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 2 

Abstract 1 

The Chinese wheat landrace Huangfangzhu (HFZ) has a high level of resistance to 2 

Fusarium head blight (FHB). To identify chromosomal regions that are responsible 3 

for FHB resistance in HFZ, F8 recombinant inbred lines (RIL) were developed from a 4 

cross between HFZ and Wheaton, a U.S. hard spring wheat. FHB was evaluated by 5 

single floret inoculation in both greenhouse and field environments. Two quantitative 6 

trait loci (QTL) with major effects were identified. One QTL was located on the short 7 

arm of chromosome 3B, and explained 35.4% of the phenotypic variation; the other 8 

QTL was assigned to 7AL and explained 18.0% of the phenotypic variation for FHB 9 

response. In addition, three minor QTL were detected on chromosomes 1AS, 1B and 10 

5AS by single marker regression. HFZ contributed all favorable alleles. The RIL with 11 

HFZ alleles at the QTL on 3BS and 7AL displayed significantly lower percentages of 12 

infected spikelets (PIS) than RIL without these alleles in both greenhouse and field 13 

environments. HFZ combined several alleles from germplasm reported previously and 14 

is a promising alternative source for improving wheat FHB resistance. 15 

 16 
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Introduction  1 

Fusarium head blight caused by Fusarium graminearum is a destructive disease in 2 

wheat (Triticum aestivum L.) worldwide (Bai and Shaner 2004). It not only reduces 3 

grain yield and quality but also contaminates wheat grain with mycotoxins such as 4 

deoxynivalenol (DON), rendering the grain unsuitable for human or animal 5 

consumption (Trail 2009). FHB resistance in common wheat is a quantitative trait and 6 

controlled by a few major genes and some modifier genes (Liu et al. 2009). More than 7 

200 quantitative trait loci (QTL) have been reported on all 21 chromosomes of 8 

hexaploid wheat after 46 wheat accessions were studied worldwide, and 19 loci have 9 

been identified in multiple mapping populations (Buerstmayr et al. 2009). 10 

Growing resistant cultivars within an integrated cultural system is the most 11 

economic, effective and environmentally safe approach to reducing losses caused by 12 

this disease. Because environments significantly affect FHB response, large-scale 13 

phenotypic selection for resistance is difficult and requires costly and laborious field 14 

evaluations with poor repeatability among testing seasons and locations. 15 

Marker-assisted selection (MAS) may greatly facilitate selection efficiency. To date, 16 

progress has been made in breeding for resistance to FHB; some resistant varieties 17 

have been released for commercial production. Sumai 3 and its derivatives have been 18 

the major sources of resistance used in breeding programs worldwide (Bai and Shaner 19 

2004). However, only a limited number of resistant sources have been genetically 20 

dissected to date, and these provide wheat breeders with only limited choices to 21 
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enhance FHB resistance. Further sources of resistance therefore need to be genetically 1 

analyzed to identify major-effect QTL for gene pyramiding in wheat breeding 2 

programs by MAS. 3 

Several Chinese landraces show high levels of resistance (Yu et al. 2006, 2008a). 4 

The QTL for FHB resistance in these landraces have not been investigated. 5 

Huangfangzhu (HFZ) is a Chinese spring wheat landrace with superior resistance to 6 

FHB (Yu et al. 2006, 2008a). The objectives of this study were to investigate QTL for 7 

type II resistance in HFZ and to quantify their effects using recombinant inbred lines 8 

(RIL) of HFZ/Wheaton. 9 

Materials and methods 10 

Plant materials and FHB evaluation 11 

An SSD population of 106 F8 RIL was developed from a cross between Wheaton, a 12 

susceptible U.S. wheat variety, and HFZ, a resistant wheat landrace from Jiangsu 13 

Province. The RIL were grown in 1.0 L Dura pots (Hummert International, St. Louis, 14 

MO, USA) filled with Metro-mix 360
® 

growing medium (Hummert International) on 15 

a greenhouse bench at 17±2°C (night) and 22±5°C (day) with supplemental light for 16 

12 h and evaluated for FHB response in three consecutive greenhouse (GH) 17 

experiments from 2007 to 2008 at Kansas State University (KSU), and one field 18 

experiment (2009) at KSU Rocky Ford FHB Nursery, Manhattan, KS. A F. 19 

graminearum conidia suspension was prepared following Bai et al. (1999). Wheat 20 

spikes were inoculated by delivering 10 uL of conidial suspension (100 conidia/uL) 21 
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into the floral cavity between the lemma and palea of one floret of a middle spikelet 1 

per spike using a syringe. Five spikes per RIL in each pot were inoculated. Following 2 

exposure to 100% relative humidity for 48 h in a mist chamber, the pots were returned 3 

to a greenhouse bench for further FHB development. Experiments were arranged in a 4 

randomized complete block design with two replicates (pots) of 5 plants per pot. In 5 

the field experiment, the RIL population and both parents were arranged in a 6 

randomized complete block design with two replications (blocks), with about 50 seeds 7 

per entry sown in a one-row plot in each replication. At anthesis, five spikes per row 8 

were inoculated by single-floret injection as described for the greenhouse experiments. 9 

