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Abstract

In this paper we present a model of competition between operators on urban local
bus routes in which passengers always board the first bus to arrive, and it is costly to
revise timetables. The model predictds that timetables are unstable, the operator
whose bus was boarded by fewest passengers is the most likely to change its arrival
time, and to try to leapfrog its rival by arriving just before, and that there is a
tendency for bus arrival times to be clustered together. The predictions are
consistent with observed features of on-the-road competition on urban local bus
routes. On express coach routes, where passengers are more likely to research
departure times before travelling, and to arrive at the coach station in order to catch
their preferred coach, instability does not arrise in the model, and has not been noted

as a feature of competition in practice.

Keywords: Bus deregulation; timetable; instability; urban bus routes; competition;
express coach routes.
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1 Introduction

The 1930 Road Traffic Act created a bus and coach market in which all
aspects of service were tightly regulated. In order to run a service, an opera-

*L'owe thanks to John Sutton, who suggested I read the Select. Committee report into
the effects of local bus deregulation, to Peter White, with whom I discussed the bus market
and who steered me away from some blind alieys, and Volker Nocke and Tommaso Valletti
for many useful comments. 1 would also like to thank STICERD at the LSE for financial

support and for providing a stimulating working environment..



tor had to meet prescribed standards of vehicle safety and driver competence
and, more restrictively, acquire a Road Service Licence from the Traffic Com-
missioners. A licence would only be issued if the applicant could show that
its service was in the public interest. In practice permission would often not
be granted if existing licence holders, or British Rail!, objected, creating a
barrier to the entry of independent operators. Permission was also required
for changes to fares or timetables for existing services, and again the onus
was on the applicant to prove that such changes were in the public interest.

The 1985 Transport Act deregulated local bus markets?. Subsequent to
the Act an operator needed only to register its timetable and satisfy basic
safety requirements in order to run a local bus service. The main remaining
restriction was that the Traffic Commissioners had to be notified of all new
services, and changes to existing services, 42 days in advance.

In 1995 the Select Committee on Transport produced a report on the
effects of bus deregulation [3]. Among the many issues raised by the Com-
mittee was the stability of bus timetables3. It is clear from the report that
where there is competition between operators on the same route (on-the-road
competition), timetables are frequently updated. Moreover the frequency of
these updates is a considerable source of irritation to bus users. The rise in
timetable instability was the first point raised by the National Federation of
Bus Users (NFBU) in its evidence to the Committee and the Road Traffic
Commissioners agreed that this was the problem which was of most concern
to passengers. Indeed those Commissioners questioned by the Committee
would have liked powers to restrict the frequency with which changes to the
timetable could be made. In many places the cost of keeping passengers

10r, prior to 1948, the various railway companies.

ZExpress coaches had previously been deregulated by the 1980 Transport Act. The
1985 Act also privatised the old incumbent express coach operator, National Express.

3There are many other issues raised in the report, which we do not discuss here. The
Committee commented that deregulation had not generated the expected falls in fares,
that frequency had risen, that the market remained surprisingly concentrated. The Com-
mittee spent a lot of time considering whether or not bus markets are contestable, the
issue which dominated the theoretical debate while the 1985 legislation was being drawn
up,; and which is relevant to the policy question of whether the government should view
consalidation in the industry with equanimity. Another feature of the deregulated market
which had surprised observers is the relative failure of high quality minibus services to
develop alongside full size bus services. Such differentiated markets are common in South
East Asia. The Committee also considered the vexed question of whether or not there has
been predation in local buses.



informed about timetables is borne by the local authority and those Coun-
cillors from the metropolitan areas, where on-the-road competition is most
common, testified to the Committee that the frequent timetable changes were
very expensive to them. Councillor McLellan from Strathclyde, where four
large operators and numerous small ones competed, testified that whereas be-
fore deregulation timetables were produced at 3 or 6 month intervals, since
deregulation 5 timetable changes had been notified to the Strathclyde Traf-
fic Commissioners every working day. The NFBU observed that frequent
changes to the timetable are associated with another feature: bus departure
times tend to be bunched together. They noted that two operators running
practically identical timetables did little to increase customer choice. In its
final report the Committee made a similar point, stating that entrants into
bus markets typically registered times just before those of the incumbents.

