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Abstract 
 
 

We describe and examine a consistent test for the correct specification of a 
regression function with dependent data. The test is based on the supremum of the 
difference between the parametric and nonparametric estimates of the regression 
model. Rather surprisingly, the behaviour of the test depends on whether the 
regressors are deterministic or stochastic. In the former situation, the normalization 
constants necessary to obtain the limiting Gumbel distribution are data dependent 
and difficult to estimate, so to obtain valid critical values may be difficult, whereas 
in the latter, the asymptotic distribution may not be even known. Because of that, 
under very mild regularity conditions we describe a bootstrap analogue for the test, 
showing its asymptotic validity and finite sample behaviour in a small Monte Carlo 
experiment. 
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1. INTRODUCTION

The main purpose of the present paper is to describe and analyze a consistent
test for the correct speci�cation of a regression function with dependent data. In
empirical work, model selection (speci�cation testing) and/or the selection of rel-
evant regressors are, with no doubts, important features and they have a long
standing as failure to do so can result in improper conclusions. For example, a
wrong speci�cation of the regression function, or conditional expectation, leads to
wrong conclusions about the marginal e¤ects that a control/regressor variable may
induce on the dependent variable. On the other hand, if one of the regressors is a
lag value of the variable of interest, then a wrong speci�cation will result in wrong
predictions for its future values.
Since Holly (1982) pointed out that standard �parametric�tests lack consistency

in directions of possible interest, there has been an interest on tests which incor-
porate nonparametric features to construct consistent tests. To that end, there are
mainly two approaches or methodologies. The �rst methodology is based on the
empirical integrated regression function and the estimated parametric integrated
regression function estimated under the null hypothesis. The basic intuition of the
approach is based on exploiting orthogonality restrictions between the regressors
and the errors of the speci�ed or selected regression model. Although the literature
is very broad, we can cite among others, Eubank and Spiegelman (1990), Hong and
White (1995), Zheng (1996), Fan and Li (1996), Bierens and Ploberger (1997), Stute
(1997), Koul and Stute (1999) and �nally Delgado, Hidalgo and Velasco (2005) for
the speci�cation of a covariance stationary process.
However, in this paper the methodology that we follow is based on a direct

comparison between estimates of the regression model under the null and the non-
parametric alternative. More speci�cally, the test is based on global measures of
discrepancy between the parametric and nonparametric estimates. For that pur-
pose, we have chosen the norm of the supremum, e.g. a Kolmogorov-Smirnov type
of test. An alternative norm is that given by the L2 � norm, see among others
Bickel and Rosenblatt (1973), Härdle and Mammen (1993) or Hidalgo (1999). Be-
cause the test is based on the supremum, as a by-product, we will examine uniform
bounds for the nonparametric kernel regression estimators.
One of our, rather surprising, results is that the behaviour of the test is di¤erent

depending on whether the regressors are deterministic or stochastic, and because
of that we will explicitly di¤erentiate the two cases or frameworks. More specif-
ically, in the former situation, because the normalization constants to obtain the
limiting Gumbel distribution is data dependent and di¢ cult to estimate, to obtain
valid critical values may be rather di¢ cult if at all possible. On the other hand, in
the latter setup, that is with stochastic regressors, the asymptotic distribution may
not be even known. Moreover, the asymptotic distribution depends on the rate
of convergence to zero of the bandwidth parameter chosen to estimate nonpara-
metrically the regression model, as well as on the �combined dependence� of the
regressor(s) and error term of the regression model. In this way the results are very
much in spirit as those obtained for the least squares estimator when we allow that
the regressors and error term may exhibit strong dependence. Hence, the previous
arguments suggest the necessity to employ bootstrap methods.
The paper is organized as follows. In the next section, we describe the model

and the test. Also, we present the regularity conditions and the kernel estimator
of the regression function. Section 3 presents the uniform bands for the kernel
estimates and the main results of the test when the regressors are deterministic
or stochastic. Due to the nonstandard results obtained in Section 3, Section 4
describes and examines a bootstrap algorithm, showing the validity in our context.
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The bootstrap is performed in the frequency domain and it extends results to the
case when the errors are not necessarily weakly dependent. A small Monte Carlo
experiment to examine the �nite sample performance of the test in small samples is
described in Section 5. Section 6 provides the proofs of our main results of Sections
3 and 4 which make use of a series of lemmas in Section 7.

2. THE MODEL AND TEST. REGULARITY CONDITIONS

Given a stretch of data, say
�
(yt; x

0
t)
0	n
t=1
, we consider the regression model

(2.1) yt = E (ytjxt) + ut; t = 1; :::; n,

where we assume that the homoscedastic errors futgt2Z follow a covariance station-
ary linear process. As we mentioned in the introduction, our main concern is to
test the null hypothesis, without loss of generality,

(2.2) H0 : E (ytjxt) = �0 + �0xt,

where � =
�
�1; :::; �p

�0
is a parameter vector, being the alternative the negation of

the null. It is worth pointing out that the sole motivation to examine the hypothesis
E (ytjxt) = �0+�0xt with homoscedastic errors is basically for notational simplicity
as well as to shorten the arguments of the already lengthy technical proofs. If we
were interested to test for the somehow �more general�hypothesis H0 : E (ytjxt) =
r (xt; �1) with heteroscedastic errors, or in other words that the data

�
(yt; x

0
t)
0	n
t=1

follows the regression model

yt = r (xt; �1) + � (xt; �2)ut,

then the only di¤erence would be that we would obtain the residuals as

but = �yt � r �xt;b�1�� =� �xt;b�2� , t = 1; :::; n,

where b�1 and b�2 are estimators of the parameters �1 and �2, respectively. We
make some extra comments at the beginning of Section 2.1 and in particular after
Theorem 3.8 below.

2.1. DETERMINISTIC REGRESSORS.
In this section, we shall discuss the situation where the regressors are determin-

istic. A classical example of great interest in time series would be a polynomial
trend, that is xt =

�
t; t2; :::; tp

�
and/or with regressors of the type �cos t�0�and/or

�sin t�0�, where �0 6= 0. The latter type of regressors can be convenient when the
practitioner suspects that the data may exhibit some cyclical behaviour. Hence,
one possible hypothesis of interest is to know if such a deterministic trend and/or
cyclical behaviour is a relevant component of the data. So, let us consider the
hypothesis testing (2:2), having in mind that a particular case of great relevance is
that E (ytjxt) = �0.
As we have indicated in the introduction, the test for H0 in (2:2) will be based

on the di¤erence between the parametric and nonparametric estimates of E (ytjxt).
That is, let

(2.3) b� =: �b�0; b�0�0 =
 

nX
t=1

extex0t
!�1 nX

t=1

extyt
be the least squares estimator (LSE) of � =

�
�0; �

0�0 where henceforth we abbre-
viate (1; x0t)

0 by ext. Moreover, in what follows, for notational simplicity, we shall as-
sume that the regressors xt have been normalized. That is, x0t =

�
t=n; (t=n)

2
; :::; (t=n)

p
�
.
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On the other hand, our nonparametric estimator of E (yjx = q=n) is the kernel re-
gression estimator given by

(2.4) br (q=n) = 1

�n

nX
t=1

ytK

�
t� q
�n

�
,

where q is such that �n < q < n � �n and where henceforth �n = [na] and a = a (n)
denotes the bandwidth parameter such that a! 0 as n increases to in�nity. Here
K (x) is a function on [�1; 1]! R.
Then, we have that the test for (2:2) is based on

(2.5) T = sup
�n<q<n��n

���b�0exq � br (q=n)��� ,
Let us introduce the following regularity conditions.

C1: futgt2Z is a stationary linear process de�ned as

ut =
1X
j=0

#j"t�j ;
1X
j=0

#2j <1, with #0 = 1,

where f"tgt2Z is a zero mean iid sequence with E
�
"2t
�
= �2" and E

�
j"tj`

�
=

�` <1 for some ` > 4. Also, for j � 0,

#j =

jX
k=0

#kbj�k, #0 = b0 = 1,

and where, for k � 1, #k = ` (k) kd�1, d 2 [0; 1=2) ; j` (k)� ` (k + 1)j <
`0 (k) k�1 with `0 (k) > 0 and

P1
k=0 k

2 jbkj <1.
The case d = 0 refers to weak dependence, whereas the case 0 < d < 1=2 refers

to strong dependence. It is worth mentioning that it is also plausible to allow
for �1=2 < d < 0. However to shorten, the otherwise technical mathematical
arguments, we have preferred not to proceed with the latter case. Nevertheless, it
appears that the former situation is the most relevant with real data.
Condition C1 is similar to that in Marinucci and Robinson (2003). It implies

that

(2.6) ut =
1X
j=0

#j"
0
t�j ; "0t =

1X
j=0

bj"t�j .

One model satisfying (2:6) is the FARIMA (p; d; q) process

(1� L)d�p (L)ut = �q (L) "t,

where (1� L)�d =
P1

k=0 #kL
k with #k = � (k + d) = (� (d) � (k + 1)), where � (�)

denotes the gamma function such that � (c) =1 for c = 0 and � (0) =� (0) = 1, and
�p (L) and �q (L) are the autoregressive and moving average polynomials with no
common roots and outside the unit circle. The latter implies that ��1p (L)�q (L) =P1

j=0 bjL
j with bj = O (j�c) for any c > 0. Denoting

(2.7) C (�) =
1X
j=0

#je
�ij�; B (�) =

1X
j=0

bje
�ij�; � 2 (��; �] ,

the decomposition given in (2:6) implies that the spectral density function of futgt2Z,
denoted f (�), can be factorized as

(2.8) f (�) =
�2"
2�
g (�)h (�) ,
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where g (�) = jC (�)j2 and h (�) = jB (�)j2. So, the condition
P1

k=0 k
2 jbkj < 1

implies that h (�) is twice continuously di¤erentiable for all � 2 [0; �]. An example
of the function ` (k) is ` (k) = log� k for any � > 0 or any slowly varying function.
Moreover, because by C1, the sequence

�
#k
	1
k=0

is of bounded variation, that

is
P1

k=0

��#k � #k+1�� < 1, and that because
�
#k
	1
k=0

is also a quasi-monotonic

sequence, see Yong (1974, p.2) for a de�nition, then we have that g (�) � D��2d

as �! 0+, 0 < D <1, and continuous di¤erentiable outside any open set around
the zero frequency, see Yong�s (1974) Theorems III-11 and 12, and �nally we have
that

j =

Z �

��
g (�) cos (j�) d�

� � (d) j2d�1 as j !1, d 2 (0; 1=2) ,(2.9)

= 2�I (j = 0) , d = 0,

where I (A) is the indicator function and � (d) = 2� (1� 2d) cos
�
�
�
1
2 � d

��
. It is

worth mentioning that when examining the asymptotic properties of the supremum
of br (q=n) we could allow for more than one singularity. However, this condition
eases the notation and some of the arguments for the proof of the validity of the
bootstrap described in Section 4 below.

C2: K : [�1; 1]! R is (a) symmetric, (b) a continuous di¤erentiable function
in (�1; 1) and (c) it integrates 1.

Recalling that �n = [na], the bandwidth parameter a satis�es:

C3: As n!1, (i) �n�1 ! 0 and (ii) �n
1
2�da2 � D <1.

Part (ii) di¤ers from the analogue assumed by Robinson (1997). We, contrary
to the latter work, do not need to assume that �n

1
2�da2 ! 0 as n!1. This allows

us to be able to choose the optimal bandwidth parameter a, in the sense of being
the value a which minimizes the MSE of the nonparametric regression estimate.
More precisely, suppose that d = 0. Then, it is known that the optimal choice of a
satis�es a = Dn�1=5 for some �nite positive constant D, which corresponds to the
choice of the bandwidth parameter by, say, cross-validation.

2.2. STOCHASTIC REGRESSORS.
As we have suggested in the introduction, we shall consider the, anyway, relevant

null hypothesis

(2.10) H0 : E (ytjxt) = �.
Observe that one leading situation of interest in model speci�cation is to check

the relevance of a regressor, see Delgado and Gonzalez-Manteiga (2001) or Hidalgo
(1997) or Hidalgo (2000) in a distributed lag model to test for causality. That
is, the null hypothesis in (2:10) against the alternative that E (ytjxt) depends on
xt. The reason to consider the latter null hypothesis in (2:10) is to simplify some
of the arguments, but at the same time it gives the main ingredients on the type
of di¤erences that we encounter when we compare the results with those obtained
with deterministic regressors. However, after Theorem 3.8, we will discuss the main
issues when the null is a nonlinear regression model with heteroscedastic errors.
As indicated in the introduction, the test will be based on the di¤erence between

the parametric and nonparametric estimates of E (ytjxt). That is, let

b�p = 1

n

nX
t=1

yt

be the estimator of � in yt = �+ ut.
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On the other hand, our nonparametric estimator of � is the kernel regression
estimator

(2.11) b�np (x) = Pn
t=1 ytKt (x)Pn
t=1Kt (x)

,

where here K (x) is a function R! R, and we abbreviate K ((xt � x) =a) by Kt (x).
Then, we have that the test for the null hypothesis in (2:10) is based on

(2.12) Ts = sup
x2X

��b�p � b�np (x)�� ,
where X is a discrete set dense in the compact support of xt such that for all x1

and x2 2 X , we have that min
��x1 � x2�� > a log n.

Let us introduce the following regularity conditions.
S1: C1 is satis�ed and fxtgt2Z is a nonlinear transformation of a f�tgt2Z
sequence, that is xt = G (�t), satisfying

�t =
1X
j=0

vj&t�j ;
1X
j=0

v2j <1, with v0 = 1,

where f&tgt2Z is a Gaussian zero mean iid sequence with E
�
&2t
�
= �2& . Also,

for j � 0,

vj =

jX
k=0

#
�

kb
�
j�k, #

�

0 = b
�
0 = 1,

and where, for k � 1, #
�

k = ` (k) kd��1, d� 2 [0; 1=2) ; j` (k)� ` (k + 1)j <
`0 (k) k�1 with `0 (k) > 0 and

P1
k=0

���b�k��� <1.
Condition S1 might be relaxed to allow the sequence f�tgt2Z to be a covariance

stationary linear process with f&tgt2Z be an iid sequence. However, since we wish
to indicate the main results with stochastic regressors and the main di¤erences with
the previous situation of deterministic regressors, then to simplify the arguments we
have preferred to keep S1 as it stands. The sole main di¤erence is that in the latter
case, we will employ Apple polynomials instead of Hermite ones for the expansion
of Kt (x), see for instance Hidalgo (1997) for some details.