Between heading and the late dough stage, plants in the FHB nursery were misted for 10 

10 min every hour using sprinklers. In both field and greenhouse experiments, the 11 

total number of spikelets and the number of infected spikelets were counted for each 12 

inoculated spike at 21 d after inoculation. The percentage of infected spikelets (PIS) 13 

per spike was calculated. 14 

DNA extraction and marker analysis 15 

Genomic DNA was isolated from 2-week-old wheat leaves of each RIL using a 16 

modified CTAB method (Maguire et al. 1994). The harvested wheat leaves were dried 17 

in a freeze dryer (ThermoSavant, Holbrook, NY) for 48 h and ground using a Mixer 18 

Mill (MM 300, Retsch, Germany) before DNA extraction. 19 

A total of 1,125 SSR primer pairs including primer sets with BARC, WMC, 20 

GWM, KSM, CFA, CFD and DUP (http://wheat.pw.usda.gov) designations were used 21 

to screen the parents. Primer pairs that detected polymorphism between the parents 22 

http://wheat.pw.usda.gov/
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were used to screen two bulks with contrasting FHB responses. The resistant bulk was 1 

constructed by mixing equal amounts of DNA from 10 highly resistant RIL and the 2 

susceptible bulk was constructed by mixing equal amounts of DNA from 10 highly 3 

susceptible RIL. Primer pairs that detected polymorphism between the contrasting 4 

bulks were used to genotype the entire RIL population. For SSR analysis, each 10 uL 5 

PCR mixture contained 40 ng template DNA, 1 mM each of reverse and M13-tailed 6 

forward primers, 0.2 mM of each dNTP, 1×PCR buffer, 2.5 mM MgCl2, and 0.6 U 7 

Taq polymerase. For PCR detection, 1 pmol of fluorescence-labeled M13 primer was 8 

added to each PCR. A touchdown PCR program was used for PCR amplification, in 9 

which the reaction mixture was incubated at 95℃ for 5 min, followed by five cycles 10 

of 45 s of denaturing at 95℃, 5 min of annealing at 68℃ with a decrease of 2℃ in 11 

each sequential cycle, and 1 min of extension at 72℃. For another five cycles, the 12 

annealing temperature started at 58℃ for 2 min with a decrease of 2℃ for each 13 

sequential cycle. PCR continued through an additional 25 cycles of 45 s at 94℃, 2 14 

min at 50℃, and 1 min at 72℃ with a final extension at 72℃ for 5 min. The 15 

amplified PCR fragments were separated in an ABI 3730 DNA Analyzer (Applied 16 

Biosystems, Foster City, CA). All marker data were scored using GeneMarker 1.6 17 

(Softgenetics Inc. LLC), and visually checked twice to remove ambiguous data. 18 

Genetic map construction and QTL analysis 19 

Genetic linkage maps were constructed with SSR markers using JoinMap version 3.0 20 

(Van Ooijen and Voorrips 2001) and the Kosambi function (Kosambi 1944). The 21 

threshold for LOD (logarithm of odds) value was set at 3.0 to claim linkage between 22 
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markers with a maximum fraction of recombination at 0.4. 1 

For QTL analysis, composite interval mapping (CIM) was performed using 2 

WINQTL Cartographer version 2.5 (Wang et al. 2007) Model 6. Five markers were 3 

used as cofactors with a window size of 10 cM. QTL were analyzed using line means 4 

from individual experiments and from combined line means across all experiments. 5 

The LOD threshold for declaring a significant QTL was determined by 1,000 6 

permutations. Single marker regression (SMR) was used to reveal marker-phenotype 7 

associations when a QTL was not significant either using CIM or simple interval 8 

mapping (SIM). 9 

Statistical analysis  10 

 11 

Broad sense heritability (H
2
) was calculated for trait PIS based on ANOVA results 12 

using the formula H
2
 = σG

2
 /σ2

G + (σ2
GE/e) + (σ2

re), where σG
2
 = genotypic variance, 13 

σ2
e = residual error variance, σ2

GE = genotype × environment variance, r = number of 14 

replicates (pots) and e = number of experiments (seasons) following Jayatilake et al. 15 

(2011). Multiple comparisons of PIS among groups of RIL harboring different 16 

numbers of QTL were conducted using the Least Significant Difference (LSD) 17 

method at α = 0.05. Statistical analyses were performed using Matlab software 18 

(MathWorks Inc., Natick, MA, USA, 2007). 19 

Results 20 

FHB variation in RIL  21 
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In the greenhouse experiments, PIS for the resistant parent (HFZ) averaged 15.3%, 1 

ranging from 11.5 to 22.1%, and 100% for the susceptible parent (Wheaton). The 2 

frequency distributions of PIS among RIL were continuous with an average PIS of 3 

