∩Γ

ϑRu
D(uh)w+

h ds, (5.7)

and

ηφ
κ =

∑

κ∈Th

∫

κ

Lφ(uh, λh;φh)ωh dx+
1

2

∫

∂κ\Γ

{

[φh]∇ω+

h · nκ − ω+

h [∇φh · nκ]
}

ds

−
∫

∂κ\Γ

ϑ[φh]ω+

h ds+

∫

∂κ∩Γ

Rφ
D(φh)∇ω+

h · n ds

−
∫

∂κ∩Γ

ϑRφ
D(φh)ω+

h ds. (5.8)
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Moreover, wh = z′u − zu,h, ωh = z′φ − zφ,h and Ru
D(uh) and Ru

D(φh), represent the
boundary residuals for u and φ, respectively. Since homogeneous Dirichlet boundary
conditions have been employed, we have that

Ru
D(uh)|∂κ∩Γ = u+

h |∂κ∩Γ and Rφ
D(φh)|∂κ∩Γ = φ+

h |∂κ∩Γ.

Proof. The error representation formula follows after an application of (3.6) and
performing integration by parts.

Corollary 5.2 (Type I error bound). Given that the assumptions of Proposition
5.1 hold, then

|λ− λh| ≤
∑

κ∈Th

|ηκ|, (5.9)

where ηκ is as given in Proposition 5.1.
Proof. Equation (5.9) follows from (5.6) by use of the triangle inequality.

6. Numerical Experiments. In this section, we present numerical examples
to highlight the practical performance of our proposed a posteriori error indicator on
adaptively refined computational meshes.

6.1. Example 1. In this first example we consider the Bratu problem in one–
dimension on the domain Ω = (0, 1). In this case it can be shown that the Bratu
problem has zero, one, or two solutions when λ > λ0, λ = λ0, and λ < λ0, respectively,
where the critical value λ0 satisfies the equations

1 =
1

4

√
2λ0 sinh

(

θ0

4

)

,

and

θ0 =
√

2λ0 cosh

(

θ0

4

)

,

see [3]. A simple iterative solution procedure reveals that λ0 = 3.513830719125160.
We begin with a uniform starting grid which divides [0, 1] into 16 elements and

carry out an adaptive mesh refinement strategy based on the a posteriori error es-
timate derived in the previous section. For the primal problem a polynomial de-
gree of p = 1 is used for the numerical approximation of both the base solution
and the null-function; on the other hand, the dual problem is approximated with
discontinuous piecewise polynomials of degree p̂ = 2. Elements are marked for re-
finement/derefinement using a fixed fraction strategy according to the size of the
(approximate) error indicators |ηκ|, with refinement and derefinement fractions set to
20% and 10%, respectively.

Table 6.1 shows the number of elements and the number of degrees of freedom
employed in the finite element space Sh,p, the computed critical parameter λ0

h, the
dual critical parameter zλ, the true error |λ0 − λ0

h|, the predicted error |∑κ ηk| and
the effectivity index τ = |∑κ ηk|/|λ0 − λ0

h|, as the mesh Th is refined.
We first notice that, even on very coarse meshes, the error indicator is performing

extremely well, with effectivity indices of 1.00 on all but the first two meshes. Secondly,
we note that as the mesh is refined zλ does indeed appear to be tending to 0.
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No. Elements DOF λ0
h zλ |λ0 − λ0

h| |∑κ ηk| τ
16 32 3.5249864 0.363E-04 0.1116E-01 0.1115E-01 0.99
21 42 3.5204068 0.104E-04 0.6576E-02 0.6571E-02 0.99
28 56 3.5169520 0.250E-05 0.3121E-02 0.3120E-02 1.00
36 72 3.5161228 0.114E-05 0.2292E-02 0.2291E-02 1.00
46 92 3.5151761 0.442E-06 0.1345E-02 0.1345E-02 1.00
59 118 3.5147078 0.206E-06 0.8771E-03 0.8770E-03 1.00
75 150 3.5143572 0.594E-07 0.5265E-03 0.5264E-03 1.00
96 192 3.5141461 0.245E-07 0.3154E-03 0.3154E-03 1.00
123 246 3.5140308 0.101E-07 0.2001E-03 0.2001E-03 1.00
157 314 3.5139494 0.340E-08 0.1187E-03 0.1187E-03 1.00

