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ABSTRACT

Adipose tissue mass in the newborn is determined in part by insulin-like growth factor

(IGF)s, which are dependent on the maternal nutritional and metabolic environment

during late gestation. The present study was designed to determine whether maternal

cold exposure (CE) commencing in mid gestation could modulate some of the

adaptive effects of nutrient restriction in late gestation on adipose tissue endocrine

sensitivity in the resulting offspring. Twenty eight pregnant sheep were entered into

the study and were either shorn, i.e. cold exposed, from 70 days gestation (term = 147

days), or remained unshorn, and were fed either their total calculated metabolisable

energy (ME) requirements for body weight and pregnancy from 110 days gestation or

50% of this amount (n=7 per group). Adipose tissue was sampled from the offspring

at one day of age and the mRNA abundance for IGF-I, II their receptors (R) and GH

secretagogue receptor-1a (GHSR-1a) were determined. CE mothers produced larger

offspring with more perirenal adipose tissue, an adaptation prevented by maternal

nutrient restriction. Nutrient restriction in unshorn mothers increased IGF-I and IIR

mRNA abundance. The mRNA abundances for IGF-I, II and IIR in adipose tissue

were reduced by CE, adaptations independent of maternal food intake, whereas CE

plus nutrient restriction increased GHSR-1a mRNA. In conclusion, maternal nutrient

restriction with or without CE has very different effects on IGF sensitivity of adipose

tissue and may act to ensure adequate fat stores are present in the newborn in the face

of very different maternal endocrine and metabolic environments.
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INTRODUCTION

In large mammals, including sheep and humans, the maternal metabolic and hormonal

environment has a large influence on fetal adipose tissue development, and can

determine adaptation at birth as well as longer term fat deposition (Symonds et al.,

2003; McMillen et al., 2004). Changes in maternal food intake through gestation can,

therefore, have a large impact both on fetal fat mass and its endocrine sensitivity,

particularly that of the insulin-like growth factor (IGF) axis (Symonds et al., 2003).

For example, during late gestation maternal nutrient restriction reduces prolactin

sensitivity in adipose tissue of the newborn as a consequence of a decrease in the

abundance of long, but not short, form of the prolactin receptor (Pearce et al., 2005).

This adaptation is not affected by maternal cold exposure induced by winter shearing

although the latter can promote fetal adipose tissue growth (Symonds et al., 1992;

Symonds et al., 1995; Gate et al., 2000). The extent to which the maternal and fetal

endocrine adaptations to chronic cold exposure (Thompson et al., 1982; Symonds et

al., 1989) can impact on its endocrine sensitivity to the IGF-growth hormone (GH)

axis has not previously been investigated and was the primary aim of the present

study.

The amount of adipose tissue laid down by the fetus is primarily determined by the

rate of glucose supply (Stevens et al., 1990) which also regulates fetal plasma

concentration of IGF-I (Owens et al., 1994). A reduction in maternal nutrition

between early to mid gestation increases mRNA abundance for both the IGF-I and -II

receptor (R) in conjunction with enhanced adipose tissue deposition (Bispham et al.,

2003) but whether nutrient restriction in late gestation may have the same effect has

not been examined. Fetuses sampled from mothers nutrient restricted in late gestation
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have reduced fat mass near to term (Symonds et al., 1998) but, as young adults, they

exhibit increased fat deposition in conjunction with raised insulin receptor (IR) β

subunit abundance which, itself, may contribute to the accompanying insulin

resistance (Gardner et al., 2005). The extent to which IRβ abundance may already be

up regulated at birth, as opposed to accompanying the greater fat mass with age, is

unknown. Another potentially important hormone in regulating adipose tissue growth

is ghrelin. It is a gut derived endogenous ligand of the growth hormone (GH)

secretagogue receptor (GHSR) (Kojima et al., 1999) that in the adult stimulates

appetite and regulates GH release (Sugino et al., 2002). In rats, ghrelin synthesised by

the placenta (Gualillo et al., 2001) or mother, has an important role in fetal

development in late gestation when it can regulate growth of the fetus (Nakahara et

al., 2006). Messenger RNA expression for both ghrelin and its novel G protein-

coupled receptor (GHSR-1a) have been found in a wide variety of fetal and adult

organs including adipose tissue (Gnanapavan et al., 2002; Nakahara et al., 2006) but,

to date, the extent to which it may be nutritionally regulated during early development

has not been investigated.