There is anecdotal evidence from previous periods of unregulated bus
services of similar behaviour. Glaister, in his evidence to the Committee, cites
the example of the horse bus Associations in 19th century London, which had
to make great efforts to enforce service regularity on their members in order
not to alienate their passengers. Another example is given by Chester [2]*
in a book written 6 years after the 1930 Act which first introduced some
control into London’s bus markets. There he described the ills of “unfettered
competition”, and argued that such competition means

the running of vehicles to a regular timetable will become impos-
sible.

In contrast, there is no evidence in the secondary literature that deregula-
tion has lead to instability in the timetables of express coaches®. This paper
puts forward the hypothesis that this difference arises from a basic differ-
ence in passenger behaviour. On the one hand the time at which passengers
on urban local bus routes arrive at the stop is taken to be independent of
the arrival times of buses, while on the other hand passengers on express
coach routes are assumed to arrive just in time to board their most pre-
ferred coach. The way in which this leads to timetable instability was clearly

1Cited by Mackie & Preston [10]
5Papers on the effects of express coach deregulation include those by Jaffer, Thorpson
and Whitfield {9}, [14], Barton and Everest {1], Robbins and White [12], [15], and references

therein.



stated by Chester, who argued that ‘unfettered competition’ on local bus
routes would undermine regular timetables because:

if any operator fixed definite times, rival operators will seek to
reach stopping places a few minutes earlier and take the traffic [2].

Instead, each operator will keep its rival guessing as to its arrival time,
and will choose different times each day.

The assumption underlying timetable instability, that on that on urban
local bus routes passengers arrive at a bus stop independently of the arrival
time of buses, has independent support. Savage [13] cites work on passenger
waiting times in Greater Manchester. It was found that when the intervals
between buses are comparatively short there is a random element in the ar-
rival patterns of potential passengers at stops, so that as frequency increases
the average waiting time falls. In fact if the intervals are less than around 12
minutes, then arrivals become totally random. Savage in his own empirical
work on competition on selected bus routes assumes that a bus arriving just
before its rival will get all the market. This feature of local bus markets
was cited by witnesses to the Select Committee as an explanation for var-
ious effects in the deregulated urban bus market. Witnesses® testified that
passengers on high density bus routes take the first bus to arrive, regardless
of price differentials, and that this undermines attermpts by bus operators
to win market share through cuts in fares. This explanation was also put
forward by Mackie & Preston [10] as a reason why fares remained so high.
Many go on to note that competition on local bus routes focuses on being
first rather than cheapest, and as a consequence operators put many buses
on a route.

Despite the obvious way in which timetables may be unstable when pas-
sengers behave in this way, early attempts to formally examine whether
timetables would be stable under deregulation excluded such behaviour,
and so, not surprisingly, predicted no instability. Foster & Golay [8] used
a Hotelling framework in which passengers have an ideal departure time.
One component of the cost of making a journey is an item which increases
as the difference between the actual departure time and the ideal gets larger.
To the passenger it is unimportant whether a bus arrives before or after its

6See the evidence of White and the TGWU



ideal time. It follows that the benefit to be gained by pre-empting the ri-
val is offset by the loss incurred as a result of the increased separation from
the preceding service. They identify instability with lack of pure strategy
equilibrium, and since a pure strategy equilibrium does exist in this location
model’, they conclude that there will not be instability. Subsequent work on
the choice of arrival time has used a similar framework®?.

In this paper we examine a location model in which times at a bus stop
are located around a day. Operators choose a time at which their bus will
arrive, and can change times between days. Passengers arrive at the stop
uniformly throughout the day and cannot board a bus which leaves before
they arrive. This last assumption is the important departure from Foster
and Golay’s framework, and instability arises in a natural way. Operators
keep their rivals guessing as to their arrival time by playing mixed strategies,
and since the realisation of the randomising variable differs from day to day,
timetables are unstable.

