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ABSTRACT 

Curing duration and target temperature are the most critical process parameters for 
high- pressure hose products. The air temperature collected in the curing chamber is 
represented in the form of a profile. A proper statistical process control (SPC) 
implementation needs to consider both numeric as well as profile quality characteristics. 
This paper describes a successful six sigma project in the context of statistical 
engineering for integrating SPC, a statistical method, to the existing practice of 
engineering process control (EPC) according to science. A case study on a real 
production curing process is thoroughly investigated. It is shown that the new findings 
could potentially result in significant energy savings. The solutions provided in this study 
can be generalized into other curing processes and applications subjected to both EPC 
and SPC. 

Key Words: Autoclave, Bi-Plot Chart, DMAIC, Hotelling T2 Chart, Profile Analysis. 

Introduction	and	Motivation	
Hoerl and Snee (2010) propose the term statistical engineering defined as “the study of 
how to best use statistical concepts, methods and tools, and integrate them with 
information technology and other relevant sciences to generate improved results.”  In 
this paper we discuss a six sigma project to implement SPC on high-pressure hose 
products produced in a factory, PH Corporation, which is undergoing a lean six sigma 
transformation. We demonstrate how the proposed SPC solution is integrated into the 
current engineering process control operation and its quality assurance system in the 
statistical engineering framework. Through a case study using real-life data, we discuss 
its potential impact toward continuous improvement. 

High-pressure hose products are made out of alternate layers of rubber and metal wires. 
Toward the end of the production process, various high-pressure hose reels are loaded 
and cured. A curing process typically consists of a sealed, heated chamber, called an 
autoclave or vulcanizer. Most autoclaves or vulcanizers are equipped with multiple 
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thermocouples inside their chambers and/or parts. The housing that contains an 
autoclave or vulcanizer is often called the vessel. The most important information 
gathered from the thermocouples is the air temperature represented as a nonlinear 
profile during the curing cycle. A programmable logical controller (PLC) is used to control 
temperature based on sensor readings or a fixed time interval according to a curing 
recipe. Shown in Figure 1 is a typical air temperature profile divided into three sections – 
heat-up stage, curing stage, and cool-down stage. It is important for the flat section (the 
curing stage) of this profile to hold for a fixed period of time. The thermocouples are 
calibrated from time to time so that the measurement error is negligible. The data 
collection unit of the PLC is capable of collecting multiple temperature readings per 
second.  

A closer examination of the data set reveals that the temperature readings do not 
change very swiftly. The data presented in Figure 1 are based on temperature readings 
taken every few seconds. The variables X1 to X6 are defined in a later section. Due to the 
confidentiality agreement with PH Corporation, we altered the numerical values of the 
temperature and time units. The target air temperature during the curing stage is 500 
degrees Fahrenheit and should last for 480 time units.  

 

****** Insert  Figure 1. Air Temperature of One Curing Cycle***** 

Problems	and	Challenges	
Under the framework of six sigma, quality and process improvement is most effective on 
a project-by-project basis. One of the main emphases in statistical engineering 
addresses the need to identify projects with high impact. PH Corporation is in its initial 
stage of experiencing a six sigma transformation. There are many pending projects 
throughout its factory. One of the process improvement projects that the quality manager 
and process engineers of PH Corporation face is implementation of statistical process 
control on the curing process because all high-pressure hose products go through this 
critical process before the final quality check is applied. It is very important to study the 
variability of the curing process and then to maintain its stability. The proposed SPC 
project would help ensure that the curing production process is under both engineering 
control and statistical control. When the final quality check identifies potential quality 
issues, process and quality engineers can rule out the curing process as a cause if a 
proper SPC procedure is in place. This study demonstrates how statistical thinking and 
statistical engineering can be integrated into an existing engineering control application.  

Process engineers often presume that the curing process must be under control 
because it is governed led by a PLC according to a recipe used for many years. This 
argument comes from engineering process control (EPC) instead of SPC.  The practice 
of EPC may keep a malfunctioning process operating for a while before it eventually 
spirals out of control when a root cause starts to emerge. An SPC implementation 
combined with an EPC practice can prevent this from happening (see Montgomery et al., 
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1994 and Del Castillo, 2002). The cost of scrapping an entire load of cured product is 
prohibitively high. Therefore, this is one of the high impact projects during the initial 
stage of six sigma transformation.  

