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ABSTRACT	21	

	22	

Retreating	glaciers	and	the	periglacial	areas	they	vacate	for	organismal	colonization	23	

produce	a	harsh	environment	of	extreme	radiation,	nutrient	limitations,	and	temperature	24	

oscillations.	They	provide	a	model	system	for	studying	mechanisms	that	drive	25	

establishment	and	early	assembly	of	communities.	Here,	we	synthesize	more	than	twenty	26	

years	of	research	at	the	Lyman	Glacier	forefront	in	the	North	Cascades	Mountains,	27	

comparing	the	results	and	conclusions	for	plant	and	microbial	communities.	Compared	to	28	

plant	communities,	the	trajectories	and	processes	of	microbial	community	development	29	

are	difficult	to	deduce.	However,	the	combination	of	high	throughput	sequencing,	more	30	

revealing	experimental	designs,	and	analyses	of	phylogenetic	community	provide	insights	31	

into	mechanisms	that	shape	early	microbial	communities.	While	the	inoculum	is	likely	32	

randomly	drawn	from	regional	pools	and	accumulates	over	time,	our	data	provide	no	33	

support	for	increases	in	richness	over	time	since	deglaciation	as	is	commonly	observed	for	34	

plant	communities.	Re‐analyses	of	existing	datasets	suggest	that	microbial,	particularly	35	

fungal,	communities	are	insensitive	to	time	since	substrate	exposure	from	underneath	the	36	

retreating	glacier	but	responsive	to	plant	establishment	both	in	biomass	and	community	37	

composition.	Further	research	on	functional	aspects,	organismal	activity,	or	ecosystem	38	

services	in	early	successional	environments	will	provide	deeper	appreciation	for	the	39	

dynamics	of	these	communities.		40	

	41	

42	



Introduction	43	

	44	

Many	alpine	glaciers	reached	their	glacial	maximum	during	the	Little	Ice	Age	in	the	mid‐45	

19th	century	(Egli	et	al.	2001)	and	have	been	retreating	over	the	past	century	and	a	half	at	46	

increasing	rates	(Dyurgerov	&	Meier	2000,	Hodge	et	al.	1998,	Pelto	2006).	Glacial	retreat	47	

exposes	a	mineral	substrate	void	of	organic	legacies	and	often	deficient	in	mineral	nitrogen	48	

(Matthews	1992,	Strauss	et	al.	2009,	Tscherko	et	al.	2003),	factors	that	globally	limit	49	

ecosystem	productivity	(Vitousek	et	al.	1997).	These	nutrient	limitations	are	often	50	

combined	with	extreme	fluctuations	of	daily	temperatures,	limited	barriers	against	wind	51	

damage,	poor	water	retention,	and	high	irradiation,	all	of	which	may	limit	plant	52	

establishment	and	survival		(Jones	&	del	Moral	2009,	Jumpponen	et	al.	1999b,	Lichter	2000,	53	

Stocklin	&	Baumler	1996).	Additionally,	glaciers	and	their	forefronts	most	often	occur	at	54	

high	latitudes	and	altitudes	characterized	by	short	growing	seasons	and	substantial	snow	55	

cover	during	the	winters.	Together,	these	abiotic	stressors	make	the	primary	successional	56	

forefronts	challenging	environments	but	also	provide	unique	opportunities	to	study	early	57	

assembly	of	communities	(Cázares	et	al.	2005).		58	

	59	

Many	mechanisms	controlling	primary	succession	in	plant	communities	have	been	recently	60	

clarified	(Pickett	et	al.	2009,	Walker	&	del	Moral	2003)	and	older	theories	(Clements	1916,	61	

Connell	&	Slatyer	1977)	reevaluated.	Some	of	these	insights	have	shifted	views	on	62	

community	assembly	processes	in	terrestrial	ecosystems.	For	example,	early	successional	63	

community	development	seems	not	to	depend	on	deterministic	colonization	by	pioneering	64	

species	but	rather	combines	stochastic	dispersal	and	establishment	controls	(del	Moral	65	

2009,	Fastie	1995)	that	later	are	amended	by	deterministic	processes	such	as	biotic	66	

competitive	and	facilitative	controls	(del	Moral	2009).		67	

	68	

Long‐term	studies	in	glacier	forefronts	are	rare	because	of	their	remote	locations	and	short	69	

accessible	seasons	dictated	by	high	altitudes	and	latitudes.	Instead,	glacier	forefronts	have	70	



often	been	subjected	to	a	chronosequence	approach	(space‐for‐time	substitution),	in	which	71	

distance	from	the	glacier	terminus	is	considered	as	a	proxy	for	time	since	exposure	72	

(Cázares	et	al.	2005,	Pickett	1989,	Walker	et	al.	2010).	While	suffering	from	potential	73	

correlations	between	position	in	the	chronosequence	and	substrate	chemistry,	fluctuations	74	

in	weather	or	climatic	conditions,	distance	to	propagule	sources,	or	other	environmental	75	

parameters	(Fastie	1995,	Walker	et	al.	2010),	the	forefronts	benefit	from	providing	a	single	76	

location	wherein	substrates	of	different	ages	can	be	observed	in	a	relatively	homogenous	77	

environment	(Cázares	et	al.	2005,	Jumpponen	et	al.	1998,	Matthews	1992,	Raffl	et	al.	2006).		78	

	79	

In	this	contribution,	we	reflect	on	and	synthesize	more	than	twenty	years	of	research	at	a	80	

glacier	forefront	in	Washington	State’s	North	Cascades	Mountains,	which	contain	more	81	

than	700	glaciers	(Post	et	al.	1971).	Similarly	to	glaciers	globally	(Dyurgerov	&	Meier	2000,	82	

Hodge	et	al.	1998),	glaciers	in	the	North	Cascades	have	been	receding	in	recent	decades	83	

(Pelto	2006,	2011).	To	optimize	our	choice	for	a	forefront	environment,	we	explored	84	

several	glaciers	to	find	one	that	would	best	serve	as	the	long‐term	study	site.	Our	criteria	85	

included	(1)	reasonable	accessibility,	(2)	a	forefront	with	relatively	little	elevational	86	

change,	(3)	a	subalpine	habitat	to	allow	establishment	of	ectomycorrhizal	(EcM),	ericoid	87	

mycorrhizal	(ErM)	and	arbuscular	mycorrhizal	(AM)	hosts	and	fungi	as	well	as	typically	88	

nonmycorrhizal	plants,	(4)	a	north‐south	orientation	to	minimize	diurnal	shade	effects	89	

along	the	length	of	the	forefront,	and	(5)	accessibility	for	potential	animal	vectors	of	90	

mycorrhizal	spores.	These	criteria	also	served	well	for	microbial	and	molecular	studies.	91	

One	forefront	approached	near	ideal	in	all	criteria:	Lyman	Glacier,	in	the	Glacier	Peak	92	

Wilderness	Area,	Wenatchee	National	Forest	(Freeman	1941).	The	glacier	and	its	recession	93	

had	been	photographed	off	and	on	since	the	late	19th	Century	(Freeman	1941)	and	later	by	94	

periodic	aerial	photography	by	the	U.S.	Forest	Service,	including	new	color	aerial	95	

photographs	taken	specifically	for	our	use.	These	resources	allowed	a	reasonable	96	

description	of	the	glacier’s	recession	and	chronosequence	approaches	to	explore	97	

successional	phenomena	(Jumpponen	et	al.	1998).	98	

	99	



Many	of	our	studies	test	hypotheses	on	establishment	and	succession	of	communities.	We	100	

have	focused	on	the	role	of	mycorrhizal	fungi	in	primary	plant	succession	and	the	101	

subsequent	secondary	succession.	Early	studies	by	Reeves	et	al.	(1979)	showed	that	in	a	102	

desert	ecosystem	with	a	severely	disturbed,	secondary	successional	habitat,	the	early	plant	103	

invaders	were	nonmycorrhizal	species,	whereas	plants	that	dominated	the	adjacent	104	

nondisturbed	system	mostly	formed	associations	with	AM	fungi.	Reeves	et	al.	(1979)	also	105	

reviewed	literature	on	primary	succession	of	volcanic	islands	that	showed	early	plant	106	

communities	to	be	nonmycorrhizal.	They	hypothesized	that	the	early	nonmycorrhizal	107	

invaders	were	poor	competitors	and	therefore	rapidly	replaced	when	mycorrhizal	hosts	108	

could	establish	after	AM	inoculum	had	entered	the	disturbed	site.	These	AM	hosts	were	109	

argued	to	be	better	competitors	and	produced	additional	AM	inoculum	in	the	soil	to	enable	110	

other	mycorrhizal	plants	to	establish.	Allen	et	al.	(2005)	reached	similar	conclusions	on	111	

primary	successional	tephra	resulting	from	the	Mount	St.	Helens	eruption.	One	of	our	early	112	

driving	questions	was	whether	or	not	a	glacier	forefront	would	present	similar	primary	113	

and	secondary	succession.	114	

	115	

While	glacier	systems	differ	in	numerous	characteristics	and	the	conclusions	may	be	116	

context	dependent,	many	general	trends	and	patterns	have	proved	consistent	(Orwin	et	al.	117	

