This is the author's final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher's web site or your institution's library.

Occurrence of heterocyclic amines in cooked meat products

Kanithaporn Puangsombat, Priyadarshini Gadgil, Terry A. Houser, Melvin C. Hunt, J. Scott Smith

How to cite this manuscript

If you make reference to this version of the manuscript, use the following information:

Puangsombat, K., Gadgil, P., Houser, T. A., Hunt, M. C., & Smith, J. S. (2012). Occurrence of heterocyclic amines in cooked meat products. Retrieved from http://krex.ksu.edu

Published Version Information

Citation: Puangsombat, K., Gadgil, P., Houser, T. A., Hunt, M. C., & Smith, J. S. (2012). Occurrence of heterocyclic amines in cooked meat products. Meat Science, 90(3), 739-746.

Copyright: © 2011 Elsevier Ltd

Digital Object Identifier (DOI): doi:10.1016/j.meatsci.2011.11.005

Publisher's Link: http://www.sciencedirect.com/science/article/pii/S0309174011003603

This item was retrieved from the K-State Research Exchange (K-REx), the institutional repository of Kansas State University. K-REx is available at <u>http://krex.ksu.edu</u>

Occurrence of Heterocyclic Amines in Cooked Meat Products

Kanithaporn Puangsombat ^{a,b}, Priyadarshini Gadgil ^c, Terry A. Houser ^d, Melvin C. Hunt ^d, J. Scott Smith ^d

^a Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
 ^bCenter for Advanced Studies in Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand, 10900
 ^c United States Department of Agriculture, Agricultural Research Service, Manhattan, KS 66502, United States
 ^d Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, United States

contact information for corresponding author:

J. Scott Smith Animal Sciences and Industry 208 Call Hall Kansas State University Manhattan, KS 66506 (785) 532-1219 Fax: (785) 532-5681 E-mail: jsschem@ksu.edu

ABSTRACT

3 Heterocyclic amines (HCAs), potent mutagens and a risk factor for human cancers, are 4 produced in meats cooked at high temperature. The aim of this study was to determine the HCA 5 content in cooked meat products (beef, chicken, pork, fish) prepared by various cooking methods (pan frying, oven broiling, and oven baking at 170 to 230 °C) that are preferred by U.S. meat 6 7 consumers. The primary HCAs in these samples were PhIP (2-amino-1-methyl-6-phenylimidazo 8 [4,5-*b*]pyridine) (1.49-10.89 ng/g), MeIQx (2-amino-3,8-dimethylimidazo [4,5-*f*]quinoxaline) 9 (not detected-4.0 ng/g), and DiMeIQx (2-amino-3,4,8-trimethyl-imidazo [4,5-f]quinoxaline) (not detected-3.57 ng/g). Type and content of HCAs in cooked meat samples were highly dependent 10 on cooking conditions. The total HCA content in well-done meat was 3.5 times higher than that 11 12 of medium-rare meat. Fried pork (13.91 ng/g) had higher levels of total HCAs than fried beef 13 (8.92 ng/g) and fried chicken (7.00 ng/g). Among the samples, fried bacon contained the highest 14 total HCA content (17.59 ng/g). 15

16 **Keywords:** heterocyclic amines, cooking, beef, pork, chicken, fish

38

1. Introduction

19	Heterocyclic amines (HCAs) are mutagenic and carcinogenic compounds that are present
20	at parts per billion levels in cooked muscle foods, mainly meat and fish, via the Maillard reaction
21	with create(ni)ne, amino acids, and sugars as the precursors (Janoszka, Blaszczyk, Damasiewicz-
22	Bodzek, & Sajewicz, 2009; Pais, Salmon, Knize, & Felton 1999; Sugimura 2002). More than 25
23	HCAs have been isolated from different cooked muscle foods; however, the most common
24	HCAs found in foods are the thermic HCAs, which include 2-amino-3-methyl-imidazo [4,5-
25	f]quinoline (IQ), 2-amino-3-methylimidazo [4,5-f]quinoxaline (IQx), 2-amino-3,4-
26	dimethylimidazo [4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo [4,5-f]quinoxaline
27	(MeIQx), DiMeIQx (2-amino-3,4,8-trimethyl-imidazo [4,5-f]quinoxaline), and 2-amino-1-
28	methyl-6-phenylimidazo [4,5-b]pyridine (PhIP) (Knize, Dolbeare, Carroll, Moore, & Felton,
29	1994). These HCAs are listed in the U.S. Department of Health and Human Services's 11th
30	Report of Carcinogens (2005) as compounds reasonably anticipated to be a human carcinogen.
31	The International Agency for Research on Cancer (1993) categorized MeIQ, MeIQx, and PhIP as
32	reasonably anticipated to be a human carcinogen and IQ as a probable human carcinogen. The
33	epidemiological studies over the past 10 years have shown that high intake of well-done meat
34	and high exposure to meat carcinogens, particularly HCAs, may increase the risk of stomach,
35	colon, and breast cancers in humans (Kampman, Slattery, Bigler, Leppert, & Samowitz, 1999).
36	The concentration and type of HCAs formed in thermally treated meat and fish depend on
37	many factors including cooking method, cooking time and temperature, the concentration of

39 of HCAs formed increases with increasing temperature and time (Knize et al., 1994). High

precursors, and presence of water and fat in the raw product (Janoszka et al., 2009). The content

40	cooking loss is related to the formation of large contents of HCAs (Knize et al., 1994; Skog,
41	Steineck, Augustsson, & Jägerstad, 1995), and the content of cooking loss during cooking
42	depends on several factors including the muscle tension and direction of muscle fibers (Pais et
43	al., 1999). Many cooking methods, including frying, roasting, smoking, broiling, and baking
44	have been reported to induce HCA formation, and the type HCAs formed can be different for
45	various cooking methods (Chen & Chiu, 1998). For example, IQ, MeIQx, PhIP were detected in
46	broiled beef, whereas MeIQx and DiMeIQx were detected in fried ground beef (Starvic, 1994).
47	The studies on HCA levels in cooked meat products have yielded inconsistent results, and
48	there are gaps in the available HCA data. It is difficult to directly compare results between
49	studies because of the differences in food items, cooking procedures (cooking methods, cooking
50	levels, fat or oil usage, frequency of turning), and food preparation. In some previous studies,
51	samples were cooked at high temperature or for a long time; these cooking conditions exceed
52	those needed to produce acceptable cooked meat products (Murkovic, Friedrich, & Pfannhauser,
53	1997; Pais et al., 1999). Reports from some previous studies did not include the information on
54	internal temperature of the cooked samples (Janoszka et al., 2009; Jo, Sim, Lee, Ryeom, &
55	Myung, 2008; Murkovic et al., 1997; Oz, Kaban, & Kaya, 2007). Internal temperature is usually
56	used to evaluate the safety of cooked meat products. Collecting this type of data would allow
57	researchers to better monitor HCA levels in meat products cooked under normal household
58	conditions and develop more accurate estimates of human HCA exposure. The main objective of
59	the study was to determine HCA contents of the major categories of cooked meat products
60	prepared with various cooking methods that are preferred by U.S. meat consumers. These data
61	can be combined with food consumption survey data to estimate exposure to HCAs due to meat

62 consumption.