That each bus operator will keep its rival guessing would, on its own,
induce bus operators to choose all possible arrival times with equal probabil-
ity. We also assurne, however, that there is a cost to revising the timetable.
This is in fact likely to be the case. Timetable changes must be registered,
giving rise to at least some administrative costs. Other costs arise from the
managerial time needed to decide on a change, and on the form of the new
timetable. Moreover, since timetables do not come into effect until 42 days

TThe authors assume sequential entry. Moreover in proving the existence of equilibrium
the authors rely on the modified zero conjectural variation introduced in Novshek [11], so
that they do not show that a pure strategy Nash Equilibrium necessarily exists. Their
result can be seen as part of the debate about the conditions under which a pure strategy
Nash Equilibrium exists in Hotelling location games, when firms choose both price and
location. d'Asprement et al [4] pointed out that when transport costs are linear there
is not neccessarily a pure strategy price equilibiuzn when locations are too close together,
but there is an equilibrinmn when costs are quadratic.

8Gee the papers by Foster & Golay [8], Evans [7], Dodgson et al [5}, [6].

9A slightly different perspective on timetable choice is provided by Glaister in his
evidence to the Select Committee. He suggests that irregularity arises because there are
revenue benefits from service regularity which are external to the individual operator but
internal to the market as a whole. Presumably there is a market benefit because demand Is
higher for a regular service, and this demand benefits all operators, not just the one whose
choice of timetable led to a more stable and regularly spaced service. This observation will
only imply an underprovision of regularity, however, if there is a private gain to creating
irregularity. Glaister leaves the source of this gain unexplained.



after initial registration, deciding on a change will involve planning and re-
search into the rival’s planned actions. The cost has a striking effect on the
pattern of timetable changes: the bus operator whose bus, yesterday, arrived
just before its rival’s, and so had most passengers, is more likely not to revise
its timetable today at all, while the other is more likely to change so that its
buses arrive just before the time its rival’s arrived yesterday. The tendency
is for buses to leapfrog each other in order to arrive earlier and earlier. One
result of this behaviour is that bus arrivals tend to be bunched together as
each bus operator, if it revises its timetable at all, will choose a new time
just before its rival’s old one.

The model is highly stylised in order to draw out the effects on timetable
stability of the twin assumptions that passengers board the first bus to arrive,
and timetable revision is costly. In particular we do not endogenise passenger
boarding behaviour, it is just taken as a primitive of the model. Also we will
treat a day as circular in order to focus attention purely on the question of
whether firmms want their buses to arrive before or after those of their rivals,
without the complications caused by end effects.

We first give a simple discrete example which shows instability, bunch-
ing and leapfrogging. The full continuous model draws out the underlying
mechanisms more clearly.

As in the earlier work on timetable choice, instability in the model here
will arise when a pure strategy equilibrium does not exist. However, the
lack of such an equilibrium here has a different source than that discussed
in early formulations of the Hotelling location game. In those cases the
lack of equilibrium arose because of problems in optimal pricing when firms
were located too close to each other, and the problem could be resolved
through a suitable choice of cost function'®. Here there is no pricing problem.
Instability results directly from a lack of pure strategy equilibrium in the
choice of location.

2 An Example

Two-'buses, A and B, compete to pick up passengers during each of an infinite
number of days. Each day has 4 minutes arranged around a circle, so that

10Gee Footnote 7.



minute 3 is just before minute 0. Figure 1 illustrates a day.

0 1
3 2
Figure 1: A day

In period t bus i, i = A, B, picks an arrival timeé @}, a € {0,...,3}. The
state in period f, denoted k!, is the arrival times of buses in the previous
period, k' = a'! = (ay{!,a5").

One unit of passengers arrive every minute and if a bus arrives in the
same minute they board it, otherwise they board the first bus to arrive. Two
buses arriving at the same time share the waiting passengers equally.

A bus gets a gross profit of 1 for every unit of passengers which board.
Let m;(a4,ag) be the gross payoff of bus ¢ when arrival times are aa,ap. The
complete gross profit matrix is given in Table 1 which shows the pair 74, 7p
for each possible combination of arrival times.

ag

OB~ O
Cao DD = 1N
N G2 N
B =t B
b QO DO —
el \WRVLE
GO B = B
o G DD
o = B O

Table 1: Table of values of 74,75

Buses also incur a cost of ¢ if they revise their timetable. Let C;{a}) be
the cost bus 7 pays if it arrives at a! in period {. Then:

O (gt = Lol
Ci(a;) { ¢ otherwise

For simplicity we assume that each bus ¢ is myopic: it seeks only to
maximise the expected current profit net of any revision cost. However, we

