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Abstract 

Suppose that based on data consisting of independent repetitions of an experiment a 

researcher wants to predict the outcome of the next independent outcome of the experiment.  The 

researcher models the data as being realizations of independent, identically distributed random 

variables { , 1,2,... }iX i n  having density ( )f   and the next outcome as the value of an 

independent random variable Y , also having density ( )f  . We assume that the density ( )f   lies 

in one of three location-scale families:  standard normal (symmetric); Cauchy (symmetric, 

heavy-tailed); extreme value (asymmetric.). The researcher does not know the values of the 

location and scale parameters. For  ( )f   = 0 ( )f   lying in one of these families, an exact 

prediction interval for Y  can be constructed using equivariant estimators of the location and 

scale parameters to form a pivotal quantity based on { , 1,2,... }iX i n  and Y  . This report 

investigates via a simulation study the performance of these prediction intervals in terms of 

coverage rate and length when the assumption that ( )f   = 0 ( )f   is correct and when it is not.  

The simulation results indicate that prediction intervals based on the assumption of 

normality perform quite well with normal and extreme value data and reasonably well with 

Cauchy data when the sample sizes are large. The heavy tailed Cauchy assumption only leads to 

prediction intervals that perform well with Cauchy data and is not robust when the data are 

normal and extreme value.  Similarly, the asymmetric extreme value model leads to prediction 

intervals that only perform well with extreme value data. Overall, this study indicates robustness 

with respect to a mismatch between the assumed and actual distributions in some cases and a 

lack of robustness in others. 
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Chapter 1 - Introduction 

This chapter develops the motivation for studying the robustness of prediction intervals, 

provides a literature review, compares prediction intervals to confidence intervals and introduces 

some important terms and definitions.  

Suppose that responses                 , the available data, are obtained from 

independent repetitions of an experiment-process carried out under similar conditions and it is 

desired to predict the response   that would be obtained if the experiment-process were 

independently carried out again. This setting does not include the use of covariates and hence 

does not fall under the usual heading of prediction in regression models. A prediction may be 

made by constructing an interval estimate PI( )=(L( ),U( )) and being able to assign some 

form of likelihood to the statement that   lies in PI( ). For example, suppose that    consists of 

the yields per acre of variety   wheat planted on     fields by a farmer. Rather than estimating 

the mean yield of variety   wheat per acre across all such fields, the farmer might very well be 

interested in using PI( ) to predict the actual yield per acre she will obtain the next time she 

plants variety  .  For another example, consider a person just diagnosed with lung cancer. A 

confidence interval for the mean survival time of all such newly diagnosed patients only 

incorporates the uncertainty arising from using a point estimator of the mean and fails to fully 

take into account the variability of lifetimes around their population mean. A prediction interval 

is based on estimates of both of these sources of variability and is accordingly typically wider 

than the corresponding confidence interval, which understates the uncertainty of current 

knowledge about the patient’s future survival time. 

 Topic of the report 

An assessment of the performance in terms of width and coverage rate of parametric 

prediction intervals for a future independent observation from an assumed location-scale family 

of distributions when that assumption is true and when it is false   

 Literature Review and Related work 

Aitchison and Dunsmore (1975) give examples of the use of prediction intervals in a 

variety of settings. Christoffersen (1998) gives some examples from economics and finance.  
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Although confidence intervals for a mean are often relatively easy to compute and interpret, 

Christoffersen argues that interval prediction is a better tool than interval parameter estimation 

for economic planning. For example, a central bank governor would be more interested in 

forecasting the actual inflation rate over the next six months than estimating its mean inflation in 

order to carry out a monetary policy. A production manager planning to purchase inventory 

needs to predict sales in order to decide how much to order. A prediction interval might serve as 

a control bound for assessing product quality on an assembly line. Data points that are beyond 

the control bounds are referred to as being “out of control” and could indicate that remedial 

action needs to be taken. Patel (1989) also states that prediction intervals could provide 

guidelines for establishing warranty limits for the future performance of a product. 

A large amount of research has been done on prediction.  In particular, the concept of a 

predictive distribution has been discussed over a long period of time, starting with Laplace’s 

(1814) attempt almost two hundred years ago to calculate the probability of obtaining a success 

in a future Bernoulli trial based on prior information. Patel (1989) states that one of the early 

papers on prediction intervals is Baker (1935), which derived the probability density function of 

a deviation from the mean that would occur in a future sample based on the information from the 

observed sample. Since a prediction interval is a special case of a tolerance interval, additional 

references are to be found in the literature on tolerance intervals. In addition to Aitchison and 

Dunsmore (1975) a number of works in the latter part of the twentieth century presented results 

on the exact and approximate derivation of prediction intervals for a variety of distributions and 

settings. Patel (1989) gives a comprehensive review of those results. He also provides a long list 

of related research. Chatfield (1993) emphasizes the importance of prediction intervals, their 

advantages and limitations, and provides a summary of different methods of constructing 

prediction intervals for time series.  Geisser (1993) is an important monograph on predictive 

distributions and the Bayesian approach to prediction.  Despite the large amount of publications 

on PIs and their practical importance, PIs usually appear in textbooks only in the context of 

regression.  Abraham and Ledolter (1983) is a notable exception. My initial literature search 

didn’t reveal any work regarding the robustness of prediction intervals for a future independent 

observation from an assumed location-scale family of distributions, the topic of my report. Olive 

(2007), (2003) and Fisher and Horn (1994) do consider the problem of constructing prediction 

intervals in a regression setting when normality does not hold. 
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 Advantages and Limitations of Prediction Intervals 

There are a number of advantages of interval prediction over a point forecast and a 

confidence interval for the mean: 

 Prediction intervals are especially useful because they can predict what a future 

value, such as the height of a river subject to flooding, is likely to be before it 

happens. A confidence interval for the mean in this case would only estimate mean 

height across a long time period. 

 A main advantage of a prediction interval over a point estimate is that it takes into 

account the variation of the future observation around the point estimate. The 

majority of individual future outcomes deviate from the point estimate, which a PI 

takes into account. Prediction intervals allow different strategies to be used to 

accommodate a variety of possible outcomes.  

 Unlike parameter estimation, for instance confidence interval for mean (CI), which 

makes statements about hypothetical quantities, such as population means, that can 

almost never be verified, predictions can in principle be checked by observing what 

happens. 

 

There are some limitations of using PI which one should consider: 

 The prediction interval might be rather wide when the process under study produces 

outcomes that have large variation. In some situations the large width of a prediction 

interval limits its usefulness in decision making. If, for example, the weather 

forecaster predicts with 95% ‘confidence’ that the temperature tomorrow will range 

from 15F to 100F ,we can’t make a decision whether to wear a coat or a t-shirt 

tomorrow. 

 With increasing sample size, the widths of prediction intervals decrease but do not 

converge to zero, as happens with confidence intervals for the mean.  

 Theoretical PIs are difficult or impossible to construct, particularly for data coming 

from complex distribution or for complex nonlinear multivariate models. In this case 

simulation procedures have been used to construct approximate PI’s. 
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 Common applications  

 Regression. Assuming normality with constant variance, the least squares fitted 

model and variance estimate can be used to construct exact prediction intervals for 

specified levels of the independent variable(s).   

 Time series is another traditional area for prediction. These models are widely used 

by forecasters in Economics and Finance. 

 Nonparametric prediction intervals. This approach is helpful when no assumptions 

about the initial distribution can be made. Here, simulation helps to construct the PI. 

 Bayesian prediction intervals. 

 

 Preliminaries 

Prediction Interval 

Let                    be the set of observed “past” values of random variables 

                
 
 in an experiment carried out in a series of independent trials and Y be an 

unobserved “future” value. The random variables {   } and Y are by design independent, all 

having the same distribution, F(x). We say that interval PI( )=(L(  ),U(  )) is a   (1-α) two-

sided prediction interval for Y if   [         ]     . In other words, a        prediction 

interval for Y is an interval determined from past observations such that the probability that the 

“future” Y will fall in the interval is equal to      . Suppose exact       prediction intervals 

for a “future” Y are independently constructed for many such pairs of ( ) and Y. Then, about 

100(1-α)% of these intervals will contain the corresponding Y . 

As noted above, prediction intervals are generally wider in length than corresponding   

confidence intervals because, unlike confidence intervals, prediction intervals account for two 

sources of variability.  First, unknown parameters need to be estimated using the observed data. 