2. Materials and Methods

65 2.1. Chemicals

66	The HCA standards IQ (2-amino-3-methyl-imidazo [4,5-f]quinoline), IQx (2-amino-3-
67	methyl-imidazo [4,5-f]quinoxaline), MeIQ (2-amino-3,4-dimethyl-imidazo [4,5-f]quinoline),
68	MeIQx (2-amino-3,8-dimthylimidazo [4,5-f]quinoxaline), 4,8-DiMeIQx (2-amino-3,4,8-
69	trimethyl-imidazo [4,5-f]quinoxaline, TriMeIQx (2-amino-3,4,7,8-tetramethyl-imidazo [4,5-
70	f]quinoxaline), and PhIP (2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine were obtained
71	from Toronto Research Chemicals (Toronto, Canada). Ammonium acetate and triethylamine
72	were purchased from Aldrich Chemicals (Milwaukee, WI, USA). Phosphoric acid was obtained
73	from Sigma Chemicals (St. Louis, MO, USA). Deionized water was processed by a
74	Sybron/Branstead PCS unit (Barnstead/Thermolyne, Dubuque, IA, USA). The solid-phase
75	extraction Extrelut NT 20 columns and diatomaceous earth refill material were purchased from
76	VWR International (Bristol, CT, USA). Bond Elut propyl-sulfonic acid (PRS) cartridges, C-18
77	cartridges, and coupling adaptors were purchased from Varian Sample Preparation (Harbor City,
78	CA, USA). Trichloroacetic acid, diacetyl, 1-napthol, and NaOH were obtained from Sigma
79	Aldrich (St. Louis, MO, USA). Solvents and chemicals such as acetonitrile (HPLC grade),
80	methanol (HPLC grade), and sodium hydroxide (ACS-grade) were purchased from Fisher
81	Scientific (Fairlawn, NJ, USA).

2.2. Fresh meat samples

85 The following fresh meat samples were purchased from local grocery stores: consisting 86 of beef (top loin, round tip, and ground beef), pork (top loin, ground pork, and bacon), chicken 87 (breast without skin, breast with skin, thigh without skin, and thigh with skin), and fish (catfish, 88 salmon, and tilapia). 89 90 2.3. Chemical analyses 91 The pH of uncooked samples was measured according to the method of Jang et al. (2008) 92 with slight modifications. Five grams of fine ground sample was added to 45 mL of distilled water and blended for 30 s at medium speed in a Waring blender (Waring Laboratory, 93 94 Torrington, CT, USA). The pH of each sample was measured with an Accumet AP115 portable 95 pH meter (Fisher, Pittsburgh, PA, USA). 96 Fat and moisture for each sample were determined by rapid microwave drying and 97 nuclear magnetic resonance using the CEM Smart Trac system (CEM Corporation, Matthews, 98 NC, USA). Crude protein was determined with a LECO FP-2000 protein analyzer (Leco Corp, St 99 Joseph, MI, USA). 100 Creatine content was determined according to the method described by Polak, Došler, 101 Žlender, and Gašperlin (2009) with slight modifications. A 0.25-g finely ground sample was 102 homogenized for 5 min at 9500 rpm (IKA, Ultra-Turrax T18, Wilmington, NC, USA) in 100 mL 103 trichoroacetic acid (30 g/L in distilled water), and then the samples were filtered through 104 Whatman #4 filter paper. Twenty milliliters of the filtrate was defatted with 10 mL diethylether, 105 and then samples were shaken vigorously and allowed to stand for 10 min to separate the phases.

106	After the phases were separated, 4 mL of defatted extract (bottom layer) was mixed with 2 mL of
107	diacetyl (0.2 g/L in distilled water) and 2 mL of 1-napthol (25 g/L in 20 g/L of sodium hydroxide
108	solution). The mixture heated for 5 min at 40 °C. Each sample's absorbance was measured at 520
109	nm against a reagent blank. The creatine content was expressed as milligrams per gram of meat
110	sample. The chemical analyses of raw meat samples are summarized in Table 1.
111	
112	2.5. Cooking procedure and cooking loss
113	Fresh meat products were removed from refrigerator and allowed to approach room
114	temperature before they were cooked (Infrared thermometer model ST20XE, Raytek, Santa
115	Cruz, CA, USA). Spear-point thermocouple temperature probes were inserted horizontally to the
116	midpoint of samples, and temperature was monitored with a data logger (USB-TC model,
117	Measurement Computing, Norton, MA, USA). Each meat sample was cooked as described in
118	Table 2. All meats were cooked one sample at a time, except for fried bacon, which was cooked
119	three slices at a time. No salt, spice, food additive, or oil was used in the cooking procedures.
120	Cooked sample were allowed to cool at room temperature for approximately 30 min, and then
121	cooking loss was determined using the following equation:
122	% cooking loss = [(before cook weight - after cook weight)/before cook weight] \times 100
123	
124	The cooking information for each type of meat consists of the data for uncooked meat
125	(weight of raw meat, thickness of raw meat), and cooking data (desired cooking internal
126	temperature, cooking temperature, cooking time, and cooking loss); this information is
127	summarized in Table 3. After samples were cooled at room temperature, they were refrigerated

128	overnight. For the samples of chicken with skin, the skin was removed from the muscle.
129	Approximately 2 mm of the surface was removed from chilled meats with a commercial-grade
130	meat slicer (Cebela's commercial grade slicer, 1/3 hp, Sidney, NE, USA). The meat surface was
131	ground and homogenized with a food processor (KitchenAid, model KFP 750), and refrigerated
132	at 4 °C, and extraction of HCAs in meat samples was performed on the next day.
133	
134	2.6. Extraction and analysis of HCAs
135	The HCAs were extracted from meat samples and purified using the method described by
136	Gross and Grüter (1992) except that ethyl acetate was used as the extraction solvent
137	(Puangsombat & Smith, 2010; Santos et al., 2004; Smith, Ameri, & Gadgil, 2008). Each sample
138	(3 g) was homogenized with 12 mL of 1 M NaOH in a commercial Waring blender (Fisher,
139	Pittsburgh, PA, USA). The homogenate was then mixed with 24 g of Extrelut refill material
140	(Merck, Darmstadt, Germany) and poured into an empty Extrelut 20 column. For determination
141	of recovery, selected homogenate samples were spiked with 50 ng of each of the HCA standards.
142	The HCAs were eluted from the Extrelut columns with 60 mL ethyl acetate into a PRS cartridge
143	conditioned with 7 mL of ethyl acetate. The PRS cartridge was then rinsed with 6 mL of 0.1 M
144	HCl, 15 mL of methanol/0.1 M HCl (45:55 v/v), and 2 mL of distilled water to wash out the
145	nonpolar HCAs and other impurities. The HCAs were eluted from the PRS cartridge with 20 mL
146	of 0.5 M ammonium acetate pH 8.5 into 100-mg C-18 cartridges preconditioned with 5 mL of
147	methanol followed by 5 mL of distilled water. The HCAs were then eluted from the C-18
148	cartridge with 1 mL of methanol/ammonium hydroxide (9:1, v/v) into the vial. The HCA extract
149	was concentrated until dry under a stream of nitrogen and dissolved in 25 μL of methanol before