S2: K : R ! R is (a) symmetric, (b) a continuous di¤erentiable function in
R and (c) it integrates 1.

3. RESULTS

3.1. DETERMINISTIC REGRESSORS.
We begin this section presenting the behaviour of the LSE, b�, given in (2:3) and

the kernel regression estimator in (2:4). To that end, letG =
�
(i+ j � 1)�1

�
i;j=1;:::;p+1

.

Then, we have the following result:

Proposition 3.1. Let b� be the LSE in (2 :3 ). Assuming C1 , as n !1,

n1=2�d
�b���0� d!N

�
0 ;
�2"
2�
G�1VG�1

�
,

where V =(Vi;j )i;j=1 ;:::;p+1 and

Vi;j=

�
h (0 ) � (d)

R 1
0

R 1
0
v i�1w j�1 jw � v j2d�1 dwdv if d > 0

h (0 ) � (0 ) if d = 0 ,

and where h (0) and � (d) are de�ned in (2:8) and (2:9) respectively. Moreover,

E
�b�k��k�2a = O �na(2d�1)� for k = 0 ; 1 ; :::; p, and integer a = 1 ; 2 .



6

Proof. The proof follows immediately from Wang et al. (2003) and then standard
arguments, so it is omitted. �

Before we give the results for the uniform bound for the kernel regression estimate
in (2:4), and then those for the test in (2:5), we �rst examine the covariance ofbr (q) =: br (q=n) at two di¤erent points q1 � q2. De�ne b (q1; q2) = (q2 � q1) =�n.
Proposition 3.2. Assuming C1 � C3 , for any �n < q1� q2< n � �n, as n !1,
(3.1) �n1�2dCov (br (q1 ) ;br (q2 ))! � (b; d) ,

where b := limn!1 b (q1 ; q2 ) is �nite and

(a) if 0 < d <1
2 ,

(3.2) � (b; d)=
�2"
2�
h (0 ) � (d)

Z 1

�1

Z 1+b

b�1
jv � w j2d�1 K (v)K (w � b) dvdw ,

(b) if d = 0 , � (b; d)= �2"
2�h (0 )

R 1
�1 K (v)K (v � b) dv .

Proof. The proof is omitted since it follows by standard arguments following Robin-
son (1997). �

Proposition 3.2 indicates that the covariance structure is independent of the
points at which the regression function is estimated and only depends on the dis-
tance among the points where the regression function is estimated.
The next proposition deals with the correlation structure of br (q) as b (q1; q2)! 0

and when b (q1; q2)!1 as n!1. In what follows, D will denote a positive �nite
constant.

Proposition 3.3. Under C1 � C3 , for some � 2 (0 ; 2 ], as n !1,

(a)
� (b (q1; q2) ; d)

� (b (q1; q1) ; d)
� 1 = �D jb (q1; q2)j� + o (jb (q1; q2)j�) as b (q1; q2)! 0

(b) � (b (q1; q2) ; d) log (b (q1; q2)) = o (1) as b (q1; q2)!1.

Proposition 3.4. Assuming C1 � C3 , for any �nite collection qj , j = 1 ; :::; p,
such that �n < q j< n � �n and

��qj1�q j2 ��� nz > 0 , as n !1,

�n
1
2�d��

1
2 (0 ; d) (br (qj )�r (qj ))j=1 ;:::;p d!N (0 ; diag (1 ; :::; 1 )) .

The results of Propositions 3.2 and 3.4 indicates that br (q)� r (q), where r (q) =
E (yt jx = xq ), has asymptotically stationary increments. This observation together
with Propositions 3.3 and 3.1 are key to obtain the asymptotic distribution ofeT = sup

�n<q<n��n
jbr (q)� r (q)j .

Theorem 3.5. Let �n=(�2 log a)1=2 . Assuming that C1 � C3 holds, then

Pr
n
�n

�
�n
1
2�d��

1
2 (0 ; d) eT ��n�� xo !

n"1
exp

�
�2e�x

�
, for x > 0 ,

where
(a) If 0 < d < 1=2 , then

�n= �n + �
�1
n

��
1

2
� 1
�

�
log log a�1+ log

�
(2�)

� 1
2 2

2��
2� E

1
� J�

��
for some 0 < E <1, where � is as given in Proposition 3.3,

0 <J�� lim
a!0

Z 1

0

es Pr

(
sup

0�t�[a]�1
Y (t)> s

)
ds <1
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and Y (t) is a stationary mean zero Gaussian process with covariance structure

Cov (Y (t1 ) ;Y (t2 ))= jt1 j�+ jt2 j�� jt2�t1 j� .
(b) If d = 0 , then

�n= �n+�
�1
n

�
log

�
W1 (K )

�1=2

�
+
1

2
log (� log a)

�
,

where

W1 (K )=
K 2 (�1 )+K 2 (1 )

2
R 1
�1 K

2 (x ) dx

when W1 (K )> 0 , and otherwise

�n= �n+�
�1
n log

"
1

�

�
W2 (K )

2

�1=2#
,

where W2 (K )=
�R 1

�1 K
0 (x )

2
dx
�
=
�R 1

�1 K (x )
2
dx
�
and K 0 (x )= d

dxK (x ).

Proof. The proof of this theorem follows step by step that of Theorem 4.3 below.
So, we have decided to omit its proof. Observe that due to results in Wang et al.
(2003), we can regard the distribution of the sequence of random variables futgt2Z
as Gaussian. In particular, we have that

sup
1�s�n

�����
sX
t=1

Ktut �
sX
t=1

Ktut

����� = op �nd+1=4� ,
where ut =

P1
j=0 #j"t�j and f"tgt2Z is a zero mean iid sequence of standard normal

random variables, and that in what follows we shall abbreviate Kt (0) by Kt. �

We now comment a bit on the previous theorem. As indicated in the introduc-
tion and (2:5), the asymptotic behaviour is based on the uniform behaviour of the
nonparametric estimator br (q), and so on the construction of nonparametric uniform
con�dence bands. The latter is an old issue. For the kernel density estimator, saybp (x), of the probability density function p (x), Woodroofe (1967), under suitable
conditions, showed that

(3.3) Pr

�
b1=2n sup

x2�n
jbp (x)� p (x)j � cn < z� d! exp

�
�2e�z

�
,

where z 2 R+, bn = (�2�n log a) and �n = f0; a log n; 2a log n; :::; 1g is a particu-
lar grid (dense) of points in [0; 1]. The latter result was extended by Bickel and
Rosenblatt (1973) when the supremum is over all x 2 R. But more importantly, as
we see in Theorem 3.5, the possibility of strong dependence on futgt2Z will imply
that the normalization constants bn and cn in (3:3) depend crucially, in a nontrivial
fashion, on the degree of dependence of the errors futgt2Z, measured by the so-
called long memory parameter in contrast to the case when the errors futgt2Z are,
say, strong mixing. Later in Theorem 3.8 we will see the even more surprising re-
sult that the asymptotic distribution of the test depends on the combined strength
of dependence of futgt2Z and fxtgt2Z and in several cases of interest also on the
rate of convergence to zero of the bandwidth parameter a, when the regressors are
stochastic.
In the context of regression models, (3:3) was extended, among others, by John-

ston (1982) for iid errors ut. However, in this paper we have relaxed this condition
on ut and in particular we have dropped any mixing dependence condition on
futgt2Z. Recall that when we allow the data not to be weakly dependent, mix-
ing conditions are incompatible with this, see for instance Ibragimov and Rozanov
(1978). However, contrary to Csörg½o and Mielniczuk (1995), we do not take the
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supremum in a grid of points �n but, more in the line of Bickel and Rosenblatt
(1973) on a much �ner dense set of the interval [0; 1]. More speci�cally, on the
natural set

�
n�1; 2n�1; :::; 1

	
. Notice that if for instance the uniform kernel were

chosen, then we will be in the same situation as in Bickel and Rosenblatt (1973),
that is the supremum to compute eT , and thus the test T , will be on the whole
interval [0; 1]. This is because, in that case, br (x) = br (q) for all x 2 [0; 1] such that
(q � 1) =n < x � q=n.
Theorem 3.5 indicates that the limiting distribution of eT corresponds to the type

of Gumbel distribution. We now give the main result of this section.

Theorem 3.6. Under the same conditions of Theorem 3.5,

Pr
n
�n

�
�n
1
2�d��

1
2 (0 ; d) T ��n

�
� x

o
!
n"1

exp
�
�2e�x

�
, for x > 0 .

Proof. The proof is obvious from Theorem 3.5 since b�� � = Op �nd�1=2� by Propo-
sition 3.1 and then by C3. �

Although Theorem 3.6 gives the asymptotic justi�cation of T in (2:5), we observe
that for the former the normalization �n needed to achieve the asymptotic distribu-
tion depends not only on d but on J� which may be very di¢ cult to compute except
for the especial cases � = 1 or 2. In particular, for the latter cases, we know that

J2 = �n+��1n log
�
��1 (E=2)

1=2
�
and J1 = �n+��1n log

n
(E=�)

1=2
+ 2�1 log log a�1

o
,

where E is a constant easy to obtain. More speci�cally, in our context, although d
can be estimated, we face one potential di¢ culty to obtain the uniform bounds ofbr (q). As we observe from (the proof of) Proposition 3.3, � depends on the kernel
K (�) as well as on d, so that to obtain J� does not seem an easy task.

3.2. STOCHASTIC REGRESSORS.
Before we give our main results for the asymptotic distribution of the test Ts in

(2:12) when xt is stochastic, we introduce �rst some notation and de�nitions. We
will abbreviate Kt (x)� E (Kt (x)) by eKt (x). Also, let

Hj (�) = (�1)j e�
2=2 @

j

@�j
e��

2=2

be the jth Hermite�s polynomial. Recall that the Hermite polynomials satisfy

(3.4) E (Hj (�t)Hk (�s)) = j! (E (�t�s))
j I (j = k) .

Finally, because E eK2
t (x) < D by S2, we have the decomposition

(3.5) eKt (x) =
1X
j=1

bjn (x)

j!
Hj (�t) , with bjn (x) =

Z
R
eKt (x)Hj (�t)� (�t) d�t,

and where � (�t) is the probability density function of the standard normal random
variable.
Let us introduce the following condition:

S3: (a) The instantaneous �lter G (�) is continuously di¤erentiable and the
set f� j G0 (�) = 0g is �nite.
(b) The probability density function of any �nite-dimensional joint dis-

tribution of fxsgSs=1 is continuously di¤erentiable and uniformly bounded.
Also denote by p (x) the probability density function of xt.

Then, we have the following result.
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Proposition 3.7. Assuming that S1� S3 hold, we have that
(a) if d+ d� < 1=2, then assuming C3, for any �nite collection fxqgQq=1 2 X ,

(3.6) �n1=2
��b�np (xq)� b�p�	Qq=1 d! N

�
0; diag

�
v1; :::; vQ

��
,

where vq = p�1 (xq)Eu2t
R
RK

2 (v) dv, whereas
(b) if d+ d� > 1=2, then

b�np (x)� b�p = x� (x)

p (x)

 
1

n

nX
t=1

�tut �
1

n

nX
t=1

�t
1

n

nX
t=1

ut

!
(1 + op (1))

if n1�2(d+d�)a�1 ! 0, and if n2(d+d�)�1a! 0, then (3:6) holds true.

The results of the previous proposition needs some comments. First, we observe
that similarly to the properties of the LSE, the asymptotics or behaviour depends
on whether the autocorrelation function of zt = �tut is summable or not. The
second is that in the situation of nonsumability of the autocorrelation of the process
fztgt2Z, the behaviour depends on the rate of the bandwidth parameter �a�to zero.
When n2(d+d�)�1a!1, we have that the asymptotic distribution is unknown.
Before we give the results for the behaviour of the test, let

eTs = sup
x2X

������
 bp (x)b�2u RRK2 (v) dv

!1=2 �b�p � b�np (x)�
������ ,

where bp (x) = 1

�n

nX
t=1

Kt (x) ; b�2u = 1

n

nX
t=1

�
yt � b�p�2 .

Remark 3.1. The motivation to modify Ts to eTs is to obtain that asymptoticallybp1=2 (x) =�b�2u RRK2 (v) dv
�1=2 �b�p � b�np (x)� are identically distributed.

Then, we have the following result.

Theorem 3.8. Assuming that S1� S3 hold, we have that
(a) if d+ d� < 1=2, and C3 holds, then,

(3.7) Pr
n
�n

�
�n
1
2 eTs��n�� xo !

n"1
exp

�
�2e�x

�
,

for x > 0 , where �n=(�2 log 2a)1=2 and

�n= �n+�
�1
n log

"
1

�

�
W2 (K )

2

�1=2#
,

where W2 (K )=
R
RK

0 (x )
2
dx=

R
RK (x )

2
dx , whereas

(b) if d+ d� � 1=2, then

Ts = sup
x2X

���� x� (x)p1=2 (x)

����
 
1

n

nX
t=1

�tut �
1

n

nX
t=1

�t
1

n

nX
t=1

ut

!
(1 + op (1))

if n1�2(d+d�)a�1 ! 0, and if n2(d+d�)�1a! 0, then (3:7) holds true.

Proof. The proof follows by Proposition 3.7 and then proceeding as in the proof of
Woodroofe�s (1967) Theorem 5, after noticing that by Proposition 3.7 and standard
chaining rule, we have that

sup
x2X

jbp (x)� p (x)j = op (1)
and that b�2u !P �

2
u by ergodicity of futgt2Z, and thus it is omitted. �
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Remark 3.2. Notice that
��x� (x) =p1=2 (x)�� is bounded in X by S3.