This is the only source of variation that a confidence interval for a population mean needs to 

incorporate. Second, in prediction, variation of the future observation about its mean needs to be 

accounted for. The performance of the prediction intervals studied in this report will be assessed 

in terms of length and coverage rate.  

 

Length of Prediction Interval 
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Length of the prediction interval PI(  )=(L(  ),U(  )) is (U(  )- L(  )). 

 

Coverage rate of Prediction Interval 

Under assumed distributional forms, this report will construct prediction intervals PI( 

 )=(L(  ),U(  )) such that    [         ]      when these assumptions are valid and use 

simulation to investigate   [         ] , called the (actual) coverage rate or coverage 

probability, when the assumptions do not hold. . The target coverage rate 1   will also be 

referred to as the nominal coverage rate. Large differences between actual coverage rates and 

nominal coverage rates constitute poor performance and what we term a lack of robustness. We 

are going to compare the nominal (assumed) coverage rate and observed (coming from multiple 

simulations) coverage rates. 
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Chapter 2 - Constructing Prediction Intervals 

This chapter develops a procedure for constructing prediction intervals from known 

location-scale families of distributions, presents a formal description of the report’s goal and 

explains the initial settings for computation. 

 Prediction Interval under Normality 

Starting with the familiar assumption of normality, suppose we have observed a random 

sample                    and want to predict a “future”, unobserved random value Y , 

where all the random variables are iid  from     𝜇  𝜎  , a normal distribution with mean   and 

variance  
2 , both unknown. Let   ̅  
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 Specifically, the prediction interval is given by 

                                                          ̅    

 
       √

   

 
                                              (1) 

Note that this prediction interval differs from the corresponding confidence interval for   by the 

stretching factor (( 1) / )n n . 

 

Example 

Simulated data of n = 10 observations from the normal theory model        are marked 

in blue in Figure 2.1 below. The value to be predicted, ‘y’ is marked in ‘red.’ 

 

Figure 2.1  Simulated Independent, Standard Normal Data, n = 10.  

 

 

Evaluating the prediction interval given in the (1), these data leads to the 0.95 prediction interval 

                       √  
 

  
       or    [-3.11,  1.46] 

Note that “future” observation Y = -1.16 does fall inside the interval and that a .95 confidence 

interval for ,  which is zero here, is given by   ̅    

 
    

 

√ 
 =             

    

√  
 or  

[-1.52, -0.14]. Notice here that zero, the mean, does not fall into the confidence interval, a 

coverage failure  which occurs with probability 5% . As noted above, the prediction interval for a 

“future” observation is larger than confidence interval for the population mean.  

Since the distribution of K is free of   and  
2 , this approach can be extended to models 

where the data are generated from any assumed location-scale family. However, outside of 

normality, the exact distribution of K would be difficult to obtain in a useful, closed form. 

Therefore, instead of even attempting exact derivations, in the next section we will demonstrate 

how to use simulation to approximate quantiles of the distribution of K and use them to construct 

prediction interval for several distributions.   
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  Constructing Prediction Intervals for Arbitrary Location-Scale Families 

Responses                   are assumed to be realized values of independent, 

identically distributed random variables                 , each having absolutely 

continuous, partially specified distribution function F(x) and Y is independent of     and also has 

distribution function     . Further, assume that for unknown location parameter 𝜇 and unknown 

scale parameter 𝜎 > 0, 

                                               0( ) (( ) / )F x F x   
 , 

where    is fully specified. Let, �̂�    be an estimator of 𝜇 and �̂�    an estimator of  𝜎  that are 

equivariant in the sense that for any constants   > 0 and    

                                                �̂�(     )   �̂�( )    , 

                                                �̂�(     )   �̂�   . 

For example, �̂�    could be the sample mean or median and �̂�    could be the sample standard 

deviation or sample inter-quartile range. Let 𝑍     𝜇  𝜎 , 𝑍     𝜇  𝜎,  and note that 

   𝑍       (𝑍   )       . Then, the statistic 

                                                                           �̂�     �̂�    

                                                                     𝑍  �̂� 𝑍    �̂� 𝑍                                    (2) 

has a distribution determined by     and hence, at least in theory, which can be computed.  

 

To use equivariance to construct a prediction interval       with   [        ]    

 ,  find quantiles   

 
        and    

 

 
       , henceforth called critical values, where for any 

       ,   (                )   . Then, 

                                         (  

 
                   

 

 
       )     . 

Hence, having observed   , an exact      prediction interval for Y is then given by     

                                       �̂�( )    

 

       �̂�( ) �̂�( )     
 

 
       �̂�( )  .                          (3) 

When    is standard normal, �̂�    is the sample mean and �̂�    is the sample standard deviation, 

the critical values can be obtained, as illustrated above from the t-tables with degrees of freedom 

(n-1).  In other cases they can be approximated by simulation, as described below. 
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 Goal of the report 

This report uses a simulation study to investigate the following question: In terms of 

coverage rate and length, how does the interval in (3) perform when    𝑍     

  (𝑍   )      , where      and       The parameter settings and the simulation 

design are described below.  

Three representative choices for       
  for the assumed density were used:  

(1) Standard Normal:              
            ⁄  √  . 

(2) Cauchy:                 
           ⁄         ⁄    ,     c = 1.35/2. 

(3) Extreme value:   
   

           ⁄          ⁄  ⁄    

      where c = 1.35/(log(log(.25)/log(.75))).  (Here Log = Ln) 

 

In this report, the sample location estimator  ̂    was taken to be the sample mean and the 

sample scale estimator  ̂    was taken to be the sample standard deviation. 

 

Notes:  

(i) In cases (2) and (3), the constant c is defined so that these distributions have the 

same inter-quartile range as a standard normal distribution. The shape parameter for 

the extreme value distribution is set at zero. This extreme value distribution is also 

called the Gumbel distribution.  

(ii) Without loss of generality, we set  𝜇 = 0 and 𝜎 = 1 in all cases. 

(iii) There are many routines for generating approximate normal random variables. 

To generate Z from (2) or (3), I will use R to generate W from the ‘standard’ version, 

corresponding to c = 1 and set Z = cW.   

(iv) I used representative values of sample size n ; small, medium and large. 

(v)  The nominal coverage rate was set 1-  = 0.95 in all cases. 

(vi) I used some preliminary simulations , as described below, to specify M , the  

number of samples used to approximate the critical values used in constructing the 

prediction intervals and L = number of PI’s  constructed under a given set of 

parameter values.  
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Chapter 3 - The Simulation Study 

This chapter contains a description of the algorithms and software that were used to carry 

out the simulation study. I use the software package R (www.r-project.org), version 2.13.00 

(2011-04-13), to perform  the necessary computations. R is a free software package that can be 

used for statistical computing and producing graphics displays. It compiles and runs on a wide 

variety of UNIX , Windows and MacOS platforms. The R code I used appears in Appendix B. 

For simulation I use the  evd package and, in particular, built-in functions:   

 rnorm () – produces n normally distributed random variables  with specified mean 

standard deviation. In particular I used parameters  mean=0, sd=1; 

 rcauchy() – produces n random variables coming from  Cauchy distribution with 

specified parameters. In particular I used parameters  location = 0, scale = 1.35/2; 

 rgev() – produces n random variables coming from extreme value distribution with 

specified parameters. In particular, I used parameters loc=0, scale=-

1.35/log(log(0.25)/log(0.75)),  shape=0. 

 

My simulation was carried out as follows. When    is the standard normal distribution, K 

has a scaled t-distribution and the critical values    

 
         and    

 

 
        can be obtained 

from the t-table. When    is the Cauchy or extreme value distribution, deriving the critical values 

is not feasible. Instead, I used simulation to approximate them. For each of M simulated samples 

from the standard Cauchy and extreme value distributions, the statistic K was calculated. Next, 

the estimated critical values   

 
        and    

 

 
        are defined as the α/2 and 1- α/2 sample 

quantiles of the simulated K’s. Formula (3) was then used to construct the prediction intervals for 

data obtained as L independent simulations for each parameter setting. In all cases, I tallied the 

fraction out of the L data sets that contained the simulated, “future” value Y, a mean and median 

interval width.  Specifically, I used the following algorithm to carry out my simulation study.  

 

 

 



11 

 

 Simulation Algorithm 

(a) Set index ‘ j’  =1. 

(b) Find or estimate the critical values   

 
         and     

 

 
       . For j = 1, the critical 

values can be obtained from the t-tables with degree of freedom n-1. For j = 2,3, generate iid 

random variables  𝑍                           from   
   

, M a large number. Let    be 

        in (2) computed from  𝑍               . Use sample quantiles of       

         to estimate   

 
   

   
      and    

 

 
   

   
    .  