The aim of the following study was to determine whether maternal cold exposure

induced from mid gestation could overcome the effects of later nutrient restriction on

fetal whole body and fat growth and its endocrine sensitivity. Our analysis was

conducted on perirenal adipose tissue as this constitutes up to 80% of total fat stores

in the newborn sheep (Clarke et al., 1997b). Tissue analysis was focussed on gene

expression as this critical stage of development is coincident with their maximal

expression that itself acts to ensure tissue function meets the pronounced metabolic
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and endocrine changes occurring around the time of birth (Symonds et al., 2003;

Gnanalingham et al., 2005).
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Materials and Methods

Animals and diet

Twenty eight multiparous Bluefaced Leicester cross Swaledale female sheep of

known mating date were entered into the study. All mothers were of similar body

weight (Control 79  4; Nutrient restricted 81  3; Cold exposed 78  4; Cold exposed

and nutrient restricted 79  4 kg (n = 7 per group)) and fat distribution as assessed

indirectly using body condition score measurements. In December they were all

housed indoors, under conditions of natural day length, from 68 days of gestation and

14 randomly assigned mothers were shorn two days later. All animals were fed a diet

of straw ad libitum plus a fixed amount of concentrate that was sufficient to fully

meet their total metabolisable energy requirements with respect to fetal number and

stage of gestation (Mostyn et al., 2003). One month before predicted lambing date, 7

shorn and 7 unshorn mothers were nutrient restricted by providing a diet sufficient to

meet only 50% of their energy requirements for maintenance and pregnancy. After

giving birth normally at term, the offspring were humanely euthanased at one day of

age with an overdose of barbiturate (100 mg kg –1 pentobarbital sodium: Euthatal:

RMB Animal Health, UK) administered through the jugular vein. All perirenal

adipose tissue was rapidly dissected, weighed, snap frozen in liquid nitrogen and

stored at -80oC until analysed. These operative procedures and experimental protocols

had the required Home Office and institutional approval as designated by the Animals

(Scientific Procedures) Act (1986).

Messenger RNA detection

Total RNA was isolated using Tri-Reagent (Sigma, Poole, UK). In order to maximise

sensitivity, a two-tube approach to reverse transcription (RT) was adopted as
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previously described (Bispham et al., 2003). The conditions used to generate first

strand cDNA RT were: 70C (5 min), 4C (5 min), 25C (5 min), 25C (10 min),

42C (1 hour), 72C (10 min), 4C (5 min). The RT reaction (final volume 20 l)

contained: buffer (250 mM Tris-HCl, 40 mM MgCl2, 150 mM KCl, 5 mM

dithioerythritol pH 8.5), 2 mM dNTPs, 1 x hexanucleotide mix, 10 units RNase

inhibitor, 10 units M-MLV reverse transcriptase and 1 g total RNA. All these

commercially available products were purchased from Roche Diagnostics Ltd (Lewes,

UK).

The expression of each gene was determined by RT-polymerase chain reaction (RT-

PCR) (Bispham et al., 2003). The analysis used oligonucleotide cDNA primers for

each gene under test by generating specific exon-intron spanning products (see Table

1 for details of previously unpublished sequences). Briefly, the PCR programme

consisted of an initial denaturation (95 °C (15 min)), amplification (stage I, 94 °C (30

s); stage II, annealing temperature (30 s); stage III, 72 °C (60 s)) and final extension

(72 °C (7 min); 8 °C ‘hold’). The PCR mixture (final volume 20 ul) contained 7 ul

DEPC H2O, 10 ul Thermo-Start PCR Master Mix (50 ul contains 1.25 units Thermo-

Start DNA Polymerase, 1 x Thermo-Start reaction buffer, 1.5 mM MgCl2 and 0.2

mM each of dATP, dCTP, dGTP and dTTP, catalogue number AB-0938-DC-15

ABgene), 1 uM Forward Primer, 1 uM Reverse Primer and 1 ul RT (cDNA) product.

