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Let (l 2k2)u52u91q(x)u2k2u5d(x), xPR, ]u/]uxu2 iku˜0, uxu˜`. As-
sume that the potentialq(x) is real valued and compactly supported:q(x)
5q(x), q(x)50 for uxu>1, *21

1 uqudx,`, and thatq(x) produces no bound
states. Letu(21,k) and u(1,k), ;k.0 be the data. It is shown that under the
above assumptions these data determineq(x) uniquely. © 1999 American Insti-
tute of Physics.@S0022-2488~99!02108-8#

I. INTRODUCTION

For several decades, the following inverse problems of practical interest are open. Let

¹2u1k2u1k2v~x!u52d~x!, in R3, ~1.1!

u satisfies the radiation condition at infinity, andv(x) is a compactly supported piecewise-smoo
function, suppv,R2

3
ª$x:x3,0%.

The data are the valuesu(x1 ,x2,0,k) for all x̂ª(x1 ,x2)PR2 andk.0.
~IP1! The inverse problem is the following.
Given the data, findv(x).
Uniqueness of the solution to this problem is not proved. IP1 is not overdetermined: the

is a function of three variables, andv(x) is also.
A similar inverse problem can be formulated: Let

¹2u1k2u2q~x!u50, in R3, ~1.2!

u5eika–x1A~a8,a,k!
eikr

r
1oS 1

r D , rªuxu˜`, a85
x

r
, ~1.3!

where aPS2 is a given unit vector,q(x) is a real-valued piecewise-smooth functio
suppq(x),Baª$x:uxu<a%, andS2 is the unit sphere.

~IP2! Given A(a8,a0 ,k) for all a8PS2, all k.0 and a fixeda5a0PS2, find q(x).
The uniqueness of the solution to~IP2! is not proved.
The third problem is the following.
Let

¹2u1k2u2q~x!u52d~x!, in R3; ~1.4!

u satisfies the radiation condition, andq(x) is the same as in~IP2!.
The data are the valuesu(x,k)u uxu5a .
~IP3! Given the data u(x,k)u uxu5a for all k.0 and all x on the sphere Saª$x:uxu5a%, find

q(x).
Uniqueness of the solution to~IP3! is not proved.
An overview of inverse problems and references one can find in Refs. 1–3.

a!Electronic mail: ramm@math.ksu.edu
38760022-2488/99/40(8)/3876/5/$15.00 © 1999 American Institute of Physics
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3877J. Math. Phys., Vol. 40, No. 8, August 1999 Inverse problem for an inhomogeneous . . .
Our purpose in this paper is to study the one-dimensional analog of~IP3! and to prove for this
analog a uniqueness theorem. The one-dimensional analog of~IP3! corresponds to a plasm
equation in a layer.

Let

lu2k2uª2u91q~x!u2k2u5d~x!, xPR1, ~1.5!

]u

]uxu
2 iku˜0, uxu˜`. ~1.6!

Assume thatq(x) is a real-valued function,

q~x!50, for uxu.1, qPL`@21,1#. ~1.7!

Suppose that the data,

$u~21,k!,u~1,k!%, ;k.0, ~1.8!

are given.
The inverse problem analogous to~IP3! is the following.
~IP! Given the data~1.8!, find q(x).
This problem, as well as~IP1!–~IP3!, is of practical interest. One can think about finding t

properties of an inhomogeneous slab~the governing equation is a plasma equation! from the
boundary measurements of the field, generated by a point source inside the slab.

In the literature there are many results concerning various inverse problems for the ho
neous version of Eq.~1.5!, but it seems that no results concerning~IP! are known.

Assume that the self-adjoint operatorl 52d2/dx21q(x) in L2(R) has no negative eigenva
ues@this is the case whenq(x)>0, for example#. The operatorl is the closure inL2(R) of the
symmetric operatorl 0 defined onC0

`(R1) by the formulal 0u52u91q(x)u. Our result is the
following.

Theorem 1: Under the above assumptions IP has, at most, one solution.