Similarly to the conclusions draw from Theorem 3.6, Theorem 3.8 indicates the
asymptotic distribution of eTs may be unknown and it can vary depending on the
chosen bandwidth. Under these circumstances, bootstrap algorithms appear to be
a sensible procedure to go forward.
We �nish this section discussing the di¤erences we encounter with more �general�

models with heteroscedasticity in the case of strong dependence in the error term.
So, let us consider regression model

yt = r (xt; �) + � (xt)ut,

where fxtgnt=1 is as in S1. In this case, our results given in Proposition 3.7 and thus
in Theorem 3.8 are a bit di¤erent and the conclusions are even more surprising. To
that end, we �rst observe that in general E (� (xt) @r (xt; �) =@�) 6= 0. So, denoting
by b� the nonlinear least squares estimator of �, it is easy to show that under suitable
regularity conditions, when d > 0,

b� � � =

 
nX
t=1

�
@r (xt; �)

@�

@r (xt; �)

@�0

�!�1 nX
t=1

@r (xt; �)

@�
� (xt)ut (1 + op (1))

=

�
E

�
@r (xt; �)

@�

@r (xt; �)

@�0

���1
E

�
� (xt)

@r (xt; �)

@�

�
1

n

nX
t=1

ut (1 + op (1))

= V
1

n

nX
t=1

ut (1 + op (1)) .

On the other hand, assuming that the function r (x; �) is twice continuous di¤er-
entiable in x, by standard kernel manipulations and proceeding as with the proof
of Proposition 3.7, we have thatb�np (x)� r (x; �)
=

1

�n

nX
t=1

� (xt)Kt (x)ut

�
1bp (x) � 1

Ebp (x)
�
+

1

Ebp (x) 1�n
nX
t=1

� (xt)Kt (x)ut +Op
�
a2
�
.

It is evident that the �rst term on the right has a smaller stochastic order of
magnitude than the second one, so that we can conclude that

b�np (x)� r (x; �) = 1

p (x)

1

�n

nX
t=1

� (xt)Kt (x)ut (1 + op (1))

because Ebp (x)�p (x) = O �a2�. By standard arguments as those given in the proof
of Proposition 3.7, because

1

�n

nX
t=1

� (xt)Kt (x)ut = E (� (xt)Kt (x))
1

n

nX
t=1

ut (1 + op (1))

then, using the results for b� � �,
b�np (x)� r �x;b�� =

�
1

p (x) a
E (� (xt)Kt (x))� V

@r (x; �)

@�

�
1

n

nX
t=1

ut (1 + op (1))

=

�
� (x)� V @r (x; �)

@�

�
1

n

nX
t=1

ut (1 + op (1))

because a�1E (� (xt)Kt (x)) = � (x) p (x) +O
�
a2
�
. So denoting

�Ts = sup
x2X

�����
�
� (x)� V @r (x; �)

@�

��1
n1=2�d

�
r
�
x;b��� b�np (x)�

�����
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we have then the following result.

Proposition 3.9. Assuming that S1� S3 hold, we have that

�Ts
d!N

�
0 ;
�2"
2�
h (0 ) � (d)

Z 1

0

Z 1

0

jw � v j2d�1 dwdv
�
.

4. THE BOOTSTRAP APPROACH

Since Efron (1979), bootstrap methods have become an often tool in empiri-
cal applications and it has attracted considerable e¤ort to its development, being
perhaps two the main motivations. First, bootstrap methods are capable of ap-
proximating the �nite sample distribution of statistics more e¤ectively than those
based on their asymptotic counterparts. The second being that they allow comput-
ing valid asymptotic quantiles of the limiting distribution in situations where a)
the limiting distribution is unknown or b) if known, the practitioner is unable to
compute its quantiles. The basic idea of the bootstrap is in a broad sense to treat
the estimated model as the true probability of the model or population. Depending
on the underlying distributional properties of the data, di¤erent schemes have been
adopted and proposed.
It is clear from the results of Theorems 3.6 and 3.8 that Efron�s (1979) original

bootstrap will not work. So, we need to employ schemes devise in a time series
context. Among others, we could cite the moving block bootstrap (MBB) described
in Künsch (1989) or the sieve-bootstrap of Bühlmann (1997) following ideas in
Kreiss (1988). The aforementioned bootstrap schemes could be labeled as bootstrap
procedures in the time domain. However, some alternative bootstraps have been
proposed and considered using the frequency domain. Among others, we can cite
Dahlhaus and Janas (1996), Theiler et al. (1992) or Prichard and Theiler (1994)
or more recently Hidalgo (2003) in the context of regression models. Basically,
the procedures are based on resampling the periodogram of the data futgnt=1, as
in the �rst two aforementioned papers, or similarly the modulus of its discrete
Fourier transform, as in the latter three works. More speci�cally, the bootstraps

approximate the modulus
���P1

j=0 �je
ij�
����2 = ���P1

j=0 #je
ij�
���2, where f#jg1j=0 are

the coe¢ cients of the MA (1) representation of futgt2Z,

ut =

1X
j=0

#j"t�j ; with #0 = 1.

The rationality of these bootstraps is that the normalized periodogram and/or
discrete Fourier transform evaluated at the Fourier frequencies could be considered
as uncorrelated, so that we can employ Efron�s original bootstrap. However, the
latter bootstrap may not be valid in some circumstances. One example being on
bootstrapping the sample mean, so that in view of Theorem 3.8 part (b), say, it will
not be valid for our problem of bootstrapping the distribution of Ts in (2:12).
For the justi�cation of the bootstrap in the time domain, one common assump-

tion is that the data satisfy some mixing condition. For instance, when the data
exhibit strong dependence, there is not justi�cation for the validity of the sieve-
bootstrap. Although results are given in Hall et al. (1998) for the subsampling of
Politis and Romano�s (1994) algorithm, it requires vt = H (ut) with ut to be Gauss-
ian and H (u) = u or u2 � E

�
u2
�
. However, as we will comment after Theorem

4.3, the subsampling is not a suitable or convenient method, even if it were valid,
from an empirical and practical point of view.
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Due to this, in this section we describe and examine a bootstrap algorithm in
the frequency domain which, unlike the ones previously mentioned, it will approx-
imate the transfer function

P1
j=0 #je

ij� and more importantly it will be valid to
bootstrap, say, the sample mean, which in our context plays an important role in
all the asymptotics as Theorem 3.6, and also Theorem 3.8, indicates. The boot-
strap is similar to that proposed by Hurvich and Zeger (1987), although they did
not give its justi�cation. In addition, our conditions are weaker than theirs and it
applies to more general models. On the other hand, two di¤erences of our boot-
strap procedure with the block bootstrap, say, are that (a) it is not a subset of
the original data, and (b) the bootstrap data, say fu�t g

n
t=1, is covariance stationary

in the sense that Cov� (u�t ; u
�
s) is a function of jt� sj. Herewith, by Cov� (z1; z2)

or, say E� (z), we mean the covariance or expectation conditional on the data. In
addition, the bootstrap is valid for data which do not satisfy the standard mix-
ing conditions, such as strong mixing. That is, we shall allow our data to exhibit
strong dependence. The bootstrap described below has some similarities with the
sieve-bootstrap as it approximates the transfer function

P1
j=0 #je

ij� instead of its
modulus as that in, say, Theiler et al. (1992) or Hidalgo (2003). More speci�cally,
our bootstrap is based on the �discrete�Cramér representation of futgnt=1 and the
Bartlett�s approximation of the discrete Fourier transform of futgnt=1 by that of the
innovations f"tgnt=1. The proposed bootstrap enjoys other properties, like the sieve-
bootstrap, such as the ability to cope in a natural form with missing observations
or unequal spaced data, which is very di¢ cult to implement using subsampling or
the MBB. On the other hand, the di¤erence between the sieve-bootstrap and ours
parallels to that existing when the practitioner is interested to estimate the spectral
density function by either (a) approximating the dependence structure of the data
by an AR (pn) model, as in Berk (1974), and pn ! 1 with n or (b) the average
periodogram, see Brillinger (1981).
Finally it is worth recalling that in our framework, the resampling or bootstrap

scheme must satisfy two basic requirements. First, the conditional distribution,
given the data, of the bootstrap analogue of say T , and denoted by T �, consis-
tently estimates the distribution of T under H0 and local alternatives. That is,
T � !d� T in probability, where �!d��in probability means convergence in boot-
strap distribution according to Giné and Zinn (1989). And second, as suggested
elsewhere, to have good power T � must also converge in bootstrap distribution,
possibly to a di¤erent one, under the alternative hypothesis. However, in our case,
as Theorem 4.3 indicates, the bootstrap distribution converges to that of T under
both the null and alternative hypothesis.

4.1. DETERMINISTIC REGRESSORS.
When the regressors xt are deterministic the bootstrap algorithm for T in (2:5),

is described in the following 7 STEPS.

STEP 1: Obtain the residuals but = yt � b�0ext, t = 1; :::; n.
Our second step describes how to obtain w�" (�j), j = 1; :::; ~n, with ~n = [n=2].

STEP 2: Let f"�t g
n
t=1 be a random sample with replacement from the stan-

dard normal random variable and obtain its discrete Fourier transform

��j := w
�
" (�j) =

1

n1=2

nX
t=1

"�t e
�it�j , j = 1; :::; ~n.

Remark 4.1. The previous step reminds very much the wild bootstrap. We con-
jecture that using results in Csörg½o and Mason (1989) we could use the empirical
distribution function of f�utgnt=1, where �ut = e��1bu but, e�2bu = n�1Pn

t=1 bu2t , instead of
the normal random variable. However, the latter eases considerably the proof for
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the validity of the bootstrap. Finally, observe that, by periodicity, ��j = �
�
�j+n for

j = 1; :::; ~n, where a denotes the complex conjugate of the number a.

STEP 3: We estimate d, bd, by say Robinson�s (1995b) GSE, de�ned as
(4.1) bd = arg min

d2[0;�]
eR (d) ,

where 0 < � < 1=2, and

eR (d) = log
0@ 1

m

mX
j=1

�2dj Ibubu (�j)
1A� 2d mX

j=1

log �j

for integer m 2 [1; ~n) and where Ibubu (�) = jwbu (�)j2 = (2�) is the peri-
odogram of fbutgnt=1, with m�1 +mn�1 ! 0 as n!1.

De�ne the estimator of �2"h (�) =2� by

(4.2) bh (�) = 1

2m+ 1

mX
j=�m

���1� e�i(�+�j)���2bd Ibubu (�+ �j) .
Remark 4.2. We can regard bh (�) as an estimator of 2�g (�) ��1� e�i���2d h (�).
When the coe¢ cients #k in C1 are given by #k = � (k + d) = (� (d) � (k + 1)), that

is g (�) =
��1� e�i����2d, then bh (�) becomes an estimator of 2�h (�) = jB (�)j2.

However, because 2�g (�)
��1� e�i���2d h (�) =: ���P1

j=0 �je
ij�
���2 is a symmetric twice

continuously di¤erentiable function in � 2 [0; �], we have that f�jgj�0 satis�es
the same conditions as fbjgj�0 in C1. Hence in what follows, and without loss
of generality, to simplify the notation we shall not make any distinction between
fbjgj�0 and f�jgj�0.

De�ne the truncated version of
��1� ei����2d,

eg (�; d) = n�1X
`=1�n

 (`; d) ei`�,

where

 (`; d) =
(�1)` � (1� 2d)

� (`� d+ 1)� (1� `� d) .

STEP 4: Consider M = [n=4m] and compute

u�t =
1

n1=2

nX
j=1

eit�jeg1=2 ��j ; bd� bB (�j) ��j ; t = 1; :::; n,

where bB (�j) = 1 +bb1e�i�j + :::+bbMe�iM�j(4.3)

bb` = n�1 ~n�1X
j=�~n+1

bA (�j) ei`�j ; ` = 1; :::;M

with bA (�) = exp( MX
r=1

bcre�ir�)
and

bcr = ~n�1 ~nX
`=1

log
�bh (�`)� cos (r�`) ; r = 0; :::;M .
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Remark 4.3. It is worth mentioning that the way to obtain the bootstrap observa-
tions u�t in STEP 4, together with the de�nition of bh (�) in (4:2), has some simi-
larities with the autoregressive-aided bootstrap in Kreiss and Paparoditis (2003).bB (�) in (4:3) is an estimator of B (�) in (2:7), whereas bA (�) is an estima-
tor of A (�) = exp

�P1
r=1 cre

�ir�	, with cr = ��1
R �
0
log h (�) cos (r�) d�, which

comes from the so-called canonical spectral decomposition of h (�), see for instance
Brillinger (1981, p: 78� 79).

STEP 5: Compute

y�t =
b�0ext + �2�ebc0�1=2 u�t ; t = 1; :::; n:

Note that by the well-known Kolmogorov formula, 2�ebc0 is an estimator of the
variance of "t, �2", that is the one-step mean square prediction error.

STEP 6: Compute br� (t), t = �n + 1; :::; n � �n � 1, as in (2:4) but with yt
replaced by y�t with the same bandwidth parameter �a�. Also denote the
bootstrap least squares estimator of b� by b��.

Remark 4.4. We should emphasize that we use the same bandwidth parameter �a�
to estimate nonparametrically the regression model with the observed and bootstrap
data. This is very important and crucial to validate the bootstrap algorithm to make
inferences. See the comments we make after Theorem 4.3 for a more theoretical,
and also practical, reason.