The annealing temperature and cycle numbers of all primers were optimised so as to

be in the linear range.
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Agarose gel electrophoresis (2.0 – 2.5%) and ethidium bromide staining confirmed

the presence of both the product and 18S at the expected sizes. Densitometric analysis

was performed on each gel by image detection using a Fujifilm LAS-1000 cooled

charge-coupled device camera to determine mRNA abundance for each gene.

Consistency of lane loading for each sample was verified from the measurement of

18S ribosomal RNA. All results were then expressed as a ratio of a reference sample

ran on all gels. Each analysis was conducted in duplicate with appropriate positive

and negative controls and a range of molecular weight markers. In addition, the

resultant PCR product was extracted (QIAquick gel extraction kit, catalogue number

28704), sequenced and results cross-referenced against the Genebank website

(Website) to determine specificity of the target gene.

Statistical Analysis

As Kolmogorov-Smirnov normality tests (SPSS 11.0.1) confirmed that the data was

normally distributed, parametric statistical analyses were performed. Statistical

analyses with respect to significant differences (P<0.05) between mean values

obtained from offspring of control and nutritionally manipulated mothers were carried

out using a two way analysis of variance for the effects of cold exposure and nutrient

restriction.
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RESULTS

Weight at birth and perirenal adipose tissue mass

Maternal cold exposure resulted in an increase in birth weight, an adaptation that was

dependent on maternal food intake and was thus not observed in cold exposed

mothers that were nutrient restricted (Table 2). The greater birth weight in well fed

cold exposed mothers was accompanied by a proportional increase in total perirenal

fat mass. Interestingly offspring born to mothers that were cold exposed and nutrient

restricted were the smallest and thus possessed the least amount of adipose tissue

although this was not statistically significant.

IGF-I, -II, receptor mRNA abundance in perirenal adipose tissue

Maternal cold exposure resulted in a pronounced decrease in IGF-I mRNA

abundance, whereas nutrient restriction in unshorn sheep significantly increased IGF-I

abundance (Figure 1) in adipose tissue. These changes in IGF-I were not, however,

accompanied by any significant difference in IGF-IR mRNA. A similar pattern of

changes in mRNA abundance for IGF-II and its R were observed with the

modification that in offspring born to unshorn mothers IGF-IIR rather than IGF-II

were up regulated in adipose tissue by nutrient restriction (Figure 2).

GHSR-1a and IRβ mRNA abundance in perirenal adipose tissue

In offspring born to cold exposed, nutrient restricted mothers there was a marked

increase in GHSR-1a mRNA abundance that was not seen in offspring of well fed
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mothers (Figure 3). There was no effect of either maternal cold exposure or nutrient

restriction on IRβ mRNA abundance (Control 218  65; Nutrient restricted 178  14;

Cold exposed 316  13; Cold exposed and nutrient restricted 206  33 (n = 7 per

group) arbitrary units as a ratio of 18S rRNA).
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DISCUSSION

The major finding of our study is that the increase in both body and adipose tissue

weight in offspring born to cold exposed mothers was not accompanied by an increase

in IGFR mRNA abundance within their fat. These findings extend previous studies of

cold exposure and nutrient restriction when pregnant sheep were only shorn four

weeks before term but also produce larger offspring with enhanced fat stores. They

are, however, in contrast with the effect of maternal nutrient restriction between early

to mid gestation followed by restoration of the maternal diet in late gestation when the

increase in fetal fat deposition is accompanied by an increase in mRNA abundance for

both the IGF-I and -IIR (Bispham et al., 2003). Under these nutritional conditions it

has been suggested that it is actually the level of feed that is consumed following the

period of nutrient restriction that may be critical in determining fetal fat deposition up

to birth. In the present study fat mass in the newborn was in proportion to body

weight and as such these indices of fetal growth were only increased in those

offspring born to cold exposed and well fed mothers. Taken together these results

indicate that long term changes in the maternal diet from mid gestation can influence

fat mass in the newborn in the absence of an increase in IGF-R. Interestingly it is only

nutrient restriction in late and not earlier in gestation that causes an increase in fat

deposition in later life (Gopalakrishnan et al., 2004; Gardner et al., 2005;

Gopalakrishnan et al., 2005).