7



will see that this assumption is not as restrictive as it appears: even if buses
maximised the sum of discounted future net profits the equilibrium strategies
would be the same as the ones we find here. The problem is essentially a
one period one (though the past influences the present through the state)
and we now drop the time superscript. A strategy for bus ¢, denoted s;,
specifies the probability that ¢ chooses each arrival time, so that s;(m) is the
probability that a; = m. Strategies can be conditioned on the state, but on
nothing else. In any equilibrium s* = (s%, s} any arrival time chosen with
positive probability must maximise expected profit net of cost, given the
rival’s strategy, i.e. if s7(m) > 0 then m maximises F/ [w(m, a;) — C(m}) | s;]

It is easy to see that if the revision cost is less than 1 firms will never
choose a pure strategy in equilibrium, no matter what the state. Suppose A
arrived in minute 0 with certainty. If B arrived at 3 it would collect 3 units
of passengers, and pay a maximum cost of ¢, giving a net profit of more than
2. If B arrived at any other time it could collect at most 2 units, and so
it will certainly arrive at 3. But if B is arriving at 3, A does best to arrive
just before at 2, and so on. When ¢ < 1 the only equilibrium is in mixed
strategies. Each bus randomises to keep its rival guessing as to exactly when
it will arrive. Equilibrium strategies are shown in Tables 2 and 3 below. In

kp 53(0) su(1) sa(2) su(3)

0 1§c ~ ?'_g 2

Lijztas — 274

2 1 [ i_ ¢ —
l2c 2 ? (2:

3 5-5 — 5+5 =

Table 2: A’s equilibrium strategy

by sp(0) sh(l) sh(2) sk(3)

1 1 __¢ c
0 2 l_c : 2 2
L - 332 T 3+
2 (1 _¢ — L £
2 3
3 2_2 1_¢ — l+£
2 " 3 217 4

Table 3: B’s equilibrium strategy

both tables we assume that A arrived in minute 0 yesterday, i.e. k4 = 0.
The state is therefore summarised just by kg. We can always ensure that
k4 = 0 simply by relabelling the minutes at the start of the current period.

8



Before examining what these strategies imply for the pattern of timetable
revisions, we first confirm that they do form an equilibrium. To do this we
need just show that each firm only chooses an arrival time with positive
probability if arriving at that time maximises its expected net profit given
its rival’s strategy. Table 4 sets out the expected net profit of A when B plays
the strategy given in Table 3. Denote A’s expected profit when it arrives at
m and B plays s§ by I4(m). It is clear by inspection that, given the state

kg T14(0) T4(1) Ta(2) I4(3)

0 [ 2—¢ 92— =¢ _£ 9_¢
1]2-8 9-2 2-% 2-¢
2 12-5 2-3 2-3 2%
3 2*5 2—c 2*‘5 2—c¢

Table 4: A’s expected profit, given sz

kg, the strategy given in Table 2 only assigns positive probability to those
arrival times which maximise A’s expected profit. A similar table to Table 4
could readily be found for B and this would show that the strategy given
in Table 3 likewise only assigns positive probability to those arrival times
which maximise B’s expected profit. This confirms that Tables 2 and 3
do specify an equilibrium in mixed strategies. Moreover this is the only
equilibrium when 0 < ¢ < 1, though to check this requires an exhaustive
search of other possibilities and the results of this search are not repeated
here. One final general feature of the equilibrium is that a bus operator’s
expected net profits do not depend on the state: they are always 2 — c/2.
Since the current period can only affect the future through the state, this
means that the current period has no effect on future net profits and firms
would not change their behaviour if they were not myopic'.

Turning to the implications of these equilibrium strategies for the pattern
of timetable revision, the case that is of particular interest is when the buses
arrived in two successive minutes yesterday, so either kz = 1 if B arrived just
after A, or kg = 3 if it arrived just before. The strategies of the two buses are
shown diagrammatically in Figure 2 for the case where kp = 1. According
to equilibrium strategies either A arrives at a particular time with positive

118 ppose buses maximise the discounted sum of net profits, the discount rate is 5 and
the revision cost ¢8, then there is a perfect eqilibrium in which strategies are identical to
those found here.