Our �nal step is:
STEP 7: Compute the bootstrap version of T as

(4.4) T � = sup
�n<t<n��n

���b��0ext � br� (t)��� .
Remark 4.5. It is worth mentioning that the bootstrap approach will be also valid
if instead of computing fbutgnt=1 as in STEP 1, we would have obtained them using
the alternative hypothesis. That is, if we would have computed the residuals as

(4.5) but = yt � br (t) , t = 1; :::; n.
The latter may induce a better power for the test. However, the motivation to

keep STEP 1 is merely to simplify, and make then clearer, the already lengthy and
technical proofs of our results. The reason is twofold. The �rst one is due to the
fact that when we obtain the residuals but as in (4:5), the rate of convergence to zero
of but � ut can be very slow as was seen by Robinson (1997). Because of that, it
implies that extra technical arguments will be needed to validate the bootstrap T �
in, say, (4:4). The second motivation is more of a theoretical reason and/or its
practical implication. Indeed, if (4:5) were to be used to obtain the residuals but, we
would have to modify STEP 1 as

STEP 1 �: Obtain the centred residuals but = eut � n�1Pn
t=1 eut, t = 1; :::; n,

where eut = yt � br (t) with
(4.6) br (t) =

8<: br+ (t) , t = 1; :::; �n
1
2 (br+ (t) + br� (t)) , �n < t < n� �nbr� (t) , t = n� �n; :::; n,

and br+ (t) and br� (t) are given by
br� (t) = 1

�n

nX
s=1

ysK�

�
t� s
�n

�
and K+ (x) and K� (x) be one-sided kernels integrating 1, that is kernel
functions taking values for x > 0 and x < 0, respectively.
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STEPS 2 � to 4 �: As those in STEPS 2 to 4.
STEP 5 �: Compute br (t) as in (4:6) but with a bandwidth parameter e such
that e! 0 and a = o (e), and

y�t = br (t) + �2�ebc0�1=2 u�t ; t = 1; :::; n.

We now comment on STEP 5 �. The motivation to use a pilot bandwidth parame-
ter e such that a = o (e) is to provide a correct adjustment of the bias of the kernel
nonparametric estimator of r (�). The reason is because by standard arguments
' (q) = E (br (q)� r (q)) = o ��nd�1=2�, whereas the bootstrap bias constructed from
the resampled data is '� (q) = E� (br� (q)� br (q)). Now a new condition regarding
the rate of convergence to zero of the extra bandwidth parameter e is required. In
particular, we would need that:
As n!1, (i) (ne)�1 ! 0, (ii) n

1
2�de

5
2�d � D <1.

STEP 6 �: Compute br� (q), q = �n + 1; :::; n � �n � 1, as in (2:4) but with yt
replaced by y�t and the same bandwidth parameter a employed in STEP 1

�

to compute br (t) in (4:6).
And �nally,
STEP 7 �: The same as STEP 7.

So, apart from the technical problems that STEP 1 � will induce, there exists
the potential problem of the necessity to choose another bandwidth parameter,
being the latter not a very desirable requirement. Nevertheless, as the Monte Carlo
experiment in the next section indicates, the power properties of the bootstrap
algorithm described in STEPS 1 to 7 appears to be very good. So, no major
power loss is expected with the simpler proposed bootstrap.
The next proposition examines the behaviour of bd given in (4:1).

Proposition 4.1. Under C1 , bd�d = Op

�
m�1=2+(m=n)

2
+m2d=n

�
.

Proof. The proof is omitted as it follows similarly to that of Robinson�s (1997)
Theorem 3, after noting that in our situation we do not have his terms I�� and I��
and taking a�1k (v) = 1 for all v there. �
We shall slightly modify Condition C1 to:
C1�: C1 holds with #k = � (k + d) = (� (d) � (k + 1)) there.

The modi�cation of C1 to C10 implies that g (�) =
��1� e�i����2d in (2:8). Also

C4: m4=n3 + n2=m3 ! 0 as n!1.
Proposition 4.2. Assuming C1 0, C2 � C4 , we have that for 0 � q � n � �n,

1

�n2d

�n+qX
v=q+1

��E� �u�t u�t+v���jv j��= op (1 ) .
Theorem 4.3. Assuming C1 0, C2 � C4 , under the maintain hypothesis,

Pr
n
�n

�
�n
1
2�bd�� 1

2

�
0 ;bd� T ���n�� x ���Uno P! exp

�
�2e�x

�
, for x > 0 ,

where Un = futgnt=1 and �n and �n were de�ned in Theorem 3.5.

We now comment on Theorem 4.3. We see that to obtain a critical value, say
x (�), for which exp

�
�2e�x(�)

�
= 1 � �, is the same as to �nd the value, say z�n,

such that
lim
n!1

Pr fT � � z�nj Ung = 1� �.
Now, this value z�n depends on �n and �n and thus on the choice of the bandwidth
parameter a. In fact, because we cannot compute the normalization constant �n,
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in practice we would compute z�n. The latter implies that for the bootstrap to be
valid, we need z�n to satisfy that jz�n=zn � 1j

p! 0, where zn is such that

lim
n!1

Pr fT � zng = 1� �,

e.g. the corresponding value with the observed data. But, for jz�n=zn � 1j
p! 0 to

hold true, it is obvious that we need the normalization constants �n and �n to be
the same for both T and T �, or at least their ratios converging to one. This is obvi-
ously possible if only if the bandwidth parameters a are the same when estimating
the regression function with both the original fytgnt=1 and bootstrap fy�t g

n
t=1 data.

The latter indicates that if we employ the subsampling algorithm, then the same
bandwidth parameter is to be used when estimating nonparametrically the regres-
sion function with the full sample size and the subsample. This does not appear to
be either advisable or sensible, especially in small samples, since a can be relatively
too large when we use the subsample. In particular, in our situation we can end
up with the situation where a�1 ' c, implying that the nonparametric estimator
of r (t) can be very �at or even constant. Finally, the scheme will involve another
�parameter� to be used, namely the size of the subsample which is not clear how
to be chosen.

4.2. STOCHASTIC REGRESSORS.
The bootstrap for stochastic regressors is exactly the same as with the deter-

ministic ones. The only di¤erences are in STEPS 1 and 5 to 7. Namely,
STEP 1: Obtain the residuals but = yt � b�p, t = 1; :::; n.
STEPS 2-4: As in Section 4.1.
STEP 5: Compute

y�t = b�p + �2�ebc0�1=2 u�t ; t = 1; :::; n:

STEP 6: Compute b��np (x), x 2 X as in (2:11) but with yt replaced by y�t with
the same bandwidth parameter �a�. Also denote the bootstrap estimator
of b�p by b��p. That is, b��p = n�1Pn

t=1 y
�
t .

Remark 4.6. It should be emphasized once again that the bandwidth parameter
�a� employed to estimate the sample mean with the observed and bootstrap data
has to be the same. This is very important to validate the used of the bootstrap to
make inferences. See the comments we made after Proposition 3.7 and the results
given in Theorem 3.8.

Our �nal step is:
STEP 7: Compute the bootstrap version of T as

T �s = sup
x2X

��b��p � b��np (x)�� ,
and also let

eT �s = sup
x2X

������
 bp (x)b�2u� RRK2 (v) dv

!1=2 �b��p � b��np (x)�
������ ,

where b�2u� = 1

n

nX
t=1

�
y�t � b��p�2 .

Proposition 4.4. Assuming that S1� S3 hold, we have that
(a) if d+ d� < 1=2, then assuming C3, for any �nite collection fxqgQq=1 2 X ,

(4.7) �n1=2
��b��np (xq)� b��p�	Qq=1 d�! N

�
0; diag

�
v1; :::; vQ

��
,
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where vq = p�1 (xq)Eu2t
R
RK

2 (v) dv, whereas
(b) if d+ d� > 1=2, then

b��np (x)� b��p = x� (x)

p (x)

 
1

n

nX
t=1

�tu
�
t �

1

n

nX
t=1

�t
1

n

nX
t=1

u�t

!
(1 + op� (1))

if n1�2(d+d�)a�1 ! 0, and if n2(d+d�)�1a! 0, then (4:7) holds true.

Proof. The proof follows proceeding step by step as that of Proposition 3.7 and the
arguments given for the proof of Proposition 4.2, and thus it is omitted. �
Theorem 4.5. Assuming that S1 � S3 hold, we have that
(a) if d+ d� < 1=2 then under C3, we have that

(4.8) Pr
n
�n

�
�n
1
2 eT �s ��n�� x jUno P! exp

�
�2e�x

�
,

for x > 0 and �n is as de�ned in Theorem 3.8,
whereas (b) if d+ d� > 1=2, then

T �s = sup
x2X

���� x� (x)p1=2 (x)

����
 
1

n

nX
t=1

�tu
�
t �

1

n

nX
t=1

�t
1

n

nX
t=1

u�t

!
(1 + op� (1))

if n1�2(d+d�)a�1 ! 0, and if n2(d+d�)�1a! 0, then (4:8) holds true.

Proof. The proof follows by Proposition 4.4 and Woodroofe�s (1967) Theorem 5,
and thus it is omitted. �
4.3. MODIFICATION AND MOTIVATION OF THE BOOTSTRAP.
We �nish Section 4 giving now the intuition/motivation and also a modi�cation

of the bootstrap scheme described in Section 4.1. We begin with the intuition.
Suppose that in C1, #k = I (k = 0), that is ut =

P1
k=0 bk"t�k. Then, using the

identity

(4.9) ut =
1

n1=2

nX
j=1

eit�jwu (�j)

and Bartlett�s approximation of wu (�j), that is wu (�j) � B (��j)w" (�j), see
Brockwell and Davis�s (1991) Theorem 10.3.2, where ���should be read as �ap-
proximately�, we obtain that ut can be approximated by

1

n1=2

nX
j=1

eit�jB (��j)w" (�j) .

However, in this paper we allow for the possibility of strong dependence. For
instance, that ut follows the fractional di¤erence model

ut = (1� L)�d
1X
k=0

bk"t�k; b0 = 1.

So, the previous arguments would suggest to employ the Bartlett�s approximation

(4.10) wu (�j) �
�
1� e�i�j

��d
B (��j)w" (�j)

and thence the approximation

(4.11) ut �
1

n1=2

nX
j=1

eit�j
�
1� e�i�j

��d
B (��j)w" (�j) .

However, the lack of smoothness of
�
1� e�i�j

��d
around �j = 0 and results

given in Robinson�s (1995a) Theorem 1 at frequencies �j for �xed j indicate that
for those frequencies the approximation in (4:10) seems to be invalid. Observe
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that these frequencies are precisely the more relevant ones when examining the
asymptotic behaviour of the least squares estimator b� given in (2:3) or the sample
mean, see Yajima (1991) and also the behaviour of br (q=n) in (2:4). For that reason,
we have replaced

�
1� e�i�j

��d
by eg1=2 (��j ; d) in STEP 4. That is, we modi�ed

(4:11) by

(4.12) ut � eut =: 1

n1=2

nX
j=1

eit�jeg1=2 (��j ; d)B (��j)w" (�j) .
It is very easy to show that the right side of (4:12) preserves (asymptotically)

the covariance structure of futgt2Z. Indeed, after noting that C1 implies that
E (w" (�j)w" (��k)) = �2"I (j = k) and recalling (2:8), we have that

E (euteus) = �2"
n

nX
j=1

ei(t�s)�jeg (�j ; d) jB (�j)j2 � Z �

��
f (�) ei(t�s)�d� := E (utus) ,

because eg (�j ; d) jB (�j)j2 � ��1� e�i�j ���2d jB (�j)j2 = 2�f (�j) =�2" and
2�
n

Pn
j=1 f (�j) e

i`�j !
R 2�
0
f (�) ei`�d� = E (u0u). Moreover the last displayed

equality indicates that the covariance structure of u�t only depends on jt� sj.
Thus, what we did in STEP 4 was to replace d and B (��j) respectively in

the right side of (4:12) by consistent estimators, whereas STEP 2 computes the
bootstrap for the discrete Fourier transform w" (�j), j = 1; :::; ~n, which it could
have been computed as in Hidalgo (2003) if instead of looking at bootstrapping of
T in (2:5) we would have been interested in bootstrapping of b� or even T but at a
�nite number of points.
Next, we shall describe a modi�cation of the bootstrap given in STEPS 1 to 7.

The alternative bootstrap is as follows.
STEPS 1� and 2�: They are the same as STEPS 1 and 3, respectively.
STEP 3�: Compute

eut = 1

n1=2

nX
j=1

eit�jeg1=2 ���j ;�bd�wbu (�j) , t = 1; :::; n,

and �t an AR (pn)model to feutgnt=1, where pn = o (n). Denote the residuals
by

b"t = eut � pnX
q=1

b�qeut�q t = pn + 1; :::; n,

being b�q, q = 1; :::; pn, the LSE in eut =Ppn
q=1 �qeut�q + vt.

Let fe"�t gnt=1�n be a random sample with replacement from the empirical
distribution function of the standardized residuals

e"t = e��1b"
 b"t � 1

n� pn

n�pnX
t=1

b"t! , e�2b" = 1

n� pn

n�pnX
t=1

 b"t � 1

n� pn

n�pnX
t=1

b"t!2 .
STEP 4�: Compute

eu�t = pnX
q=1

b�qeu�t�q + e�b"e"�t ; t = 1� n; :::; n

with eu�t = 0 for t � �n.
STEP 5�: Compute the bootstrap observations fu�t g

n
t=1 as

u�t =
1

n1=2

nX
j=1

eit�jeg1=2 ���j ; bd�weu� (�j) , t = 1; :::; n.
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STEPS 6� to 8�: They are the same as STEPS 5 to 7 respectively.

5. MONTE-CARLO EXPERIMENT

In this section we present a small Monte-Carlo experiment of the test given
in (2:12) to shed some light on its �nite sample performance. Throughout the
experiment we have considered three sample sizes, n = 64; 128 and 256. For each
sample size, we have performed 1000 replications with B = 499 as the number of
bootstrap samples. We have considered the regression model

yt = E [yt jxt ] + ut , t = 1; :::; n,

where futgnt=1 is generated as a FARIMA (0; d; 0) Gaussian process with unit vari-
ance, with d = 0:1; 0:2; 0:3 and 0:4, using an algorithm due to Davies and Harte
(1987). For our regressor, we compute fxtgnt=1 as a FARIMA (0; d�; 0) Gaussian
process with unit variance, with d� = 0:0; 0:2 and 0:3, using the same algorithm due
to Davies and Harte. In all of our experiments we have chosen the bandwidth pa-
rameters m and a deterministically. More speci�cally, we chose m = n=4; n=8 and
n=16 and a = 0:5n�1=4. The motivation for the choice of the bandwidth parameter
a comes from the Mote Carlo experiment given in Hidalgo (1997).
To analyze the size accuracy of the test we have considered the above displayed

regression model with E [yt jxt ] = 1. The results are given in TABLES 5.1 to 5.3.
TABLES 5.1 to 5.3 ABOUT HERE

The �rst conclusion that we can draw from TABLES 5.1 to 5.3 is that the choice
of the bandwidth parameter m appears not to be very relevant or sensitive. Also,
the empirical size of the test is very similar and very satisfactory even for sample
sizes as small as n = 64:
Next, we examine the power performance of the test. To this end, we considered

the following two linear regression models

yt = 1 + �xt + ut , t = 1; :::; n,

yt = 1 + sin (xt) + ut , t = 1; :::; n,

with � = 0:5 and � = 1:0. The reason to take two di¤erent values of � is to calibrate
the power function as the alternative divert from the null. The results are given in
TABLES 5.4 and 5.5.