150	it was injected into the HPLC. The HCAs were analyzed on an HP1090A Series II HPLC
151	(Agilent Technologies, Santa Clara, CA, USA) coupled with a photodiode array UV-visible
152	detector (HP 1040) and an HP 1046A programmable fluorescence detector. The HCA separation
153	was performed on a reversed-phase TSK gel ODS-80 TM column (25 cm \times 4.6 mm, 5 $\mu m,$ 80 Å,
154	Tosohass, Montgomeryville, PA, USA) with a mobile phase of 0.01 M triethylamine pH 3.6 (A)
155	and acetonitrile (B). The HCA separation was achieved using a linear gradient that started with
156	95% A and 5% B and changed to 75% A and 25% B in 30 min at a flow rate of 1 mL/min and a
157	column temperature of 40 °C. After 30 min, the mobile phase returned to its original ratio (95%
158	A, 5 % B) for 10 min to allow the column to equilibrate before the next injection. The UV
159	detector was set at 252 nm for IQ, IQx, MeIQ, MeIQx, and DiMeIQx, and the fluorescence
160	detector was programmed accordingly to the excitation/emission wavelengths of 229 and 437 nm
161	for PhIP. Data were analyzed with an HP 9000 series 300 ChemStation. The identities of HCA
162	peaks were confirmed by comparing the retention times and the UV absorbance spectrum of each
163	peak with library spectra acquired from standard solutions.
164	
165	2.6. Quantitation, recovery, and spectral matching
166	The HCA concentrations were quantitated by the internal standard method to compensate
167	for variations in injection volume and also for small changes in detector sensitivity that might
168	occur (Lindsay, 1992). A known content of TriMeIQx (used as internal standard) was added to
169	samples before they were injected into the HPLC. The limit of detection for the HCAs was 0.5
170	ng/mL for IQ, IQx, MeIQ, MeIQx, and PhIP. The HCA identities were verified in the cooked
171	meat extracts by online UV spectral matching to a spectral library made from pure standards.

172	Match factors typically were observed at 95% or greater (Tsen, Ameri, & Smith, 2006). Average
173	recoveries for the HCAs were 72% for IQx, 61% for IQ, 63% for MeIQ, 68% for MeIQx, 60%
174	for DiMeIQx, and 65% for PhIP. The HCA identities were verified in the cooked meat extracts
175	by online UV spectral matching to a spectral library made from pure standards. Match factors
176	typically were observed at 95% or greater (Puangsombat & Smith, 2010). Average recoveries for
177	the HCAs were 72% for IQx, 61% for IQ, 63% for MeIQ, 68% for MeIQx, 60% for DiMeIQx,
178	and 65% for PhIP. The recoveries of MeIQx and PhIP are in agreement with previous reports
179	from this laboratory (Puangsombat & Smith, 2010; Smith et al., 2008; Tsen et al., 2006) and
180	from Cheng et al. (2007).
181	
182	2.7. Statistical analyses
183	The experimental design was a randomized complete block with repeated measurements,
184	and each experiment was replicated four times. Duplicate measurements taken on the same
185	experimental unit were averaged for statistical analysis. All statistical significance tests were
186	analyzed using SAS version 9.1. Data were examined by analysis of variance (ANOVA)
187	followed by Tukey's multiple comparison test (Tukey, 1993), and means were considered
188	significant at $p < 0.05$.
189	
190	3. Results and discussion
191	The choice of meat samples in our study was based on a previous internet-based survey
192	of U.S. consumers' preference for method of cooking and degree of doneness of meat and fish.
193	The survey was conducted by Exponent, Inc. developed to assess customer's HCA intake

194	(unpublished data). Meat samples selected for the present study included beef (fried beef and
195	broiled beef cooked to medium-rare and well-done, baked beef, and fried beef patty), pork (fried
196	pork, baked pork, fried pork patty, and fried bacon), chicken (fried-chicken breast and fried-
197	chicken thigh with skin and without skin), and fish (fried and baked catfish, salmon, and tilapia).
198	
199	3.1. Chemical analyses
200	Table 2 summarizes the results of chemical analyses in the selected fresh meat products.
201	The pH of beef samples (5.47 to 5.89) was lower than that of pork samples (6.01 to 6.71) and
202	chicken samples (6.19 to 6.70); fish samples had the highest pH (6.94 to 7.91). The moisture
203	level of fresh meat products ranged between 69 to 82%, except in the high fat parts (bacon,
204	breast skin, and thigh skin), which contained low moisture levels (approximately 37%). The fat
205	levels of raw meat samples ranged from 1.07 to 53.67%; tilapia contained the lowest content of
206	fat and skin of chicken breast contained the highest contents of fat. The protein levels of raw
207	meat samples ranged from 9.04 to 23.37%; chicken thigh skin contained the lowest content of
208	protein, and skin of chicken breast contained the highest content of protein. Creatine in the
209	uncooked meat samples ranged from 1.02 to 2.95 mg/g. There was not much difference in
210	creatine level among these samples.
211	
212	3.2. Identification and quantification of HCAs
212	Passues consumption of undergooked most and fish has been linked enidemiclogically to

Because consumption of undercooked meat and fish has been linked epidemiologically to 213 214 foodborne outbreaks, the U.S. Department of Agriculture Food Safety and Inspection Service (USDA-FSIS, 1998) has established guidelines for both consumers and the food service industry 215

216	for safe handling and preparation of cooked meat and fish. USDA-FSIS recommends a minimum
217	instantaneous internal cooking temperature of 63 $^{\circ}$ C (145 $^{\circ}$ F) for beef steak and fish, 71 $^{\circ}$ C (160
218	°F) for pork and ground beef, and 74 °C (165 °F) for chicken. According to the survey by
219	Exponent Inc. (unpublished data), people mostly consume meat and fish that are cooked until
220	their internal temperatures reach the minimum temperature recommended by USDA-FSIS,
221	except for steak and bacon. Two doneness levels of steak, medium-rare and well-done, are most
222	often consumed. In our study, all samples except beef steak and bacon were cooked until their
223	internal temperature reached the temperatures recommended by USDA-FSIS. Fried and broiled
224	beef steak samples were cooked until their internal temperature reached 57 $^{\circ}$ C (135 $^{\circ}$ F) for
225	medium-rare and 71 °C (160 °F) for well-done. Fried bacon was cooked at 172 °C for 3 min on
226	each side (three slices at a time) as recommended to minimize carcinogenic nitrosamine level
227	(Ikins et al., 1986). We investigated the presence of five HCAs (IQ, IQx, MeIQ, MeIQx, and
228	PhIP) that can be found in cooked meat products and have been commonly studied and reported
229	in many papers. Level of HCAs in each sample was analyzed the outer layer (2 mm) of meat
230	samples to increase analysis sensitivity because HCAs are mainly present on the outer surface
231	(Busquets, Bordas, Toribio, Puignou, & Galceran, 2004). The content of HCAs on the surface
232	was then used to calculate the content of HCAs in the whole cooked meat samples (Busquets et
233	al., 2004). The values were corrected for incomplete recovery. To our knowledge, this is the first
234	report of HCA contents in food samples commonly consumed in the U.S. and prepared by
235	domestic cooking procedures to internal temperatures recommended by USDA to eliminate
236	foodborne illness.