(c) Generate the data and “future” value to be predicted  𝑍 
   

               from 

each of the three distributions    
   

 and make    
   

 𝑍 
   

            . Use   

 
       , and 

   
 

 
        estimated in (b) and (3) to construct a nominal       prediction interval for 

  
   

 𝑍   
   

,  m = 1,2,3 . Note that of the three prediction intervals created, only the one with m 

=j is ‘correct.’  

(d) Check if the generated “future” observations falls inside the PI and record its length 

for each of three data sets  

(e) Independently repeat (c) and (d) L =  1000 times. 

(f) Compute estimated coverage rates, mean widths and median widths for each of the m 

= 1,2,3 types of data.  

(g) Go to (h) if  j = 3. Otherwise, replace j by j +1 and repeat (b)-(f) .  

(h) Independently carry out (a) – (g) for all selected sample sizes. 

 

Before carrying out my simulation study, I constructed a preliminary simulation, 

described below, to investigate the sensitivity of the output of widths and coverage rates to 

specification of M, the number of data sets used to estimate critical values for the intervals 

constructed when assuming the Cauchy and extreme value models. Specifically I had to estimate 

the tail quantiles   

 
         and    

 

 
         of the distribution of K when    is a standard 

Cauchy or extreme value distribution 
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 Sensitivity Analysis of Critical Values of K Statistic 

I carried out the algorithm given above for various choices of M. For each M used, I 

generated M independent copies of K and used their sample quantiles to estimate the required 

critical values. Table A.1 in Appendix A presents the estimated 2.5
th

 and 97.5
th

 percentiles of  K 

for several choices of M when    is from the Cauchy distribution described in the Chapter 2. The 

critical values are obtained for     =0.95 and sample sizes n=10 and n=200. One may notice, 

that for the small sample size, n =10, the critical values are quite sensitive to the number of 

iterations M used, until M=21000. After this point, the critical values do not change much when 

the number of iterations varies from 21000 to 500000. A similar pattern holds for the largest 

sample size used in this report, n=200.  As an additional check on sensitivity, recalling that the 

exact critical values are symmetric about zero for the Cauchy distribution, note that in Table A.1 

the estimated critical values are reasonably close to being symmetric about zero for M at least 

7000. Based on this analysis, balancing computing time (displayed in the table A.1 as well) and 

accuracy, I decided to use M = 100000. I also used M = 100000 for estimating critical values 

based on the extreme value model. 
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Chapter 4 - Results 

Using the simulation results, I summarize, assess and compare how well the prediction 

intervals perform when the assumed    is correct and when it is not. Recall, that I used three 

distributions: normal, Cauchy and extreme value. I recorded the length of each of the L intervals 

for each parameter setting and summarized these lengths using their means and medians. Letting 

{ }iY  denote the simulated future observations generated at each parameter setting, the estimated 

coverage rate for each parameter setting is given by 

 ̂  ∑          
 

   
 ⁄  

which has a standard error no larger than  √         ⁄     √ ⁄  . Then, an approximate, large 

sample 0.95 confidence interval for the actual coverage rate p is given by  ̂      √ ̂    ̂  ⁄ .  

For each of the possible choices of   , I now present my results in the form of tables giving 

estimated coverage rates and ‘average’ interval widths. Coverage rates which appear to be far 

from 0.95 in a practical sense are highlighted. 

 Assumed Model: Normal Distribution  

Table 4.1 summarizes estimated coverage rates and estimated mean and median widths 

when the prediction intervals are constructed assuming normality. Using the variance of a 

binomial distribution, the standard errors of the coverage rates in this section are no larger than 

0.016 

Table 4.1 Estimated  Average Lengths and Coverage Rates Assuming Normality, L = 1000 

1-  n 

Critical 

Values 

(scaled t) 

Average Width / Median  Width / Coverage Rate 

Normal Cauchy Extreme Value 

0.95 

5 {-3.05, 3.05} 5.71/ 5.56 /0.9460 31.47 / 10.46 / 0.8960 6.28 / 5.72 / 0.9390 

10 {-2.37, 2.37} 4.53 / 4.48 / 0.9460 56.89 / 12.18 / 0.9050 4.90 / 4.73 / 0.9400 

50 {-2.03, 2.03} 4.05 / 4.05 / 0.9450 157.97 / 23.68 / 0.9550 4.39 / 4.37 / 0.9500 

200 {-1.98, 1.98} 3.95 / 3.94 / 0.9610 381.38 /  46.77 / 0.9660 4.34 / 4.32 / 0.9570 

 

From Table 4.1 we see that the attained coverage rate is quite close to the nominal 0.95 

value, except for Cauchy data with small samples sizes, n = 5 and  10. Before interpreting 
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interval widths here and in what follows, keep in mind that the interquartile ranges (IQR’s)  of all 

of our models and data are 1.35, the same as the IQR of  the standard normal, which provides a 

basis for determining large and small lengths. In Table 4.1, mean widths for normal and extreme 

value data are similar, being slightly smaller for normal data, both close to the difference 

between the normal model critical values, which approach  1.96 as sample size increases. This 

behavior was expected for normal data but surprising for extreme value data. For normal and 

extreme data, median widths are close to mean widths. For Cauchy data, median widths are more 

stable and much smaller than mean widths, which actually increase as sample size increases, due, 

no doubt, to the very heavy tails of the Cauchy distribution.  

 Assumed Model: Cauchy Distribution 

Table 4.2 below summarizes coverage rates and lengths when the Cauchy model is 

assumed and M = 100000 iterations are used to estimate the critical values.  

Table 4.2 Estimated  Lengths and Coverage Rates Assuming Cauchy Distribution, 

M=100000, L = 1000 

1-  n 
Critical Values Average Width / Median  Width / Coverage Rate 

Normal Cauchy Extreme Value 

0.95 

5 {-6.65, 6.71} 12.46 / 12.08 / 0.9960 82.01 / 22.18 / 0.9520 13.47 / 12.58 / 0.9910 

10 {-4.21, 4.38} 8.37 / 8.28 / 0.9980 202.10 / 21.96 / 0.9480 8.87 / 8.54 / 0.9900 

50 {-1.79, 1.83} 3.58 / 3.57 / 0.9080 69.75 / 20.35 / 0.9480 3.93 / 3.88 / 0.9190 

200 {-0.86, 0.91 } 1.76 / 1.76 / 0.6160 175.82 / 20.73 / 0.9400 1.94 / 1.94 / 0.6450 

 

As expected, the actual coverage rates in Table 4.2 are close to the nominal 0.95 for  

Cauchy data since the Cauchy critical values are correct here. However, even with coverage rates 

close to their 0.95 nominal value, the lengths of the prediction intervals are large. This results, as 

clearly shown in Figure 4.3, results from the very right-skewed distribution of sample standard 

deviations obtained from Cauchy data. Specifically, for example, for n = 200, but not for n = 10,  

a high proportion of sample standard deviations exceed twenty (30.6% of sample standard 

deviations  for n=200 comparing to 7% for n=10), a value much larger than the interquartile 

range of the distribution. Note that median lengths for the intervals constructed from Cauchy 

data are more stable and much smaller than mean lengths.  
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For normal and extreme value data, the over coverage for n=5 and n=10 and under 

coverage for n = 50 and 200 seen in Table 4.1 are caused by the Cauchy critical values being too 

far apart for small samples and too close for large samples, behavior explained in Figure 4.1 

below, resulting in prediction intervals that are respectively too wide and too narrow. This 

over/under coverage is even clearer from Figure A.1. in the Appendix, which presents  95% 

confidence intervals for actual coverage rate, constructed using the binomial distribution so that 

confidence interval widths depend on estimated coverage rates. None of these confidence 

intervals for normal data includes the nominal 0.95 coverage rate. Specifically, from Table 4.2, 

in the case of data sampled from the normal distribution, the estimated coverage rate is 0.9080 

for n=50 and only 0.6160 for n=200. Similarly, when data are sampled from the extreme value 

distribution, prediction intervals constructed using the Cauchy distribution had an estimated 

coverage rate of 0.9190 for n=50 and only 0.6450 for n=200. Under/over coverage for extreme 

value data using the Cauchy model critical values is also illustrated in Figure 4.2  below and 

Figure A.1 in Appendix. 