2006,	Tscherko	et	al.	2003).	Here,	we	use	Lyman	Glacier	forefront	and	our	research	118	

spanning	more	than	twenty	years	as	a	model.	We	first	briefly	review	patterns	of	plant	119	

community	establishment	and	trajectories,	then	compare	plant	and	microbial	communities.	120	

Much	of	our	earlier	work	focused	on	mycorrhizal	fungus	communities;	more	recent	studies	121	

broadly	emphasize	bacterial	and	fungal	communities.		Finally,	from	these	cross‐domain	122	

comparisons,	we	identify	critical	areas	that	have	received	little	attention	and	propose	123	

approaches	to	address	them	in	fungal	and/or	microbial	systems.		124	

	125	

Community	assembly	and	ecological	filtering	126	

	127	



As	a	general	framework,	we	rely	on	assembly	rules	used	in	community	ecology	(Cole	1983,	128	

Hunt	1991).	This	community	assembly	model	integrates	traits	and	life	histories	and	their	129	

contribution	to	organismal	environmental	tolerances	(Jumpponen	&	Egerton‐Warburton	130	

2005).	Factors	determining	successful	establishment	are	considered	as	abiotic	and	biotic	131	

filters	that	select	community	components	from	local,	regional,	and	ecologically	suited	132	

species	pools	(Booth	&	Swanton	2002,	Weiher	&	Keddy	1995,	Weiher	&	Keddy	2001).	Local	133	

and	regional	propagule	pools	determine	candidate	species	with	potential	for	being	134	

included	in	the	community,	but	the	ecological	filters	(Weiher	&	Keddy	1995,	Weiher	&	135	

Keddy	2001)	remove	candidates	that	fail	to	establish	or	persist	under	the	present	local	136	

environmental	(Grubb	1977,	Southwood	1988).	Combined,	the	assembly	rules	outline	137	

constraints	on	selection	of	communities	from	larger	potential	constituent	species	pools	138	

(Weiher	&	Keddy	2001).	These	assembly	rules	can	also	elucidate	processes	that	produce	139	

communities	present	in	a	habitat	or	environment	(Booth	&	Swanton	2002,	Drake	et	al.	140	

1993).	In	conclusion,	assembly	rules	and	ecological	filtering	are	particularly	useful	in	141	

successional	ecology,	because	they	account	for	both	stochastic	(e.g.,	distribution	of	suitable	142	

establishment	sites	and	random	distribution	of	propagules	in	seed	and	spore	banks)	and	143	

deterministic	factors	(e.g.,	facilitative	and	competitive	processes	once	communities	144	

establish)	in	a	unified	framework.		145	

	146	

Plant	community	dynamics	147	

	148	

Plant	establishment	149	

	150	

Microsites	(safe	sites	sensu	Harper	et	al.	1961)	where	plants	establish	in	primary	151	

succession	are	not	random	(Jumpponen	et	al.	1999b)	but	characterized	as	assemblages	152	

with	low	levels	of	organization	(Robbins	&	Matthews	2009)	where	the	importance	of	biotic	153	

and	abiotic	controls	shifts	over	time	(del	Moral	2009).	As	a	result	of	environmental	154	

heterogeneity,	some	microsites	trap	larger	propagule	numbers	or	may	be	more	favourable	155	



for	germination	and	seedling	establishment	(Harper	et	al.	1965,	Jumpponen	et	al.	1999b,	156	

Oswald	&	Neuenschwander	1993,	Titus	&	del	Moral	1998).		157	

	158	

Studies	in	glacier	forefronts	have	identified	surface	depressions,	nearby	rocks,	and	coarse	159	

surface	particles	as	the	characteristics	positively	associated	with	plant	occurrence	160	

(Erschbamer	et	al.	2001,	Jones	&	del	Moral	2005a,	Jumpponen	et	al.	1999b,	Schlag	&	161	

Erschbamer	2000,	Stocklin	&	Baumler	1996).	The	underlying	mechanisms	include	shade,	162	

increased	soil	moisture,	and	changes	in	surface	temperatures	(Jones	&	del	Moral	2005a,	163	

Jumpponen	et	al.	1999b,	Schlag	&	Erschbamer	2000),	suggesting	the	importance	of	physical	164	

environmental	amelioration.	Plant	establishment	is	also	controlled	by	seed	(propagule)	165	

availability	and	size	(Clark	et	al.	2007,	Primack	&	Miao	1992,	Turnbull	et	al.	2000)	166	

determined	by	the	surrounding	communities,	relative	fecundities	of	component	species,	167	

and	the	distance	of	safe	sites	from	the	propagule	sources	(Jones	&	del	Moral	2009,	Schlag	&	168	

Erschbamer	2000).	Safe	sites	may	facilitate	seed	trapping,	thereby	increasing	their	resident	169	

seed	banks	(Jones	&	del	Moral	2009,	Jumpponen	et	al.	1999b).		170	

	171	

Safe	site	requirements	for	seed	germination	and	seedling	establishment	appear	similar	172	

among	plant	species	during	early	primary	succession	(del	Moral	&	Wood	1993,	Jones	&	del	173	

Moral	2005a,	Jumpponen	et	al.	1999b,	Walker	et	al.	2006).	Shifts	in	safe	site	preferences	174	

likely	indicate	relaxation	of	abiotic	environmental	stressors,	leading	to	dominant	175	

competitive	interactions	and	greater	requirements	for	differentiation	in	resource	use	in	176	

later	succession.	Established	plants	simultaneously	compete	for	resources	with	newly	177	

establishing	seedlings.	Consequently,	the	balance	between	competition	and	facilitation	may	178	

be	difficult	to	determine	(Chapin	et	al.	1994,	Jumpponen	et	al.	1998).	Nitrogen	fixing	plants,	179	

such	as	infrequent	Alnus	spp.	and	Lupinus	spp.	at	Lyman	Glacier	forefront,	have	been	180	

argued	to	be	particularly	important	because	they	reduce	the	nitrogen	limitation	in	addition	181	

to	improving	water	retention	in	the	developing	soils	and	providing	shade	to	reduce	182	

irradiation	(Walker	et	al.	2003).		183	



	184	

Patterns	of	plant	community	development	185	

	186	

To	describe	plant	community	diversity,	and	heterogeneity	at	Lyman	Glacier,	we	recorded	187	

plant	species	(vascular	plant	checklist	is	available	as	Supplemental	Table	S1)	in	clusters	of	188	

four	0.25m2	sub‐plots	located	at	20m	intervals	along	four	equidistant	transects	for	a	total	189	

of	228	1m2	sampling	units.	From	these	data	we	calculated	plant	species	richness	(S),	190	

Shannon‐Wiener	diversity	(H’),	and	evenness	(–H’/lnS)	and	compared	community	191	

compositions	using	Nonmetric	Multidimensional	Scaling	(NMS	‐	McCune	&	Grace	2002).	To	192	

construct	a	metric	for	community	heterogeneity,	we	estimated	similarity	of	community	193	

compositions	among	plots,	using	percent	similarity	(PS)	as	described	in	del	Moral	(2002),	194	

and	regressed	that	against	distance	from	the	glacier	terminus	to	test	whether	or	not	our	195	

communities	tended	to	converge	or	diverge	over	time	(del	Moral	&	Jones	2002,	del	Moral	196	