HCAs were extracted and quantified by HPLC. The UV and FLD chromatograms of

238	HCA standards, sample, and spiked sample are shown in Figure 1. The quantitative analyses of
239	HCAs in cooked meat products are summarized in Tables 4 to 8. The total content of HCAs
240	ranged from 1.72 ng/g (medium-rare broiled-beef) to 17.59 ng/g (fried-bacon). In all meat
241	samples, PhIP was found at the highest level (1.49 to 10.89 ng/g), followed by MeIQx (not
242	detected to 4.00 ng/g), DiMeIQx (not detected to 3.57 ng/g), and IQx (not detected to 3.11 ng/g);
243	neither IQ nor MeIQ was found in any sample. The highest level of PhIP was found in fried
244	tilapia (10.89 ng/g), followed by fried pork (9.20 ng/g). IQx was not found except in fried bacon
245	(3.11 ng/g) and baked fish (0.38 to 0.85 ng/g).
246	We investigated the occurrence of HCAs for three types of fried meat (beef, pork,
247	chicken) and the results of the HCA quantitative determinations are summarized in Table 4. All
248	of these samples contained MeIQx, DiMeIQx, and PhIP. Although the target internal
249	temperatures of the meat samples fried at 204 °C were slightly different, total HCAs in fried pork
250	(13.91 ng/g, PhIP accounting for 9.20 ng/g) were significantly higher than those in fried beef
251	(8.92 ng/g, PhIP accounting for 6.60 ng/g) and fried chicken (7.06 ng/g, PhIP accounting for
252	6.06 ng/g). There were no significant differences in total HCAs between fried beef and fried pork
253	(p > 0.05). This is in agreement with results of Skog, Augustsson, Steineck, Stenberg, and
254	Jägerstad (1997) who reported higher contents of total HCAs in fried pork (21.3 ng/g) than fried
255	chicken breast (10.7 ng/g) when cooked at 225 °C. In contrast, our result is not in agreement
256	with data from Pais et al. (1999), who reported that total HCAs were higher for chicken (38.2
257	ng/g) than for pork (8.6 ng/g) and beef (2.83 ng/g) when cooked at 275 °C for 30 min. Also,
258	Iwasaki et al. (2010) reported a lower content of total HCAs in fried chicken (1.01 ng/g), fried
259	pork (0.5 ng/g), and fried beef (0.1 ng/g) when cooked to well-done (internal temperature 75 $^{\circ}$ C

for chicken, 88 °C for pork, and 78 °C for beef). The inconsistent results could be due to
different cooking methods, different weight/thickness of meat samples, and different ways of
preparing meat before cooking, as well as the efficiencies of heat transfer. The high level of
HCAs in the fried pork in present study is an important finding because of the three meats
studied, the consumption of pork is growing the fastest (1.6 % annually) (FAPRI 2010 U.S. and
world agricultural outlook, 2010).

266 Table 5 shows the HCA levels of cooked chicken samples. MeIQx, DiMeIQx, and PhIP 267 were detected in all chicken samples and the values were in agreement with the HCA found in 268 fried chicken reported by Solyakov and Skog (2002) and Liao, Wang, Xu, and Zhou (2010). All 269 chicken samples had more PhIP than MeIQx and DiMeIQx. For the chicken samples without 270 skin, total HCA levels in the chicken breasts (7.06 ng/g) were higher than those in the chicken 271 thighs (5.58 ng/g); this may be because the weight of raw chicken breast (250 to 280 g) was higher than that of raw chicken thigh (140 to 180 g), therefore, a longer cooking time was needed 272 273 for chicken breast to reach the same internal temperature of 74 °C, leading to higher cooking loss 274 (Table 2) and increasing the level of HCAs. This result is in agreement with data by Pais et al. 275 (1999), who reported that chicken breast had more total HCAs (38.2 ng/g) than chicken thigh 276 (8.07 ng/g). For the chicken samples with skin (both breasts and thighs), the meat and skin were 277 analyzed separately. MeIQx, DiMeIQx, and PhIP levels in the skin were much higher than the 278 levels detected in the meat (p < 0.05). Total HCAs were 7.06 ng/g for skin and 2.89 ng/g for 279 meat in chicken breast and 4.87 ng/g for skin and 2.07 ng/g for meat in chicken thigh. The 280 cooking loss of chicken breast with skin (24.39%) was lower than that of chicken breast without 281 skin (27.88%); the cooking loss of chicken thigh with skin (22.74%) was lower than that of

282	chicken thigh without skin (24.96%) (Table 2). This suggests that the skin present at the surface
283	acts as an insulating layer for the meat and can help retain moisture during frying, thus
284	decreasing HCA formation. This is in agreement with results of Chiu, Yang, and Chen (1998) and
285	Solyakov and Skog (2002). The high level of HCAs in the skin can be explained by the direct
286	exposure to the cooking surface. In addition, the higher fat content in skin might affect HCA
287	formation. Lipids are known to conduct heat more efficiently into the product, which favors the
288	formation of HCAs (Johansson & Jägerstad, 1994). It is possible that lipids, and perhaps lipid
289	oxidation, form products that may enhance the formation of certain Maillard reation products and
290	lead to an increased content of HCA formation (Barnes, Maher, & Weisburger, 1983; Johansson
291	& Jägerstad, 1994). Removing the skin portion before consumption could significantly reduce
292	total HCA levels from 7.06 to 2.89 ng/g in chicken breast ($p < 0.05$), and from 5.58 to 2.06 ng/g
293	in chicken thigh ($p < 0.05$). Although chicken skin contains a high level of HCAs, the weight of
294	skin portion is much less than meat portion. The total HCA levels in chicken cooked with skin
295	(3.13 ng/g in breast and 2.33 ng/g in thigh) were still significantly lower than the levels in
296	chicken cooked without skin (7.06 ng/g in breast and 5.58 ng/g in thigh) ($p < 0.05$). These results
297	agree with studies by Gašperlin, Lukan, Žlender, & Polak (2009), who reported a lower content
298	of total HCAs in chicken with skin (3.49 ng/g) than in chicken without skin (4.75 ng/g) grilled at
299	a temperature of 220 °C to an internal temperature of 82 °C, and Chiu et al. (1998), who reported
300	a lower content of total HCAs in chicken with skin (6.67 ng/g) than in chicken without skin
301	(12.71 ng/g) fried at 200 °C for 15 min. Taken together, these results indicated that presence of
302	skin reduces HCA formation. However, it is still best to remove skin before consuming chicken
303	to minimize HCA intake.