Figure 4.1 and 4.3 graphically illustrates the reason, noted above, for these low/high 

coverage rates for prediction intervals constructed from Cauchy model critical values and applied 

to normal and extreme value data: critical values computed from the Cauchy model are too 

small/too large in absolute value when used with normal and extreme value data. Specifically, 

Figure 4.1 displays superimposed histograms of simulated values of the  K-statistic based on data 

from the Cauchy distribution (green) and data from the normal distribution (yellow), where K 

has a scaled t-distribution. Histograms are displayed for small and large sample size.  The 2.5
th

 

and 97.5
th

 sample quantiles are marked for both cases. From Figure 4.1 we see that for the large 

sample size, critical values based on the Cauchy model are much closer together than those based 

on the normal model, resulting in prediction intervals that are too narrow for normal data and 

consequently have lower than nominal coverage rates. For the small sample size n=10 critical 

values based on the Cauchy model are much further away from one another than those based on 

the normal model, resulting in prediction intervals that are too wide for normal data and 

consequently have much higher than nominal coverage rates. Some of the extreme K’s obtained 

from Cauchy data were deleted in order to create a more detailed plot. 
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Figure 4.1 Superimposed Histograms of Simulated K-statistic Based on Cauchy Data and 

Normal Data for Small and Large Sample Sizes (M=100000) 

                     n=10                                                                     n=200 

 

 

 

Figure 4.2 Superimposed Histograms of Simulated K-statistic Based on Cauchy Data and 

Extreme Value Data for Small and Large Sample Sizes (M=100000) 

                     n=10                                                                     n=200 
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Figure 4.3 Relative Frequency Histogram of Sample Standard Deviation from Cauchy Data 

for small and large sample sizes (M=100000) 

  

 

 Assumed Model: Extreme Value Distribution 

Table 4.3 below presents a summary of the simulation results when constructing 

prediction intervals under the assumption of sampling from the extreme value distribution. M = 

100000 (number of iterations for generating critical values) and L = 1000 (number of PI being 

constructed). 
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Table 4.3 Estimated  Average Lengths and Coverage Rates Assuming Extreme Value 

Distribution, M=100000, L = 1000 

1-  n 
Critical 

Values 

Average Width / Median  Width / Coverage Rate 

Normal Cauchy Extreme Value 

0.95 

5 {-2.37, 4.19} 6.13 / 6.08 /0.9410 248.25 / 11.20 / 0.8940 6.56 /6.12 / 0.9540 

10 {-1.83, 3.24} 4.98 /4.93 / 0.9460 153.63 /12.20 / 0.9160 5.36 / 5.13 / 0.9600 

50 {-1.54, 2.55} 4.08 / 4.08 / 0.9300 90.47 / 22.91 /0.9410 4.47 / 4.39 / 0.9580 

200 {-1.49, 2.44} 3.94 / 3.93 / 0.9200 212.20 / 42.03 / 0.9700 4.31 / 4.29 / 0.9400 

 

As again expected, the coverage rate here is close to the nominal 0.95 for data actually 

sampled from the extreme value distribution. For Cauchy data, however, note the substantial 

under coverage for the small sample sizes, n=5 and 10 and slight over coverage for n = 200. For 

normal data, under coverage increases with increasing sample size. These over/under coverages 

are likely caused by the asymmetry of the extreme value distribution and the critical values 

obtained from it, as seen dramatically in Table 4.3, since K has a symmetric distribution when 

obtained from samples drawn from symmetric distributions, such as the normal and Cauchy.  

 

Figure 4.4 below shows the distributions of the K-statistic given in (2) based on data 

sampled from     -  the extreme value and scaled t-distributions, for small and large sample 

sizes. Sampling K from the scaled t-distribution corresponds to what happens when data are 

sampled from the normal distribution. For n = 10 and n = 200, it is clear that distributions of K 

based on extreme value data (green) are asymmetric. Moreover, those distributions have heavier 

positive tail and lighter negative tail relative to the t-distribution (yellow).  Therefore, when 

using the extreme value distribution model, the critical values are shifted to the right, which is 

the reason given above for having under or over-coverage for data actually sampled from 

symmetric distributions. 
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Figure 4.4 Superimposed Histograms of Simulated K-statistic Based on Extreme Values 

Data and Normal Data for Small and Large Sample Sizes (M=100000) (M=100000) 

  n=10        n=200 

 

 

 

 Another Look at the Simulation Study 

 

From a practical point of view, it is often the case that a researcher has data with an 

unknown underlying distribution and he/she makes assumptions about the distribution in order to 

proceed with inferences. In this section, robustness is investigated by reconfiguring Tables 4.1-

4.3 by fixing the distribution from which the data are sampled and letting the model used to 

construct the data vary, representing what happens when the experimenter makes the correct 

assumptions and makes the wrong assumptions. The tables given below summarize coverage 

rates and interval lengths when the data are actually sampled from the normal, Cauchy and 

extreme value distributions. 

 

 Normal Distribution 

Suppose the unknown underlying distribution is Normal. Table 4.4 presents simulated 

coverage rates and ‘average’ widths when the data are generated from the normal distribution 
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and, respectively, the normal, Cauchy and extreme value distribution models are used to 

construct the prediction intervals.  

 

Table 4.4 Estimated  Average Lengths and Coverage Rates for Normally Distributed Data 

1-  n 
Average Width / Median  Width / Coverage Rate 

Normality Assumption Cauchy Assumption Extreme Value Assumption 

0.95 

5 5.71/ 5.56 /0.9460 12.45 / 12.08 / 0.9960 6.13/ 6.08 /0.9410 

10 4.53 / 4.48 / 0.9460 8.37 / 8.28 / 0.9980 4.98 /4.93 / 0.9460 

50 4.05 / 4.05 / 0.9450 3.58 / 3.57 / 0.9080 4.08 / 4.08 / 0.9300 

200 3.95 / 3.94 / 0.9610 1.76 / 1.76 / 0.6160 3.94 / 3.93 / 0.9200 

 

As expected, the actual coverage rate that is closest to the nominal 95% rate is attained, 

under normality, when the experimenter’s distributional assumption is correct. Among the three 

assumed models, the minimum interval lengths are achieved under normality for n=5, 10 and 50. 

However, for the large sample size n=200, average and median length of the prediction intervals 

are much smaller for the Cauchy model. For the Cauchy assumption, we see under coverage for 

small samples and over coverage for moderate and large samples, which is a lack of robustness.  

Note that the results obtained using the extreme value model for small sample size  are very 

similar to those obtained using the normal model, a case where robustness with respect to one of 

these two possible assumed models holds. 

 

 Cauchy distribution 

Table 4.5 Estimated  Average Lengths and Coverage Rates for Cauchy Distributed Data  

1-  n 
Average Width / Median  Width / Coverage Rate 

Normality Assumption Cauchy Assumption Extreme Value Assumption 

0.95 

5 31.47 / 10.46  / 0.8960 82.01 / 22.18 / 0.9520 248.25 / 11.20 / 0.8940 

10 56.89 / 12.18 / 0.9050 202.10 / 21.96 / 0.9480 153.63 /12.20 / 0.9160 

50 157.97 / 23.68 / 0.9550 69.75 / 20.35 / 0.9480 90.47 / 22.91 / 0.9410 

200 381.38 / 46.77 / 0.9660 175.82 / 20.73 / 0.9400 212.20 /  42.03 / 0.9700 

 

As expected, we observe that coverage rate closest to the nominal value of 0.95 is 

attained when correctly assuming that the data are sampled from the Cauchy distribution. The 
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average widths of the interval are rather unstable in most cases. Specifically, for assumptions of 

normality and extreme value distributions, the median width of a prediction interval increases 

with increasing sample size. However, for the correct assumption, the median widths of the 

prediction intervals stay the same for different sample sizes. To a great extent, using PI coverage 

rate as the criterion, for moderate and large sample sizes (n=50, 200), the normality and extreme 

value assumptions do not give significantly different result from the “correct” Cauchy 

assumption. However, the median width of a prediction interval is smaller for the correct Cauchy 

data, especially for the large sample size.  