The key question concerning process monitoring is: “Is a curing process in control given 
the air temperature profile generated at the end of a curing cycle?” One of our objectives 
involves the design and implementation of a SPC plan on this process to make sure that 
the process is in control in all aspects. A process is assumed to exhibit statistical control 
when only common cause variability exists in process parameters of the system. If a 
curing cycle is in control, the quality of products being cured would be satisfactory given 
that the raw material meets its intended specifications. On the other hand, if a process is 
out of control, it is very likely products inside the vessel will not be cured properly. The 
major benefit of an in-control process is product consistency that translates into better 
product quality and thus customer satisfaction. Reduced waste is also an important 
benefit. 

The current process-monitoring practice involves manual visual inspection of a plot 
similar to Figure 1 at the end of a curing process. All temperature readings are recorded 
in a database but a hard copy printout is generated for quality assurance purpose. The 
operator attending the vessel would examine this plot and decide whether the process is 
in control or not. If the curing is believed to be successful, a “pass” would be written on 
the printout. The current curing recipe calls for the following sequence: (1) open the heat 
steam valve rapidly to heat the chamber air temperature to 500 degrees Fahrenheit, (2) 
maintain this target temperature for 480 time units, (3) open a valve to vent off the 
pressure for a fixed period, (4) spray water for a fixed period, (5) rest for a fixed period, 
(6) spray water a second time for a fixed period, and then (7) open the chamber door to 
unload the cured products. The impact on temperature for sequence of actions from 
steps (3) to (7) is summarized in Figure 2. Since the timing and duration for each stage 
is also controlled by a PLC, operators would glance at the “general pattern” for quality 
assurance. The current practice is very subjective and operator-dependent. There is a 
great opportunity to introduce quality monitoring for continuous quality improvement. 

Define	Critical‐to‐Quality	Characteristics	
In this study, we focus on the air temperature setting considered to be the most critical to 
a curing process. The current practice involves one curing recipe applied to all high-
pressured host products regardless of their individual specifications. Each type of hose 
product requires a minimal period of curing time at a set temperature for the major 
functional requirement, that is, the proper cross linking of the rubber material. A hose 
product without a proper curing will fail either in the pressure test or in the field more 
quickly than expected.  In addition, a gradual cooling procedure is designed to maintain 
the cosmetic requirement on the outside of a hose product, that is, a smooth look without 
any blistering. It is critical that both aspects are met during the curing production for 
customer satisfaction. The air temperature profiles are recorded to reflect the production 
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quality from batch to batch in term of the most critical process parameter – the air 
temperature.  

After consultation with the quality manager, process engineers, and IT specialist, we 
define critical-to-quality characteristics (CTQ), often defined in the DMAIC (Define, 
Measure, Analyze, Improve, and Control) process, as follows: 

 QC1: the time to reach the target air temperature 500 degrees Fahrenheit must 
be swift although the PLC does not specify a time; 

 QC2 and QC3: the air temperature must maintain a target value of 500 degrees 
Fahrenheit (QC2) for a fixed target duration 480 time units (QC3); and 

 QC4: the air temperature must be reduced “gradually” according to sequences (3) 
to (7) defined earlier. 

After a curing cycle, an air temperature profile similar to Figure 1 is given. Based on the 
profile, quality engineers determine whether the CTQs i.e. QC1 to QC4 are in control. A 
Phase I data set of a curing process was collected over a one month period. Most quality 
engineers are equipped to implement SPC for QC1 defined above. However, examining 
Figure 3 during the curing stage, quality engineers were puzzled by multiple types of 
patterns among 153 profiles related to QC2 and QC3. It is not clear which existing 
control charting methods could be directly applied for process monitoring purposes.  

Another challenge is to implement SPC for QC4 in which numerical standards are ill-
defined. Quality engineers were overwhelmed by multiple segments and the large 
amount of data when they examined Figure 4 containing multiple temperature profile 
segments during the cool-down stage.  