304	Table 6 shows the HCA levels of fried beef and broiled beef cooked to medium-rare
305	(internal temperature 57 $^{\circ}$ C) and well-done (internal temperature 71 $^{\circ}$ C). MeIQx, DiMeIQx, and
306	PhIP were detected in fried and broiled beef. There was a dramatic increase in total HCAs
307	(approximately 3.5-fold) for both fried beef and broiled beef with the increase in cooking time
308	(degree of doneness) from medium-rare to well-done (from 2.73 ng/g to 8.92 ng/g for fried beef
309	and from 1.72 ng/g to 6.04 ng/g for broiled beef) ($p < 0.05$). We observed approximate increases
310	of 2-fold for MeIQx level, 8-fold for DiMeIQx, and 6-fold for PhIP when comparing medium-
311	rare with well-done fried beef. This result is in agreement with studies by Skog et al. (1997) and
312	Janoszka et al. (2009). When cooking time increases, more proteins are denatured, pressing more
313	water, which contains water-soluble HCA precursors, out of the protein network to the meat
314	surface. Thus more of these precursors are transferred to the surface for HCA formation
315	(Persson, Oroszvári, Tornberg, Sjöholm, & Skog, 2008; Skog et al., 1997). Different cooking
316	methods affected total HCA formation. Total HCAs in fried beef (2.73 ng/g) were slightly higher
317	than those in broiled beef (1.72 ng/g) for medium-rare samples, but the difference was not
318	significant ($p > 0.05$). Total HCAs of fried beef (8.92 ng/g) were significantly higher than those
319	of broiled beef (6.04 ng/g) for well-done samples ($p < 0.05$). Cooking time may have more
320	influence on HCA formation than cooking temperature because the cooking temperature used for
321	broiling (232 °C) was higher than that used for frying (204 °C); however, the cooking time used
322	for broiling was less than that used for frying. Also, in oven broiling, the heat is transferred to the
323	meat by air, this produces fewer HCAs than frying, in which the meat is in direct contact with a
324	heated pan (Skog et al., 1997). This result clearly indicates that controlling cooking temperature
325	is a way to minimize HCA formation.

326	The HCA quantitative determination in fried beef and pork patties, baked beef and pork,
327	and fried bacon is summarized in Table 7. The level of total HCAs did not differ much between
328	fried beef patty and fried pork patty, and between baked beef and baked pork. Baked beef had a
329	lower content of HCAs than fried and broiled beef (Table 6) because baking is done at a lower
330	temperature and because a higher weight of raw beef was used for baking. The level of HCAs in
331	fried bacon was the highest of all meat samples in present study. The total content of HCAs in
332	fried bacon was 17.59 ng/g (6.91 ng/g PhIP, 4.00 ng/g MeIQx, 3.57 ng/g DiMeIQx, and 3.11
333	ng/g IQx). The content of HCAs in fried bacon in the present study was much higher than that of
334	fully cooked bacon, ready-to-eat meat product included in our previous studies. Fully cooked
335	bacon (heated in a microwave for 30 s according to package direction) had only 0.91 ng/g HCAs
336	(0.14 ng/g PhIP, 0.14 ng/g MeIQx, 0.60 ng/g IQ, and 0.04 ng/g IQx). We believed that the low
337	content of HCAs in fully cooked bacon is due to the precooking process. Industrial fully cooked
338	bacon is cooked at low temperature (162 $^{\circ}$ C) in the presence of steam induced high humidity
339	either by using a continuous microwave oven or a continuous linear circulating oven. Cooking
340	loss of fried bacon in the present study was high (71.94%). This may explain the high level of
341	HCAs, especially PhIP, in fried bacon compared with fully cooked bacon. PhIP formation
342	increases dramatically in the cooking conditions that generate high cooking loss (Messner &
343	Murkovic, 2004). The content of cooking loss and total HCAs of fried bacon in the present study
344	agree with results of a study by Johansson and Jägerstad (1994), who reported 50.3 to 71.4%
345	cooking loss and 16.7 ng/g total HCAs of bacon fried at 150 °C for 5 min per side.
346	Table 8 summarizes the results of HCA quantitative determination in fried and baked fish

(catfish, salmon, and tilapia). There was no significant difference in content of HCAs among the

348	three fish species ($p > 0.05$). Concentrations of MeIQx, DiMeIQx, and PhIP in fried fish (catfish,
349	salmon, and tilapia) were similar to those reported earlier for fried mackerel (Gu et al., 2002) and
350	fried salmon (Iwasaki et al., 2010). For all three fish species, total HCAs in fried fish (13.09 to
351	16.29 ng/g) were significantly higher than those in baked fish (7.85 to 8.70 ng/g) ($p < 0.05$);
352	however, the small contents of IQx (0.38 to 0.52 ng/g) were detected only in baked fish samples.
353	The total content of HCAs can be used to order these cooked meat products from low to
354	high. Low levels of total HCAs (less than 5 ng/g) were found in baked beef (2.34 ng/g), fried
355	chicken thigh with skin (2.33 ng/g), medium-rare fried beef (2.73 ng/g), fried chicken breast with
356	skin (3.13 ng/g), baked pork (3.29 ng/g), and fried pork patty (4.12 ng/g). Intermediate levels of
357	total HCAs (5 to 10 ng/g) were found in fried beef patty (5.46 ng/g), fried chicken thigh (5.58
358	ng/g), well-done broiled beef (6.04 ng/g), fried chicken breast without skin (7.06 ng/g), baked
359	fish (8.32 ng/g), and well-done fried beef (8.92 ng/g). High levels of total HCAs (higher than 10
360	ng/g) were found in fried pork (13.91 ng/g), fried fish (14.91 ng/g), and fried bacon (17.91 ng/g).
361	The high levels of HCAs in some cooked meat products in the present study raises several
362	interesting issues related to HCA intake and cancer aetiology. Data from the National Health and
363	Nutrition Examination Survey 2003-2006 (unpublished data), which estimated meat
364	consumption of U.S. populations, indicated that chicken breast without skin was the most
365	frequently consumed meat item in the U.S. (9.57 g/day), followed by beef steak (8.52 g/day),
366	pork chops (2.89 g/day), and bacon (1.39 g/day). Thus, according to our study, the high levels of
367	HCAs found in fried bacon and fried pork and the intermediate levels of HCAs found in fried
368	chicken breast without skin and well-done fried beef steak indicate that people consuming these
369	products frequently have a high exposure to HCAs that could lead to the possibility of an

increased risk of cancers.

- 371
- **4. Conclusions**

373 The HCA content in cooked meat depends on type of meat, cooking methods, and 374 cooking time and temperature. The primary HCAs in these samples were PhIP, MeIQx, and 375 DiMeIQx. Our results indicated that type and content of HCAs in cooked meat samples were 376 highly dependent on cooking conditions. The total HCA contents in cooked meat were 3.5 times 377 lower if cooked to medium-rare rather than well-done degree of doneness. Fried pork showed 378 higher total HCAs than fried beef and chicken. The skin of fried chicken contained a significant 379 HCA contents, therefore removing the skin before consuming can reduce HCA exposure. Total 380 HCAs were briefly ranked in a decreasing order as follows: low HCA contents (< 5 ng/g) found 381 in baked beef, fried chicken without skin, medium-rare steak, and fried pork patty; intermediate HCA contents (5-10 ng/g) found in fried beef patty, fried chicken with skin, baked fish, and 382 383 well-done steak; and high HCA contents (> 10 ng/g) found in fried pork, fried fish, and fried 384 bacon. Our data can help food safety professionals recommend cooking methods to be used at 385 home or in the food industry to reduce HCA formation in cooked meat products, will provide 386 important information for use in estimating HCA exposure, and will facilitate investigation of the 387 role of HCAs in the etiology of cancer of population in the United States.