TABLES 5.4 and 5.6 ABOUT HERE

The main conclusion is that we observe that as the �distance�between the null
and alternative hypothesis increases, the power increases as TABLES 5.4 and 5.5
illustrate. Also, this increase in power is uniform across the sample sizes. On the
other hand, the above three tables also indicate that the power increases with the
sample size, which is a desirable property too, as it will be an indication of the
consistency of the test.
To conclude this section, we shall point out that although we have chosen the

bandwidths deterministically and the results appear not to be very sensitive to
that choice, however, in empirical examples it would be convenient to employ some
automatic criterion to choose the bandwidth m. One approach that can be adopted
is similar to that in Robinson (1991) and employed in Lobato and Robinson (1997).
More speci�cally, we can choose m as

m (0) =
1

2

�
3n

4�

�3=4 �����00 (0)2� (0)

�����3=8
and � (�) is the spectral density function of an AR (1) model with parameter �, that
is � (�) = (2�)�1

�
1 + �2 � 2� cos (�)

��1
, although more general � (�) functions can
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be adopted, see Lobato and Robinson (1997) for a discussion. Alternatively, we
could have chosen

m =
1

2

�
3n

4�

�3=4
1

~n

~nX
j=0

�����00 (�j)2� (�j)

�����3=8
which is in a sense the average pointwise bandwidths

m (�j) = 2
�1 (3n=4�)

3=4 ���00 (�j) = (2� (�j))��3=8 .
However for simplicity and because the asymptotic distribution of b� in (2:3) depends
only on the behaviour of the spectral density function at zero frequency, we could
opt for m (0). In practice as � is not known, m (0) would be replaced by

m�� (0) =
1

2

�
3n

4�

�3=4 �����b�
00
(0)

2b� (0)
�����
�3=8

=
1

2

�
3n

4�

�3=4 ����� �b�
(1� b�)2

�����
�3=8

,

where b� is the least squares estimator of � in ut = �ut�1 + error. Because in
practice m�� (0) might be smaller than 1 or greater than ~n, we truncate m�� (0) as

m� =

8><>:
[m] if m�� (0) < [m]�
3n
4�

�3=4 ��� �b�
(1�b�)2

����3=8 [m] < m�� (0) < [m]

[m] if [m] < m�� (0) ,

where, say, m = 0:06n3=4 and m = 1:2n3=4. However, other procedures are possible
as those described in Henry and Robinson (1996) or Hurvich (2001).

6. PROOFS OF THE MAIN RESULTS

6.1. Proof of Proposition 3.3.
We shall begin with the case d > 0. Abbreviating b (q1; q2) by b, Proposition 3.2

implies that

(6.1) � (b; d) = h (0) � (d)

Z 1

�1

Z 1+b

b�1
jv � wj2d�1K (v)K (w � b) dvdw + o (1) .

After noting that for ` = jv � wj > 0 and d > 0, `2d�1 = 2
�� (2d) cos (d�)

R1
0
��2d cos (`�) d�,

we have that the �rst term on the right of (6:1) isZ 1

0

Z 1+b

b�1

�Z 1

0

��2d
�
eijv�wj� + e�ijv�wj�

�
d�

�
K (v)K (w � b) dvdw

=
1

2

Z 1

�1
j�j�2d

Z 1

�1

Z 1

�1

��
ei(v�w)�e�ib� + e�i(v�w)�eib�

�
K (v)K (w) dvdw

�
d�

=
1

2

Z 1

�1
j�j�2d

����Z 1

�1
K (v) eiv�dv

����2 �e�ib� + eib�� d�,
where in the �rst equality we have used the re�ection formula of the gamma function
together with the change of variables w � b ! w. Hence, using that 2 cosx =
eix + e�ix, we conclude that

� (b; d)� � (0; d) =
Z 1

�1
j�j�2d fcos (j�j b)� 1g

����Z 1

�1
K (v) ei�vdv

����2 d�.
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Next, because
���R 1�1K (v) ei�vdv���2 > 0 and di¤erent than a constant and jcosxj �

1, we obtain that � (b; d)�� (0; d) < 0 for jbj > 0. Moreover, as b! 0, j� (b; d)� � (0; d)j =
O (jbj�) + o (jbj�), for some 0 < � � 2, so that we can conclude that

(6.2) Corr (b) =
� (b; d)

� (0; d)
= 1�D jbj� + o (jbj�) ; b! 0

On the other hand, as b!1, it is easily shown that Corr (b) log b = o (1) from the
de�nition of Cov (b) given in (6:1) because d 2 (0; 1=2). Note that the latter agrees
with Robinson�s (1997) Proposition 2, since for jq2 � q1j > zn, z > 0, we have that
b � za�1 and a! 0 by C3. This concludes the proof for d > 0.
Next, when d = 0, the proof is omitted as it follows by standard arguments using

Bickel and Rosenblatt�s (1973) Theorem B.1. �

6.2. Proof of Proposition 3.4.
Proceeding similarly as with Robinson�s (1997) Theorem 1 and Lemma 1, it

su¢ ces to show that

(6.3) E (br (q)� r (q)) = O �a2 + n�1� .
Observe that by uniform integrability of u2t and that Propositions 3.2 and 3.3
imply that Cov (br (q1) ; br (q2)) ! 0 when jq1 � q2j � nz > 0, we conclude that
the covariance of the asymptotic distribution of the estimators is zero by Theorem
A of Ser�ing (1980, p:14). On the other hand, under H0 and by standard kernel
manipulations, we obtain that (6:3) holds true. �

6.3. Proof of Proposition 3.7.
By standard algebra, we have that b�np (x)� � is

1

�n

nX
t=1

utKt (x)

�
1bp (x) � 1

Ebp (x)
�
+

1

Ebp (x) 1�n
nX
t=1

ut eKt (x) +
1

n

nX
t=1

ut,

where eKt (x) = Kt (x)� E (Kt (x)). So, b�np (x)� b�p is
1

Ebp (x)
(
1

�n

nX
t=1

ut eKt (x)�
1

�n

nX
t=1

utKt (x)

Pn
t=1

eKt (x)

�nbp (x)
)

= � 1
n

nX
t=1

ut

Pn
t=1

eKt (x)

�nbp (x) +
1

Ebp (x) 1�n
nX
t=1

ut eKt (x)

 
1� 1bp (x) �n

nX
t=1

eKt (x)

!

=
1

p (x)

(
1

�n

nX
t=1

ut eKt (x)�
1

n

nX
t=1

ut
1

�n

nX
t=1

eKt (x)

)
(1 + op (1))(6.4)

because following Ho (1996), see also Hidalgo (1997), we have that

1

�n

nX
t=1

eKt (x) = Op

�
1

�n1=2
+

1

n1=2�d�

�
and Ebp (x) = p (x) +O �a2� .

Next, using (3:5), we also have that

(6.5)
1

�n

nX
t=1

ut eKt (x) =
1X
j=1

bjn (x)

j!a

1

n

nX
t=1

utHj (�t) .

We consider part (a) �rst. Because by (3:4), we have that
Pn

t=1 utHj (�t) =

Op
�
n1=2

�
and

Pn
t=1 ut = Op

�
nd+1=2

�
, proceeding as in Ho (1996), we have that
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the right side of (6:4), so it is �n1=2
�b�np (x)� b�p�, is governed by the behaviour of

1

p (x)

1

�n1=2

nX
t=1

ut eKt (x) .

So, we have that (3:4) implies that at two points, say x1 and x2,

�nE
��b�np �x1�� b�p� �b�np �x2�� b�p�	

=
1

p (x1) p (x2)

1X
j=1

bjn
�
x1
�
bjn
�
x2
�

j!a

�
Eu2tEH

2
j (�t)

+2
n�1X
k=1

�
1� k

n

�
E (utut+k)E

j
�
�t�t+k

�)
(1 + o (1))

=
Eu2t

p (x1) p (x2)

1X
j=1

bjn
�
x1
�
bjn
�
x2
�

j!a
EH2

j (�t) + o (a) ,

after using (3:12) and (3:13) in Ho (1996). But, (3:5) indicates that

1X
j=1

bjn
�
x1
�
bjn
�
x2
�

j!a
EH2

j (�t) = a�1E
� eKt

�
x1
� eKt

�
x2
��

= p
�
x1
� Z

R
K2 (x) dxI

�
x1 = x2

�
+ o (a)

by standard kernel manipulations. So the left side of (3:6) holds if we show that

(6.6)
1

�n1=2

nX
t=1

ut eKt (x)
d! N

�
0; p (x)Eu2t

Z
R
K2 (v) dv

�
,

say. The proof of (6:6) proceeds similarly to that of Robinson and Hidalgo�s (1997)
Theorem 1 and so it is only sketched. Denoting K�

s =
Pn

t=1
eKt (x)#t�s, with

#j = 0 if j < 0, we have that the left side of (6:6) is

1

�n1=2

nX
s=�N

K�
s "s +

1

�n1=2

�N�1X
s=�1

K�
s "s

with N = Nn yet to be chosen. Now, after standard algebra, the second moment
of the second term of the last displayed expression is bounded by

CE"2s
1

�n

 
nX
t=1

�
E eK2

t (x)
�1=2!2 1X

s=N

#2s � Cn
1X
s=N

#2s

which tends to 0 as n ! 1 for suitable sequence Nn by Condition S1. So, to
conclude the proof of part (a), it su¢ ces to how that

nX
s=�N

K�2
s E"

2
s
P! p (x)Eu2t

Z
R
K2 (v) dv; E

nX
s=�N

K�2
s E

�
"2sI (jK�

s "sj > � jfxtg
n
t=1 )

�
! 0

for all � > 0. Recall that Eu2t = E"2t
P1

j=0 #
2
j . But, the proof of the last two

displayed expressions follow the same steps as those of Robinson and Hidalgo�s
(1997) Proposition 2 and so it is omitted. This concludes the proof of part (a).
Next, we examine part (b). To that end, for simplicity we assume that the

Hermite rank is 1. That is b1n (x) 6= 0. So, using (6:5) and Proposition 1 of Ho
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(1996), we have that

1

�n

nX
t=1

eKt (x) =
1X
j=2

bjn (x)

j!a

1

n

nX
t=1

Hj (�t) + � (x)x
1

n

nX
t=1

�t (1 + op (1))(6.7)

1

�n

nX
t=1

ut eKt (x) =
1X
j=2

bjn (x)

j!a

1

n

nX
t=1

utHj (�t) + � (x)x
1

n

nX
t=1

ut�t (1 + op (1)) .

Now, by standard arguments,
Pn

t=1 �t = Op
�
nd�+1=2

�
, and

Pn
t=1 ut�t = Op

�
nd�+d

�
,

whereas as proceeding as in part (a), the �rst terms on the right of (6:7) are
Op
�
�n�1=2

�
.

So, because n�1
Pn

t=1 ut = Op
�
nd�1=2

�
, when n1�2(d�+d)a�1 ! 0, we have that

b�np (x)� b�p = x� (x)
 
1

n

nX
t=1

ut�t �
1

n

nX
t=1

�t
1

n

nX
t=1

ut

!
(1 + op (1)) ,

whereas if n2(d�+d)�1a! 0, then

b�np (x)� b�p = 1

p (x)

1X
j=2

bjn (x)

j!a

1

n

nX
t=1

utHj (�t) (1 + op (1))

and thus we obtain (3:6), proceeding as with part (a). �
In what follows, we abbreviate  (t; d) and b �t; bd� by  (t) and b (t) respectively.

6.4. Proof of Proposition 4.2.
Because f"�t g

n
t=1 is a zero mean iid sequence of N (0; 1), Brockwell and Davis�s

(1991) Proposition 10.3.3 implies that E�
�
��j�

�
�`
�
= I (j = `), and hence we obtain

that E�
�
u�tu

�
t+v

�
� �v = n�12�ebc0Pn

j=1 e
iv�j

�P
j`j<n b (`) e�i`�j� ��� bB (�j)���2 � �v,

and where �t = E (u0ut). Now, because 2�ebc0 � �2" = Op �n�1=2� by Hidalgo and
Yajima (2002), in what follows without loss of generality we shall assume that
�2" = 1 and take 2�e

bc0 = 1. So, it su¢ ces to show that
(6.8)

1

�n2d

�n+qX
v=q+1

������ 1n
nX
j=1

eiv�j

0@X
j`j<n

b (`) e�i`�j
1A��� bB (�j)���2 � �v

������ = op (1) .
Now using that

Pn
j=1 e

i`�j = nI (0; n; :::), by de�nition of bB (�j) in (4:3),��� bB (�j)���2 = PM
k=�M

b�ke�ik�j , where b�k = PM�jkj
`=0

bb`bb`+jkj; jkj � M , we obtain

that the expression inside the modulus in (6:8) is

(6.9)
X

j`j<n;jv+`j�M

b (`) b�v+` � �v.
Similarly using that jB (�j)j2 =

P1
p=�1 �pe

�ip�j , where �p = (2�)
�1 R �

�� jB (�)j
2
eip�d�,

when
��� bB (�j)���2 replaced by jB (�j)j2, it implies that (6:8) becomes

(6.10)
1

�n2d

������
�n+qX
v=q+1

X
j`j<n

b (`) 1X
q=0

�v+`+qn � �v

������ = op (1) .
We prove (6:8) in two steps. In step (a), we shall show that (6:10) holds, and in

step (b), that �n�2d
���P�n+q

v=q+1

P
j`j<n b (`)P1

q=0 �v+`+qn �
P

j`j<n;jv+`j�M b (`) b�v+`���
is also op (1). We begin the proof with step (a). Because C10 implies that �p =
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o
�
jpj�2+

�
and by de�nition of �v =

P1
`=�1  (`)�v+`, see Fuller�s (1996) Corollary

3.5.1., the expression inside the absolute value of (6:10) is, as we now show,X
j`j<n

b (`)�v+` � �v + X
j`j<n

b (`)�v+`+n + o �n�1� X
j`j<n

jb (`)j(6.11)

=
X
j`j<n

(b (`)�  (`))�v+` � X
j`j�n

 (`)�v+` + op

 
n2d�1 +

I (d > 0)
jvj2d�2+

!

uniformly in jvj � n��n. First, by Lemma 7.7 part (a), sup`�1 �1 (`) jb (`)�  (`)j =
Op

���� bd� d���� for d > 0 and sup`�1 ` jb (`)j = Op

���� bd� d���� for d = 0 and that by

(2:9), j (`)j = O
�
`2d�1

�
. Hence, the third term on the left of (6:11) is op

�
n2d�1

�
,

whereas proceeding similarly the second term on the left of (6:11) is o
�
jvj2d�2+ I (d > 0) + n�1

�
.