2009),	i.e.,	whether	the	community	PS	would	decrease	or	increase	over	time	since	197	

deglaciation.		198	

	199	

In	contrast	to	Coleman	Glacier	on	Mount	Baker,	also	in	Washington	state	(Jones	&	del	Moral	200	

2005b),	the	most	recently	deglaciated	plots	at	Lyman	Glacier	were	devoid	of	vegetation,	201	

and	nonvegetated	plots	occurred	even	near	the	terminal	moraine	(Fig.	1).	The	first	202	

individuals	of	the	nonmycorrhizal	Luzula	piperi	and	Saxifraga	ferruginea,	and	the	203	

ectomycorrhizal	Abies	lasiocarpa	had	established	after	approximately	15	years	since	204	

deglaciation,	suggesting	a	limited	control	of	establishment	by	the	mycorrhizal	habit	205	

(compare	with	Read	1991)	and	limited	dependence	on	presence	of	mycorrhizal	fungus	206	

propagules	(see	also	Collier	&	Bidartondo	2009,	Reeves	et	al.	1979).	Overall,	the	species	207	

richness	in	our	sampling	limited	to	a	1m2	scale	was	low,	but	comparable	to	that	observed	at	208	

Coleman	Glacier	(Jones	&	del	Moral	2005b).	At	Lyman	Glacier,	richness	reached	a	209	

maximum	of	6.25	±	0.82	(mean	±	1	st	dev)	near	the	terminal	moraine.	The	most	species	210	

recorded	in	any	one	plot	was	ten.		211	



	212	

As	common	in	early	primary	succession	(Matthews	1992,	Reiners	et	al.	1971),	plant	species	213	

richness	and	diversity	increased	with	time	since	deglaciation	as	evidenced	by	our	linear	214	

regression	analyses	(Fig.	2a,	2b).	Evenness	was	low	(0.23	±	0.08)	and	constant	with	time	215	

since	deglaciation.	These	patterns	stem	from	sparse	plant	occurrence	near	the	glacier	216	

terminus	and	increasing	but	still	heterogeneous	cover	near	the	terminal	moraine.	Although	217	

the	increasing	plant	richness	and	biomass	are	common	observations	in	chronosequence	218	

studies	(Matthews	1992,	Reiners	et	al.	1971),	our	observations	contrast	with	those	219	

reported	in	similar	scale	for	Coleman	Glacier	(Jones	&	del	Moral	2005b):	no	dense	canopies	220	

have	established	at	Lyman	Glacier	forefront	in	the	first	hundred	years	since	glacier	retreat.		221	

	222	

To	classify	plant	community	types	(CTs),	the	228	experimental	units	were	assigned	into	223	

seven	clusters	by	complete	linkage	clustering	(JMP	version	7.01,	SAS	Institute,	Cary	North	224	

Carolina)	similarly	to	del	Moral	(2002),	so	that	clusters	retained	~75%	of	the	information	225	

on	the	plot	level	(Supplemental	Figure	S1).	The	seven	CTs	were	characterized	by	two	226	

species	that	were	most	strongly	associated	with	that	cluster	(see	insert	in	Fig.	1).	227	

Evaluation	of	the	CT	frequencies	along	the	Lyman	Glacier	forefront	permits	an	assessment	228	

of	community	trajectories	and	their	dynamics.	Nonvegetated	patches	and	early	establishing	229	

nonmycorrhizal	plants	(CTs	1	and	4,	with	Juncus	drummondii	+	Saxifraga	ferrugina)	occur	230	

commonly	but	in	variable	frequencies	throughout	the	forefront.	The	common	communities	231	

near	the	terminal	moraine	are	CTs	2	and	7,	comprised	primarily	of	plant	species	frequent	232	

in	the	montane	parkland	habitat	outside	the	forefront,	including	the	AM‐forming	Luetkea	233	

pectinata	and	the	ErM	plants	Cassiope	mertensiana	+	Phyllodoce	empetriformis.	None	of	the	234	

EcM	Pinaceae	(Abies	lasiocarpa,	Larix	lyalii,	+	Tsuga	mertensiana),	common	in	forested	235	

patches	among	the	alpine	meadows	adjacent	to	the	forefront,	are	frequent	enough	to	weigh	236	

in	the	community	assignments.		237	

	238	



These	analyses	suggest	that,	not	only	the	successional	trajectories,	but	also	the	239	

environmental	heterogeneity	in	this	system	dictate	the	CT	occurrence.	To	exemplify,	CTs	3,	240	

5	and	6	comprised	of	Luzula	piperi	+	Salix	phylicifolia,	Veronica	wormskjoldii	+	Pedicularis	241	

groenlandica,	and	Pedicularis	groenlandica	+	Carex	scopularis,	respectively,	occur	mainly	in	242	

depressions	and	near	creeks	that	likely	maintain	high	soil	moisture.	This	emphasizes	the	243	

difficulties	of	applying	the	space‐for‐time	chronosequence	approach	(Walker	et	al.	2010),	244	

but	simultaneously	indicates	the	sensitivity	of	CT	analyses	to	primary	determinants	of	245	

plant	community	development.		246	

	247	

Deterministic	vs.	stochastic	processes	in	the	plant	community	succession	248	

	249	

Plant	community	convergence	towards	a	terminal	(climax)	state	community	was	integral	in	250	

early	concepts	of	succession	(Clements	1916).	If	the	deterministic	processes	were	to	251	

increase	with	succession,	then	plant	community	composition	should	follow	a	predictable	252	

trajectory	(del	Moral	2009)	and	become	more	homogenous	over	successional	time	(Leps	&	253	

Rejmanek	1991).	However,	convergence	towards	a	stable	community	(Pickett	1989)	may	254	

depend	on	factors	such	as	heterogeneity	of	the	local	species	or	their	propagule	pools,	255	

strength	of	the	biological	legacies,	importance	of	priority	effects,	and	sensitivity	to	256	

conditions	during	initial	stages	of	succession	(Walker	et	al.	2010).	We	discuss	below	257	

trajectories	based	on	ordination	analyses	and	changes	in	community	similarities	among	258	

plots	along	the	chronosequence.		259	

	260	

In	our	plant	community	ordination	analyses,	NMS	scores	for	the	first	axis	increased	261	

linearly,	suggesting	a	predictable	trajectory	along	this	axis	(Fig.	3)	as	suggested	in	early	262	

concepts	of	succession	(Clements	1916).	Changes	in	the	other	two	axes	were	not	linear	but	263	

were	best	characterized	by	regression	models	that	included	quadratic	terms	(data	not	264	

shown).	When	standard	deviations	of	NMS	axis	scores	were	analyzed	by	linear	regression,	265	

they	increased	linearly	for	axis	1	(Fig.	4)	and	axis	2	(not	shown).	While	communities	may	266	



be	changing	to	include	a	greater	component	from	surrounding	late	successional	267	

communities,	the	increasing	standard	deviations	suggest	a	strong	contribution	of	stochastic	268	

processes	or	priority	effects	during	nearly	a	century	since	deglaciation	(del	Moral	2009).	269	

More	importantly,	the	increasing	standard	deviations	suggest	that	these	periglacial	plant	270	

communities	are	characterized	by	community	divergence	rather	than	convergence	during	271	

early	succession.		272	

	273	

To	further	illuminate	the	determinism	in	the	plant	communities,	we	calculated	percent	274	

similarity	(PS)	for	each	group	of	plots	representing	equal	time	since	deglaciation	(see	del	275	