Table 6.1
Example 1: Convergence and effectivity indices for the 1D Bratu problem

6.2. Example 2. In this second example we consider the Bratu problem in two–
dimensions on the domain Ω = (0, 1)2. As in the one–dimensional setting, there exists
a critical parameter value λ0, such that for λ > λ0 the problem has no solution, for
λ = λ0 there exists exactly one solution, and for λ < λ0 there are two solutions. To
the authors’ knowledge there is not an analytical expression for the value λ0 in this
case, but calculations on extremely fine meshes reveal that λ0 = 6.808124522217064.

Once again we carry out a fixed fraction adaptive strategy using the a posteri-
ori error estimator developed in the previous section starting from a uniform grid
consisting of 256 elements. As before, we assign a polynomial degree of p = 1 on
each element for the numerical approximation of the primal problem, and employ
bi–quadratic elements for the numerical solution of the dual problem.

Table 6.2 shows the number of elements and the number of degrees of freedom
employed in the finite element space Sh,p, the computed critical parameter λ0

h, the
dual critical parameter zλ, the true error |λ0 − λ0

h|, the predicted error |∑κ ηk| and
the effectivity index τ = |∑κ ηk|/|λ0 − λ0

h|, as the mesh is refined. As with the one–
dimensional case we witness extremely good error predictions on all meshes, even the
very coarse ones. Indeed, except for the first two grids the effectivity index τ = 1.00.
As the mesh is refined we again see an indication that the dual critical parameter is
tending to zero.

Finally, Figure 6.1(a) shows a plot of the resultant grid after 9 refinement steps;
Figure 6.1(b) shows the numerical approximation of the primal base solution com-
puted on that grid. We notice immediately that the mesh has been refined to resolve
the features present in the base solution. We remark that the primal null-function
and both components of the dual solutions exhibit the same features as the primal
base solution and thus plots of these have been omitted for brevity.

7. Conclusions. In this article we have developed a framework for a posteriori
error estimation targeted at numerically estimating critical parameters for nonlinear
problems exhibiting quadratic fold points. To this end, we employed the DWR ap-
proach, originally developed for the numerical approximation of target functionals of
the solution. This general approach was then applied to the symmetric interior penalty
DG approximation of the Bratu problem. Numerical experiments presented in both
one– and two–dimensions clearly highlight the practical performance of the proposed
a posteriori error indicator within an automatic adaptive mesh refinement strategy.
The extension of these ideas to more complex problems involving incompressible fluid
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No. Elements DOF λh zλ |λ0 − λ0
h| |∑κ ηk| τ

256 1024 6.8290830 0.783E-04 0.2096E-01 0.2093E-01 0.99
448 1792 6.8169639 0.112E-04 0.8839E-02 0.8833E-02 0.99
784 3136 6.8130504 0.373E-05 0.4926E-02 0.4924E-02 1.00
1342 5368 6.8110225 0.109E-05 0.2898E-02 0.2897E-02 1.00
2167 8668 6.8102161 0.709E-06 0.2092E-02 0.2091E-02 1.00
3583 14332 6.8092367 0.185E-06 0.1112E-02 0.1112E-02 1.00
5902 23608 6.8087960 0.667E-07 0.6715E-03 0.6715E-03 1.00
9691 38764 6.8085714 0.330E-07 0.4469E-03 0.4469E-03 1.00
15922 63688 6.8083832 0.108E-07 0.2587E-03 0.2588E-03 1.00
26449 105796 6.8082700 0.341E-08 0.1455E-03 0.1455E-03 1.00

Table 6.2
Example 2: Convergence and effectivity indices for the 2D Bratu problem.

(a) (b)

Fig. 6.1. Example 2: (a) Grid after 9 refinement steps and (b) Primal Base Solution.

flows in open systems will be considered in the companion articles [11, 12].
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