0.7 — 0.7

0.3 - 0.3

Figure 2: Strategies when kg =1 and ¢ =4/5

probability, or B does, but not both. In the Figure there is a bar at each
minute whose height is proportional to the probability that a bus arrives at
that minute: if it is bus A the bar has vertical stripes, if B horizontal. We
assume that ¢ = 4/5.

The reason why this case is the most important is that whatever the
actual realisations of firms’ random strategies, they will never arrive at the
same time, and neither will they arrive evenly spaced: if buses arrived one
after the other in the previous day, they are bound to arrive one after the
other in the current day, and so in all future days. When kg = 0 or 2, the
only other possible cases, firms randomise over three possible arrival times,
and so with positive probability arrive one after the other in the current day,
and if not in the current day, then with positive probability in the next day,
and so on. In the long run, buses will always arrive one after the other every
day. This phenomenon resembles the bunching of bus arrivals that many
cormentators have noted is a feature of deregulated local bus markets.

In the long run not only do buses always arrive one after the other, but
we see a tendency for buses to leapfrog each other backwards round the day.
In Figure 2 bus A, which arrived just before B and collected most passengers
yesterday, was most likely to arrive at the same time today, whereas B was

10



most likely to revise its timetable in order to arrive just before A’s arrival
time yesterday. The continuzous time model in the next section explores the
mechanisms underlying this leapfrogging and bunching more fully.

3 The Model

Two buses, A and B, compete to pick up passengers during each of an infinite
number of days. Each day has length 1, and is circular, with later times being
further clockwise round the circle. In each period t each bus ¢, ¢ = A, B, picks
an arrival time af, af € (0,1]. At the start of period ¢ all times are relabelled
so that A’s arrival time in period ¢ — 1 is at 0, which just has the effect that
all times in t are measured in terms of minutes later than A’s arrival time
in the previous period. The state in period £, denoted &%, is the (relabelled)
arrival time of B in the previous period. We will assume henceforth that A
arrived ‘before’ B in the sense that £ < 1/2. By symmetry, this is without

loss of generality.

Passengers arrive at a uniform rate throughout the day, with a total mass
of 1 per day, and board the first bus to arrive after they do, unless both
arrive at the same moment, in which case half board each bus.

A bus gets a gross profit in the day equal to the mass of passengers which
boards and the mass boarding a bus is just the minutes after the previous
bus that this bus arrives. Let m;{a%,a%) be the gross profit of bus ¢ when
arrival times are a’y, a’5. Then:

aly — ak if a%y > a%
¢t : —
malay,ag) =14 1/2 if ety = d

14 (a%y —a%) ifay <af

and similarly for 7p.

If buses must pay when they update their timetable different arrival times
will entail different costs. Denote the updating cost incurred by 7 should it
arrive at x when the state is k by Ci(z, k). |

We assume that buses are myopic and seek only to maximise the ex-

pected current profit net of any revision cost. The problem is essentially a
one period one (the past is summarised by the state), and we now drop the

11



time superscripts. We restrict attention to Markov strategies which depend
only on the state. A pure strategy for bus i is a function s;(k) which gives
the arrival time chosen when the state is k. A mixed strategy is a distribu-
tion function Fj(z, k) which gives the probability of arriving in the interval
[0,x]. We consider Nash Equlibria where each bus chooses a strategy which
raximises its expected net profit given the strategy chosen by its rival.

The first point is that for updating costs sufficiently low there is no equi-
librium in pure strategies. Consider the extreme case where the updating
cost is everywhere zero. In this case the state does not affect current payofls
and Markov strategies will not depend on it. The best reply function is not
even defined here. If B chooses sgp = ag, A will maximise the profit from
boarding passengers by arriving as late as possible while still arriving before
apg, i.e. by setting its arrival time as the largest a4 such that a4 < ap.
When time is continuous there is no a4 which satisfies this. However, even
without this technical problem there would be no equilibrium in pure strate-
gies. Consider whether an e-equilibrium (s%, sp) exists, where if j arrives at
53,00 artival time gives ¢ a payoff of ¢ more than m;(s*), for an arbitrarily
small £. No such e-equilibrium exists. To see why, simply note that in any
g-equilibrium A will arrive no more than e minutes before B, and B will
arrive no more than £ minutes before A. When ¢ is small, these conditions
cannot both be met.