Despite fat mass being proportional to body weight a striking molecular difference in

the adipose tissue of offspring born to mothers that were cold exposed and nutrient

restricted is the increase in GHSR-1a that may be related to an increase in plasma

ghrelin and subsequent changes in cell signalling (Murata et al., 2002). The extent to
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which such an adaptation may be mediated by changes in both the acylated and des-

acyl forms of ghrelin (Hosoda et al., 2000; Nakahara et al., 2006) remain unknown as

this analysis has yet to be undertaken in sheep. Increased circulating ghrelin and/or

tissue sensitivity would be predicted to effect both insulin action (Murata et al., 2002)

and sympathetic innervation (Yasuda et al., 2003). Indeed, studies in adult mice have

shown that chronic administration of ghrelin decreases UCP1 expression as well as

increasing fat mass (Tsubone et al., 2005). The increase in GHSR-1a mRNA in

adipose tissue from offspring born to cold exposed and nutrient restricted mothers

does not appear to impair UCP1 abundance (Pearce et al., 2005). It may act to prevent

any further depletion of adipose tissue that accompanies undernutrition in unshorn

mothers (Symonds et al., 1998). Interestingly this adaptation is only found in the

offspring of cold exposed mothers thus emphasising their very different maternal

metabolic and endocrine environments compared to unshorn sheep that is maintained,

irrespective of food intake (Thompson et al., 1982; Symonds et al., 1988; Symonds et

al., 1989).

Although there was no difference in adipose tissue mass between offspring born to

normally fed and nutrient restricted unshorn mothers there was a significant

difference in the response between the IGF-I and -II axis. Notably the change in IGF-I

and -II mRNA differed with regard to ligand and R responses in that although IGF-I

mRNA was increased it was only accompanied by enhanced IGF-IIR mRNA

abundance. As already discussed above these are different responses to that seen with

nutrient restriction in earlier gestation. At the same time there was no effect of

nutrient restriction on mRNA abundance for the IRβ that is found in these offspring at

one year of age when their fat mass is greater than controls (Gardner et al., 2005).
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Taken together it may be that these early changes in both IGF-I and IGF-IIR act to

increase fat growth after birth when it is one of the fastest growing organs in the body

(Clarke et al., 1997b). The lack of a significant effect on the IGF-IR may be explained

by the expected decrease in plasma IGF-I, with undernutrition (Bauer et al., 1995)

which then only has the potential for a limited effect on its R within the adipocyte

because of the observed enhanced capacity for an increase in paracrine secretion.

With regard to the potential impact of increased IGF-IIR mRNA on adipose tissue

growth this normally determines the bioavailability of IGF-II by acting as a negative

regulator of its anabolic effects by sequestering plasma IGF-II into the cell for

degradation (O'Dell & Day, 1998). It remains to be established whether the same

function occurs in fetal adipose tissue when an increase in both IGF-I and IIR can be

accompanied by an increased fat mass in the newborn (Bispham et al., 2003).

An important point to note with respect to the findings in the present study is that in

the ovine fetus adipose tissue deposition is minimal (Symonds et al., 2004) because of

the much higher metabolic demands for lipid deposition compared with that required

for carbohydrate and protein deposition (i.e. 39 c.f. 15-25 MJ/kg). The primary

function of fat in the fetus is to provide an endogenous energy store and facilitate the

rapid initiation of nonshivering thermogenesis at birth following cold exposure to the

extrauterine environment (Power, 1989; Symonds et al., 1995). This may mean that

any adaptation in endocrine sensitivity within fetal or newborn adipose tissue will

have very limited impact on total fat mass at birth but may contribute to its

mitochondrial composition and function (Clarke et al., 1997a). It is obviously

important that sufficient fat stores are present in the newborn as these are then rapidly

mobilised after birth before being replaced through the lactational period (Clarke et
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al., 1997b). It is therefore possible that the very different molecular profiles within the

IGF-GH axis between offspring born to cold exposed and nutrient restricted mothers

act to ensure that at the very least fat mass is proportionate to body weight and that fat

deposition is then adequately maintained in the postnatal period (Pearce et al., 2005).