Moral	&	Jones	2002).	In	contrast	to	increasing	determinism	in	the	primary	successional	276	

system	at	Mount	St.	Helens	in	Washington	state	(del	Moral	2009),	our	PS	estimates	277	

decreased	with	time	since	deglaciation	(Fig.	5).	This	observation	corroborates	the	analyses	278	

of	the	NMS	standard	deviations	and	points	to	stochastic	processes.	These	findings	are	279	

primarily	attributable	to	the	occurrence	of	a	large	number	of	different	CTs	and	the	280	

persistence	of	the	early	successional	communities	near	the	terminal	moraine.	In	sum,	we	281	

conclude	that	plant	communities	at	Lyman	Glacier	site	are	diverging	rather	than	282	

converging	at	these	stages	of	succession.		283	

	284	

Fungal	community	dynamics	285	

	286	

Sources	and	distribution	of	fungal	propagules	287	

	288	

Establishment	of	fungal	propagule	banks	from	atmospheric	sources	in	newly	exposed	289	

substrates	is	little	debated,	but	distribution	of	these	banks	has	received	little	attention.	It	is	290	

uncertain	whether	microtopological	characteristics	similar	to	those	for	plant	safe	sites	291	

accumulate	microbes	as	a	result	of	reduced	air	velocities	or	water	flow.	The	Baas‐Becking	292	

hypothesis	(Martiny	et	al.	2006)	states	that	because	of	their	small	size	and	enormous	293	



numbers	the	microbial	propagules	are	everywhere	and	environment	selects	from	the	294	

established	propagule	banks.	In	contrast	to	such	environmentally	based	niche	models,	295	

recent	work	suggests	that	microbial	communities,	like	those	of	macroscopic	eukaryotes,	296	

may	suffer	from	dispersal	limitations.	They	may	thus	be	assembled	by	stochastic	297	

immigration,	establishment,	and	local	extinction	events	(Peay	et	al.	2010).		298	

	299	

The	Lyman	Glacier	forefront	is	surrounded	by	bountiful	sources	of	seeds	and	spores	plus	300	

living	fragments	of	plants	and	fungi.	Its	east	and	west	sides	are	bounded	by	cliffs	and	301	

benches	leading	to	ridges	with	meadows	and	subalpine	trees.	The	lowermost	moraine	has	302	

adjacent	meadows	and	groups	of	conifers	and	willows.	Only	at	the	head	of	the	glacier	there	303	

are	cliffs	and	crags	with	little	vegetation.	The	plant	and	fungal	propagules	may	be	dispersed	304	

onto	the	forefront	by	abiotic	factors	such	as	wind,	rain,	flowing	water	and	landslides,	as	305	

well	as	by	biotic	means:	birds,	mammals	and	arthropods.	The	continuous	input	of	material	306	

and	propagules	onto	the	glacier	and	periglacial	areas	is	evidenced	by	frequent	deposits	of	307	

woody	debris	covered	by	lichens.		308	

	309	

A	propagule	rain	falls	on	the	glacier	and	its	forefront	during	wind	and	rain	storms,	310	

particularly	when	epigeous,	i.e.	above‐ground	fruiting	mushrooms,	release	spores.	311	

Consequently,	propagules	of	EcM	fungi	are	likely	to	be	available	to	hosts	in	early	312	

succession.	This	was	implicit	in	the	EcM	conifer	seedlings	appearing	early	in	the	primary	313	

succession.	Collier	&	Bidartondo	(2009)	reported	on	heathlands	where	EcM	spores	are	314	

rare,	pines	and	birches	establish	and	persist	at	least	a	year	after	germination	without	EcM	315	

formation,	in	effect	waiting	for	the	EcM	inoculum	to	arrive.	This	is	not	likely	the	case	in	the	316	

Lyman	forefront:	all	Pinaceae	sampled,	even	1st	year	seedlings,	were	colonized	by	EcM	317	

fungi	(Cázares	et	al.	2005).	The	two	systems	differ	fundamentally:	Collier’s	&	Bidartondo’s	318	

(2009)	heathland	systems	have	high	soil	organic	matter	that	provides	water	retention	and	319	

nutrients.	In	contrast,	the	periglacial	outwash	at	Lyman	has	little	organic	matter	to	sustain	320	

seedlings	while	they	wait	for	EcM	colonization	to	establish.	These	phenomena	are	inferred	321	



from	few	seedling	samples,	because	depletion	of	seedlings	by	large‐scale	sampling	would	322	

have	drastically	interfered	with	early	successional	stages.	323	

	324	

Early	EcM	colonization	seems	plausible,	because	soil	recently	exposed	from	under	the	ice	325	

contained	DNA	of	Laccaria,	a	genus	commonly	fruiting	among	the	EcM	trees	in	the	326	

forefront	(Jumpponen	2003).	Older	soil,	i.e.	at	the	terminal	moraine,	contained	a	greater	327	

diversity	of	fungi	than	the	recently	exposed	soils.	Propagule	numbers	also	increase	over	328	

time	as	shown	by	a	study	with	EcM‐forming	Pinus	contorta	as	bait	(Trowbridge	&	329	

Jumpponen	2004).	These	results	corroborate	the	presence	of	fungal	propagules	in	recently	330	

deglaciated	substrates,	although	their	numbers	were	low.	Accordingly,	it	is	likely	that	–	in	331	

addition	to	falling	on	the	exposed	glacial	till	–	spores	also	land	on	the	glacier,	to	be	washed	332	

into	crevasses	and	ultimately	into	the	water	and	soil	emerging	from	under	the	ice.	This	333	

propagule	dispersal	likely	establishes	a	resident	propagule	bank	soon	after	deglaciation.	334	

Microtopology	that	determines	air	and	water	flow	likely	distribute	the	propagule	pools	335	

unevenly	across	the	landscape,	thereby	establishing	safe	sites	that	differ	in	their	spore	336	

numbers	and	compositions.		337	

	338	

Although	relatively	infrequent	over	the	glacier	forefront,	establishment	of	EcM	willows	and	339	

conifers	and	accumulation	of	leaf	litter	under	their	crowns	supports	fruiting	of	EcM	fungi.	340	

Repeated	searches	over	more	than	a	decade	on	the	forefront	revealed	that	in	all,	341	

sporocarps	of	only	13	soecies	of	EcM	fungi	were	found	on	the	forefront;	only	a	few	of	the	342	

nearly	70	species	in	the	adjacent	subalpine	parklands	appeared	on	the	forefront	343	

(Jumpponen	et	al.	1999a).	Several	species	recorded	on	the	forefront,	in	return,	were	not	344	

found	in	surrounding	areas	(Jumpponen	et	al.	2002).	The	most	abundant	genera	were	345	

Cortinarius,	Inocybe	and	Laccaria.	These	genera	were	also	common	in	primary	successional,	346	

upper	montane	and	subalpine	habitats	under	Salix	on	volcanic	substrates	on	Mt.	Fuji,	Japan	347	

(Nara	et	al.	2003a).	Two	species,	Cortinarius	decipiens	and	Inocybe	lacera,	were	observed	348	

locally	abundant	at	both	Lyman	Glacier	and	Mt.	Fuji.	A	major	propagule	source	of	I.	lacera	349	

and	Cortinarius	and	Laccaria	spp.	at	Lyman	was	the	old	outwash	meadow/willow	habitat	350	



probably	several	thousand	years	old	immediately	below	the	terminal	moraine	(J.	Trappe,	351	

unpublished	data).		352	

	353	

Nara	et	al.	(2003b)	determined	that	in	early	succession	the	fungi	forming	EcM	were	354	

generally	the	same	as	fruited	aboveground	and	the	diversity	of	fungal	species	gradually	355	

increased	with	plant	community	development.	Based	on	fruiting	body	data,	this	was	also	356	

true	to	a	degree	at	Lyman	Glacier	(Jumpponen	et	al.	2002):	no	EcM	fruiting	bodies	were	357	

observed	up	to	300	m	from	the	terminus,	two	species	fruited	from	300‐400m,	and	eight	358	

from	800‐900m.	Nara	et	al.	(2003b)	found	from	molecular	analysis	that	several	EcM	fungi	359	

were	resupinate;	the	same	is	largely	true	of	the	Lyman	forefront	(Trowbridge	&	360	

Jumpponen	2004).	No	fruiting	bodies	of	resupinate	fungi	have	been	recorded	at	Lyman	361	