- 388
- 389
- 390
- 391

Acknowledgments

393	This research was supported in part by the Cooperative State Research Education and
394	Extension Service, United States Department of Agriculture, under Agreement no. 93-34211-
395	836, the American Meat Institute Foundation, and the National Pork Board Checkoff.
396	Contribution no. 11-024-J from the Kansas Agricultural Experiment Station, Manhattan, KS.
397	
398	References
399	Barnes, W. S., Maher, J. C., & Weisburger, J. H. (1983). High-pressure liquid chromatographic
400	methods for the analysis of 2-amino-3-methylimidazo[4,5-f]quinoline, a mutagen formed
401	during the cooking of food. Journal of Agricultural and Food Chemistry, 31(4), 883-886.
402	Busquets, R., Bordas, M., Toribio, F., Puignou, L., & Galceran, M. T. (2004). Occurrence of
403	heterocyclic amines in several home cooked meat dishes of the Spanish diet. Journal of
404	<i>Chromatography B</i> , 802(1): 79-86.
405	Chen, B. H., & Chiu, C. P. (1998). Analysis, formation, and inhibition of heterocyclic amines in
406	foods: An overview. Journal of Food and Drug Analysis, 6(4), 625-636.
407	Cheng, K. W., Wu, Q., Zheng, Z. P., Peng, X., Simon, J. E., Chen, F., & Wang, M. (2007).
408	Inhibitory effect of fruit extracts on the formation on heterocyclic amines. Journal of
409	Agricultural Food Chemistry, 55(25), 10359-10365.
410	Chiu, C. P., Yang, D. Y., & Chen, B.H. (1998). Formation of heterocyclic amines in cooked
411	chicken legs. Journal of Food Protection, 61(6), 712-719.
412	FAPRI 2010 United States and world agricultural outlook, 2010. Food and Agricultural Policy
413	Research Institute, Iowa State University and University of Missouri-Columbia, Ames,

414	Iowa, USA. Retrieved from: http://www.fapri.iastate.edu/outlook/2010
415	/text/Outlook_2010.pdf
416	Gašperlin, L., Lukan, B., Žlender, B., & Polak, T. (2009). Effects of skin and grilling method on
417	formation of heterocyclic amines in chicken pectoralis superficialis muscle. LWT - Food
418	Science and Technology, 42(8), 1313-1319.
419	Gross, G. A., & Grüter, A. (1992). Quantitation of mutagenic/carcinogenic heterocyclic aromatic
420	amines in food products. Journal of Chromatography, 592(1-2):27.
421	Gu, Y. S., Kim, I. S., Ahn, J. K., Park, D. C., Yeum, D. M., Ji, C. I., & Kim, S. B. (2002).
422	Mutagenic and carcinogenic heterocyclic amines as affected by muscle types/skin and
423	cooking in pan-roasted mackerel. Mutation Research, 515(1-2), 189-195.
424	International Agency for Research on Cancer. (1993). IARC Monographs on the Evaluation of
425	Carcinogenic Risk to Humans Vol. 56. Some naturally occurring substances: Food items
426	and constituents. Heterocyclic aromatic amines and mycotoxins. International Agency for
427	Research on Cancer, Lyon.
428	Ikins, W. G., Gray, J. I., Mandagere, A. K., Booren, A. D., Pearson, A. M., & Stachiw, M. A.
429	(1986). N-nitrosamine in fried bacon processed with liquid smoke preparations. Journal
430	of Agricultural Food Chemistry, 34(6), 98-985.
431	Iwasaki, M., Kataoka, H., Ishihara, J., Takachi, R., Hamada, G.S., Sharma, S., Marchand, L.L.,
432	& Tsugane, G.S. (2010). Heterocyclic amines content of meat and fish cooked by
433	Brazillian methods. Journal of Food Composition and Analysis, 23(1), 61-69.
434	Jang, A., Liu, X. D., Shin, M. H., Lee, B. D., Lee, S. K., Lee, J. H., & Jo, C. (2008).
435	Antioxidative potential of raw breast meat from broiler chicks fed a dietary medicinal

436 herb extract mix. Poultry Science, 87(11), 2382-2389. 437 Janoszka, B., Blaszczyk, U., Damasiewicz-Bodzek, A., & Sajewicz, M. (2009). Analysis of 438 heterocyclic amines (HAs) in pan-fried pork meat and its gravy by liquid chromatography 439 with diode array detection. Food Chemistry, 113(4), 1188-1196. 440 Jo, C. H., Sim, Y. E., Lee, H. M., Ryeom, T., & Myung, S. W. (2008). Heterocyclic amines in 441 several types of cooked meat and chicken dishes which form part of the Korean diet. 442 Food Science and Technology Research, 14(2), 169-175. 443 Johansson, M. A. E., & Jägerstad, M. (1994). Occurrence of mutagenic/carcinogenic 444 heterocyclic amines in meat and fish products, including pan residues, prepared under 445 domestic conditions. Carcinogenesis, 15(8), 1511-1518. 446 Kampman, E., Slattery, M. L., Bigler, J., Leppert, M., & Samowitz, W. (1999). Meat

consumption, genetic susceptibility, and colon cancer risk: A United States multicancer
case-control study. *Cancer Epidemiology, Biomarkers & Prevention, 8*(1), 15-24.

- Knize, M. G., Dolbeare, F. A., Carroll, K. I., Moore, D. H., & Felton, J. S. (1994). Effect of
 cooking time and temperature on the heterocyclic amine content of fried beef patties. *Food and Chemical Toxicology*, *32*(7), 595-603.
- Liao, G. Z., Wang, G. Y., Xu, X. L., & Zhou, G. H. (2010). Effect of cooking methods on the
 formation of heterocyclic amines in chicken and duck breast. *Meat Sciences*, 85(1), 149154.
- Lindsay, S. (1992). *High performance liquid chromatography*. (2nd ed). London: John Wiley &
 Sons Ltd.
- 457 Lynch, A. M., Murray, S., Gooderham, N. J., & Boobies, A. R. (1995). Exposure to and

458	activation of dietary heterocyclic amines in humans. Critical Reviews in
459	Oncology/Hematology, 21(1-3),19-31.
460	Messner, C, & Murkovic, M. (2004). Evaluation of a new model system for studying the
461	formation of heterocyclic amines. Journal of Chromatography B, 802(1), 19-26.
462	Murkovic, M., Friedrich, M., & Pfannhauser, W. (1997). Heterocyclic aromatic amines in fried
463	poultry meat. Zeitschrift für Lebensmittel-Untersuchung und -Forschung A, 205(5), 347-
464	350.
465	Oz, F., Kaban, G., & Kaya, M. (2007). Effects of cooking methods on the formation of
466	heterocyclic aromatic amines of two different species trout. Food Chemistry, 104(1), 67-
467	72.
468	Pais, P., Salmon, C. P., Knize, M. G., & Felton, J. S. 1999. Formation of
469	mutagenic/carcinogenic heterocyclic amines in dry-heated model system, meats, and
470	meat drippings. Journal of Agricultural and Food Chemistry, 47(3), 1098-1108.
471	Persson, E., Oroszvári, B. K., Tornberg, E., Sjöholm, I., & Skog, K. (2008). Heterocyclic amine
472	formation during frying of frozen beef burgers. International Journal of Food Science
473	<i>and Technology</i> , <i>43</i> (1), 62-68.
474	Polak, T., Došler, D., Žlender, B., & Gašperlin, L. (2009). Heterocyclic amines in aged and
475	thermally treated pork longissimus dorsi muscle of normal and PSE quality. LWT-Food
476	Science and Techology, 42(2), 504-513.
477	Puangsombat, K, & Smith, J. S. (2010). Inhibition of heterocyclic amine formation in beef
478	patties by ethanolic extracts of rosemary. Journal of Food Science, 75(2), T40-T47.
479	Santos, F. J., Barceló-Barrachina, E., Toribio, F., Puignou, L., Galceran, M.T., Persson, E., Skog,

