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The governing equation is ��2+k2−q�x��u=0 in R3. It is shown that any desired
potential q�x�, vanishing outside a bounded domain D, bounded in D, Riemann
integrable, can be obtained if one embeds into D many small scatterers qm�x�,
vanishing outside balls Bmª �x : �x−xm��a�, such that qm=Am in Bm, qm=0 outside
Bm, 1�m�M, M =M�a�. It is proven that if the number of small scatterers in any
subdomain � is defined as N���ª�xm��1 and is given by the formula N���
= �V�a��−1	�n�x�dx�1+o�1�� as a→0, where V�a�=4�a3 /3, then the limit of the
function uM�x�, lima→0 uM =ue�x�, does exist and solves the equation ��2+k2

−q�x��u=0 in R3, where q�x�=n�x�A�x�, A�xm�=Am, and uM�x� is a solution to the
equation ��2+k2− p�x��u=0, where p�x�ªpM�x� is some piecewise-constant poten-
tial. The total number M of small inhomogeneities is equal to N�D� and is of the
order O�a−3� as a→0. A similar result is derived in the one-dimensional case. ©
2009 American Institute of Physics. �doi:10.1063/1.3267887�

I. INTRODUCTION

Consider the scattering problem,

��2 + k2 − q�x��u = 0 in R3, k = const � 0, �1�

u = eik�·x + A��,�,k�
eikr

r
+ o
1

r
�, r ª �x� → �, � =

x

r
, � � S2, �2�

where S2 is the unit sphere in R3, and A�� ,� ,k�=Aq�� ,� ,k� is the scattering amplitude corre-
sponding to the potential q�x�, � is the direction of the incident plane wave, � is a direction of the
scattered wave, and k2 is the energy.

Let us assume that p= pM�x� is a real-valued compactly supported bounded function, which is
a sum of small inhomogeneities: p=�m=1

M qm�x�, where qm�x� vanishes outside the ball Bm

ª �x : �x−xm��a� and qm=Am inside Bm, 1�m�M, M =M�a�.
The problem, we are studying in this paper, is the following.
Problem: Under what conditions the field uM , which solves the Schrödinger equation with the

potential pM�x� , has a limit ue�x� as a→0 , and this limit ue�x� solves the Schrödinger equation
with a desired potential q�x� ?

We give a complete answer to this question. Theorem 1 �see below� is our basic result.
The class of potentials q, that can be obtained by our method, consists of bounded, compactly

supported, Riemann-integrable functions. It is known that the set of Riemann-integrable functions
is precisely the set of almost everywhere continuous functions, that is, the set of bounded func-
tions with the set of dicontinuities of Lebesgue measure zero in R3. These assumptions on q are
not repeated but are always valid when we write, e.g., “an arbitrary potential.”
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In fact, a more general set of potentials can be constructed by the method of this paper. We do
not go into detail, but mention that for some class of unbounded potentials, having local singu-
larities, which are absolutely integrable, our theory can be generalized.

Our answer is as follows.
Assume that q�x� is an arbitrary Riemann integrable in D potential, vanishing outside D ,

where D is an arbitrary large but finite domain, and functions A�x� and n�x�	0 are such that
A�xm�=Am and A�x�n�x�=q�x� . Then the limit ue�x� of uM�x� as a→0 does exist and solves
problem (1) and (2).

The notation ue�x� stands for the effective field, which is the limiting field in the medium as
M→� or, equivalently, a→0. Under our assumptions �see Lemma 1 below� one has M
=O�1 /a3�.

The field uM is the unique solution to the integral equation,

uM�x� = u0�x� − �
m=1

M �
D

g�x,y,k�qm�y�uM�y�dy, g�x,y,k� =
eik�x−y�

4��x − y�
, �3�

where u0�x� is the incident field, which one may take as the plane wave, for example, u0=eik�·x,
where ��S2 is the direction of the propagation of the incident wave.

We assume that the scatterers are small in the sense ka
1. Parameter k�0 is assumed fixed,
so the limits below are designated as limits a→0, and condition ka
1 is valid as a→0.