*****Insert Figure 2 here. A Typical Air Temperature Profile during the Cool-down 
Stage***** 

****Insert Figure 3. Patterns of the Air Temperature Profiles during the Curing Stage *** 

****Insert Figure 4. Patterns of the Air Temperature Profiles during the Cool-Down Stage 
*** 

 

Overview	of	a	System	Framework	for	Data	Processing	
In the framework of statistical engineering, it is important to integrate statistical methods 
and tools into IT practices. Figure 5 shows a proposed system framework related to data 
processing before SPC can be implemented on the curing process. This framework has 
four components, i.e., middleware, data warehouse, SPC, and decision making. The 
process data are first retrieved from various databases corresponding to the vent valve, 
vulcanizer, and water spray valve. Next, the middleware component provides a data pre-
processing function, that is, data loading, data cleaning, transforming, integrating, and 
refreshing on the raw data. The data warehouse is a repository that stores, arranges and 
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organizes information for SPC implementation or any other analysis purposes. 
Furthermore, the SPC component provides a basic process monitoring for decision 
making. Currently, the frontend databases are fed by the PLC. Our tasks involve the 
development of the middleware, SPC and decision making components that will be 
integrated into the existing quality assurance database.  

PH corporation, like many other manufacturers, are experiencing a modern day factory 
phenomenon, that is, a data tsunami. Lots of data are generated by various operations, 
but its use in decision making is ignored. The PLC that controls the curing process is 
capable of generating a large volume of data, most of which is simply stored, archived, 
and eventually deleted. None or very little of it is transformed into useful information or 
statistics on which insightful decision makings can be made. There is really a missing 
link between the statistical thinking/methods which suggested collecting these data and 
engineering practice. In this study, we propose to integrate IT and the proposed SPC 
procedure. 

****Insert Figure 5. Diagram of System Structure for Data Processing *** 

Establish	Measure	of	Critical‐to‐Quality	Characteristics	
This measure step is the second step of the DMAIC process. Based on the CTQs QC1 
to QC4, we would like to establish statistics that can directly measure the CTQs and be 
fed into control charts. It is straightforward to quantify QC1 as ଵܺ, which is the duration 
between the start of a curing stage and the start of the countdown timer of QC3. This 
statistic is relatively easy to obtain via an algorithm written in Matlab. 

It is a challenge to derive statistics based on QC2 and QC3. A closer look at QC2 and 
QC3 reveals that they are not exactly random variables in the usual sense because a 
PLC is used to make sure that each cycle achieves the targets for QC2 and QC3, i.e. 
500 degrees Fahrenheit  for 480 time units. When the air temperature reading gets close 
to 500 degrees  Fahrenheit, the PLC starts the timer for 480 time units to achieve the 
required fixed duration. Based on the data recording tag shown in the database, the PLC 
would start the curing timer when a temperature reading first reaches 492 degrees 
Fahrenheit. Each air temperature profile exhibits a different pattern initially as shown in 
Figure 3. The temperature would eventually reach the steady state of 500 degrees 
Fahrenheit. Therefore, the “true” quality characteristic for the curing time requirement is 
how much time each profile stays at or above 500 degrees Fahrenheit.  

We define ܺଶ  as the cumulative time that temperature readings exceeding the target 
temperature (500 – δ), where δ is the standard deviation of the steady-state temperature 
readings. Note that δ is small because of the PLC control actions. Based on the steady-
state segment of the temperature profiles shown in Figure 3, δ is estimated to be 0.05 
degrees Fahrenheit. This quality characteristic can be obtained by an algorithm written in 
Matlab to process any profile during the curing stage. It captures the key characteristics 
important for the curing recipe, i.e. QC2 and QC3. 
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A	Solution	to	Profile	Analysis	during	the	Cool‐down	Stage	
We propose the use of profile monitoring techniques for tackling the SPC 
implementation issues for QC4. Profile monitoring techniques have gained much 
attention since Jin and Shi (1999) introduced their application to the force of a stamping 
process. Three general approaches often used to implement SPC on profiles as quality 
characteristics include: the use of process parameters, the use of projected space, and 
the use of critical spatial information. Most literature on this topic follows the first 
category because the process parameters are often independent of each other, which is 
one of the conditions required to be used for simultaneous charting of univariate control 
charts (see Kang and Albin, 2000; Kim et al., 2003; Noorossana et al., 2010a and 
2010b). The second category is the use of projected space in which original profiles are 
transformed from one domain into another domain with axes orthogonal to each other. 
The principal component analysis (Jones and Rice, 1992) is often used for this purpose. 
Other work in this category includes Vapnik (1998), Walker and Wright (2002), Woodall 
et al. (2004), and Moguerza et al. (2007). Finally, the third category is the use of spatial 
information. The core idea is to reduce the number of observations in the original profile 
but still maintain crucial profile information. Those methods can be found in Grossmann 
and Morlet (1984), Mallat (1989), Strang and Nguyen (1997), Jin and Shi (1999), 
Chicken et al.(2009), and Chang and Yadama (2010). 