Then after weaning as the animal attains its mature body weight persistent adaptations

within the adipocyte can contribute to enhanced fat mass found at one year of age

(Gardner et al., 2005).

In conclusion, we have shown for the first time that there are pronounced differences

in the endocrine sensitivity of adipose tissue between offspring born to cold exposed

and nutrient restricted mothers. This particularly impacts on the IGFs which may

adapt to ensure that sufficient adipose tissue is deposited to enable the newborn to

effectively adapt to cold exposure of the extrauterine environment.
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Table 1. Primer sequences for genes used in RT-PCR.

Primer Set Primer Sequence Product size (bp)

IRβ
F 5'-CTGCACCATCAACGGAA-3'
R 5'-CGTAACTTCCGGAAGAAGGA-3'

150

GHSR-1a
F 5'-CTACTTCGCCATCTGCTTCC-3'
R 5'-GAGGGTCGGTACCATTCTCA-3'

155

GHSR- 1a: growth hormone secretagogue receptor-1a

IRβ insulin receptor β subunit
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Table 2. Effect of chronic maternal cold exposure (CE) and nutrient restriction

(NR) on whole body and perirenal adipose tissue (PAT) weights of the resulting

offspring at one day of age. Values are means with their standard errors and n = 7

per group. Significant differences between the same nutritional groups (i.e. effect of

cold exposure) represented by * p < 0.05 and significant differences between control

and nutrient restricted groups that were both shorn group represented by different

superscripts a vs b P < 0.01. For full details of maternal feeding regime see Materials

and Methods.

Unshorn Shorn

Control NR Control NR

Bodyweight (kg) 4.42 ± 0.34 4.36 ± 0.21 5.45 ± 0.45* 3.96 ± 0.25

Total PAT (g) 15.21 ± 1.8 17.86 ± 1.8 22.34 ± 3.4a 12.98 ± 1.0 b

Relative PAT (g:kg) 3.45 ± 0.37 4.16 ± 0.43 4.14 ± 0.59 3.31 ± 0.20



20

FIGURE TITLES

Figure 1. Effect of chronic maternal cold exposure and nutrient restriction on mRNA

abundances for a) insulin-like growth factor (IGF)-I and b) its receptor (R) in

perirenal adipose tissue in the resulting offspring at one day of age (n=7 per group).

Values are means with their standard errors. Controls (unshorn), open bars; cold

exposed (shorn), closed bars; nutrient restriction (NR). Significant differences

between nutritional groups: ** p < 0.01. For full details of maternal feeding regime

see Materials and Methods.

Figure 2. Effect of chronic maternal cold exposure and nutrient restriction on mRNA

abundances for a) insulin-like growth factor (IGF)-II and its b) receptor (R) in

perirenal adipose tissue in the resulting offspring at one day of age (n=7 per group).

Values are means with their standard errors. Controls (unshorn), open bars; cold

exposed (shorn), closed bars; nutrient restriction (NR). Significant differences

between nutritional groups: * p < 0.05; ** p < 0.01. For full details of maternal

feeding regime see Materials and Methods.

Figure 3. Effect of chronic maternal cold exposure and nutrient restriction on mRNA

abundance for growth hormone secretagogue receptor (GHSR-1a) in perirenal adipose

tissue in the resulting offspring at one day of age (n=7 per group). Values are means

with their standard errors. Controls (unshorn), open bars; cold exposed (shorn), closed

bars; nutrient restriction (NR). Significant differences between nutritional groups: **

p < 0.01. For full details of maternal feeding regime see Materials and Methods.
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Figure 1
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Figure 2
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Figure 3
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