From now on we will consider only mixed strategies. Denote the average
arrival time of bus i by @;. Let II;(z, F;) be the expected gross profit of bus
i when it arrives at & and its rival's strategy is Fj. This will be given by:

Ii(z, F;) = lim [z~ (@le; < 2)] F5(x —€)
+{1 42 — (@]e; > )| (1 — F(z))
+2 (B(z) - Flz - )

Let lim,_ (Fj(z) — Fj(z — €)) = Pr;(z) (this will be zero when there is no
atom in the distribution at z). Then:

Mz, F;) = [z~ (a]a; < 2)] (Fi{z) - Pr ;(x))
+[1 + 2z — @jle; > 2)} (1 — F(z))
+ [z — (@5]a; = )] Pr ;{(z)

1

12



which rearranges to:
1
Lz, F;)=1—a; +z — Fj(z) + 3 Pr j{z) (1)

Using these expressions we first find equilibrium when timetable revision is
costless.

When there is no cost to revising the timetable, so that in the absence of
other considerations all arrival times are equally attractive, there is an equi-
librium in which both operators choose arrival times according to a uniform
probability distribution:

F(z)==z,1i=A,B

To confirm that these strategies do form an equilibrium, substitute into the
expression for expected profit above to give:

0 (z, F})=1/2 Vz, i=AB

Since, when its rival chooses arrival times according to a uniform distribution
over all times, an operator earns the same expected profit no matter what
time it chooses, it is indifferent over all possible strategies, including arriv-
ing according to a uniform distribution. Here we see a radical instability in
the timetable. Buses choose any arrival time with equal probability, inde-
pendently of their rival’s or their own previous arrival time. This instability
arises from the desire on the part of both buses to arrive just before their
rival, when there will be many passengers waiting at the stop.

Once we assume that it is costly to adjust the timetable more structure
on the probability distribution chosen by firms emerges.

For technical reasons we assume that the cost of choosing different arrival
times changes continuously. In particular we assume that if the arrival time
is the same as in the last period there is no updating cost, and that the
cost rises linearly at a rate m with the absolute change in the arrival time
until a maximum updating cost of ¢ is reached, at which point the updating
cost remains constant. When m is large this function will approximate the
situation where a firm pays ¢ for every arrival time except that at which it

13



arrived in the previous period, for which it pays nothing, and henceforth we
assume m > 1. The updating cost functions are:

me if z € [0,c/m]
Ca(z, k) = ¢ if € [c/m,1—c/m] (2)
m(l—z) ifze[l—c/m,1)
¢ if z € [0,k — ¢/m]
| mk—z) ifzelk—c/mk]
Cplz,k) = m(z — k) if z € [k, k +¢c/m] (3)
¢ if z € [k +¢/m,1)

An example of these costs are illustrated in Figure 3 below. In writing and
illustrating Cg(z, k) we have assumed that the interval between bus arrivals

in the previous period, k, was not too small, specifically that k > ¢/m. In

the limit where m — oo this will almost always be true, but in any case what
is at issue is notation rather than results. Looking at the illustration of Cp in
the second panel of Figure 3, note that the circular day has been mapped to
a line in the diagrams by cutting it at the point where 1 and 0 meet up and
placing 0 at one end and 1 at the other. If k < ¢/m the diagram is essentially
the same, but the two ends of the line will lie in a region where the updating
cost is less than ¢. The exact expression for Cp would differ from the one
given in Equation 3, though the function is, in essence, the same. We will
ignore this notational complication in what follows. The reader should be
able to construct the exact expressions relevant to the case k < c/m from
the resutts that follow.

Now that the cost of arrival times varies, there can no longer be a com-
pletely mixed strategy equilibrium in which A chooses to arrive according to
a uniform probability distribution. If A did so, B would choose to arrive at
the same time in one period as it did in the previous one, i.e. at k, since
all times give the same expected profit from boarding passengers, and by
arriving at k bus B avoids all updating costs.