 Extreme Values Distribution 

Table 4.6 Estimated  Average Lengths and Coverage Rates for Extreme Value Distributed 

Data  

1-  n 
Average Width / Median  Width / Coverage Rate 

Normality Assumption Cauchy Assumption Extreme Value Assumption 

0.95 

5 6.28 / 5.72 / 0.9390 13.47 / 12.58 / 0.9910 6.56 /6.12 / 0.9540 

10 4.90 / 4.73 / 0.9400 8.87 / 8.54 / 0.9900 5.36 / 5.13 / 0.9600 

50 4.39 / 4.37 / 0.9500 3.93 / 3.88 / 0.9190 4.47 / 4.39 / 0.9580 

200 4.34 / 4.32 / 0.9570 1.94 / 1.94 / 0.6450 4.31 / 4.29/ 0.9400 

 

Again, as expected, the actual coverage rate that is closest to the nominal 95% rate is 

attained using extreme value critical points, when the experimenter’s assumption is correct. For 

the very small sample size, n = 5, assumed normality yields narrower prediction intervals and 

under coverage. However, for sample sizes n=10, 50, and 200 the normality assumption works 

even better than the correct extreme value assumption, providing coverage rates within the 

margin of error from the nominal 0.95 rate  and the narrowest PI lengths. Using the Cauchy 

model, the widths of PIs decrease with increasing sample size, and become quite narrow for the 

large sample size, n= 200. Consequently, PI coverage rates drop significantly with increasing 

sample size. The results obtained using the normal model for large and moderate sample sizes 

are very similar to those obtained using the extreme value model, a case of where  robustness 

with respect to one of two possible assumed models holds. 
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Chapter 5 - Discussion 

 Normal distribution 

It was shown through simulation that the assumption of normality is only robust in some 

cases when applied to Cauchy and extreme value data. In terms of coverage rate, the normal 

model works well with normal data, extreme value data and Cauchy data with large sample size. 

However, the normal model does not work well when the data are Cauchy and sample sizes are 

small.  Specifically, it was seen that for n = 5 and n = 10  the attained coverage rates is quite  a 

bit smaller than the nominal 0.95 and PI’s widths are much larger than from the normal 

distribution.  For the Cauchy distribution, which has high probability of extreme values, the 

mean width of the PI’s is very unstable and actually increases with increasing sample size. As 

expected, median widths are much smaller and more stable than mean width for the Cauchy 

distribution. Mean and median widths for the normal and extreme value data are rather close, 

although the narrowest widths are attained for the normal distribution, a case where the assumed 

distribution is the “true” distribution. With increasing sample size, PI width decreases, which 

means the uncertainty about the value of a” future” observation decreases.  

 Cauchy Distribution 

The Cauchy assumption results in a lack of robustness with respect to departures from the  

assumed model. As expected, the actual coverage rates are close to the nominal 0.95 for the 

Cauchy data since the assumption about the distribution being Cauchy is true. However, even 

with coverage rates are close to their nominal value, the lengths of the prediction intervals are 

large relative to the interquartile rang = 1.35. This happens because of the heavy tails of the 

Cauchy distribution and the resulting large variations in sample means and standard deviations. 

The median lengths for the intervals constructed from Cauchy data are more stable and much 

smaller than mean lengths. For normal and extreme value data, for small sample sizes, the 

Cauchy model prediction intervals exhibit over-coverage. For moderate and large sample sizes,  

the actual coverage rates are significantly less than their nominal value 0.95. As demonstrated in 

Figures 4.1, critical values used in constructing a  PI computed from the Cauchy model are too 
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small for small samples or too large for large samples when used with normal and extreme value 

data.  

 Extreme Value Distribution 

The extreme value assumption exhibits a lack of robustness when used with normal and 

Cauchy data, largely due to the asymmetry of the distribution of the K statistic and the resulting 

critical values when sampling from the extreme value distribution. As expected, the coverage 

rate here is close to the nominal 0.95 for data actually sampled from the extreme value 

distribution. For Cauchy data, both under coverage and over coverage were observed. For normal 

data, one may notice under coverage for the moderate and large sample sizes. It was shown that, 

when using the extreme value distribution model, the K statistic is asymmetric and the critical 

values of PI are shifted to the right. This is one reason for having under or over coverage for data 

actually sampled from symmetric distributions. 

 Another look at the simulation 

I also look at the results from a practical point of view, when it is often the case that a 

researcher has data with unknown underlying distribution and he/she makes assumptions about 

the distribution in order to proceed with inferences. In this case, robustness was investigated by 

fixing the distribution from which the data are sampled and letting the model used to construct 

the data vary, representing what happens when the experimenter makes the correct assumptions 

and makes the wrong assumptions. I summarized coverage rates and interval lengths when the 

data are actually sampled from the normal, Cauchy and extreme value distributions and found 

out that if data actually come from the extreme value and Cauchy distributions, for large and 

moderate sample sizes, both normal or extreme value assumptions work well in terms of 

coverage rate of PI. This robustness does not hold for small sample sizes. If data are actually 

sampled the the from normal distribution, the PI’s obtained using the extreme value model for 

small sample size are very similar to those obtained using the normal model. However, the 

median width of a prediction interval is smaller with the  correct assumptions, especially for the 

large sample size. 

 



24 

 

 Conclusion 

In sum, my report consists of a simulation study of the robustness of prediction intervals 

with respect to departures from the assumed distribution. I used the representative families of 

location-scale distributions. I use the sample mean as an estimate of location and sample 

standard deviation as a scale estimate. To study robustness I evaluated and compared coverage 

rates, mean and median lengths of PIs for cases when the distribution assumption is correct 

versus when it is not. 

It was shown through the simulation that the assumption of normality is quite robust to 

the departures from normality. The normal model works well in terms of the coverage rate for 

normal data, extreme value data and Cauchy data with large sample size. The Cauchy 

assumption shows lack of robustness to the departures of assumed model due to high probability 

of extreme values and unstable mean and standard deviation. The extreme value assumption 

shows a lack of robustness to the departures of assumed model due to asymmetry of the 

distribution.  

As for a future work, one may consider to study the robustness of prediction intervals 

with other measurements of center and spread of the distributions. For example, the median and 

interquartile range could be used instead of the mean and standard deviation in forming K.  

Those measurements will be more stable with respect of extreme observations and will possibly 

give different results regarding the robustness of PI’s. 
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Appendix A - Additional Tables and Figures 

Table A.1 Results Regarding Sensitivity of Critical Values of K statistics from Cauchy 

Distribution 

n=10       n=200 

M (time) Critical Values  M (time) Critical Values 

1000 -5.061481  4.238534 1000 -1.3419367 1.1386466 

3000 -4.020733 4.036417  3000 -0.9979260 0.8087007 

5000 -5.666179 4.151743  5000 -0.8353134 0.9874517 

7000 -4.766980 4.697485  7000 -0.9189608 0.9582606 

9000 -3.814126 3.898761 9000 -0.9439111 0.8825460 

11000 -4.204481 4.272888  11000 -0.8234814 0.8487343 

13000 -4.246926 4.474927  13000 -0.9620640 0.9993206 

15000 -4.251938 4.100810  15000 -0.8731867 0.9423853 

17000 -4.376495 4.333627  17000 -0.8751119 0.9627143 

19000 -4.148104 4.286055  19000 -0.8462095 0.9222872 

21000 -4.468018 4.131385  21000 -0.9065414 0.8930322 

23000 -4.505702 4.117492  23000 -0.8828203 0.9551173 

25000 -4.323016 4.151127  25000 -0.8707986 0.8970807 

30000 -4.390403 4.219974  30000 -0.8907397  0.8631322 

35000 -4.507743 4.151119  35000(8 sec) -0.9160072  0.9291775 

50000(5 sec) -4.439949 4.595045  50000(16 sec) -0.9220668  0.9075826 

100000(10 sec) -4.262407 4.324377  100000 (96 sec) -0.8946382  0.8729634 

200000(20 sec) -4.333312 4.316925  200000(7min 12 

sec) 
-0.9116870  0.9340537 

500000(40 sec) -4.415021 4.339141  500000 - 
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Figure A.1 Estimated Coverage Rates and 5% Confidence Intervals. Cauchy Assumptions 
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Appendix B - R Code for the Simulation Study  

n=10 #sample size 

n 

M=100000 #number of iteration for generating each pair of critical values 

M 

L=1000 #number of PI being constructed 

L 

library(evd) 

 

#_____________________________________________________________________________ 

#Transperant Histohram 

plotOverlappingHist <- function(a, b, colors=c("yellow","green","greenyellow"), 

                                breaks=NULL, xlim=NULL, ylim=NULL){ 

  ahist=NULL 

  bhist=NULL 

   if(!(is.null(breaks))){ 

    ahist=hist(a,breaks=breaks,plot=F) 

    bhist=hist(b,breaks=breaks,plot=F) 