(Jumpponen	et	al.	2002),	but	spores	of	hypogeous	fungi	reliant	on	animal	mycophagy	for	362	

dispersal	were	detected	on	the	forefront	in	scats	of	yellow‐pine	chipmunks,	hoary	363	

marmots,	pikas,	and	mule	deer	(Cázares	&	Trappe	1994).	None	of	the	fungi	represented	by	364	

those	spores	were	found	fruiting	on	the	forefront.	Indeed,	only	one	fruiting	of	a	hypogeous	365	

fungus	was	recorded	over	the	several	years	of	sampling:	a	tiny	new	species,	Hymenogaster	366	

glacialis,	fruited	among	willow	mycorrhizae	(Cázares	&	Trappe	1990).	Because	of	its	small	367	

size	(<	3‐6mm	broad),	it	could	have	been	more	common	but	overlooked.	Nonetheless,	368	

dispersal	of	hypogeous	fungal	spores	is	stochastic,	depending	on	animal	vectors	that	369	

establish	spore	deposits	locally	enriched	for	particular	species.	Animals	can	also	disperes	370	

spores	of	epigeous	EcM	fungi.	Deer	are	effective	in	inoculation	of	pines	with	both	371	

hypogeous	and	epigeous	fungi	in	primary	successional	habitats	in	coastal	sand	dunes	372	

(Ashkannejhad	&	Horton	2006).		373	

	374	

AM	fungi	increase	steadily	after	disturbance	in	many	early	successional	ecosystems,	375	

indicating	successional	dynamics	of	these	communities	(Allen	&	Allen	1980,	Gemma	&	376	

Koske	1990,	Greipsson	&	El‐Mayas	2000,	Koske	&	Gemma	1997).	However,	compared	to	377	

old‐field	or	dune	systems,	patterns	of	AM	establishment	in	a	montane	glacial	system	may	378	

be	stochastic,	dictated	by	dispersal	by	movement	of	soil	that	contains	inoculum	(Warner	et	379	



al.	1987).	We	inferred	stochastic	AM	spore	deposition	from	mycorrhizal	colonization,	380	

because	spores	of	Glomeromycota	were	rarely	encountered	(Cázares	et	al.	2005).	At	the	381	

Lyman	Glacier	forefront,	dispersal	is	likely	mainly	on	the	feet	or	in	the	feces	of	visiting	382	

animals	(see	also	Allen	et	al.	1984,	Warner	et	al.	1987),	with	small	avalanches	or	land	slides	383	

from	cliffs	and	benches	that	border	the	forefront,	or	perhaps	in	water	flow	from	384	

established	plant	communities	on	lateral	moraines.	These	dispersal	mechanisms	are	likely,	385	

because	AM	plants	were	often	more	common	at	the	edges	than	in	the	center	of	the	386	

forefront.	The	most	recently	exposed	substrates	(15‐25	yrs)	had	no	or	few	AM	plants,	but	387	

otherwise	no	clear	patterns	were	evident,	further	evidencing	the	stochastic	nature	of	AM	388	

spore	dispersal.	Helm	et	al.	(1996)	reported	that	AM	colonization	and	spores	were	389	

infrequent	and	showed	no	particular	patterns	on	the	forefront	of	an	Alaskan	low‐elevation	390	

glacier,	further	evidencing	spore	dispersal	limitation	in	these	habitats.		391	

	392	

Our	analyses	above	show	that	CTs	with	Cassiope	and	Phyllodoce	increase	late	on	the	Lyman	393	

Glacier	chronosequence.	While	arrival	of	the	ErM	fungi	could	not	be	observed	directly,	ErM	394	

colonization	of	the	susceptible	hosts	gradually	increased	over	time	since	soil	exposure	395	

(Cázares	et	al.	2005),	suggesting	gradual	buildup	of	an	inoculum	pool,	likely	from	air‐	396	

and/or	ungulate‐borne	propagules.	Similarly	to	ErM,	dark	septate	endophyte	(DSE)	397	

colonization	gradually	increased	over	the	chronosequence	regardless	of	the	mycorrhizal	398	

habit	of	the	host	(Cázares	et	al.	2005).	These	observations	parallel	those	of	Peay	et	al.	399	

(2010):	dispersal	seems	a	key	control	of	fungal	community	composition	in	early	400	

succesional	stages.		401	

	402	

Patterns	of	fungal	community	development	403	

	404	

To	attempt	fungal	community	analyses	comparable	to	those	performed	for	plants,	we	405	

reanalyzed	an	EcM	dataset	(Trowbridge	&	Jumpponen	2004)	and	two	others	on	soil	406	

communities	(Jumpponen	2003,	Jumpponen	2007).	These	data	may	not	compare	directly	407	



with	those	for	plants	because	of	differences	in	data	volumes	and	recording.	However,	they	408	

illustrate	contrasts	and	similarities	between	fungal	and	plant	communities	and	identify	409	

further	research	needs.		410	

	411	

In	contrast	to	plant	communities,	where	we	directly	estimated	development	as	a	function	412	

of	time	since	deglaciation,	we	decoupled	the	effects	of	plant	establishment	and	time	since	413	

deglaciation	on	fungal	communities.	Trowbridge	&	Jumpponen	(2004)	described	EcM	414	

communities	of	Salix	spp.	and	observed	that	richness,	diversity	and	evenness	estimates	415	

were	rather	insensitive	to	distance	from	the	glacier	terminus	as	well	as	to	the	willow	416	

canopy	microenvironment.	Whereas	the	community	metrics	were	unresponsive,	individual	417	

components	(EcM	morphotypes	identified	through	ITS‐RFLP	and	sequencing)	showed	418	

preferences	for	canopy	or	intercanopy	environments	while	some	increased	in	frequencies	419	

with	time	since	deglaciation.	Trowbridge	&	Jumpponen	(2004)	argued	these	results	420	

suggested	niche	preferences	related	to	organic	legacies	associated	with	soil	development.		421	

	422	

To	compare	successional	trajectories	between	fungal	and	plant	communities,	we	used	423	

complete	linkage	clustering	with	the	EcM	morphotype	data.	We	analyzed	these	data	with	424	

and	without	including	the	nonmycorrhizal	root	tips	into	the	community	type	(CT)	425	

constituents.	With	nonmycorrhizal	tips	included,	two	clusters	were	identified	retained	426	

71.2%	of	the	plot‐level	variability	(not	shown)	and	were	defined	by	two	of	the	three	427	

morphotypes	assigned	to	Sordariales	in	the	original	analyses	(Trowbridge	and	Jumpponen	428	

2004).	Exclusion	of	the	nonmycorrhizal	roots	revealed	five	clusters	that	retained	74.3%	of	429	

total	variability	on	the	plot	level	(Supplemental	Fig.	S3).	These	community	analyses	were	430	

uninformative	with	respect	to	time	since	deglaciation	or	canopy	environment	because	431	

three	of	the	five	clusters	occurred	only	once,	twice,	and	three	times	in	the	30	samples.	The	432	

most	common	cluster,	occurring	19	times,	was	rather	defined	by	its	heterogeneity	than	by	433	

unifying	community	components:	the	common	morphotypes	(two	Sordariales	and	two	434	

Cortinariaceae;	Supplemental	Fig.	S3)	were	common	constituents	of	this	CT.		435	



	436	

These	analyses	highlight	fundamental	issues	that	complicate	fungal	community	analyses.	A	437	

ten‐fold	increase	in	sampling,	similar	to	that	for	plant	communities,	would	be	difficult	to	438	

achieve	by	microscopic	EcM	morphotyping	and	molecular	identification.	Moreover,	while	439	

the	EcM	communities	may	not	be	as	diverse	as	those	in	soil	(Buée	et	al.	2009),	their	440	

complete	characterization	even	in	an	early	successional	system	with	limited	diversity	441	

would	be	difficult.	However,	development	of	high	throughput	parallel	sequencing	tools	442	

(Cardenas	&	Tiedje	2008)	combined	with	DNA‐tagging	(Meyer	et	al.	2008)	might	solve	the	443	

issues	necessary	to	differentiate	among	the	root‐inhabiting	fungal	communities.		444	