480	K., Messner, C., Murkovic, M., Nabinger, U., & Ristic, A. (2004). Analysis of
481	heterocyclic amines in food products: interlaboratory studies. Journal of
482	<i>Chromatography B, 802</i> (1), 69-78.
483	Skog, K., Augustsson, K., Steineck, G., Stenberg, M., & Jägerstad, M. (1997). Polar and non-
484	polar heterocyclic amines in cooked fish and meat products and their corresponding pan
485	residues. Food and Chemical Toxicology, 35(6), 555-565.
486	Skog, K., Steineck, G., Augustsson, K., & Jägerstad, M. (1995). Effect of cooking temperature
487	on the formation of heterocyclic amines in fried meat products and pan residues.
488	Carcinogenesis, 16(4), 861-867.
489	Smith, J. S., Ameri, F., & Gadgil, P. (2008). Effect of marinades on the formation of heterocyclic
490	amines in grilled beef steaks. Journal of Food Science, 73(6), T100-T105.
491	Solyakov, A., & Skog, K. (2002). Screening for heterocyclic amines in chicken cooked in
492	various ways. <i>Food and Chemical Toxicology</i> , 40(8), 1205-1211.
493	Starvic, B. (1994). Biological significance of trace levels of mutagenic heterocyclic aromatic
494	amines in human diet: a critical review. Food and Chemical Toxicology, 32(10), 977-994.
495	Sugimura, T. (2002). Food and Cancer. <i>Toxicology</i> , 181-182(1), 17-21.
496	Tsen, S.Y., Ameri, F., & Smith, J.S. (2006). Effects of rosemary extracts on the reduction of
497	heterocyclic amines in beef patties. Journal of Food Science, 71(8), C469-C473.
498	Tukey, J. W. (1993). Where should multiple comparisons go next? In F.M. Hoppe (Ed.),
499	Multiple comparisons, selection, and applications in biometry (pp. 187-208). New York:
500	Dekker.
501	U.S. Department of Agriculture, Food Safety and Inspection Service. (1998). Why use a

502	thermometer? Washington, DC. U.S. Department of Agriculture, Food Safety and
503	Inspection Service, Retrieved from http://www.fsis.usda.gov/factsheets/Use_a_
504	Food_Thermometer/index.asp
505	United States Department of Health and Human Services. (2005). Report on carcinogens. 11th
506	ed. Public Health Service, National Toxicology Program.
507	

Sample		pH	moisture (%)	fat (%)	protein (%)	creatine (mg/g)
Beef	Top loin	5.62 ± 0.05	69.32 ± 0.83	7.25 ± 0.01	21.29 ± 0.18	2.93 ± 0.06
	Round tip	5.47 ± 0.04	71.21 ± 1.22	4.61 ± 2.27	22.50 ± 0.64	2.95 ± 0.23
	Ground beef	5.89 ± 0.04	69.79 ± 0.79	9.22 ± 1.46	19.66 ± 0.54	2.53 ± 0.09
Pork	Top loin	6.01 ± 0.36	75.07 ± 0.45	7.73 ± 0.32	20.90 ± 1.01	1.88 ± 0.69
	Ground pork	6.23 ± 0.08	60.12 ± 1.15	21.42 ± 0.59	15.48 ± 0.10	1.79 ± 0.14
	Bacon	6.71 ± 0.05	37.74 ± 2.14	47.99 ± 0.16	11.83 ± 1.15	1.23 ± 0.33
Chicken	Breast meat	6.19 ± 0.16	74.63 ± 0.62	4.87 ± 0.71	23.37 ± 0.25	2.21 ± 0.17
	Breast skin	6.35 ± 0.07	37.06 ± 3.56	53.67 ± 4.36	11.04 ± 1.56	1.02 ± 0.16
	Thigh meat	6.70 ± 0.10	74.44 ± 1.47	4.58 ± 0.64	19.85 ± 0.54	2.51 ± 0.07
	Thigh skin	6.64 ± 0.04	37.36 ± 2.47	52.98 ± 3.80	9.04 ± 1.29	1.18 ± 0.22
Fish	Catfish	6.94 ± 0.11	77.98 ± 0.39	4.99 ± 0.13	15.49 ± 0.13	2.81 ± 0.15
	Salmon	6.80 ± 0.05	78.66 ± 2.91	1.12 ± 1.11	18.21 ± 2.71	2.66 ± 0.23
	Tilapia	7.91 ± 0.14	82.03 ± 2.64	1.07 ± 1.02	15.72 ± 1.01	1.80 ± 0.12

Table 1: Chemical analyses (pH, moisture, fat, protein, and creatine) of raw meat samples prior to cooking

509 Each value is represented as mean \pm standard deviation (n = 3).

510 Table 2 : Cooking description

Cooking Method	Food item	Description
Frying	Beef, pork, chicken, fish	Meat was fried in a Teflon-coated frying pan without adding oil at a surface temperature of 204 °C. Meat was fried, turned once, and removed from the pan when the desired temperature was reached.
Broiling	Beef	Oven (convection, top and bottom heat) was preheated to 232 °C (monitored with oven thermometer). The meat was placed on a broiler pan to keep the broiled beef out of the drippings. The meat was removed when a final internal temperature was achieved.
Baking	Beef, Pork, Fish	Oven (convection, top and bottom heat) was preheated to 177 °C (monitored with oven thermometer). The meat was placed on a baking pan. The meat was removed when a final internal temperature was achieved.

*Convection oven with top and bottom heat (top heat 1.0 W and bottom heat 1.2 W)

Meat type	Types/cuts of meat	Type of cooking	Raw meat (g)	Thickness, raw meat (cm)	Desired internal temperature (°C)	Cooking temperature (°C)	Cooking time (min per side)	Cooking loss (%)
Beef	Top loin	Frying (medium rare)	350-400	3.8	57	204	6	17.50 ± 1.84
	Top loin	Frying (well done)	350-400	3.8	71	204	12	31.86 ± 1.66
	Top loin	Broiling (medium rare)	350-400	3.8	57	232	5	23.57 ± 1.66
	Top Loin	Broiling (well done)	350-400	3.8	71	232	10	33.81 ± 2.19
	Round tip	Baking (well done)	650-680	9.0	71	177	80 (total)	30.75 ± 3.75
	Ground beef	Frying	140-160	2.3	71	204	6	35.30 ± 2.35
Pork	Top loin	Frying	230-250	2.3	71	204	8	26.12 ± 1.70
	Top loin	Baking	650-680	9.0	71	177	70 (total)	26.48 ± 2.24