  } else { 

    ahist=hist(a,plot=F) 

    bhist=hist(b,plot=F) 

  

    dist = ahist$breaks[2]-ahist$breaks[1] 

    breaks = seq(min(ahist$breaks,bhist$breaks),max(ahist$breaks,bhist$breaks),dist) 

  

    ahist=hist(a,breaks=breaks,plot=F) 

    bhist=hist(b,breaks=breaks,plot=F) 

  } 

  

  if(is.null(xlim)){ 

    xlim = c(min(ahist$breaks,bhist$breaks),max(ahist$breaks,bhist$breaks)) 

  } 

  

  if(is.null(ylim)){ 

    ylim = c(0,max(ahist$counts,bhist$counts)) 

  } 

  

  overlap = ahist 

  for(i in 1:length(overlap$counts)){ 

    if(ahist$counts[i] > 0 & bhist$counts[i] > 0){ 

      overlap$counts[i] = min(ahist$counts[i],bhist$counts[i]) 

    } else { 

      overlap$counts[i] = 0 

    } 

  } 
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  plot(ahist,  xlim=xlim, ylim=ylim, col=colors[1], border="yellow3", main=" ", xlab=" ") 

  plot(bhist,  xlim=xlim, ylim=ylim, col=colors[2], add=T, border="green3") 

  plot(overlap, xlim=xlim, ylim=ylim, col=colors[3], add=T, border="transparent" ) 

} 

 

 

 

#_____________________________________________________________________________ 

#Standard Normal Assumption 

 

#Estimate critical values for PI by simulation 

Xbar<-1:M 

S<-1:M 

T<-1:M 

for (i in 1:M) { 

Z=rnorm(n+1, 0,1 ) 

Xbar[i]=mean(Z[1:n]) 

S[i]=sd(Z[1:n]) 

T[i]=(Z[n+1]-Xbar[i])/S[i] 

} 

 

# for n=5 

lq=-2.78 

uq=2.78 

 

# for n=10 

lq=-2.26 

uq=2.26 

 

# for n=50 

lq=-2.01 

uq=2.01 

 

# for n=200 

lq=-1.97 

uq=1.97 

 

q=c(lq,uq) 

q 

 

 

 

#Generate new data and construct PI 

LL<-1:L 

UL<-1:L 
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A<-1:L 

LLc<-1:L 

ULc<-1:L 

B<-1:L 

LLe<-1:L 

ULe<-1:L 

D<-1:L 

 

set.seed(2000) 

 

for (k in 1:L) { 

 

# Data coming from Normal Distr 

Zm=rnorm(n+1, 0, 1) 

Xbarm=mean(Zm[1:n]) 

Sm=sd(Zm[1:n]) 

LL[k]=Xbarm+lq*Sm*sqrt((n+1)/n) 

UL[k]=Xbarm+uq*Sm*sqrt((n+1)/n) 

#Estimate if Y is inside the PI 

if (Zm[n+1]<=UL[k]&&Zm[n+1]>=LL[k]) A[k]=1 else A[k]=0 

 

# Data coming from Caushy Distr 

C=rcauchy(n+1, location = 0, scale = 1.39/2) 

Xbarc=mean(C[1:n]) 

Sc=sd(C[1:n]) 

LLc[k]=Xbarc+lq*Sc*sqrt((n+1)/n) 

ULc[k]=Xbarc+uq*Sc*sqrt((n+1)/n) 

#Estimate if Y is inside the PI 

if (C[n+1]<=ULc[k]&&C[n+1]>=LLc[k]) B[k]=1 else B[k]=0 

 

# Data coming from Extreme Value Distr 

E=rgev(n+1, loc=0, scale=(1.35/-log(log(0.75)/log(0.25))), shape=0) 

Xbare=mean(E[1:n]) 

Se=sd(E[1:n]) 

LLe[k]=Xbare+lq*Se*sqrt((n+1)/n) 

ULe[k]=Xbare+uq*Se*sqrt((n+1)/n) 

#Estimate if Y is inside the PI 

if (E[n+1]<=ULe[k]&&E[n+1]>=LLe[k]) D[k]=1 else D[k]=0 

 

} 

 

 

# Simulated mean/median widths of PI 

# for data coming from Normal Distr 

Widthn=UL-LL 

# for data coming from Caushy Distr 
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WidthC=ULc-LLc 

# for data coming from Extreme Value Distr 

WidthE=ULe-LLe 

 

# Simulated coverage rate 

# for data coming from Normal Distr 

CRn=sum(A)/L 

# for data coming from Caushy Distr 

CRc=sum(B)/L 

# for data coming from Extreme Value Distr 

CRe=sum(D)/L 

 

#Print the results for Normal Assumption 

c(mean(Widthn),median(Widthn),CRn) 

c(mean(WidthC),median(WidthC),CRc) 

c(mean(WidthE),median(WidthE),CRe) 

 

 

 

 

#____________________________________________________________________________ 

###Estimate critical values with Caushy DISTR 

 

#Sensitiviity of Critical Values of T-Statistics 

 

M<-1:13 

M[1]=1000 

M 

q2=matrix(ncol=2, nrow=13) 

for (s in 1:13) { 

Xbar2<-1:M[s] 

S2<-1:M[s] 

T2<-1:M[s] 

for (i in 1:M[s]) { 

Z2=rcauchy(n+1, location = 0, scale = 1.39/2) 

Xbar2[i]=mean(Z2[1:n]) 

S2[i]=sd(Z2[1:n]) 

T2[i]=(Z2[n+1]-Xbar2[i])/S2[i] 

} 

win.graph() 

par(mfrow=c(1,2)) 

hist(Z2, main=expression("Simulated Cauchy Distribution"), xlab="X", font.main=1, cex=0.5) 

abline(v=c(quantile(Z2, 0.025), quantile(Z2, 0.975)), lty=4) 

lq2=quantile(T2, 0.025) 

uq2=quantile(T2, 0.975) 

q2[s,1]=lq2 
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q2[s,2]=uq2 

hist(T2, main=c("Simulated T-statistic \n for Cauchy Distribution"), xlab="T", font.main=1, 

cex=0.5) 

abline(v=q2[s,], lty=4) 

M[s+1]=M[s]+2000 

M[s+1] 

} 

cbind(M,q2) 

 

#Estimate critical values for PI 

set.seed(2010) 

Xbar2<-1:M 

S2<-1:M 

T2<-1:M 

for (i in 1:M) { 

Z2=rcauchy(n+1, location = 0, scale = 1.39/2) 

Xbar2[i]=mean(Z2[1:n]) 

S2[i]=sd(Z2[1:n]) 

T2[i]=(Z2[n+1]-Xbar2[i])/S2[i] 

} 

 

lq2=quantile(T2, 0.025) 

uq2=quantile(T2, 0.975) 

q2=c(lq2,uq2) 

 

#Histogram of S 

lq22=quantile(S2, 0) 

uq22=quantile(S2, 0.95) 

q22=c(lq22,uq22) 

S22<-S2[S2<=uq22] 

 

win.graph() 

par(mfrow=c(2,1)) 

par(mar=c(4,4,2,1)) 

#dev.set(2) 

hist(S22, breaks=100,  main=" n=200 ", xlab="S", ylab="Relative Frequency", xlim=q22, 

col="greenyellow", freq=FALSE, font.main=2, col.main="red", cex.axis=0.8, cex.lab=0.9) 

abline(v=20, lty=2, col="red", lwd=2) 

text(20, 0.04, "S=20", pos=4, col="red", srt=90, cex=0.8) 

 

 

#Comparing K-statistic Based on Cauchy Distribution to T-statistic under normality 

T22<-T2[T2>=-7&T2<=7] #Cut off long tails 

set.seed(2011) 

t=rt(M,df=n-1) 

par(mfrow=c(1,2)) 
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hist(t, breaks=100, xlim=c(quantile(t, 0.025), quantile(t, 0.975)), ylim=c(0, 33000), 

main=c("Simulated K-statistic for Cauchy Distribution vs. t-distribution"), xlab="K", 

font.main=1, cex=0.5, col="green") 

abline(v=c(quantile(t, 0.025), quantile(t, 0.975)), lty=4, col="green") 

hist(T22, add=T, col="yellow" ) 

abline(v=q2, lty=4, col="goldenrod3") 

q2 

c(quantile(t, 0.025), quantile(t, 0.975)) 

 

#Another way to make a picture 

T22<-T2[T2>=-7&T2<=7] #Cut off long tails 

set.seed(2011) 

t=rt(M,df=n-1) 