	445	

Deterministic	vs.	stochastic	processes	in	fungal	community	succession	446	

	447	

We	analyzed	combined	datasets	(from	Jumpponen	2003,	Jumpponen	2007)	to	see	if	we	448	

could	draw	inferences	on	responses	of	the	fungal	communities	and/or	their	components.	449	

Like	Emerson	and	Gillespie	(2008),	our	analyses	assume	immigration	and	environmental	450	

filtering,	not	speciation,	as	the	fundamental	processes	of	community	assembly	in	early	451	

succession.	The	scale	of	a	glacier	forefront	is	unlikely	to	lead	to	cladogenic	speciation,	452	

mainly	because	the	large	allochthonous	source	populations	maintain	geneflow	into	the	453	

periglacial	environment.		454	

	455	

To	test	whether	the	EcM	communities	associated	with	Salix	were	undergoing	community‐456	

level	convergence	or	divergence,	we	analyzed	the	NMS	axis	score	standard	deviations	and	457	

estimated	PS	as	described	in	del	Moral	&	Jones	(2002)	and	as	above	for	plant	communities.	458	

When	the	standard	deviations	of	the	NMS	axis	scores	were	analyzed	by	linear	regression	459	

with	vs	without	the	terms	that	would	account	for	the	canopy	environment	plus	interaction	460	

terms,	the	axis	score	standard	deviations	showed	no	significant	effects	of	either	time	since	461	

deglaciation	or	canopy	(P	>	0.15	for	all	effect	tests	using	ANOVA	or	t‐tests	for	null	462	



hypotheses	that	parameter	estimates	equal	zero).	Similarly,	none	of	the	simple	linear	or	463	

multiple	regression	models	analyzed	to	test	effects	of	Salix	canopies	and	time	since	464	

deglaciation	on	PS	differed	significantly	for	convergence	or	divergence	(P	>	0.30	for	all	465	

effect	tests	using	ANOVA	or	t‐tests	for	null	hypotheses	that	parameter	estimates	equal	466	

zero).	In	other	words,	we	found	no	support	for	patterns	similar	to	those	observed	for	plant	467	

communities.		468	

	469	

We	also	targeted	general	fungal	communities	associated	with	soils	underneath	Salix	470	

canopies	vs.	intercanopy	areas	using	an	approach	similar	to	that	described	above.	In	these	471	

analyses,	we	tested	whether	differential	phylogenetic	clustering	between	the	two	canopy	472	

environments	could	be	detected	or	whether	phylogenetic	patterns	could	be	visualized	in	473	

relation	to	time	since	deglaciation.	Using	the	data	matrices	comparing	within‐sample	474	

phylogenetic	distances	among	the	experimental	units,	we	sought	stochastic	vs.	475	

deterministic	trajectories	of	fungal	communities.	To	do	this,	we	re‐analyzed	Small	Sub‐Unit	476	

(SSU)	sequences	of	the	ribosomal	RNA	gene	from	two	clone	library	studies	(Jumpponen	477	

2003,	Jumpponen	2007)	characterizing	soils	collected	from	canopy	or	intercanopy	478	

locations	along	a	Lyman	chronosequence.		The	soil	samples	originated	from	0‐900m	from	479	

glacier	terminus	and	included	fifteen	from	underneath	Salix	canopies	(Jumpponen	2007)	480	

and	seventeen	intercanopy	samples	across	the	chronosequence	(Jumpponen	2003).	We	481	

reanalyzed	representative	sequences	from	the	two	studies	and	MUSCLE‐aligned	them	using	482	

Geneious	Pro	5.3.4	(Biomatters	Ltd.,	Chirstchurch,	New	Zealand).	The	alignments	were	483	

analyzed	by	neighbor	joining	(NJ)	method	and	the	tree	distance	matrix	obtained	was	484	

analyzed	with	Fast	Unifrac	(Hamady	et	al.	2010)	with	a	Principal	Coordinates	Analysis	485	

(PCoA).	The	PCoA	scores	obtained	for	the	first	three	axes	(representing	20.6%,	11.0%,	and	486	

7.1%	of	the	variability)	and	the	NJ	distance	matrix	were	used	to	analyze	community	487	

similarity	described	above	by	use	of	both	the	standard	deviations	of	PCoA	scores	and	488	

within‐sample	mean	NJ	distances	to	test	hypotheses	on	community	convergence	or	489	

divergence.		490	

	491	



Analyses	of	PCoA	axis	scores	indicated	that	Axis	1	and	Axis	3	scores	did	not	vary	492	

significantly	with	time	since	deglaciation	or	canopy	condition.	In	contrast,	Axis	2	seemed	to	493	

drive	the	observed	patterns	in	a	full	model	(goodness	of	fit;	F3,28=6.4361,	P=0.0019)	with	494	

time	since	deglaciation	and	canopy	condition	main	effects	and	their	interaction.	In	this	495	

model,	Axis	2	PCoA	scores	increased	with	time	since	deglaciation	(Fig.	6;	F3,28	=	4.829,	P	=	496	

0.0364)	indicating	a	trajectory	in	fungal	community	composition	based	on	SSU	sequence	497	

data.	We	interpret	these	data	to	indicate	that	the	communities	are	shifting	somewhat	498	

predictably	and	incorporating	different	community	members	to	lead	to	such	trajectory.	In	499	

contrast,	we	found	no	evidence	for	canopy	effects	on	community	composition.	Analyses	of	500	

standard	deviations	of	PCoA	axis	scores	similar	to	those	we	used	for	plant	communities	501	

indicated	that	Axis	3	score	standard	deviations	decrease	with	distance	from	glacier	502	

terminus	(Fig.	7;	full	model	goodness	of	fit	F3,28	=	9.1490,	P	=	0.0002)	suggesting	503	

phylogenetic	convergence	with	time	since	deglaciation.	However,	standard	deviations	for	504	

Axis	1	and	2	scores	showed	no	response	to	time	since	deglaciation,	suggesting	minor	505	

convergent	patterns.		506	

	507	

These	analyses	of	the	PCoA	scores	and	their	standard	deviations	provide	a	starting	point	508	

for	asking	which	organisms	may	be	enriched	in	the	late	primary	successional	soils.	Our	509	

earlier	studies	indicate	that	EcM	fruiting	bodies	(Jumpponen	et	al.	2002),	root‐associated	510	

propagules	(Trowbridge	&	Jumpponen	2004),	and	the	root	colonization	of	various	hosts	511	

(Cázares	et	al.	2005)	increase	over	successional	time.	However,	only	Tomentella	512	

(Thelephoraceae;	GenBank	Accession	DQ092920)	increased	in	frequency	with	time	since	513	

deglaciation	and	none	decreased.	Others	also	increasing	with	time	since	deglaciation	514	

included	taxa	with	various	non‐symbiotic	life	history	strategies:	Mycoacia	(Merulinaceae;	515	

DQ873636)	and	Pulvinula	(Pyronemataceae;	U62012).	Thus,	the	increasing	trajectory	of	516	

Axis	2	PCoA	scores	and	convergence	indicated	by	declining	Axis	3	PCoA	score	standard	517	

deviations	corroborate	results	of	our	earlier	studies	and	evidence	a	relationship	of	plant	518	

establishment	with	subsequent	fungal	community	enrichment.		519	

	520	



In	addition	to	PCoA,	we	analyzed	the	SSU	RNA	gene	NJ	distance	matrix	to	directly	compare	521	

sample‐level	distances	in	Salix	canopy	and	intercanopy	soils	along	the	forefront	522	

chronosequence.	These	analyses	tested	if	these	communities	show	a	random	assembly	523	

from	the	regional	propagule	pools	and	would	therefore	possess	equal	ability	to	establish	524	

across	the	periglacial	substrates.	Alternatively,	if	environmental	filters	shape	the	525	

establishing	communities,	the	communities	should	show	phylogenetic	structuring	–	526	

perhaps	related	to	the	establishment	of	few	organisms	that	share	similar	preferences	for	527	

habitat	or	hosts	but	are	not	competitively	exclusive.	In	contrast	to	the	analyses	of	Axis	2	528	

PCoA	scores,	fungal	community	NJ	distances	did	not	vary	with	time	since	deglaciation	(F1,	28	529	