Next, the second term on the right of (6:11) is o
�
n2d�2

�
uniformly in jvj � n

by C10, whereas by Lemma 7.7 with the convention that
Pe

c = 0 if e < c, the �rst
term on the right of (6:11) is bounded in absolute value by

D
��� bd� d���

8<: X
j`j<2�1v

+
X

2�1v<j`j<n

9=; j`j2d�1 ���v+`�� = op �jvj2d�1+ log�1 n
�

because
���j�� = o

�
j�2
�
and Proposition 4.1. So (6:11) is op

�
jvj2d�1+ log�1 n

�
and

hence (6:10) holds true because d < 1=2. This concludes the proof of step (a).
To conclude the proof, we need to show step (b). To that end, and in view of

the proof of (6:10), it su¢ ces to show that
(6.12)

1

�n2d

�n+qX
v=q+1

8>><>>:
X
j`j<n

j`+vj�M

b (`)�b�`+v � �`+v��
8>><>>:

X
0<`<n
M<j`+vj

+
X

�n<`=0
M<j`+vj

9>>=>>;
9>>=>>;  (`)�`+v = op (1) .

If d = 0, the second and third terms on the left of (6:12) are bounded in absolute
value by D

Pn
v=M j�vj = o (1) because �v = o

�
v�2

�
, whereas for d > 0, they are

D

�n2d

(�n+q)^�nX
v=q+1

nX
M�v<`

�� (`)�`+v��+ 1

�n2d

�n+qX
v=q+1

nX
`=1;M<jv�`j

�� (`)�v�`��
= o (1) +

D

�n2d

�n+qX
v=q+1

8<:
MX

`=1;M<jv�`j

+

jvj=2X
`=M+1;M<jv�`j

+
v+MX

`=1+ 1
2 jvj;M<jv�`j

+
nX

`=v+M

9=;�� (`)�`�v��
=

D

�n2d

~n+qX
v=q+1

�
M2d + v2d

�
j�vj+

D

M ~n2d

�n+qX
v=q+1

n
v2d�1 + (v +M)

2d�1
o
+ o (1) ,

which is o (1) because j (k)j = O
�
jkj2d�1+

�
and j�kj = o

�
jkj�2

�
andM �n�1 = o (1)

by C3. So, to complete the proof it remains to show that the �rst term on the left
of (6:12) is also op (1). But by Lemma 7.7 part (a), that term is

1

�n2d

�n+qX
v=q+1

X
j`j<n;j`+vj�M

 (`)
�b�`+v � �`+v� (1 + op (1)) .
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Now by de�nition of b�`+v and �`+v, the last displayed expression is governed by
(6.13)

1

�n2d

�n+qX
v=q+1

X
j`j<n;j`+vj�M

 (`)

8<:
M�j`+vjX
p=0

�bbpbbp+j`+vj � bpbp+j`+vj�� 1X
p=M�j`+vj+1

bpbp+j`+vj

9=; .
Because

P1
p=M�j`+vj+1

��bpbp+j`+vj�� � DM�1 (M � j`+ vj)�2+ , it implies that the
second term of (6:13) is bounded in absolute value by

D

M �n2d

MX
v=1

M�vX
`=0

j (`)j
(M � v � `)2

+
D

M �n2d

�n+qX
v=q+1

M+vX
`=max(1;v�M)

j (`)j
(`� v +M)2

= o (1) .

Finally, the �rst term of (6:13). Now because by C10 and (2:9),
�n+qX
v=q+1

X
j`j<n;j`+vj�M

j (`)j =
MX

v=q+1

M�vX
`=�M�v

j (`)j+
�n+qX

v=(M+1)_q

v+MX
`=v�M

j (`)j = O
�
M �n2d

�
,

then that, uniformly in p, by Lemma 7.6 parts (a) and (b), we have that bbp � bp =
{p + op

�
M�1�, we conclude that the �rst term of (6:13) is dominated by

(6.14)

D

�n2d

�n+qX
v=q+1

X
j`j<n;j`+vj�M

M�j`+vjX
p=0

�
{p{p+j`+vj + bp{p+j`+vj + bp+j`+vj{p

	
j (`)j+op (1) .

Next, by Hidalgo and Yajima�s (2002) Theorem 1,

1

~n1=2

~nX
`=1

�h (�`; d)� eh (�`)
h (�`)

cos (r�`)
d! N (0; �) .

So, because u2t is uniformly integrable, Ser�ing�s (1980, p.14) Theorem A, together
with Lemma 7.3 part (a), implies that E jbcr � ecr;nj = O

�
n�1=2

�
. From here and

noting the de�nition of {p and
P

p

�
jbpj+

��b�p��� < 1, it is easy to conclude that
(6:14) is op (1) by Markov�s inequality. This completes the proof of step (b) and
the proposition. �

6.5. Proof of Theorem 4.3.
Because the asymptotic independence of the distributions of maxq and minq,

and the asymptotic distributions of supiXi and infi�Xi are the same, it su¢ ces
to show that, for x > 0,
(6.15)

Pr

�
�n

�
sup

�n�q�n��n
�n
1
2�bd�� 1

2

�
0; bd� (br� (q)� br (q))� �n� � x jUn� P! exp

�
e�x

�
.

To that end, we will show that �n
1
2�bd�� 1

2

�
0; bd� (br� (q)� br (q)) converges, in boot-

strap sense, to the Gaussian process G (q) in D [0;1), whose correlation structure
is that given in (6:2) which satis�es conditions (v) and (vi) of Bickel and Rosen-
blatt�s (1973) Theorem A1, for some � > 0. See also Pickands�s (1969) equations
(1:2) and (2:1). From here the limiting distribution in (6:15) holds by Bickel and
Rosenblatt�s (1973) Theorem 1, for some � > 0.

Because E�u�t = 0, �n
1
2�bd�� 1

2

�
0; bd�E� (br� (q)� br (q)) !P 0 by Proposition 3.2

and that by Proposition 4.1 and C3, nbd�d � 1 = op (1) so that ��0; bd�� � (0; d) =
op (1). Next, Lemmas 7.8 and 7.9 imply that the �nite dimensional distributions
converges in probability to those of G (q). Notice that Lemma 7.8 is the Lindeberg�s
condition. Next, by Proposition 3.3, the correlation structure of G (u) satis�es (6:2)
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when b! 0, whereas Corr (b) = o
�
log�1 b

�
as b!1. So, the function Corr (b) in

(6:2) satis�es the conditions in Bickel and Rosenblatt (1973) or Pickands (1969).
To complete the proof of the theorem, it remains to verify the tightness condition.

To that end, denote

(6.16) X�
n (eq) = 1

�n
1
2+d

nX
t=1

utK

�
t

�n
� eq� , eq = 1

�n
;
2

�n
; :::; [a]

�1 .

So, X�
n (eq), say, is a process in D h0; [a]�1i equipped with Skorohod�s metric, where

we extend D
h
0; [a]

�1
i
to D [0;1) by writing X�

n (1) = X�
n

�
[a]

�1
�
. By Pollard

(1984; Ch:V ), we need to show tightness in D [0; D] for any �nite D > 0. On
the other hand, we observe that Lemma 7.8 implies that the process Xn (eq) has
independent and stationary increments, that is for eq 2 [c1; d1] and eq 2 [c2; d2] and
[c1; d1] \ [c2; d2] = ;, Xn (eq) is (asymptotically) independent with the same �nite
dimensional distributions.
Because G (�) has continuous paths, by Billingsley�s (1968) Theorem 16.6, it

su¢ ces to show the Kolmogorov�s moment condition

E
�
jX�

n (eq2)�X�
n (eq)j� jX�

n (eq)�X�
n (eq1)j�� � Hn (eq2; eq1) jeq2 � eqj 1+�2 jeq � eq1j 1+�2

for some � > 0, � > 0 and where 0 � eq1 < eq < eq2 � D and Hn (eq2; eq1) = Op (1).
As usual, observe that we can consider only the situation for which ~n�1 < eq2 � eq1,
since otherwise the left side is trivially zero. Because for any 0 � a < b < c � D,
jc� bj jb� aj � jc� aj2 by Cauchy-Schwarz inequality, the last displayed inequality
holds true if

(6.17) E jX�
n (eq2)�X�

n (eq1)j2 � Hn (eq2; eq1) jeq2 � eq1j2 .
It su¢ ces to consider jeq2 � eq1j < 1, the case jeq2 � eq1j � 1 is trivial since the left
side of (6:17) is bounded.
By de�nition, X�

n (eq2)�X�
n (eq1) is

(6.18)

1

�n
1
2+

bd
8<:

�nX
t=�n�(q2�q1)+1

u�t+q2Kt +

�n�(q2�q1)X
t=1

u�t+q2 (Kt �Kt+q1�q2)�
q2�q1X
t=1

u�t+q1Kt

9=; .
Because �neq = q, the contribution into the left of (6:17) due to the third term

of (6:18) is bounded by Hn (eq2; eq1) jeq2 � eq1j3+2d because by C2, jKtj � Dt=�n and
Proposition 4.2 implies that

Pq
t;s=1

��E� �u�t+q1u�s+q1��� = DPq
t;s=1 jE (utus)j (1 + op (1)) =

q1+2d (1 + op (1)).

Observe that Hn (eq2; eq1) = D�n2(d�
bd) = Op (1) because by Proposition 4.1 and

C3,
��� bd� d��� = op

�
log�1 n

�
. So, the last term of (6:18) satis�es the inequality

(6:17). Similarly, we obtain that the contribution due to the �rst term of (6:18) is

D�n2(d�
bd) jeq2 � eq1j2 (1� (1� (eq2 � eq1)))2d � Hn (eq2; eq1) jeq2 � eq1j2+2d because 0 <eq2 � eq1 < 1. Finally, C2 part (b) implies that the contribution due to the sec-

ond term of (6:18) into the left side of (6:17) is because d < 1=2 bounded by
D (eq2 � eq1)2 �n�1�2bdP�n�(q2�q1)

t;s=1 jt� sj2d�1 � Hn (eq2; eq1) jeq2 � eq1j2. So, (6:17) holds
true and hence it concludes the proof of the theorem because by Lemma 7.8, the
correlation structure converges in probability to that of Proposition 3.3. �
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7. AUXILIARY LEMMAS

In what follows ' (�j) will be abbreviated as 'j for a generic ' (�) function. De-

note �h` (d) = (2m+ 1)
�1Pm

j=�m

���2 sin��`+j2 ����2d Iuu;`+j , where �j = log j2 sin (�j=2)j.
We have that Taylor�s expansion up to the 2nd term implies that
(7.1)

�h`

�bd���h` (d) = 2
�bd� d�
2m+ 1

mX
j=�m

�2d`+j log �`+jIuu;`+j+D
���d� bd���2 log2 n

m

mX
j=�m

�2
ed
`+jIuu;`+j ,

where, herewith, ed denotes an intermediate point between d and bd. Also denote
q` (p) = (2m+ 1)

�1Pm
j=�m

h`+j
h`

�
I"";`+j � �2"

2�

�
logp �`+j .

Lemma 7.1. Assuming C1 0;C2 and C3 , uniformly in r � M ,
(7.2)

r

~n

~nX
`=1

�h`

�bd�� �h` (d)
h`

cos (r�`) =
2r
�bd� d�
~n

~nX
`=1

q` (1) cos (r�`)+op

���� bd� d��� log r� .
Proof. First, proceeding as with the proof of Robinson�s (1995b) expression (4:8),
we have that

(7.3) E

������ 1

2m+ 1

mX
j=�m

log �`+j
h`

�
�2d`+jIuu;`+j �

�2"
2�
h`+j

�
� q` (1)

������ = O
�
log n

m2=3

�
.

On the other hand, by standard arguments, (2m+ 1)�1
Pm

j=�m log �`+jh`+j =

h` log �`+O
�
`�2 log `

�
. So by Markov�s inequality, we conclude that the contribu-

tion of the �rst term on the right of (7:1) into the left of (7:2) is

2
�
d� bd�( r

~n

~nX
`=1

q` (1) cos (r�`) +
�2"
2�

r

~n

~nX
`=1

cos (r�`) log �`

)
+Op

0@r
���d� bd��� log n
m2=3

1A .
However because by Yong�s (1974) Theorem III-23,

1

~n

~nX
`=1

cos (r�`) log
p �` = O

�
log r

r

�
,

we conclude that the contribution of the �rst term on the right of (7:1) into the
left of (7:2) is its right side. Next, proceeding as above, by Proposition 3.2 and
C1, the contribution of the second term on the right of (7:1) into the left of (7:2)

is op

���� bd� d���2�. �

Lemma 7.2. Assuming C1 0 and C2 , uniformly in `� ~n,

(7.4) bh` � �h` �bd� = Op (1) �n,
where �n satis�es that E j�njq = O

��
n2d log2 n= (m (`+m))

�q�
, for q = 1; 2.