Scaled_t=t*(sqrt((n+1)/n)) 

Scaled_t2<-Scaled_t[Scaled_t>=-10&Scaled_t<=10] #Cut off long tails 

win.graph() 

#dev.set(2) 

 

par(fig=c(0,0.44,0,1), new=F) 

#par(fig=c(0.49,0.93,0,1), new=T) 

par(mar=c(2,4,4,0)) 

plotOverlappingHist(Scaled_t,T22) 

title(main="Simulated K-statistic for Cauchy Distribution  

vs. Scaled t-distribution", xlab="K", font.main=1, cex=0.5) 

abline(v=c(quantile(Scaled_t, 0.025), quantile(Scaled_t, 0.975)), lty=2, col="gold4",lwd=2) 

abline(v=q2, lty=4, col="green", lwd=2) 

 

par(fig=c(0.83,1,0,1), new=T) 

par(mar=c(0,0,0,0)) 

plot(0:1, 0:1,type="n", axes=FALSE, ann=FALSE) 

legend(x=0, y=0.5,c("Scaled t", "K based on Cauchy"), cex=0.75, 

fill=c("yellow","green"),bty="n" ) 

legend(x=0, y=0.45,c("Quantiles for scaled t", "Quantiles for K 

 based on Cauchy"), lty=c(2,4), cex=0.75, col=c("gold4", "green"), bty="n" , lwd=2) 

 

 

 

#Another way to make a picture for Extreme K vs. Cauchy K 

set.seed(2001) 

for (i in 1:M) { 

Z3=rgev(n+1, loc=0, scale=(1.35/-log(log(0.75)/log(0.25))),  shape=0) 

Xbar3[i]=mean(Z3[1:n]) 

S3[i]=sd(Z3[1:n]) 

T3[i]=(Z3[n+1]-Xbar3[i])/S3[i] 

} 

lq3=quantile(T3, 0.025) 
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uq3=quantile(T3, 0.975) 

q3=c(lq3,uq3) 

 

T33<-T3[T3>=-7&T3<=7] #Cut off long tails 

T22<-T2[T2>=-7&T2<=7] #Cut off long tails 

 

win.graph() 

#dev.set(2) 

n 

par(fig=c(0,0.44,0,1), new=F) 

#par(fig=c(0.49,0.93,0,1), new=T) 

par(mar=c(2,4,4,0)) 

plotOverlappingHist(T33,T22) 

title(main="Simulated K-statistic for Cauchy Distribution  

vs. K-statistic for Extreme Value Distribution", xlab="K", font.main=1, cex=0.5) 

abline(v=q3, lty=2, col="gold4",lwd=2) 

abline(v=q2, lty=4, col="green", lwd=2) 

 

par(fig=c(0.83,1,0,1), new=T) 

par(mar=c(0,0,0,0)) 

plot(0:1, 0:1,type="n", axes=FALSE, ann=FALSE) 

legend(x=0, y=0.5,c("K based on Extreme Value", "K based on Cauchy"), cex=0.75, 

fill=c("yellow","green"),bty="n" ) 

legend(x=0, y=0.45,c("Quantiles for K 

based on Extreme Value", "Quantiles for K 

 based on Cauchy"), lty=c(2,4), cex=0.75, col=c("gold4", "green"), bty="n" , lwd=2) 

 

 

 

 

 

#Genetate new data and construct PI 

LL2<-1:L 

UL2<-1:L 

A2<-1:L 

LLc2<-1:L 

ULc2<-1:L 

B2<-1:L 

LLe2<-1:L 

ULe2<-1:L 

D2<-1:L 

 

for (k in 1:L) { 

 

# Data coming from Normal Distr 

Zm=rnorm(n+1, 0, 1) 
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Xbarm=mean(Zm[1:n]) 

Sm=sd(Zm[1:n]) 

LL2[k]=Xbarm+lq2*Sm 

UL2[k]=Xbarm+uq2*Sm 

#Estimate if Y is inside the PI 

if (Zm[n+1]<=UL2[k]&&Zm[n+1]>=LL2[k]) A2[k]=1 else A2[k]=0 

A2[k] 

 

# Data coming from Caushy Distr 

C=rcauchy(n+1, location = 0, scale = 1.39/2) 

Xbarc=mean(C[1:n]) 

Sc=sd(C[1:n]) 

LLc2[k]=Xbarc+lq2*Sc 

ULc2[k]=Xbarc+uq2*Sc 

#Estimate if Y is inside the PI 

if (C[n+1]<=ULc2[k]&&C[n+1]>=LLc2[k]) B2[k]=1 else B2[k]=0 

 

# Data coming from Extreme Value Distr 

E=rgev(n+1, loc=0, scale=(1.35/-log(log(0.75)/log(0.25))), shape=0) 

Xbare=mean(E[1:n]) 

Se=sd(E[1:n]) 

LLe2[k]=Xbare+lq2*Se 

ULe2[k]=Xbare+uq2*Se 

#Estimate if Y is inside the PI 

if (E[n+1]<=ULe2[k]&&E[n+1]>=LLe2[k]) D2[k]=1 else D2[k]=0 

 

} 

 

 

# Simulated critical values 

lq2 

uq2 

 

# Simulated PI 

# for data coming from Normal Distr 

LL2 

UL2 

A2 

# for data coming from Caushy Distr 

LLc2 

ULc2 

B2 

# for data coming from Extreme Value Distr 

LLe2 

ULe2 

D2 
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# Simulated mean/median widths of PI 

# for data coming from Normal Distr 

Widthn2=UL2-LL2 

mean(Widthn2) 

median (Widthn2) 

# for data coming from Caushy Distr 

WidthC2=ULc2-LLc2 

mean(WidthC2) 

median(WidthC2) 

# for data coming from Extreme Value Distr 

WidthE2=ULe2-LLe2 

mean(WidthE2) 

median(WidthE2) 

 

# Simulated coverage rate 

# for data coming from Normal Distr 

CRn2=sum(A2)/L 

CRn2 

 

# for data coming from Caushy Distr 

CRc2=sum(B2)/L 

CRc2 

# for data coming from Extreme Value Distr 

CRe2=sum(D2)/L 

CRe2 

 

c(mean(Widthn2),median(Widthn2),CRn2) 

c(mean(WidthC2),median(WidthC2),CRc2) 

c(mean(WidthE2),median(WidthE2),CRe2) 

 

#--------------------------------------------------------------------------------------- 

###Estimate critical values with Extreme Value DISTR 

n=10 

#Estimate critical values for PI 

Xbar3<-1:M 

S3<-1:M 

T3<-1:M 

 

set.seed(2001) 

for (i in 1:M) { 

Z3=rgev(n+1, loc=0, scale=(1.35/-log(log(0.75)/log(0.25))),  shape=0) 

Xbar3[i]=mean(Z3[1:n]) 

S3[i]=sd(Z3[1:n]) 

T3[i]=(Z3[n+1]-Xbar3[i])/S3[i] 

} 
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lq3=quantile(T3, 0.025) 

uq3=quantile(T3, 0.975) 

q3=c(lq3,uq3) 

q3 

 

# Compare Simulated T-statistic for Extreme Value Distribution vs. t-distribution 

T33<-T3[T3>=-3&T3<=3] #Cut off long tails 

set.seed(2011) 

t=rt(M,df=n-1) 

Scaled_t=t*(sqrt((n+1)/n)) 

Scaled_t<-Scaled_t[Scaled_t>=-4&Scaled_t<=4] #Cut off long tails 

win.graph() 

#dev.set(2) 

 

par(fig=c(0,0.44,0,1), new=T) 

#par(fig=c(0.49,0.93,0,1), new=F) 

par(mar=c(2,4,4,0)) 

plotOverlappingHist(Scaled_t,T33) 

title(main="Simulated K-statistic for Extreme Value Distribution  

vs. Scaled t-distribution", xlab="K", font.main=1, cex=0.5) 

abline(v=c(quantile(Scaled_t, 0.025), quantile(Scaled_t, 0.975)), lty=2, col="gold4",lwd=2) 

abline(v=q3, lty=4, col="green", lwd=2) 

 

par(fig=c(0.83,1,0,1), new=T) 

par(mar=c(0,0,0,0)) 

plot(0:1, 0:1,type="n", axes=FALSE, ann=FALSE) 

legend(x=0, y=0.5,c("Scaled t", "K based on Extreme Value"), cex=0.75, 

fill=c("yellow","green"),bty="n" ) 

legend(x=0, y=0.45,c("Quantiles for scaled t", "Quantiles for K 

 based on Extreme Value"), lty=c(2,4), cex=0.75, col=c("gold4", "green"), bty="n" , lwd=2) 