Table 3: Cooking conditions and cooking loss in cooked meat samples

	Ground pork	Frying	130-135	2.3	71	204	6	22.20 ± 1.93
	Bacon	Frying	18-25	0.3	-	172	3	71.94 ± 1.26
Chicken	Breast without skin	Frying	250-280	2.5	74	204	10	27.88 ± 1.26
	Breast with skin	Frying	280-310	2.5	74	204	10	24.39 ± 4.71
	Thigh without skin (bone-in)	Frying	140-180	2.5	74	204	7	24.96 ± 3.09
_	Thigh with skin (bone-in)	Frying	150-200	2.5	74	204	7	26.74 ± 2.99
Fish	Catfish	Frying	170-190	1.8	63	204	6	27.28 ± 2.46
	Salmon	Frying	180-200	1.8	63	204	6	21.60 ± 2.39
	Tilapia	Frying	140-160	1.5	63	204	6	23.65 ± 1.84
	Catfish	Baking	170-190	1.8	63	177	15 (total)	20.68 ± 2.45
	Salmon	Baking	180-200	1.8	63	177	14 (total)	18.41 ± 2.24
	Tilapia	Baking	140-160	1.5	63	177	12 (total)	18.55 ± 3.73

512 Table 4: Heterocyclic amine content (MeIQx, DiMeIQx, PhIP, and total) of fried meat samples

Cooked items	Internal	Heterocyclic amines (ng/g)					
	temperature (°C)	MeIQx	DiMeIQx	PhIP	Total		
Fried beef (well done)	77	3.33 ± 0.38	0.33 ± 0.38	5.27 ± 0.81	8.92 ± 1.08		
Fried pork	71	2.39 ± 0.50	2.33 ± 0.52	9.20 ± 1.20	13.91 ± 1.81		
Fried chicken (breast without skin)	74	0.46 ± 0.34	0.54 ± 0.19	6.06 ± 0.10	7.06 ± 0.56		

513 Each value is represented as mean \pm standard deviation (n = 4). Means with different superscript letters within the same 514 column are significantly different at p < 0.05.

Cooked items			Heterocyclic Amines (ng/g)				
			MeIQx	DiMeIQx	PhIP	Total	
Breast	without skin	meat	0.46 ± 0.34^{b}	0.54 ± 0.19 a	$6.06\pm0.10\ ^a$	$7.06\pm0.56~^a$	
	with skin	meat	$0.23\pm0.15^{\text{ b}}$	$0.05\pm0.01~^{c}$	$2.61\pm0.63~^{c}$	$2.89\pm0.72~^{b}$	
		skin	1.61 ± 0.72 a	$0.93\pm0.50~^a$	$4.52\pm0.37~^{b}$	7.07 ± 1.43 a	
		meat and skin	$0.31\pm0.15~^{b}$	$0.10\pm0.02~^{b}$	$2.72\pm0.60\ ^{c}$	3.13 ± 0.67 ^b	
Thigh	without skin	meat	$0.09\pm0.05~^{b}$	$0.06\pm0.04~^b$	5.43 ± 0.43 ^a	$5.58 \pm 0.38^{\ a}$	
	with skin	meat	nd	nd	$2.06\pm0.04~^{c}$	$2.07\pm0.05~^{b}$	
		skin	$0.47\pm0.18\ ^a$	$0.24\pm0.14~^a$	$4.16\pm0.42~^{b}$	$4.87\pm0.65~^a$	
		meat and skin	$0.05\pm0.03^{\:b}$	$0.02\pm0.02~^{b}$	$2.25\pm0.10^{\ c}$	$2.33\pm0.14~^{b}$	

Table 5: Heterocyclic amine content (MeIQx, DiMeIQx, PhIP, and total) of fried chicken samples

516 Each value is represented as mean \pm standard deviation (n = 4). Means with different superscript letters within the same 517 column are significantly different at p < 0.05.

518 Table 6: Heterocyclic amine content (MeIQx, DiMeIQx, PhIP, and total) of fried beef and broiled beef

Cooked items			Heterocyclic amines (ng/g)				
		MeIQx	DiMeIQx	PhIP	Total		
Fried beef	Medium rare	1.75 ± 1.43 a	$0.04\pm0.07~^a$	$0.94\pm0.70^{\ b}$	2.73 ± 2.01 ^c		
	Well done	3.33 ± 0.38 ^a	0.33 ± 0.38 ^a	$5.27\pm0.81~^a$	8.92 ± 1.08 ^a		
Broiled beef	Medium rare	$0.08\pm0.07~^{\rm b}$	$0.06\pm0.04~^a$	$1.58\pm0.36~^{b}$	1.72 ± 0.43 $^{\rm c}$		
	Well done	$0.12\pm0.07~^{b}$	$0.11\pm0.02~^a$	5.63 ± 0.95 ^a	$6.04\pm0.97~^{b}$		

Each value is represented as mean \pm standard deviation (n = 4). Means with different superscript letters within the same column are significantly different at p < 0.05.

Table 7: Heterocyclic amine content (IQx, MeIQx, DiMeIQx, PhIP, and total) of fried beef and pork patties, baked beef and pork, and fried bacon

Cooked items		Heterocyclic amines (ng/g)					
	IQx	MeIQx	DiMeIQx	PhIP	Total		
Fried beef patty	nd	3.11 ± 0.69	ND	2.35 ± 0.30	5.46 ± 0.78		
Fried pork patty	nd	1.09 ± 0.16	1.24 ± 0.75	1.80 ± 0.10	4.12 ± 0.72		
Baked beef	nd	0.33 ± 0.05	0.53 ± 0.12	1.49 ± 0.10	2.34 ± 0.11		
Baked pork	nd	0.23 ± 0.06	0.86 ± 0.24	2.20 ± 0.12	3.29 ± 0.36		
Fried bacon	3.11 ± 1.38	4.00 ± 1.46	3.57 ± 1.12	6.91 ± 2.06	17.59 ± 5.18		

Each value is represented as mean \pm standard deviation (n = 4).

nd = not detected

Cooked items			Heterocyclic amines (ng/g)					
		IQx	MeIQx	DiMeIQx	PhIP	Total		
Fried	Catfish	nd	2.31 ± 0.10^{b}	$2.72\pm0.08~^a$	10.31 ± 0.83 ^a	15.35 ± 0.78 ^a		
	Salmon	nd	2.05 ± 0.50 ^b	$1.93 \pm 0.12^{\ ab}$	9.11 ± 1.25^{a}	13.09 ± 0.90^{a}		
	Tilapia	nd	3.11 ± 0.42^{a}	$2.29\pm0.35~^a$	10.89 ± 1.35 ^a	16.29 ± 1.98^{a}		
Baked	Catfish	0.85 ± 0.45 ^a	$2.95\pm0.70^{\ ab}$	0.51 ± 0.03 ^c	$4.40\pm0.64~^b$	8.70 ± 1.61 ^b		
	Salmon	0.38 ± 0.19 ^a	$2.03\pm0.85~^{b}$	$1.66\pm0.77~^{b}$	$4.34\pm0.48~^{b}$	8.41 ± 1.09 ^b		
	Tilapia	0.52 ± 0.21 ^a	$1.27\pm0.16~^{\rm c}$	$0.29\pm0.23~^{\rm c}$	5.67 ± 0.44 ^b	7.85 ± 0.65 ^b		

Table 8: Heterocyclic amine content (IQx, MeIQx, DiMeIQx, PhIP, and total) of fried and baked fish

column are significantly different at p < 0.05.

nd = not detected

530	Figure Legend
531	
532	Figure 1. UV chromatogram (a) and FLD chromatogram (b) of HCA standards (250 ppb each),
533	sample (fried pork), and spiked sample at concentration 25 ppb of each
534	HCA.