II. PROOF OF THEOREM 1

The solution to~1.5!–~1.6! is

u5H g~k!

@ f ,g#
f ~x,k!, x.0,

f ~k!

@ f ,g#
g~x,k!, x,0.

~2.1!

Here f (x,k) andg(x,k) solve homogeneous version of Eq.~1.5! and have the following asymp
totics:

f ~x,k!;eikx, x˜1`, g~x,k!;e2 ikx, x˜2`, ~2.2!

f ~k!ª f ~0,k!, g~k!ªg~0,k!, ~2.3!

@ f ,g#ª f g82 f 8g522ika~k!, ~2.4!

where the prime denotes differentiation with respect to thex variable, anda(k) is defined by the
equation

f ~x,k!5b~k!g~x,k!1a~k!g~x,2k!. ~2.5!
Downloaded 23 Jul 2012 to 129.130.37.175. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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It is known ~see, for example, Ref. 4! that

g~x,k!52b~2k! f ~x,k!1a~k! f ~x,2k!, ~2.6!

a~2k!5a~k!, b~2k!5b~k!, ua~k!u2511ub~k!u2, kPR, ~2.7!

a~k!511OS 1

kD , k˜`, kPC1 ; b~k!5OS 1

kD , uku˜`, kPR, ~2.78!

@ f ~x,k!,g~x,2k!#52ikb~k!, @ f ~x,k!,g~x,k!#522ika~k!, ~2.8!

a(k) is analytic inC1 , b(k), in general, does not admit analytic continuation fromR, but if q(x)
is compactly supported, thena(k) andb(k) are analytic functions ofkPC\0.

The functions

A1~k!ª
g~k! f ~1,k!

22ika~k!
, A2~k!ª

f ~k!g~21,k!

22ika~k!
, ~2.9!

are the data; they are known for allk.0. Therefore one can assume the functions

h1~k!ª
g~k!

a~k!
, h2~k!ª

f ~k!

a~k!
, ~2.10!

to be known for allk.0, because

f ~1,k!5eik, g~21,k!5eik, ~2.11!

as follows from the assumption~1.7! and from~2.2!.
From ~2.10!, ~2.6!, and~2.5!, it follows that

a~k!h1~k!52b~2k! f ~k!1a~k! f ~2k!52b~2k!h2~k!a~k!1h2~2k!a~2k!a~k!,
~2.12!

a~k!h2~k!5b~k!a~k!h1~k!1a~k!h1~2k!a~2k!. ~2.13!

From ~2.12! and ~2.13!, it follows that

2b~2k!h2~k!1h2~2k!a~2k!5h1~k!, ~2.14!

b~k!h1~k!1a~2k!h1~2k!5h2~k!. ~2.15!

Eliminating b(2k) from ~2.14! and ~2.15!, one gets

a~k!h1~k!h2~k!1a~2k!h1~2k!h2~2k!5h1~k!h1~2k!1h2~2k!h2~k!, ~2.16!

or

a~k!5m~k!a~2k!1n~k!, kPR, ~2.17!

where

m~k!ª2
h1~2k!h2~2k!

h1~k!h2~k!
, n~k!ª

h1~2k!

h2~k!
1

h2~2k!

h1~k!
. ~2.18!
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3879J. Math. Phys., Vol. 40, No. 8, August 1999 Inverse problem for an inhomogeneous . . .
Problem~2.17! is a Riemann problem~see Ref. 5 for the theory of this problem! for the pair
$a(k),a(2k)%, the functiona(k) is analytic inC1ª$k:kPC,Im k.0% anda(2k) is analytic in
C2 . The functionsa(k) anda(2k) tend to one ask tends to infinity inC1 and, respectively, in
C2 ; see Eq.~2.78!.

The functiona(k) has finitely many simple zeros at the pointsik j , 1< j <J, kj.0, where
2kj

2 are the negative eigenvalues of the operatorl defined by the differential expressionlu
52u91q(x)u in L2(R).