Proof. Writing 'j (p) = �
2d
j log

p �j , by Taylor�s expansion, the left side of (7:4) is
(7.5)8<:

�X
p=0

�bd� d�p
2m+ 1

mX
j=�m

'`+j (p) +K
��� bd� d����+1 log� n

m

mX
j=�m

�2
ed
`+j

9=; (Ibubu;`+j � Iuu;`+j) .
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Now, by de�nition of but, we have that a typical element of Ibubu;j � Iuu;j is
�b�k � �k�
2�n

nX
t;s=1

(
ut

� s
n

�k
+ us

�
t

n

�k)
ei(t�s)�j +

������
�b�k � �k�
(2�n)

1=2

nX
t=1

�
t

n

�k
eit�j

������
2

.

So, we have that a typical term of the �rst term of (7:5) is
�bd� d�p = (2�) times

�b�k � �k�2
mn

0@ mX
j=�m

'`+j (p)
nX

t;s=1

�
t

n

�k � s
n

�k
ei(t�s)�`+j

1A(7.6)

+

�b�k � �k�
mn

0@ mX
j=�m

'`+j (p)
nX

t;s=1

�
t

n

�k
use

i(t�s)�`+j

1A .(7.7)

Next, because by standard algebra,
Pn

t=1 (t=n)
k
eit�j = 1 +

�
ei�j � 1

��1
, and

then Taylor�s expansion,
��ei�j � 1���1 � Kn=j, the second moment of (7:6) is

O
��
n2d log2 n= (m (`+m))

�2�
by Proposition 3.1. Proceeding similarly and not-

ing that E
��n�1=2Pn

s=1 use
is�`+j

��2 = O ���2d`+j

�
by Giraitis, Hidalgo and Robinson�s

(2002) Lemma 4.4, the second moment of (7:7) is also O
�
n2d log2 n= (m (`+m))

�
.

Next proceeding as above, the second term of (7:5) is also Op (1) �n by Proposition
3.3 and choosing � large enough. �
Let eh` = (2m+ 1)�1Pm

j=�m h`+j and de�ne

cr;n =
1

~n

~nX
`=1

log (h`) cos (r�`) ; ecr;n = 1

~n

~nX
`=1

log
�eh`� cos (r�`) .

Lemma 7.3. Let vn be such that E jvnj = O (1). Assuming C1 0, C2 and C4 ,
uniformly in r � M

(a) bcr � ecr;n = 1

~n

~nX
`=1

�h` (d)� eh`
h`

cos (r�`) +Op

�
n�1=2

�
vn(7.8)

(b) ecr;n � cr;n = O �M�2� ; (c) cr;n � cr = O
�
n�1

�
.

Proof. Part (b) follows by Taylor�s expansion and because standard arguments im-
ply that eh` � h` = O

�
M�2�, whereas part (c) follows immediately by Brillinger

(1981, p:15). Next, part (a). Using the de�nitions of bcr and ecr;n, we have that
(7.9) bcr � ecr;n = 1

~n

~nX
`=1

�
logbh` � logeh`� cos (r�`) .
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Proceeding as in the proof of Theorem 1 of Hidalgo and Yajima (2002), the right
side of (7:9) is

1

~n

~nX
`=1

�h` (d)� eh`eh` cos (r�`) +
D

~n

~nX
`=1

 
�h` (d)� eh`eh`

!2
(1 + op (1))

� 1

~n

~nX
`=1

�h`

�bd�� �h` (d)eh` cos (r�`) +
D

~n

~nX
`=1

������
�h`

�bd�� �h` (d)eh`
������
2

(1 + op (1))(7.10)

� 1

~n

~nX
`=1

bh` � �h` �bd�eh` cos (r�`) +
D

~n

~nX
`=1

������
bh` � �h` �bd�eh`

������
2

(1 + op (1)) .

The �rst moment of the second term of (7:10) is Op
�
m�1� = o

�
n�1=2

�
by an

obvious extension of Hidalgo and Robinson�s (2002) Proposition 2.1, whereas the
last two terms of (7:10) are, by Lemma 7.2, O

�
n�1=2

�
.

Finally, to conclude the proof it su¢ ces to show that the third and fourth terms
of (7:10) are Op

�
n�1=2

�
vn. From the proof of Lemma 7.1 and that standard argu-

ments imply that eh` = h` +O �M�2�, it su¢ ces to examine the behaviour of
(7.11)

1

~n

~nX
`=1

q` (1) cos (r�`)

by C5. Recall (7:3). Proceeding as with the proof of Hidalgo and Yajima�s (2002)

Theorem 1, we have that E
���P~n

`=1 q` (1)
���2 = O (n). So, we conclude by standard

arguments that (7:11) is Op
�
n�1=2

�
vn. From here, it is obvious to observe that

the fourth term of (7:10) is also Op
�
n�1=2

�
vn, because by standard results, see

Brillinger (1981), E jq` (1)j2 = O
�
m�1�.

Thus, we have shown that the right of (7:9) is, uniformly in r �M ,

1

~n

~nX
`=1

�h` (d)� eh`eh` cos (r�`) +Op

�
n�1=2

�
vn,

where E jvnj = O (1). But, the �rst term of the last displayed expression is

1

~n

~nX
`=1

�h` (d)� eh`
h`

cos (r�`) +
1

~n

~nX
`=1

 
�h` (d)� eh`eh`

! 
1�

eh`
h`

!
cos (r�`)

whose second term has a �rst absolute moment bounded by ~n�1
P~n

`=1

���h`�eh`h`

���E ��� �h`(d)�eh`eh`
��� =

o
�
n�1=2

�
by Hidalgo and Yajima�s (2002) Lemma 2 and the proof of their Lemma 1.

Now use that M�2
��� bd� d��� = Op �n�1=2� by C4 and Proposition 4.1 to conclude.�

Lemma 7.4. Assuming C1 0;C2 and C4 , E
���P~n

`=1

�h`(d)�eh`
h`

cos (r�`)
���2 = O (n).

Proof. It is a standard extension of Hidalgo and Yajima�s (2002) Theorem 1. �
Let us de�ne

eA`;n = exp(M�1X
r=1

ecr;ne�ir�`) ; A`;n = exp(M�1X
r=1

cr;ne
�ir�`

)
; A�` = exp

(
M�1X
r=1

cre
�ir�`

)
.

Lemma 7.5. Let vn be such that E jvnj = O
�
n1=2=m

�
. Assuming C1 0;C2 and

C3 , uniformly in `,

(a) bA` � eA`;n = Op (1) vn, (b) eA`;n �A`;n = O �M�2� ; A`;n �A�` = O �m�1� .
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Proof. We begin by examining (b). Let ea`;n = log
� eA`;n� and a`;n = log (A`;n).

First, Taylor expansion of log
�eh`=h`� implies that ea`;n � a`;n is

M�1X
r=1

1

~n

~nX
p=1

8<:
 ehp � hp

hp

!
+

 ehp � hp
hp

!2
(1 + o (1))

9=; cos (r�p) e�ir�`
=

M�1X
r=1

1

~n

~nX
p=1

 ehp � hp
hp

!
cos (r�p) e

�ir�` +O

�
1

M3

�

=
1

2~n

~nX
p=1

 ehp � hp
hp

!
M�1X
r=1

�
eir�p�` + eir�p+`

�
+O

�
1

M3

�
= O

�
1

M2

�
,

where in the �rst equality we have used that h�1p ehp � 1 = O
�
M�2� by standard

arguments and in the last equality, the proofs of Lemmas 1 and 4 of Hidalgo and
Yajima (2002). To conclude the proof of part (b), use that jA`;nj � D and Taylor
expansion of the exponential function. Proceeding similarly and that cr;n � cr =
O
�
n�1

�
by Lemma 7.3 part (c), the second part of (b) follows easily.

Next, we examine part (a). De�ning ba` = log � bA`� and that 4Mm = n, we have

ba` � ea`;n = M�1X
r=1

(bcr � ecr;n) e�ir�`(7.12)

=

M�1X
r=1

1

~n

~nX
p=1

�hp (d)� ehp
hp

cos (r�p) e
�ir�` +Op

�
n1=2

m

�
,

by Lemma 7.3, and where proceeding as in the proof of Theorem 2 of Hidalgo and
Yajima (2002), and in particular the proof of the �rst term on the right of their
equation (46), the �rst absolute moment of the �rst term is O

�
n1=2=m

�
.

But bA` � A`;n = (exp (ba` � a`;n)� 1)A`;n and jA`;n �A`j = o (1). Then, a
simple application of delta methods implies that bA` � A`;n = Op (1) vn by C5 and
where E jvnj = O

�
n1=2=m

�
. This completes the proof of the lemma. �

Denote by b�p the pth Fourier coe¢ cient ofA (�), and de�neebv;n = n�1P~n
`=1�~n

eA`;neiv�`
and bv;n = 1

2M

P~n
`=1�~nA`;ne

iv�` .

Lemma 7.6. Assuming C1 0, C2 and C4 , as n !1,

(7.13) (a) bbv �ebv;n = {v + op �M�1� , (b) ebv;n � bv = O �M�2� .
uniformly in v , where {v =

PM�1
r=1 (bcr � ecr;n) b�jv�rj.

Proof. We begin with (a). From the de�nition of ba`�ea`;n and Taylor expansion ofbA` � eA`;n, the left of (7:13) is
(7.14)

 
1

n

~nX
`=1�~n

(ba` � ea`;n) eA`;neiv�`!+ 1

2n

~nX
`=1�~n

jba` � ea`;nj2 ��� eA`;n��� (1 + op (1))
By the proof of Lemma 7.5 and standard inequalities, we have that jba` � ea`;nj2 =
Op
�
n=m2

�
, so that the second term of (7:14) is op

�
M�1� by C4 because ��� eA`;n��� � D.
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Next, we examine the �rst term of (7:14). From the de�nition of ba` � ea`;n in
(7:12), the �rst term of (7:14), after adding and subtracting A`;n, is

M�1X
r=1

(bcr � ecr;n)( 1
n

~nX
`=1�~n

A`;ne
i(v�r)�` +

1

n

~nX
`=1�~n

� eA`;n �A`;n� ei(v�r)�`)

=
M�1X
r=1

(bcr � ecr;n) b�jv�rj +O� logMM2

�M�1X
r=1

jbcr � ecr;nj ,
where in the last equality we have used Lemma 6.5 part (b), that the `th Fourier
coe¢ cient of A (�) is b�` , and Brillinger (1981, p.15) and then C2 imply that

(7.15)
1

n

~nX
`=1�~n

A`e
i(v�r)�` �

Z �

��
A (�) ei(v�r)�d� = O

�
n�1

�
,

that jA�` �A`j = O
�
M�2� because cr = O

�
r�3
�
and Lemma 6.5 part (c) imply

that
���n�1P~n

`=1�~nA`;ne
i(v�r)�`

��� = b�jv�rj +O �M�2�.
Now, observing that the �rst absolute moment of the �rst term on the right of

(7:8) is O
�
n�1=2

�
by Lemma 6.4, we conclude that the �rst term of (7:14) is

M�1X
r=1

(bcr � ecr;n) b�jv�rj +Op �M�2� ,
because Lemmas 6.3 and 6.4 imply that

PM�1
r=1 jbcr � ecr;nj = op (1). Note that the

orders of magnitude in Lemma 6.3 are uniformly in r.
Next, we examine part (b). We �rst note that eav;n � av = (eav;n � av;n) +

(av;n � av) whose second term on the right is O
�
n�1

�
by Brillinger (1981; p:15).

Now, proceeding as with part (a) and Taylor�s expansion of eA`;n and A`;n, it is
easily obtained that

ebv;n � bv = M�1X
r=1

(ecr;n � cr;n) b�jv�rj +O
 
n�1 +M�2

M�1X
r=1

jecr;n � cr;nj!
which is O

�
M�2� by summability of b�p and Lemma 7.3 part (b). �

Lemma 7.7. Assuming C1 0, C2 and C4 , we have that8<: supt�1 t
1�2d jb (t)� (t)j= Op

����bd�d ���� if d > 0

supt�1 t jb (t)j= Op

����bd�d ���� if d = 0 .

Proof. By de�nition of b (t) and  (t), we have that, uniformly in t,
(7.16)b (t)�  (t) = (b (t� 1)�  (t� 1)) t� 1 + d

t� d +
 (t� 1)
t� d

�bd� d� (1 + op (1)) .
Noting that for d = 0,  (t) = 0 for t � 1 and b (1) = Op �bd� d�, we obtain by in-
duction that supt�2 tb (t) = Op ���� bd� d����. When d > 0, solving recursively (7:16),
we obtain that b (t)� (t) = D �1 + 1

t�d

�
 (t� 1)

�bd� d� (1 + op (1)), which con-
cludes the lemma. �

Lemma 7.8. For any �n < q1� q2< n � �n, as n !1,

(7.17) �n1�2dCov� (br� (q1 ) ;br� (q2 )) P!� (b; d) .
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Proof. The left side of (7:17), recalling that �t = E (u0ut), is

1

�n1+2d

�nX
t=1

�n+q2�q1X
s=q2�q1+1

��
E�
�
u�t+q1u

�
s+q1

�
� �t�s

�
+ �t�s

	
K+;tK+;s+q1�q2 .

However, it su¢ ces to show that the contribution due to E�
�
u�t+q1u

�
s+q1

�
� �t�s in

the last displayed expression converges in probability to zero because by Proposition
3.2, the term due to �t�s converges to � (b; d). The �rst term is op (1) by standard
arguments and because jKtj � D by C2, and then by Proposition 4.2. �

Lemma 7.9. Assuming C1 0, C2 and C4 ,

(7.18)
nX
j=1

E�
�
n�1 �n�1�2

bd ��%q (�j ) ��j ��2 I �n�1 �n�1�2bd ��%q (�j ) ��j ��2 > ��� P!0

for all � > 0 , where %q (�j )=bkq (�j )eg1=2 ���j ; bd� bB (�j ) with bkq (�j )=P�n+q
t=q+1 Kt�qe

it�j .