=	0.0068,	P	=	0.93)	so	the	fungal	communities	are	not	strongly	affected	by	time	of	substrate	530	

exposure	from	underneath	the	glacier	(Fig.	8).	However,	judging	from	these	analyses,	531	

fungal	communities	of	canopy	soils	had	significantly	lower	NJ	distances	than	those	from	532	

non‐vegetated	areas	(Fig.	8;	F2,28	=	11.1,	P	=	0.0022).	The	nonsignificant	interaction	term	533	

indicates	canopy	effects	regardless	of	position	in	the	periglacial	chronosequence.		We	534	

conclude	that	fungal	communities	converge	in	the	canopy	soils	relative	to	nonvegetated	535	

soils	and	plant	establishment	homogenizes	soil	fungal	communities.	Although	the	results	of	536	

our	PCoA	and	NJ	analyses	are	incongruent,	a	simple	explanation	that,	while	the	intercanopy	537	

communities	may	be	a	random	draw	of	propagules,	the	canopy	soils	in	the	sparsely‐538	

vegetated	early	plant	communities	are	enriched	for	fungi	that	rely	on	host	photosynthates	539	

or	litter.	To	better	tie	this	to	the	community	assembly	model	that	we	introduced	previously	540	

(Jumpponen	&	Egerton‐Warburton	2005),	this	convergence	can	be	argued	to	result	from	541	

selection	of	fungi	from	the	local	propagule	pool	based	on	their	compatibility	with	the	Salix	542	

and	its	canopy	soil	environment.	This	is	best	exemplified	by	foliage‐associated	Coniochaeta	543	

(GenBank	Accession	GQ154624),	the	only	taxon	positively	associated	with	canopies:	it	did	544	

not	respond	to	time	since	deglaciation	in	our	analyses.		545	

	546	

The	convergence	inferred	from	the	NJ	distances	corroborates	our	earlier	PLFA	studies	547	

(Ohtonen	et	al.	1999),	in	which	microbial	communities	differed	between	canopy	and	548	

intercanopy	soils.	These	results	emphasize	the	importance	of	plant	establishment	in	549	

shaping	early	microbial	communities	(Ohtonen	et	al.	1999).	While	compositional	changes	550	



with	time	since	deglaciation	were	not	obvious,	the	samples	collected	underneath	551	

established	plants	were	more	tightly	clustered	in	the	NMS	ordination	than	those	collected	552	

from	nonvegetated	areas	(see	Fig.	2	in	Ohtonen	et	al.	1999).	Although	those	data	do	not	553	

permit	a	more	thorough	convergence	analysis,	we	propose	that,	in	combination	with	our	NJ	554	

distance	analyses,	plants	tend	to	homogenize	microbial	communities	and	select	subsets	of	555	

compatible	microorganisms	from	stochastic	propagule	pools.		556	

	557	

These	conclusions	parallel	results	from	a	replicated	soil	transfer	on	the	Lyman	forefront	558	

(Jumpponen	et	al.	1998).		In	those	studies,	small	mesh	bags	were	filled	with	willow	canopy	559	

soil	and	an	equal	number	with	intercanopy	soils.	Seeds	of	Pinus	contorta,	which	occurs	on	560	

the	forefront,	were	planted	in	each	bag.	Separate	holes	to	accommodate	one	bag	of	each	561	

soil	type	were	dug	under	canopies	and	in	intercanopy	sites.	Seedling	emergence	and	562	

survival	were	recorded	8	weeks	after	sowing	and	were	low	in	all	treatments	(2	soil	types	x	563	

2	locations)	but	on	average	twice	as	high	in	the	canopy	soil	transferred	to	intercanopy	564	

spaces	than	in	other	treatments.	Canopies	thus	appeared	to	suppress	emergence/survival	565	

and	intercanopy	soils	were	similarly	adverse	in	that	respect.	The	superior	performance	of	566	

seedlings	in	canopy	soil	in	intercanopy	sites	indicates	that	the	combined	enhancement	of	567	

nutrients	and	microbes	provided	greater	benefit	when	the	suppressive	effects	of	the	568	

canopies	themselves	were	removed.	569	

	570	

Successional	trajectories	of	plant	and	microbial	communities	compared	571	

	572	

Our	synthesis	of	the	work	conducted	on	Lyman	Glacier	forefront	over	more	than	two	573	

decades	identified	research	gaps	in	our	current	understanding	of	the	fundamental	574	

processes	of	early	microbial	community	assembly.	Early	propagule	accumulation	and	the	575	

processes	that	control	it	prior	to	the	community	assembly	are	poorly	understood	for	both	576	

microbial	and	plant	communities.	A	framework	of	safe	microsites	for	plant	seed	577	

accumulation	and	seedling	establishment	exists,	but	the	presence	of	such	sites	for	578	



microbial	communities	remains	uncertain.	Mechanisms	that	control	selection	of	active	579	

microbial	community	members	from	established	propagule	banks	are	equally	unclear.	The	580	

difficulty	of	selecting	an	appropriate	scale	for	‘microbial	landscape’	and	its	ecology	581	

complicates	these	issues.		582	

	583	

Our	parallel	analyses	of	plant	and	microbial	communities	highlight	some	clear	and	distinct	584	

dissimilarities	between	the	two,	because	plant	establishment	modifies	soil	chemistry	and	585	

the	physical	environment.	To	account	for	plant	controls	of	microbial	communities,	our	586	

analyses	aimed	to	decouple	effects	of	substrate	exposure	and	plant	establishment.	Early	587	

plant	community	development	at	Lyman	Glacier	forefront	can	be	characterized	by	588	

increasing	species	richness	and	community	divergence	over	time	since	deglaciation,	but	589	

analyses	of	the	microbial	communities	provide	no	strong	evidence	for	similar	changes.	In	590	

contrast,	establishing	plants	appear	to	homogenize	soil‐inhabiting	microbial	communities	591	

in	our	periglacial	system,	and	these	effects	may	strengthen	over	time.	Our	analyses	of	592	

microbial	communities	using	PLFA	and	SSU	sequence	data	that	broadly	characterize	593	

microbial	communities	show	a	tighter	clustering	of	the	samples	obtained	from	soils	594	

underneath	plant	canopies	compared	to	soils	from	open,	nonvegetated	areas.	In	sum,	the	595	

fungal	and	microbial	communities	of	canopy	soils	converge	relative	to	intercanopy	soils.		596	

	597	

We	hope	that	these	analyses	and	discussions	will	arouse	lust	for	further	analyses	of	598	

microbial	community	trajectories	as	well	as	for	patterns	and	mechanisms	of	bacterial	and	599	

fungal	community	divergence	and	convergence.	Microbial	communities	tend	to	be	orders	of	600	

magnitude	more	complex	than	those	of	plants	and	animals,	but	the	extreme	environments	601	

in	primary	successional	ecosystems	limit	microbial	richness.	Furthermore,	recent	studies	602	

provide	insights	into	microbial	ecosystem	functions	and	processes,	particularly	into	those	603	

preceding	establishment	of	plants	(Schmidt	et	al.	2008)	and	comprised	of	unexpected	604	

and/or	novel	community	constituents	(Freeman	et	al.	2009,	Nemergut	et	al.	2007).	Our	605	

analyses	here	and	those	published	elsewhere	evidence	that	successional	processes	of	606	

microbial	communities	are	unlikely	to	be	successfully	modeled	after	those	of	plants,	albeit	607	



the	plant	controls	of	microbial	communities	must	be	accounted	for	after	plant	608	

establishment.	We	conclude	that	microbial	communities	and	their	dynamics	express	novel	609	

community	level	processes	with	important	consequences	for	plant	community	610	

development:	the	field	is	wide	open	for	research,	especially	with	newly	available	molecular	611	

and	statistical	techniques.		612	
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Figure	legends	1000	