If ka
1, then the following transformation of �3� is valid:

uM�x� = u0�x� − �
m=1

M
eik�x−xm�

4�
AmuM�xm��

�y−xm��a

dy

�x − y�
�1 + o�1�� . �4�

To get �4� we have used the following estimates:

�x − xm� − a � �x − y� � �x − xm� + a, �y − xm� � a .

These estimates imply

eik�x−y� = eik�x−xm��1 + o�1�� ,

provided that �y−xm��a and a→0.
We also have taken into account that, as a→0, one has

max
x�Bm

�uM�x� − uM�xm�� = o�1� .

A proof of this statement is given in Ref. 2.
One can also argue that Eq. �3� has a unique solution because it is a Lippmann-–Schwinger

equation with a compactly supported bounded uniformly with respect to M potential qm�x�. There-
fore, its solution is uniformly �with respect to M� continuous in D.

An argument, different from the one, given in Ref. 2, can be outlined as follows. The limiting
function ue�x� is in H2�D� by the standard elliptic regularity results, so it is continuous in D. The
function uM converges to ue uniformly. Therefore, it satisfies the above inequality as M→�, or,
equivalently, as a→0.

A justification of a collocation method for solving the Lippmann–Schwinger equation �16� for
the limiting field ue is given recently in Ref. 9. From the arguments, given in Ref. 9, one obtains
again the uniform convergence of uM to ue,

lim
M→�

max
x�D

�uM�x� − ue�x�� = 0.

We want to prove that the sum in �4� has a limit as a→0, and to calculate this limit assuming that
the distribution of small inhomogeneities or, equivalently, the points xm, is given by formula �5�,
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see below, and M =N�D�, where N��� is defined in �5� for any subdomain ��D, and N�D� is
N��� for D=�.

Our basic new tool is the following lemma.
Lemma 1: If the points xm are distributed in a bounded domain D�R3 so that their number

in any subdomain ��D is given by the formula

N��� = �V�a��−1�
�

n�x�dx�1 + o�1�� , a → 0, �5�

where V�a�=4�a3 /3 and n�x�	0 is an arbitrary given continuous in the closure of D function,
and if f�x� is an arbitrary Riemann integrable in D function, then the following limit exists:

lim
a→0

�
m=1

M

f�xm�V�a� = �
D

f�x�n�x�dx . �6�

The above limit exists if f�x�n�x� is a Riemann-integrable function. The class of such functions is
precisely the class of bounded almost everywhere continuous functions, i.e., bounded functions
with the set of discontinuities of Lebesgue measure zero in R3. The class of such functions is
precisely the class of functions for which Riemannian sums converge to the integral of the func-
tion. The result �6� can be generalized to the class of functions for which the integral 	Df�x�n�x�dx
exists as an improper integral. In this case f�x� may be unbounded at some points y, but the limit
lim�→0 	D�

f�x�n�x�dx exists and

lim
�→0

�
D�

f�x�n�x�dx ª �
D

f�x�n�x�dx ,

where D�ªD \B�y ,�� and B�y ,�� is the ball centered at y�D and of radius �. In this case the sum
in �6� is defined as

lim
a→0

�
m=1

M

f�xm�V�a� ª lim
�→0

lim
a→0

�
xm�D�

f�xm�V�a� .

The same remark is valid for the conclusion of Theorem 1, which is our basic result.
Theorem 1: If the small inhomogeneities are distributed so that (5) holds, and qm�x�=0 if

x�Bm , qm�x�=Am if x�Bm , where Bm= �x : �x−xm��a� , AmªA�xm� , and A�x� is a given in D
function, such that the function q�x�ªA�x�n�x� is Riemann integrable, then the limit

lim
a→0

uM�x� = ue�x� �7�

does exist and solves problem (1) and (2) with

q�x� = A�x�n�x� . �8�

There is a large literature on wave scattering by small inhomogeneities. A recent paper is Ref. 1.
Our approach is new. Some of the ideas of this approach were earlier applied by the author to
scattering by small particles embedded in an inhomogeneous medium.2–8

In Sec. II proofs are given and the one-dimensional version of the result is formulated and
proven.