The main activities during the cool-down stage have to do with the proper temperature 
drops in four segments. Depending on the load i.e. heat mass in the vessel, these 
temperature profiles exhibit different characteristics but hold the general patterns as 
shown in Figure 4. The geometric shapes from various cycles deviate from each other 
greatly in each segment. The steepest temperature drops usually take place during the 
segments of vent opening and spraying. This pattern will break if the vent does not open 
or the water tank runs out of water during a spraying cycle. Instead of using one model 
for these complicated profiles at this stage, it would be much easier to break this stage 
into smaller segments according to the PLC recipe. The current recipe contains several 
fixed intervals – venting, water spray cycle 1, resting, and water spray cycle 2. The last 
segment (not labeled) in Figure 2 is not important because a load may sit in the vessel 
for a period of time before it is unloaded. The length of this period depends on factory 
schedules.  

We propose statistics ܺଷ, ܺସ, ܺହ, and ܺ଺ as the average of deviations from the nominal 
profiles for each segment for the cool-down steps (3) through (6), respectively. These 
statistics are chosen to reflect the general trend of the cool-down process. Each statistic 
identifies the proper behavior within a functional segment so that it is easy for operators 
to diagnose problematic profiles. As shown in Figure 2, ܺଷ to ܺ଺ are derived from air 
temperature readings ݕ௜௝	where the index ݅ is defined according to the cool-down recipe 

and ݆ ൌ 3, 4, 5, 6	. Specifically, the index ݅ of ݕ௜௝	takes the integer values in [1, 60], [61, 

88], [89, 116], and [117, 140] respectively depending on ݆ ൌ 3, 4, 5, or	6.  

Process engineers do not know the shape of the nominal profile of the air temperature 
during the cool-down cycle. We need to estimate it from a Phase I data set. Similar to 
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the practice reported by Chang and Yadama (2010)  ܺଷ to ܺ଺ can be obtained from the 
following function: 

௝ܺ ൌ
		෍ ቚ௬೔ೕି௬ೕቚ			

೙ೕ

೔సభ

௡ೕ
		݆ ൌ 3,4,5,6.          (1) 

where ݕ௜௝ is the ݅th data point of the ݆th profile segment, ௝݊ is the number of points within 

segment ݆, and ݕ௝ is the ݆th segment of the “average” profile fitted over all profiles in a 

Phase I data set. Judging from Figures 2 and 4, linear functions should be sufficient to 
model  ݕ௝, for ݆ ൌ4, 5 and 6 but perhaps not for ݆ ൌ 3. In this study, we choose to use a 

B-spline function to fit each profile segment because it is capable of fitting either linear or 
nonlinear profiles. For details of B-spline fitting, please refer to Mortenson (2006). 

 

Analyze	Curing	Process	via	Control	Charting 
The third step of the DMAIC process involves the use of a Phase I study of control 
charts to understand causes of variation and identify potential root causes. One 
approach for implementing SPC combines ଵܺ to ܺ଺ into one multivariate control chart. 
This design allows the monitoring of the curing process in a single chart instead of 
spreading the task into six individual control charts. However, this approach will delay 
fault diagnosis when a process is out of control. It would need the involvement of a 
quality engineer to examine the individual data of ଵܺ to ܺ଺ to identify which variables are 
responsible for an out-of-control signal. On the other hand, the approach of using six 
individual control charts simultaneously would increase the overall type I error of control 
charting. Moreover, the correlation information between quality characteristics would be 
ignored so that certain out-of-control causes would not be detected under this approach.  

From examining QC1 to QC4 and various stages of curing, we propose a solution to 
separate variables ଵܺ to ܺ଺ into two groups. The first group consisting of ଵܺ and ܺଶ is 
used for monitoring the heat-up and curing stages because both pieces of information 
are maintained by the heating valve operation. These two variables are highly related 
because control actions on the heat valve dictate them. The second group consisting of 
the rest of the variables is mainly used for the cool-down stage. Two multivariate control 
charts for individual observations are proposed for these two groups, respectively. In this 
case, each observation corresponds to a curing cycle. In other words, we would treat 
each cycle as one sample with one set of ଵܺ to ܺ଺ values which are monitored via two 
control charts. 