	1001	

Fig.	1.	Plant	community	type	(CT)	frequency	dynamics	along	the	time	since	substrate	1002	

exposure	in	the	forefront	of	the	receding	Lyman	Glacier.	The	inset	identifies	the	dominant	1003	

components	of	the	CTs	based	on	two‐way	complete	linkage	clustering	shown	in	1004	

Supplemental	Fig.	S1.	Note	that	the	CT1	–	characterized	by	nonmycorrizal	Saxifraga	and	1005	

nonvegetated,	open	areas	–	is	frequent	through	the	chronosequence	even	close	to	the	1006	

terminal	moraine.		1007	

	1008	

Fig.	2.	Plant	community	dynamics	as	a	function	of	the	substrate	exposure	(time	since	1009	

deglaciation)	in	the	forefront	of	the	receding	Lyman	Glacier:	a)	plant	species	richness	(S)	1010	

increases,	the	inset	identifies	the	linear	regression	model	with	significant	intercept	and	1011	

slope	terms;	b)	Shannon‐Wiener	diversity	(H’)	increases,	the	inset	identifies	the	linear	1012	

regression	model	with	significant	intercept	and	slope	terms.	ns	P	>	0.05;	*	P	≤	0.05;	**	0.01	≤	1013	

P	<	0.05;	***	≤	0.001.		1014	



	1015	

Fig.	3.	Mean	Nonmetric	Multidimensional	Scaling	(NMS)	Axis	1	scores	of	the	plant	1016	

community	types	(CTs)	along	the	Lyman	Glacier	forefront	increase	with	time	since	1017	

deglaciation.	The	inset	identifies	the	linear	regression	model	with	significant	intercept	and	1018	

slope	terms.	The	linear	increase	in	the	NMS	scores	suggests	a	successional	trajectory	in	this	1019	

primary	successional	system	and	is	likely	correlated	with	increasing	abundance	of	the	CTs	1020	

with	component	species	from	the	adjacent	montane	meadow	communities.	ns	P	>	0.05;	*	P	≤	1021	

0.05;	**	0.01	≤	P	<	0.05;	***	≤	0.001.	1022	

	1023	

Fig.	4.	Mean	Nonmetric	Multidimensional	Scaling	(NMS)	Axis	1	score	standard	deviations	1024	

of	the	plant	community	types	(CTs)	along	the	Lyman	Glacier	forefront	increase	with	time	1025	

since	deglaciation.	The	inset	identifies	the	linear	regression	model	with	a	significant	slope	1026	

term.	The	increase	in	the	NMS	score	standard	deviations	suggests	a	divergence	of	the	plant	1027	

communities	in	this	primary	successional	system	and	is	likely	a	result	of	stochastic	plant	1028	

establishment	processes	and	heterogeneous	distribution	of	the	CTs	along	the	successional	1029	

chronosequence.	ns	P	>	0.05;	*	P	≤	0.05;	**	0.01	≤	P	<	0.05;	***	≤	0.001.	1030	

	1031	

Fig.	5.	Percent	similarity	(PS)	of	the	plant	communities	along	the	Lyman	Glacier	forefront	1032	

decline	with	time	since	deglaciation,	the	inset	identifies	the	linear	regression	model	with	1033	

significant	intercept	and	slope	terms.	The	decrease	in	the	PS	corroborates	divergence	of	the	1034	

plant	communities	in	this	primary	successional	system	shown	in	Fig.	4.	ns	P	>	0.05;	*	P	≤	1035	

0.05;	**	0.01	≤	P	<	0.05;	***	≤	0.001.	1036	

	1037	

Fig.	6.	Principal	Coordinates	Analysis	(PCoA)	Axis	2	scores	for	fungal	communities	along	1038	

the	Lyman	Glacier	forefront	increase	with	time	since	deglaciation.	The	inset	identifies	the	1039	

linear	regression	model	with	significant	terms	for	intercept	and	slope	but	not	for	canopy	1040	

position	or	interaction.	The	linear	increase	in	the	PCoA	scores	suggests	a	successional	1041	



trajectory	in	this	primary	successional	system.	ns	P	>	0.05;	*	P	≤	0.05;	**	0.01	≤	P	<	0.05;	***	1042	

≤	0.001.	1043	

	1044	

Fig.	7.	Principal	Coordinates	Analysis	(PCoA)	Axis	3	score	standard	deviations	for	fungal	1045	

communities	along	the	Lyman	Glacier	forefront	decrease	with	time	since	deglaciation.	The	1046	

inset	identifies	the	linear	regression	model	with	significant	terms	for	intercept	and	slope	1047	

but	not	for	canopy	position	or	interaction.	The	linear	decrease	in	the	standard	deviations	1048	

suggests	a	community	convergence	over	time	in	this	primary	successional	system.	ns	P	>	1049	

0.05;	*	P	≤	0.05;	**	0.01	≤	P	<	0.05;	***	≤	0.001.	1050	

	1051	

Fig.	8.	Neighbor	Joining	(NJ)	distances	(Mean	±	Standard	Deviation)	on	a	sample	level	for	1052	

fungal	communities	along	the	Lyman	Glacier	forefront	are	greater	in	the	canopy	samples	1053	

than	in	the	intercanopy	samples.	The	inset	identifies	the	linear	regression	model	with	1054	

significant	terms	for	intercept	and	canopy	position	but	not	for	slope	or	the	interaction.	The	1055	

difference	between	the	canopy	and	intercanopy	samples	suggests	a	canopy	soil	community	1056	

convergence	relative	to	intercanopy	soils	in	this	primary	successional	system.	The	two	1057	

groups	of	samples	with	different	NJ	distances	are	indicated	by	P‐values	(oneway	ANOVA)	1058	

above	the	bars.	ns	P	>	0.05;	*	P	≤	0.05;	**	0.01	≤	P	<	0.05;	***	≤	0.001.	1059	

	1060	

Supplemental	Materials		1061	

	1062	

Supplemental	Figure	S1.	Two‐way	clustering	of	228	1m2	characterize	plant	community	1063	

types	(CTs).	Most	commonly	occurring	plant	species	on	the	horizontal	axis,	plots	1064	

themselves	on	the	vertical	axis.	The	plots	were	clustered	into	seven	CTs	so	that	1065	

approximately	75%	of	the	plot	level	variability	was	retained	and	the	CTs	characterized	by	1066	

the	two	most	dominant	species	in	each	of	the	seven	CTs	(see	Fig.	1).		1067	

	1068	



Supplemental	Figure	S2.	Nonmetric	Multidimensional	Scaling	(NMS)	of	the	plant	1069	

communities	types	(CTs)	on	the	forefront	of	Lyman	Glacier.	CTs	are	identified	by	their	1070	

respective	numbers	and	their	dominant	constituent	species	can	be	found	in	the	inset	of	Fig.	1071	

1.	a)	NMS	of	the	first	two	axes.	Following	the	CT	identification,	the	lower‐case	letter	1072	

indicates	differences	along	Axis	1,	the	upper	case	letter	differences	along	Axis	2	based	on	1073	

Tukey’s	Honestly	Significant	Difference	(HSD)	test	at		=	0.05.	b)	NMS	of	Axes	1	and	3.	1074	

Following	the	CT	identification,	the	lower‐case	letter	indicates	differences	along	Axis	1,	the	1075	

upper	case	letter	differences	along	Axis	3	based	on	Tukey’s	Honestly	Significant	Difference	1076	

(HSD)	test	at		=	0.05.	Note	that	CTs	1	and	4	were	distinct	from	other	CTs	on	the	first	axis,	1077	

CTs	2	and	7	were	separated	on	the	third	axis,	CT3	was	distinct	from	CTs	6	and	7	on	the	1078	

third	axis,	and	CT3	was	distinguished	from	CTs	4	and	6	on	the	second	axis.	1079	

	1080	

Supplemental	Figure	S3.	Two‐way	clustering	to	characterize	fungal	community	types	1081	

(CTs).	Most	commonly	occurring	fungal	species	on	the	horizontal	axis,	samples	themselves	1082	

on	the	vertical	axis.	The	plots	were	clustered	into	five	CTs	so	that	approximately	75%	of	the	1083	

sample	level	variability	was	retained.		1084	

	1085	

Supplemental	Table	S1.	Checklist	of	vascular	plants	recorded	at	Lyman	Glacier	Forefront	1086	
in	the	North	Cascades	Mountains	of	Washington	State,	U.S.A.	1087	

	1088	
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