There are two cases, depending on whether the buses were bunched to-
gether in the previous period or were evenly spaced, specifically on whether
. > ¢ or not. We consider the simpler case first where buses were fairly
evenly spaced and & > ¢ (this case is only possible when ¢ 2 1/2). We will
first formally state and prove the result before describing its implications and
providing some intuition as to why it is true. We have:

14
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Calz, k)

C —
0 | _ I

0 c¢/m T 1—-¢/m 1

Updating cost function: bus A
C"B(:’E'} k)

¢
0 I

0 k—c/m k k+c/m 1

Updating cost function: bus B

Figure 3: An example of the updating cost as a function of arrival time z for
a given k
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Result 1 There is an equilibrium (F7, Fg) in which for k € (¢, 1/ 2]:

(¢ z € [0,
z z € [e, k — ¢/m]
Fiz,k)=4¢ (1 +m)z —mk+c z € [k —¢/m, k|
k+c z € [k, k+
| = z€lk+c1)
(0 z € [0,¢]
r—c T € [c, k)
Fi(x, k) =1 k z € [k, k+c]
z—c zelk+el—c/m
| (1+m)lz—m zel -¢/m,1)

Proof. To show that these strategies form an equilibrium, we need to show
that the net profit a bus operator expects to earn is the same, no matter
what time in the support its bus arrives, and that this net profit is no less
than that from arriving at any time not in the support. Substituting B’s
strategy into the expression for A’s profit from boarding passengers gives:

[ x I'G[O,C]
. C ;EE[C,k)
* = CQ xzk
HA(m,FB)zl*aB+ﬁ m/——k xE(k,k‘i'C]
C :cG[k+C,1_C/m]

m{l —z) z€[l—-c/m1l)

\

which gives an expected net profit for A as a function of its arrival time of:

( z(1-m) z€f0,¢/m]
. r—c¢ - x€le/m,d]
. _ 0 € e,k
HA(:E,FB)—CA(IL‘):I—CLB-F{ _(:/2 ::;:[; )
r—k—c z€(kk+c
L O relk+el)
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Similarly the expected net profit of B as a function of its arrival time is:

(7 — 3¢/2 z=0
r— 2 z € (0,
o L —c z € [c, k]
Np(z,Fa) - Cp(z)=1—a4+« (z—k)Y1—-m)—c z €[k k+c/m)
7 — %2 z€lk+e/mk+
L —C xE[k—f-C,l)

This net profit is shown in Figure 4 below. Inspection of the expressions
and the Figures reveals that the expected net profit is 1 — a@p if A arrives
at any time in the support of F(z), and is less than this should A arrive
at any other time. This confirms that F7} is a best response to F5. Similar
reasoning confirms that F is a best response to F3; and so that these
strategies are an equilibrium. B

Figure 5 below shows the equilibrium strategies. Since marginal probabil-
ities are simpler to interpret than the related distribution function, the figures
give the marginal probability chosen by each firm in equilibrium, where this
is defined. A filled square at the top of a line means that there is a proba-
bility mass at that point, and the probability in that mass is marked. The
probability mass of ¢ in the distribution means that each bus arrives at the
same time as it did in the previous period with probability c. Thus, not sur-
prisingly, the higher the updating cost, the higher the probability that a bus
chooses not to incur it. If a bus does update its arrival time, it never chooses
to arrive a little later than previously, but may arrive little earlier. Also we
see that a bus never arrives a little later than its rival’s previous arrival time,
but may arrive a little earlier. In particular with probability ¢ + ¢/m it will
arrive in an interval of width ¢/m immediately before its rival’s arrival time
in the previous period!?. The implication of these strategies is that buses
tend either not to update their arrival times, or if they do, to arrive just
before their rival’s previous arrival time. They never arrive later than either
their own or their rival’s previous arrival time. Since a lot of probability is
concentrated close to the same two arrival times for each bus, this behaviour
will cause a tendency for buses to choose close arrival times this period and
so to bunched arrival times. Moreover we see some leapfrogging to earlier

Pete/m=(k—(k—c/m})) (L +m)
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| Figure 4: Expected net profit as a function of arrival time: k£ <c¢
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and earlier times as bus operators avoid arrival times later than their rival’s
previous time, but sometimes choose an arrival time before.

As stated in the proof, to show that these strategies do form an equilib-
rium we need to show that the expected net profit of each bus is maximised
by its arriving at any time in the support of its equilibrium distribution func-
tion. Suppose A arrives according to F'; and consider B’s expected payoff.
All other things equal B would arrive at k and avoid all updating costs. How-
ever, with a relatively high probability A arrives just before & which increases
B’s expected payoff if it arrives a little earlier still. A’s distribution function
is such that this inventive exactly offsets the disincentive from having to pay
an updating cost. Also the atom in A’s distribution at 0 makes the expected
profit from arriving just before this higher so that these times also lie in B’s
support.