II. PROOFS

Proof of Lemma 1: Let ��p�p=1
P be a partition of D into a union of small cubes �p with centers

yp, without common interior points, and

123525-3 Creating desired potentials J. Math. Phys. 50, 123525 �2009�
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lim
a→0

max
p

diam�p = 0. �9�

One has

�
m=1

M

f�xm�V�a� = �
p=1

P

f�yp�V�a� �
xm��p

1�1 + o�1�� . �10�

We use formula �5� and the assumption �9� and get

�
xm��p

1 = V�a�n�yp���p��1 + o�1�� , �11�

where ��p� is the volume of the cube �p.
It follows from �10� and �11� that

�
m=1

M

f�xm�V�a� = �
p=1

P

f�yp�n�yp���p��1 + o�1�� , �12�

which is the Riemannian sum for the integral in the right-hand side of �6�, and the assumption �9�
allows one to write

f�xm� = f�yp��1 + o�1�� ∀ xm � �p, �13�

if f is Riemann integrable.
The Riemannian sum in �12� converges to the integral in the right-hand side of �6� since the

function f�x�n�x� is Riemann integrable.
Lemma 1 is proven. �

Proof of Theorem 1: We apply Lemma 1 to the sum in �4�, in which we choose AmªA�xm�,
where A�x� is an arbitrary continuous in D function which we may choose as we wish. A simple
calculation yields the following formula:

�
�y−xm��a

�x − y�−1dy = V�a��x − xm�−1, �x − xm� 	 a , �14�

and

�
�y−xm��a

�x − y�−1dy = 2�
a2 −
�x − xm�2

3
�, �x − xm� � a . �15�

Therefore, the sum in �4� is of the form �6� with

f�xm� =
eik�x−xm�

4��x − xm�
A�xm�uM�xm��1 + o�1�� .

Applying Lemma 1, one concludes that the limit ue�x� in �7� does exist and solves the integral
equation

ue�x� = u0�x� − �
D

eik�x−y�

4��x − y�
q�y�ue�y�dy , �16�

where q�x� is defined by formula �8�.
Applying the operator �2+k2 to �16�, one verifies that the function ue�x� solves problem �1�

and �2�.
Theorem 1 is proven. �

Remark 1: Our method can be applied to the one-dimensional scattering problem. The role of
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the balls Bm is now played by the segments: Bmª �x :x�R1 , �x−xm��a�, the role of D is played
by an interval �c ,d�, the V�a�=2a in the one-dimensional case, an analog of formula �5� for the
number of small inhomogeneities N���=�xm��1 is

N��� = �2a�−1�
�

n�x�dx�1 + o�1�� , �17�

and � is now any interval on the line. The total number M of small inhomogeneities is now of the
order of O�a−1�.

In the one-dimensional case an analog of the function g�x ,y ,k� is

g�x,y,k� = −
eik�x−y�

2ik
. �18�

An analog of the potential qm is qm�x�=Am inside the interval Bm, qm�x�=0 outside Bm, and we
assume that Am=A�xm�, where A�x� is a continuous function which we can choose at will. With
these notations one can use Eq. �4� without any change, but remember that g�x ,y ,k� is now
defined as in �18�. An analog of �4� now is

uM�x� = u0�x� + �
m=1

M
eik�x−xm�

2ik
A�xm�uM�xm�2a�1 + o�1�� . �19�

An analog of Theorem 1 can be stated as follows.
Theorem 2: If the small inhomogeneities are distributed so that (5) holds, and qm�x�=0 if

x�Bm , qm�x�=Am if x�Bm , where Bm= �x : �x−xm��a� , AmªA�xm� , and A�x� is a given
continuous in D function, then the limit ue�x� in (7) does exist and solves problem (1) and (2) with
q�x� defined in (8), �2u replaced by u� , and the radiation condition (2) modified to fit the
one-dimensional problem.
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