Possible multivariate control charts for individual observations include Hotelling T2 charts 
(Hotelling, 1947) and MEWMA charts (see Lowry and Montgomery, 1995 and Tracy et 
al., 1992). A control chart for individual observations is used because each curing cycle 
only provides one air-temperature profile.  Note that the underlying process is controlled 
by a PLC. Within each cycle it is possible that temperature observations may exhibit 
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autocorrelation. However, points on a control chart are plotted from cycle to cycle. 
Autocorrelation, if it exists, may diminish.  

A	Case	Study	–	the	Curing	Process	Revisited	
In this study, 153 air temperature profiles (or cycles) of Phase I data are examined to 
seek opportunities for improvement. Quality and process engineers deemed that they 
are in control. Each profile is divided into two segments. The first segment aims for the 
monitoring of heat-up and curing duration, while the second segment is for the 
monitoring of the cool-down stage. In the first segment, there are two quality 
characteristics of interest. Both have the same unit, i.e., time duration. The second 
segment of a cycle contains four quality characteristics of interest, which are related to 
the average deviations from their nominal nonlinear profiles. Using conventional SPC 
procedure, we first apply two Hotelling’s T2 control charts to explore the first segment 
and second segment on all profiles, respectively. Although the quality engineers claimed 
that the 153 profiles in Phase I data set are all in control, Hotelling’s T2 control charts 
may show different results. In order to establish the control charts for Phase II monitoring, 
it is necessary to screen out abnormal observations. All plotted points should fall within 
the control limits. Otherwise, we should seek for explanations and justifications for any 
out-of-control point to be included. In order to maintain a combined type I error of 0.005, 
we establish the control limit for each T2 control chart accordingly. Results of Phase I 
studies for both T2 control charts are discussed in the following sections. 

Study	during	the	Heat‐up	and	Curing	Stage	
We first plot all standardized observations on the Hotelling T2 control chart with individual 
observations (see Vargas, 2003 and Williams et al., 2006). As shown in Figure 6, there 
are 11 points outside the control limit. We further examine the causes that make these 
points “abnormal” before any point is discarded from the Phase I data set. Figure 7 
shows a bi-plot that plots all points in a two-dimensional plot between ଵܺ, the heat-up 
duration, and ܺଶ, the curing duration above the target 500 Fahrenheit.  We draw the 
control limits of the IX chart (i.e. X-bar chart on individual observations) for ଵܺ as well as 
the lower specification limit 360 time units for ܺଶ  on Figure 7. Note that this lower 
specification is more important than the control limits in that rubber products require a 
minimal time at a set temperature for proper curing. In this case, the target curing time is 
set at 480 time units so that most curing cycles would have at least 360 time units above 
the cured temperature of 500 degrees  Fahrenheit. The group of out-of-control points 
including 23, 77, and 126 indicates that these three cycles take a long time to reach the 
target curing temperature but their curing duration above 500 degrees  Fahrenheit are 
above the mean curing duration. On the other hand, the group of out-of-control cycles 
including 1, 9 and 98 shows that the time to reach the target temperature is shorter than 
that of most cycles. Specifically, cycles 1 and 98 are below the mean curing duration but 
above the minimal 360 time units. Another cycle 54 also belongs to this group. Although 
this point falls within the IX chart control limits and is above 360 time units, it is far from 
the mean point of the ellipsoid causing it to be plotted outside the control limit of the T2 
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chart. We keep the cycles of these two groups when establishing the control limits of the 
T2 chart. 

The group of out-of-control points that cause concerns consists of cycles 60, 73, 131, 
and 137. Although they reach the target temperature like the majority of the other cycles, 
they fail to keep the minimal of 360 time units of curing time above 500 degrees 
Fahrenheit. This result is forwarded to process engineers for more detailed study. After 
discarding the cycles of this group from the Phase I data set, the new control limit of the 
Hotelling T2 control chart changes from 11.594 to 11.565 (based on Tracy et al., 1992). 

 

*****Insert Figure 6 Hotelling’s T2 Control Chart for ଵܺ and ܺଶ ***** 

*****Insert Figure 7 Bi-plot for ଵܺ and ܺଶ ***** 

Study	during	the	Cool‐down	Stage	
The Hotelling’s T2 control chart for the cool-down stage has four variables ܺଷ  to ܺ଺ , 
which are the average deviation statistics from the B-Spline fitted nominal profile. This is 
displayed in Figure 8. Cycles 41, 136 and 141 are above the control limit of 15.764. 
Figure 9 shows detailed plots of each segment with these three profiles highlighted. In 
various segments, the shapes of these cycles are very different from the rest of the 
profiles. In addition, we can also use a matrix plot to show the correlation structure 
among ܺଷ to ܺ଺. As shown in Figure 10, the outliers correspond to cycles 41, 136 and 
141 in various places. After removing these points, the control limit of the Hotelling’s T2 
control chart changes from 15.764 to 15.732.  