So far we have just considered the case where the buses were not too
bunched together in the previous period. Now we turn to the case where
their arrival times were separated by less than ¢ in the previous period and
so k < ¢. In this case:

Result 2 There is an equilibrium (F3, F) which, when k < ¢, has the form:

. [ k+c z€[0,k+(]
Filz.k) = { T z€lk+c1)

0 z € [0,k)
. )k z € [k, k+c)
Fa(z,k) = z—cC z€[k+cel—c/m

(1+m)z—m ze€l[l—c/m1)

Proof. To confirm that these form an equilibrium we can calculate the
expected net profit from arriving at different times, assuming the rival’s
times are given by these distributions, the same way as above. This gives:

( 2(1 -m) z€{0,¢/m]
| T —c x € [¢/m, k]
HA(.’B,FB) -“C,q(:c) =1—-—ag+ 1 l:/?—-c z=k

| z—~k—c zekk+¢
0 z € [k+ec1)

\
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([ —k/2 — 3¢/2 z=0

r—k—2c z € (0,k— ¢/m]
(z—-k)(1+m)—c zelk—c/mk]
(z—-k)1—-m)—c z€lkk+c/m]
z—k—2c z€fk+c/mk+
—c z€lk+el)

Mp(z, F3) — Cplz) = 1 — G+ ¢

“

These expected net profits are illustrated in Figure 6 below. Inspection
of the Figure and the expressions confirms that each bus’ expected net profit
is maximised at any point on the support of its equilibrium distribution
function. |

These equilibrium strategies are illustrated in Figure 7: When bus arrivals
were close together in the previous period, the bus which arrived just before
its rival and so had more passengers, i.e. bus A, is less likely to have its
timetabie updated this period than is bus B which had fewer passengers.
This is shown by the fact that the atom at 0 in A’s equilibrium strategy
has mass k + ¢, whereas the atom in B’s equilibrium strategy at k& only has
mass k. Moreover if bus A does have its timetable updated, it will arrive
earlier than its own previous arrival time, but will avoid time either a little
earlier or later than B’s previous arrival time. Bus B on the other hand
will, with relatively high probability, arrive in the interval ¢/m just before
A’s previous arrival time. The leap-frogging to earlier and earlier times first
seen for the case when buses were fairly evenly spaced previously, & > ¢, is a
much stronger feature of the equilibrium when buses were bunched together
previously. The later bus is both more likely to have its timetable revised
than its rival, and if it is revised at all, is relatively likely to arrive just before
the previous arrival time of the early bus.

4 Express Coaches

The assumption that passengers arrive independently of the times at which
* buses arrive is fundamental to the finding that timetables are unstable. It
is also unlikely to be the case for passengers travelling by express coach. It
, _is much more plausible that such passengers know the timetable and travel
" on that.coach which they most prefer. Consider a model identical to the one
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" Figure 6: Equilibrium marginal probabilities of arriving: £ < ¢
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for urban local buses above except that the specification of demand differs.
Assume that passengers are located evenly over the day and that the mass
of passengers boarding a bus is equal to the mass which is closer to that bus
than to its rival. For both buses this will be 1/2 no matter what the arrival
times chosen. So long as the updating cost is at a minimum when buses do
not update their arrival times, there will be an equilibrium in which both
buses arrive at the same time from day to day.

5 Conclusions

This paper has explored the implications of assuming that passengers on a
bus routes arrive at the bus stop independently of the times at which buses
armive, and that it is costly to revise bus timetables. These implications
are that when there is on-the-road competition timetables are unstable, the
operator whose bus was boarded by fewest passengers is the most likely to
change its arrival time, and to try to leapfrog its rival by arriving just before,
and that there is a tendency for bus arrival times to be bunched together.
The assumptions have independent support in the case of local urban bus
routes, which are those where bunching and instability are noted features
of on-the-road competition. On express coach routes, where passengers are
more likely to research departure times before travelling, and to arrive at
the coach station in order to catch their preferred coach, mstability does not
arise in the model, and has not been noted as a feature of competition in
practice.
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