 

 

 

 

#Genetate new data and construct PI 

LL3<-1:L 

UL3<-1:L 

A3<-1:L 

LLc3<-1:L 

ULc3<-1:L 

B3<-1:L 

LLe3<-1:L 

ULe3<-1:L 

D3<-1:L 
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set.seed(2003) 

for (k in 1:L) { 

 

# Data coming from Normal Distr 

Zm=rnorm(n+1, 0, 1) 

Xbarm=mean(Zm[1:n]) 

Sm=sd(Zm[1:n]) 

LL3[k]=Xbarm+lq3*Sm 

UL3[k]=Xbarm+uq3*Sm 

#Estimate if Y is inside the PI 

if (Zm[n+1]<=UL3[k]&&Zm[n+1]>=LL3[k]) A3[k]=1 else A3[k]=0 

A3[k] 

 

# Data coming from Caushy Distr 

C=rcauchy(n+1, location = 0, scale = 1.35/2) 

Xbarc=mean(C[1:n]) 

Sc=sd(C[1:n]) 

LLc3[k]=Xbarc+lq3*Sc 

ULc3[k]=Xbarc+uq3*Sc 

#Estimate if Y is inside the PI 

if (C[n+1]<=ULc3[k]&&C[n+1]>=LLc3[k]) B3[k]=1 else B3[k]=0 

 

# Data coming from Extreme Value Distr 

E=rgev(n+1, loc=0, scale=(1.35/-log(log(0.75)/log(0.25))), shape=0) 

Xbare=mean(E[1:n]) 

Se=sd(E[1:n]) 

LLe3[k]=Xbare+lq3*Se 

ULe3[k]=Xbare+uq3*Se 

#Estimate if Y is inside the PI 

if (E[n+1]<=ULe3[k]&&E[n+1]>=LLe3[k]) D3[k]=1 else D3[k]=0 

 

 

} 

 

# Simulated critical values 

lq3 

uq3 

 

# Simulated PI 

# for data coming from Normal Distr 

LL3[1:5] 

UL3[1:5] 

A3[1:5] 

# for data coming from Caushy Distr 

LLc3[1:5] 

ULc3[1:5] 
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B3[1:5] 

# for data coming from Extreme Value Distr 

LLe3[1:5] 

ULe3[1:5] 

D3[1:5] 

 

# Simulated mean/median widths of PI 

# for data coming from Normal Distr 

Widthn3=UL3-LL3 

mean(Widthn3) 

median (Widthn3) 

# for data coming from Caushy Distr 

WidthC3=ULc3-LLc3 

mean(WidthC3) 

median(WidthC3) 

# for data coming from Extreme Value Distr 

WidthE3=ULe3-LLe3 

mean(WidthE3) 

median(WidthE3) 

 

# Simulated coverage rate 

# for data coming from Normal Distr 

CRn3=sum(A3)/L 

CRn3 

# for data coming from Caushy Distr 

CRc3=sum(B3)/L 

CRc3 

# for data coming from Extreme Value Distr 

CRe3=sum(D3)/L 

CRe3 

 

c(mean(Widthn3),median(Widthn3),CRn3) 

c(mean(WidthC3),median(WidthC3),CRc3) 

c(mean(WidthE3),median(WidthE3),CRe3) 

 

 

 

#_____________________________________________________________________________ 

#RESULTS 

#Assumptoins of Normal Distr 

# Simulated mean/median widths/CoverageRate of PI 

c1=c(mean(Widthn),median(Widthn),CRn) 

c2=c(mean(WidthC),median(WidthC),CRc) 

c3=c(mean(WidthE),median(WidthE),CRe) 

 

#Assumptoins of Caushy Distr 
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# Simulated critical values 

# Simulated mean/median widths/CoverageRate of PI 

c4=c(mean(Widthn2),median(Widthn2),CRn2) 

c5=c(mean(WidthC2),median(WidthC2),CRc2) 

c6=c(mean(WidthE2),median(WidthE2),CRe2) 

 

#Assumptoins of Extreme Value Distr 

# Simulated critical values 

# Simulated mean/median widths/CoverageRate of PI 

c7=c(mean(Widthn3),median(Widthn3),CRn3) 

c8=c(mean(WidthC3),median(WidthC3),CRc3) 

c9=c(mean(WidthE3),median(WidthE3),CRe3) 

 

 

#____________________________________________________________________________ 

#Plotting Coverage rate with 95%CI 

#For Cauchy Assumption 

library(gplots) 

win.graph() 

par(mfrow=c(3,1)) 

ll=seq(1:4) 

ul=seq(1:4) 

 

#For Normal Data 

CovRate=c(0.9960,.9980, 0.9080, 0.6160) 

CovRate1=CovRate*1000 

for (i in 1:4) { 

ci=prop.test(x=CovRate1[i], n=L) 

ll[i]=ci$conf.int[1] 

ul[i]=ci$conf.int[2] 

} 

l=c(1, 1.5, 2, 2.5) 

#win.graph() 

par(mar=c(4,4,2,1)) 

plotCI(l,CovRate, li=ll, ui=ul, ylim=c(.58,1), xlim=c(1,2.555), main="For Normal Data", xlab=" 

", ylab="Actual Coverage Rate", xaxt="n", 

 cex.main=1.3, cex.axis=1, cex.lab=1, pch=21, pt.bg="green", col="blue", font.lab=2,gap=0) 

axis(side=1, at=l, labels=c("5", "10", "50", "200") ) 

mtext("Sample sizes", side=1, cex=0.8, line=2) 

abline(h=0.95, col="red", lwd=2) 

text(2.3, 0.96,"Nominal Coverage Rate=0.95", col="red", cex=1) 

text(l,CovRate, c(0.996,.998, 0.908, 0.616), pos=4, cex=0.8) 

 

 

#For Cauchy Data 

CovRate=c(0.9520,0.9480, 0.9480, 0.9400) 
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CovRate1=CovRate*1000 

for (i in 1:4) { 

ci=prop.test(x=CovRate1[i], n=L) 

ll[i]=ci$conf.int[1] 

ul[i]=ci$conf.int[2] 

} 

l=c(1, 1.5, 2, 2.5) 

#win.graph() 

par(mar=c(4,4,2,1)) 

plotCI(l,CovRate, li=ll, ui=ul, ylim=c(.90,0.98), xlim=c(1,2.555), main="For Cauchy Data", 

xlab=" ", ylab="Actual Coverage Rate", xaxt="n", 

 cex.main=1.3, cex.axis=1, cex.lab=1, pch=21, pt.bg="green", col="blue", font.lab=2, gap=0) 

axis(side=1, at=l, labels=c("5", "10", "50", "200") ) 

mtext("Sample sizes", side=1, cex=0.8, line=2) 

abline(h=0.95, col="red", lwd=2) 

text(2.3, 0.953,"Nominal Coverage Rate=0.95", col="red", cex=1) 

text(l,CovRate, c(0.952,0.948, 0.948, 0.940), pos=4, cex=0.8) 

 

 

#For Extreme Value Data 

CovRate=c(0.9910,0.99000, 0.9190, 0.6450) 

CovRate1=CovRate*1000 

for (i in 1:4) { 

ci=prop.test(x=CovRate1[i], n=L) 

ll[i]=ci$conf.int[1] 

ul[i]=ci$conf.int[2] 

} 

l=c(1, 1.5, 2, 2.5) 

#win.graph() 

par(mar=c(4,4,2,1)) 

plotCI(l,CovRate, li=ll, ui=ul, ylim=c(.58,1), xlim=c(1,2.555), main="For Extreme Value Data", 

ylab="Actual Coverage Rate", xlab=" ", xaxt="n", 

 cex.main=1.3, cex.axis=1, cex.lab=1, pch=21, pt.bg="green", col="blue", font.lab=2, gap=0) 

axis(side=1, at=l, labels=c("5", "10", "50", "200")) 

mtext("Sample sizes", side=1, cex=0.8, line=2) 

abline(h=0.95, col="red", lwd=2) 

text(2.3, 0.96,"Nominal Coverage Rate=0.95", col="red", cex=1) 

text(l,CovRate, c(0.9910,0.99000, 0.9190, 0.6450), pos=4, cex=0.8) 

 