*****Insert Figure 8 Hotelling’s T2 Control Chart for ܺଷ to ܺ଺ ***** 

*****Insert Figure 9 Cool-down Process Profiles by Segment (Out-of-control Profiles 41, 
136, 141)***** 

*****Insert Figure 10 Matrix Plot of  ܺଷ to ܺ଺ ****** 

Summary	of	the	SPC	Tools	Used	in	this	Study	
The paradigm of statistical engineering links statistical methods and tools at the 
operational level to statistical thinking at the strategic level. In this study, various 
statistical methods integrated with IT tools have been adopted to fulfill this goal. The 
main idea of statistical thinking in this case is to integrate the statistical process control 
of the curing process to the current practice which is operated under the engineering 
control. The implementation of SPC will prevent major process catastrophes from taking 
place and provide useful information and statistics for informative decision making. 

We now summarize how all the statistical methods and tools are used in this study. The 
main process monitoring tools proposed are a pair of Hotelling T2 control charts. The 
studies described above show how the control limits for both charts are established 
based on the phase I data set. During the process monitoring phase, an algorithm 
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written in Matlab is used to obtain the quality characteristics X1 to X6 from a sample 
temperature profile. Then variables X1 and X2 form an input vector to be used in the first 
T2 control chart as shown in Figure 6 while the rest of the variables are put into the 2nd T2 
control chart as shown in Figure 8. If the points plotted on both T2 control charts fall 
below their respective control limits, the process is deemed in control. Otherwise, a bi-
plot shown in Figure 7 is used on variables  X1 and X2 for fault diagnoses when the first 
T2 control chart triggered the out-of-control signal. Furthermore, a matrix plot of cool-
down variables ܺଷ to ܺ଺ should be used when the second T2 control chart triggered the 
out-of-control signal. Operators are responsible for monitoring both T2 control charts at 
the end of each curing cycle, while quality engineers should use either a bi-plot or a 
matrix plot for fault diagnoses when an out-of-control signal is triggered by either or both 
of the T2 control charts. During a routine curing operation, operators would use the 
control charts to judge whether the process is in control or not. When a point plots 
outside the control limits of either one of the  T2 control charts, process engineers are 
then notified to diagnose the process. 

Improve	the	Curing	Process	
During the fourth step of the DMAIC process, we identify and generate potential 
solutions for process improvement. Currently air temperature profiles are not used for 
any process related analysis or diagnosis. The PH Corporation will benefit from decision 
making based on objective data analysis as demonstrated in this case study. 
Furthermore, during this Phase I study, we have identified a process adjustment 
opportunity that may potentially save production cost. The distribution of the curing 
duration above the target temperature reveals that it is possible to trim the target 
duration to a smaller value as shown in Figure 7. The curing recipe specifies 480 time 
units of curing to accommodate all types of products so that the actual curing time above 
500 Fahrenheit may be at the minimum of 360 time units.  Most ܺଶ values in Figure 7 are 
actually above 380 time units. A gap of 20 time units between 360 and 380 can be 
trimmed from the current setting of 480 time units and most actual curing times would 
still meet the minimal requirement. As energy costs rise, this savings opportunity may 
dramatically improve the cost of production while satisfying functional requirements. As a 
numerical example, for every 200 batches of hose products cured, reducing the curing 
time by 20 time units will yield an additional 20x200/(480-20)=8.7 batches without using 
additional energy. 

Historically, only one curing recipe is used regardless of the type of hose products 
loaded. It is understandable that the current curing time has to be set at the maximum 
level to satisfy the worst case scenarios. However, with the ܺଶ data analyzed we have 
demonstrated that this one-size-fit-all practice may be revised to satisfy functional 
requirements and reduce energy consumption.  
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Control	the	Curing	Process	by	Embedding	the	Proposed	SPC	
Solution	into	the	Current	Quality	Assurance	Practice	

The final step of the DMAIC process involves the integration of the proposed SPC 
implementation into the ongoing work flow as shown in Figure 11. A simplified process 
flow shows that the semi-finished hose products are loaded into a vulcanizer after all 
braiding processes are finished. Two major subcomponents in the curing process 
consist of the proposed division of the heat-up/curing process and the cool-down 
process. Cured products would then go through quality assurance via acceptance 
sampling before they are shipped to customers.  