The zerosik j are the only zeros ofa(k) in the upper half-planek.
Define

inda~k!ª
1

2p i E2`

`

d ln a~k!. ~2.19!

One has

inda5J, ~2.20!

whereJ is the number of negative eigenvalues of the operatorl, and, using~2.10!, ~2.20! and
~2.18!, one gets

indm~k!522@ indh1~k!1 indh2~k!#522@ indg~k!1 ind f ~k!22J#. ~2.21!

Sincel has no negative eigenvalues, it follows thatJ50.
In this case indf (k)5 indg(k)50 ~see Lemma 1 below!, so indm(k)50, and a(k) is

uniquely recovered from the data as the solution of~2.17!, which tends to one at infinity; see Eq
~2.78!. If a(k) is found, thenb(k) is uniquely determined by Eq.~2.15!, and so the reflection
coefficientr (k)ªb(k)/a(k) is found. The reflection coefficient determines a compactly suppo
q(x) uniquely ~see Ref. 2!.

To make this paper self-contained, let us outline a proof of the last claim using an argu
different from the one given in Ref. 2.

If q(x) is compactly supported, then the reflection coefficientr (k)ªb(k)/a(k) is meromor-
phic. Therefore, its values for allk.0 determine uniquelyr (k) in the whole complexk plane as
a meromorphic function. The poles of this function in the upper half-plane are the numberik j ,
j 51,2,...,J. They determine uniquely the numberskj , 1< j <J, which are a part of the standar
scattering data$r (k),kj ,sj ,1< j <J%, wheresj are the norming constants.

Note that if a( ik j )50 then b( ik j )Þ0: otherwise Eq.~2.5! would imply f (x,ik j )[0, in
contradiction to the first relation~2.2!.

If r (k) is meromorphic, then the norming constants can be calculated by the formusj

52 i @b( ik j )/ȧ( ik j )#52 i Resk5 ik j
r (k), where the dot denotes differentiation with respect tok,

and Res denotes the residue. So, for compactly supported potential, the values ofr (k) for all k
.0 determine uniquely the standard scattering data, that is, the reflection coefficient, the
states2kj

2, and the norming constantssj , 1< j <J. These data determine the potential unique
Theorem 1 is proved. h

Lemma 1:If J50 then indf 5 indg50.
Proof: We prove indf 50. The proof of the equation indg50 is similar. Since indf (k) equals

the number of zeros off (k) in C1 , we have to prove thatf (k) does not vanish inC1 . If f (z)
50, zPC1 , thenz5 ik, k.0, and2k2 is an eigenvalue of the operatorl in L2(0,̀ ), with the
boundary conditionu(0)50.

From the variational principle one can find the negative eigenvalues of the operatol in
L2(R1) with the Dirichlet condition atx50 as consecutive minima of the quadratic function
The minimal eigenvalue is

2k25 infE
0

`

@u821q~x!u2#dxªk0 , uPH̊1~R1!, iuiL2~R1!51, ~2.22!
Downloaded 23 Jul 2012 to 129.130.37.175. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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whereH̊1(R1) is the Sobolev space ofH1(R1) functions, satisfying the conditionu(0)50.
On the other hand, ifJ50, then

0< infE
2`

`

@u821q~x!u2#dxªk1 , uPH1~R!, iuiL2~R!51. ~2.23!

Since any elementu of H̊1(R1) can be considered as an element ofH1(R) if one extendsu to the
whole axis by settingu50 for x,0, it follows from the variational definitions~2.22! and ~2.23!
that k1<k0 . Therefore, ifJ50, thenk1>0, and thereforek0>0. This means that operatorl on
L2(R1) with the Dirichlet condition atx50 has no negative eigenvalues. This means thatf (k)
does not have zeros inC1 , if J50. ThusJ50 implies indf (k)50.

Lemma 1 is proved. h

Remark 2:The above argument shows that, in general,

ind f <J and indg<J, ~2.24!

so that~2.21! implies

indm~k!>0. ~2.25!

Therefore the Riemann problem~2.17! is always solvable.
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