Proof. First, we show that

(7.19) n�1�n�1�2
bd max
1�j�n

��%q (�j)��2 = Op �a1�2d� .
Now, by de�nition of

��� bB (�j)���2 and jB (�j)j2 and the triangle inequality,
sup
1�j�n

������� bB (�j)���2 � jB (�j)j2���� � sup
1�j�n

������
X
jkj�M

�b�k � �k� e�ik�j
������+ sup

1�j�n

������
X
jkj>M

�ke
�ik�j

������ .
The second term on the right is O

�
M�1� because C1 implies that j�kj = o �k�2�,

whereas the �rst term is, by de�nition of b�k and �k, bounded byX
jkj�M

���bbk � bk���2 + X
jkj�M

jbkj
���bbk � bk��� = Op �M�1�

by Lemmas 7.6 and 7.3, see also our arguments of the contribution of {p into (6:14).
So, because C1 implies that sup

1�j�n
jB (�j)j2 = sup

1�j�n
jh (�j)j < D, (7:19) holds

because by integrability of K (�),
����n�1Pq+�n

t=1+qKt�q

���2 � D and then by Lemma 7.7

we have that

max
1�j�n

0@ 1

n~n1+2bd
X
j`j<n

b (`) e�i`�j �����
q+�nX
t=1+q

Kt�qe
it�j

�����
2
1A = D

�n1�2
bd

n

X
j`j<n

j (`)j (1 + op (1))

which isOp
�
a1�2d

�
because n2(

bd�d)�1 = op (1) by Proposition 4.1. So, we conclude
that (7:19) holds true, which implies that with probability approaching one the left
side of (7:18) is bounded by

nX
j=1

E�
�
n�1�n�1�2

bd ��%q (�j) ��j ��2 I �����j ��2 > D�a2d�1��(7.20)

� D sup
1�j�n

E�
�����j ��2 I �����j ��2 > D�a2d�1�� 1

n�n1+2bd
n�1X
j=1

��%q (�j)��2 .
However, by Proposition 4.1 and that n2(

bd�d) � 1 = op (1), the second factor on
the right of (7:20) is bounded in probability. On the other hand, because E�

����j ��4 =
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n�1
Pn

t=1 bu4t + �n�1Pn
t=1 bu2t �2, and say n�1Pn

t=1 bu4t = n�1
Pn

t=1 u
4
t (1 + op (1)),

then by Proposition 3.4

E�
�����j ��2 I �����j ��2 > D�a2d�1�� � Da2�4d

�2

8<: 1n
nX
t=1

u4t +

 
1

n

nX
t=1

u2t

!29=; (1 + op (1)) .
But, by a well-know argument, see Stout�s (1974) Theorem 3.7.8, ut is also ergodic
by C1, which implies that the right side of the last displayed inequality converges
to zero because � > 0, d < 1=2 and a! 0 by C3. So, we conclude that (7:20)!p 0
for all � > 0 and the proof of the lemma. �
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TABLE 5.1

Proportion of rejections in 1000Monte Carlo experiments under H0 : E [yt jxt ] =
�0. The bandwidth parameters employed are m = n=16 and a = 0:5n�1=4.

n = 64

Size (%) d = 0:1 d = 0:2 d = 0:3 d = 0:4

dx = 0:0
1
5
10

1.20
5.10
9.40

1.20
4.70
8.90

1.10
4.80
9.00

1.20
4.90
9.40

dx = 0:2
1
5
10

0.80
4.30
8.60

1.40
4.60
8.60

1.40
4.40
8.60

1.40
4.20
8.30

dx = 0:3
1
5
10

1.30
4.00
8.00

1.00
3.60
7.30

1.30
4.00
7.80

1.40
4.30
8.20

n = 128

Size (%) d = 0:1 d = 0:2 d = 0:3 d = 0:4

dx = 0:0
1
5
10

1.20
4.80
9.40

1.00
4.80
10.40

1.20
4.70
9.50

1.30
4.70
9.30

dx = 0:2
1
5
10

1.70
5.50
9.30

1.50
5.20
9.10

1.60
5.30
9.20

1.60
4.80
9.40

dx = 0:3
1
5
10

1.40
4.10
8.10

1.20
4.00
8.60

1.40
4.60
8.60

1.40
4.90
8.20

n = 256

Size (%) d = 0:1 d = 0:2 d = 0:3 d = 0:4

dx = 0:0
1
5
10

1.30
5.10
9.70

2.30
6.10
11.20

4.00
7.30
11.80

8.00
11.30
14.70

dx = 0:2
1
5
10

1.10
5.20
10.00

1.60
4.30
10.10

3.70
6.20
11.30

7.00
9.30
12.80

dx = 0:3
1
5
10

0.70
4.70
9.50

0.90
5.00
9.40

2.90
6.00
10.30

6.30
9.00
12.60

The bootstrap critical values are computed using 499 bootstrap samples
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TABLE 5.2

Proportion of rejections in 1000Monte Carlo experiments under H0 : E [yt jxt ] =
�0. The bandwidth parameters employed are m = n=8 and a = 0:5n�1=4.

n = 64

Size (%) d = 0:1 d = 0:2 d = 0:3 d = 0:4

dx = 0:0
1
5
10

1.40
5.30
10.30

1.80
5.30
9.90

1.20
4.70
9.50

1.80
5.40
10.80

dx = 0:2
1
5
10

0.90
4.70
8.20

1.00
4.60
8.50

1.40
4.30
8.10

1.60
4.80
8.90

dx = 0:3
1
5
10

1.00
3.60
8.00

1.20
3.60
7.70

1.60
4.20
7.50

1.80
4.00
8.90

n = 128

Size (%) d = 0:1 d = 0:2 d = 0:3 d = 0:4

dx = 0:0
1
5
10

0.90
4.20
9.00

0.90
4.10
10.10

1.20
4.40
9.60

1.40
5.10
10.00

dx = 0:2
1
5
10

1.10
5.30
9.10

1.20
5.10
9.10

1.10
5.30
9.40

2.10
5.60
10.40

dx = 0:3
1
5
10

1.10
4.10
8.70

1.00
4.10
8.90

1.50
4.80
8.90

1.30
4.90
8.60

n = 256

Size (%) d = 0:1 d = 0:2 d = 0:3 d = 0:4

dx = 0:0
1
5
10

1.10
4.80
9.90

1.20
5.20
10.70

2.20
5.30
10.30

5.60
9.20
13.00

dx = 0:2
1
5
10

1.10
5.00
9.90

1.10
4.30
9.90

1.30
4.50
9.80

4.40
7.20
10.90

dx = 0:3
1
5
10

0.60
4.50
9.30

0.70
4.80
10.00

1.20
5.50
9.90

3.80
7.30
11.40

The bootstrap critical values are computed using 499 bootstrap samples
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TABLE 5.3

Proportion of rejections in 1000Monte Carlo experiments under H0 : E [yt jxt ] =
�0. The bandwidth parameters employed are m = n=4 and a = 0:5n�1=4.

n = 64

Size (%) d = 0:1 d = 0:2 d = 0:3 d = 0:4

dx = 0:0
1
5
10

0.90
4.80
9.60

0.90
4.70
9.60

1.40
4.70
9.70

1.80
5.80
11.00

dx = 0:2
1
5
10

0.90
4.50
8.10

1.30
4.90
8.00

1.30
4.30
8.50

1.40
4.20
8.70

dx = 0:3
1
5
10

1.40
3.70
8.30

1.30
3.70
7.60

1.30
3.80
7.80

1.50
3.90
8.40

n = 128

Size (%) d = 0:1 d = 0:2 d = 0:3 d = 0:4

dx = 0:0
1
5
10

0.80
3.90
9.20

0.70
4.30
10.10

1.00
4.70
9.30

1.80
5.20
10.20

dx = 0:2
1
5
10

0.90
5.20
9.20

1.10
5.00
9.20

1.00
5.50
9.20

1.70
5.50
10.10

dx = 0:3
1
5
10

1.20
3.90
8.80

1.00
4.10
9.10

1.10
5.10
8.90

1.10
4.70
9.00

n = 256

Size (%) d = 0:1 d = 0:2 d = 0:3 d = 0:4

dx = 0:0
1
5
10

1.00
5.00
9.70

1.00
4.70
10.30

1.20
4.90
9.30

3.10
6.30
10.90

dx = 0:2
1
5
10

1.10
5.30
10.00

1.30
4.20
10.00

1.20
4.00
9.10

2.10
5.00
8.70

dx = 0:3
1
5
10

0.80
4.60
9.40

0.70
5.20
9.90

0.80
5.40
9.90

2.10
5.80
10.10

The bootstrap critical values are computed using 499 bootstrap samples
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TABLE 5.4

Proportion of rejections in 1000 Monte Carlo experiments under the alternative
E [yt jxt ] = �0 + 0:5xt. The bandwidth parameters employed are m = n=8 and
a = 0:5n�1=4.

n = 64

Size (%) d = 0:1 d = 0:2 d = 0:3 d = 0:4

dx = 0:0
1
5
10

9.20
27.50
41.20

10.00
28.40
41.40

12.10
30.90
43.70

17.70
39.70
53.50

dx = 0:2
1
5
10

8.60
25.60
40.10

9.70
26.70
39.80

10.00
29.40
42.40

16.10
37.80
49.70

dx = 0:3
1
5
10

9.20
28.60
40.40

9.60
28.90
40.70

11.60
29.70
43.90

16.30
39.30
53.60

n = 128

Size (%) d = 0:1 d = 0:2 d = 0:3 d = 0:4

dx = 0:0
1
5
10

19.70
42.00
55.60

20.80
43.40
56.40

23.30
46.40
61.50

31.90
57.80
73.50

dx = 0:2
1
5
10

19.80
45.00
59.80

20.10
46.20
60.70

21.70
48.20
63.40

32.50
60.10
74.00

dx = 0:3
1
5
10

21.50
45.50
61.80

20.90
46.70
61.10

22.30
48.60
62.30

32.30
59.20
72.00

n = 256

Size (%) d = 0:1 d = 0:2 d = 0:3 d = 0:4

dx = 0:0
1
5
10

43.10
73.60
84.40

45.10
73.70
84.80

49.70
77.00
85.90

66.90
86.70
92.90

dx = 0:2
1
5
10

40.70
71.00
82.30

40.60
71.30
82.10

45.50
73.40
84.20

60.80
82.30
89.80

dx = 0:3
1
5
10

44.90
72.10
82.90

44.50
70.90
83.20

45.70
72.00
82.90

59.10
78.80
86.90

The bootstrap critical values are computed using 499 bootstrap samples
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TABLE 5.5

Proportion of rejections in 1000 Monte Carlo experiments under the alternative
E [yt jxt ] = �0 + xt. The bandwidth parameters employed are m = n=8 and
a = 0:5n�1=4.

n = 64

Size (%) d = 0:1 d = 0:2 d = 0:3 d = 0:4

dx = 0:0
1
5
10

31.10
63.50
76.80

32.40
64.40
77.90

35.90
67.80
79.80

43.90
74.20
84.50

dx = 0:2
1
5
10

35.00
66.30
79.20

36.20
66.60
80.70

39.10
68.60
82.40

48.70
77.70
88.70

dx = 0:3
1
5
10

41.10
70.20
82.10

42.90
70.40
82.60

44.40
72.80
83.80

54.10
81.10
89.60

n = 128

Size (%) d = 0:1 d = 0:2 d = 0:3 d = 0:4

dx = 0:0
1
5
10

63.80
90.20
96.00

66.80
90.60
95.90

69.70
92.30
97.20

80.90
95.40
98.30

dx = 0:2
1
5
10

70.50
92.40
97.00

71.20
92.30
96.90

74.60
94.20
97.70

83.40
96.20
99.10

dx = 0:3
1
5
10

73.80
94.20
97.60

73.30
93.60
97.50

76.40
94.30
97.50

84.10
96.60
99.20

n = 256

Size (%) d = 0:1 d = 0:2 d = 0:3 d = 0:4

dx = 0:0
1
5
10

96.30
99.50
100.0

96.20
99.80
100.0

97.00
99.90
100.0

98.60
100.0
100.0

dx = 0:2
1
5
10

96.80
100.0
100.0

97.20
99.90
100.0

97.60
100.0
100.0

98.70
100.0
100.0

dx = 0:3
1
5
10

96.10
99.80
100.0

96.60
99.70
99.90

96.30
99.50
99.80

98.00
99.60
99.80

The bootstrap critical values are computed using 499 bootstrap samples
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TABLE 5.6

Proportion of rejections in 1000 Monte Carlo experiments under the alternative
E [yt jxt ] = �0 + sin (xt). The bandwidth parameters employed are m = n=8 and
a = 0:5n�1=4.

n = 64

Size (%) d = 0:1 d = 0:2 d = 0:3 d = 0:4

dx = 0:0
1
5
10

41.80
69.50
81.00

44.50
71.40
82.90

47.70
75.20
85.30

63.00
85.50
92.50

dx = 0:2
1
5
10

37.60
67.30
81.50

39.80
69.50
82.70

45.30
74.20
86.10

58.00
84.40
92.70

dx = 0:3
1
5
10

37.60
67.90
79.30

39.10
68.60
80.80

43.60
71.70
83.60

58.80
83.00
90.20

n = 128

Size (%) d = 0:1 d = 0:2 d = 0:3 d = 0:4

dx = 0:0
1
5
10

71.80
91.20
96.70

74.30
92.60
96.30

78.10
94.90
97.90

90.10
98.30
99.50

dx = 0:2
1
5
10

73.80
93.20
97.00

75.10
93.60
97.10

78.70
94.90
97.60

88.60
98.30
99.20

dx = 0:3
1
5
10

71.90
92.80
97.10

72.30
92.80
97.40

76.60
93.10
97.80

88.00
97.20
98.40

n = 256

Size (%) d = 0:1 d = 0:2 d = 0:3 d = 0:4

dx = 0:0
1
5
10

96.80
100.0
100.0

97.70
100.0
100.0

98.40
100.0
100.0

99.90
100.0
100.0

dx = 0:2
1
5
10

97.60
99.80
100.0

97.40
99.80
99.90

98.20
99.80
99.80

99.30
100.0
100.0

dx = 0:3
1
5
10

97.00
99.60
99.90

96.90
99.50
99.80

96.20
99.60
99.80

98.10
99.50
99.80

The bootstrap critical values are computed using 499 bootstrap samples