The shaded box in the middle of Figure 11 summarizes the proposed SPC 
implementation. In order to gain long-term success of the proposed system, the 
proposed SPC solutions should be integrated with the existing quality assurance system. 
This is another example of integrating statistical tools into IT to maintain the gains 
achieved in the statistical engineering paradigm.  As shown in the dashed line in Figure 
11, we recommend the inclusion of the proposed outputs to be stored in the existing 
quality assurance database (QA DB). The solid line connecting to the QA DB represents 
the existing IT system used for quality assurance while the dash line is the proposed one. 
Depending on the results of on-line monitoring, i.e., Hotelling T2 charts or bi-plot, quality 
engineers may be able to use this information to decide proper sample sizes for 
destructive tests or to pay more attention to batches with large variations, for example. 

Concluding	Remarks	
Following the DAMIC process commonly used in a six sigma project and the paradigm of 
statistical engineering, an SPC implementation solution is introduced here for a 
production curing process where there is a mixture of quality characteristics presented in 
the form of a temperature profile. Using both computer algorithms (non-statistical 
techniques) and profile monitoring techniques (statistical techniques), we propose a 
solution to combine critical quality characteristics and profile monitoring into one SPC 
framework. A Phase I data set is used to demonstrate how the proposed framework 
involving the use of two Hotelling T2 charts is implemented. This case study on curing 
production process is shown to be successful. The proposed SPC framework is 
recommended to be integrated into the existing quality assurance process to ensure 
long-term success. Although the results of this study are based on the vulcanizer of the 
PH Corporation, it is straightforward to generalize them into other curing processes. The 
mechanism and control used in various autoclaves are very similar. In addition, the 
proposed SPC procedure can be more broadly applied to other EPC/SPC applications. 
The key of a successful integration of EPC and SPC relies on the transformation from 
EPC variables into proper quality characteristics for SPC. In this case study, the EPC 
variables are the curing recipe – 500 degrees Fahrenheit for 480 time units. We were 
able to convert it into variable X2.  

Based on the Phase I study, one important issue that we explored was the cost aspect. 
The opportunity for improvement lies in the curing recipe. The distribution of the curing 
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duration above the target temperature reveals that it is possible to trim the target 
duration to a smaller value (the current setting is at 480 time units). As energy costs rise, 
it should be noted and emphasized that there is a great opportunity for cost saving while 
satisfying the functional requirements. 

Although this study only focuses on SPC implementation strategy, further investigations 
that take the full advantage of the entire set of collected data may be considered. For 
example, there are other profiles—such as pressure and condensation water 
temperature—generated from the same process that can potentially improve the stability 
of the curing process. It is a challenge to incorporate all of them into the process 
monitoring framework. Future six sigma projects should be considered. 
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Figure 1. Air Temperature  Profile of a Typical Curing Cycle  
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Figure 2. A Typical Air Temperature Profile during the Cool‐down Stage 

 

Figure 3. Patterns of the Air Temperature Profiles during the Curing Stage  
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(a) The duration of Vent open (ܺଷ). 
 

(b) The duration of Spray 1 (ܺସ). 

 
(c) The duration of Rest 1 (ܺହ). 

 
(d) The duration of Spray 2 (ܺ଺). 

Figure 4. Patterns of the Air Temperature Profiles during the Cool‐Down Stage  
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Figure 5. Diagram of System Framework for Data Processing. 

 

Figure 6. Hotelling T2 control chart for  ଵܺ and ܺଶ in the Heat‐up and Curing Stage  
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Figure 7. Bi‐plot and IX Control Limits for Heat‐up Time and Curing Time  

 

Figure 8. Hotelling T2 Control Chart for Cool‐Down Variables ܺଷ to ܺ଺  
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(a)  (b) 

(c)  (d) 

Figure 9. Cool‐down Process Profiles by (a) segment ܺଷ (b) segment ܺସ (c) segment ܺହ, and (d) 
segment ܺ଺ (out‐of‐control profiles 41, 136, 141) 
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Figure 10. Matrix Plot of Cool‐down Variables ܺଷ to ܺ଺  
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Figure 11. Diagram of Current Process Flow and the Proposed Embedded SPC Flow. 
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