64.7%, ranging from 9.6 to 100% (Fig. 1). The most resistant RIL showed PIS similar 4 

to that of the resistant parent (HFZ), but most RIL means were distributed toward the 5 

susceptible parent, with about 75% of RIL having an average PIS higher than 50%. 6 

In the field experiment, PIS ranged from 5.8 to 14.6% for HFZ with an average of 7 

9.3%, and from 92.7 to 100% for Wheaton with an average of 97.0%. The frequency 8 

distributions of PIS among RIL were continuous with an average PIS of 49.1%, 9 

ranging from 6.5 to 100% in the field experiment (Fig. 1). The disease levels on RIL 10 

were less severe than in the greenhouse experiments and half of them had PIS less 11 

than 50%. The chi-squared test of homogeneity demonstrated that the data from 12 

individual greenhouse and field experiments were not significantly different (χ
2 

= 3.36, 13 

PΧ d.f. = 0.34), and thus could be combined. The PIS differences among RIL, 14 

environment, and genotype × environment interaction were highly significant (Table 15 

1). Significant correlations were observed among the three greenhouse experiments 16 

(r > 0.42, P < 0.0001) and between greenhouse mean FHB data and field FHB data (r 17 

= 0.43, P < 0.0001). The mean heritability of PIS for RIL was 0.90 over 18 

three-greenhouse experiments and was 0.80 over the combined greenhouse and field 19 

experiments. 20 

QTL for type II resistance  21 

Among 1,125 primer pairs screened, 318 markers were polymorphic between the 22 
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parents. Among them, 27 from five chromosomes were polymorphic between the 1 

contrasting bulks. Polymorphic markers from all five chromosomes were genotyped 2 

for all RIL and five linkage groups were constructed, covering 85.0 cM in genetic 3 

distance. CIM detected two QTL with major effects on type II resistance in HFZ. One 4 

QTL on chromosome 3BS was detected in all individual greenhouse experiments and 5 

the combined field-greenhouse data. SSR marker Xbarc147 and STS marker Xumn10 6 

flanked this QTL which coincided with Fhb1 and explained 23.0 to 28.0% of the 7 

phenotypic variation in individual greenhouse experiments, 35.6% for mean 8 

greenhouse data and 35.4% for combined greenhouse-field data (Table 2, Fig. 2). It 9 

was not detected in the field experiment alone when CIM was conducted; however, 10 

single marker analysis showed that Xbarc147 on 3BS accounted for 12.9% of PIS 11 

variation (Table 3, Fig. 2).  12 

A second major effect QTL on 7AL was flanked by SSR markers Xgwm276 and 13 

Xbarc121. This QTL was detected in the two 2007 greenhouse experiments, mean 14 

greenhouse data and combined greenhouse-field data (Table 2, Fig. 2), but not in the 15 

2008 greenhouse and 2009 field experiments when CIM was used, although SSR 16 

markers Xgwm276 and Xbarc121 were significantly associated with the PIS in single 17 

marker regression analyses (Table 3, Fig. 2). 18 

Single marker regression detected five additional markers on 1AS, 1B and 5AS 19 

associated with FHB resistance (Table 3, Fig. 2), each with R
2
 values smaller than 20 

0.12. Markers Xwmc120.2 on 1AS, Xbarc207 on 1B and Xbarc186/Xbarc117 on 5AS 21 

were significantly associated with mean greenhouse data and combined 22 
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greenhouse-field data, whereas marker Xwmc24 on 1AS associated with FHB 1 

resistance only in the field experiment. 2 

Effects of QTL on type II resistance  3 

The segregations of contrasting alleles at each SSR locus closely linked to QTL 4 

exhibited 1:1 ratios. In the greenhouse experiments, the average PIS for RIL carrying 5 

HFZ alleles at Xumn10 on 3BS and Xgwm276 on 7AL were 50.0 and 56.0%, 6 

respectively, while the average PIS of RIL carrying the Wheaton alleles were 78.0 and 7 

74.0%, respectively. In the field experiment, the PIS of RIL with HFZ alleles at 8 

Xumn10 and Xgwm276 were 38.0 and 43.0%, respectively, and those with Wheaton 9 

alleles were 58.0 and 55.0%, respectively. For the other three markers on 1AS, 1B and 10 

5AS, the average PIS of RIL with HFZ alleles in greenhouse experiments ranged from 11 

58.0 to 59.0%, compared with 71.0 to 74.0% for those with the corresponding 12 

Wheaton-alleles. In the field experiment, the average PIS of the RIL with HFZ alleles 13 

ranged from 44.0 to 47.0% compared with 51.0 to 54.0% for those with the Wheaton 14 

alleles. The lower average PIS of RIL with HFZ alleles and the negative effects of all 15 

five Wheaton alleles confirmed that all favorable alleles for FHB resistance were 16 

contributed by HFZ. The 3BS QTL contributed the largest effect on FHB resistance 17 

and the 7AL QTL was next. 18 

To elucidate the effect of single and combined QTL on FHB response, the RIL 19 

were divided into five groups: group 1 contained the HFZ alleles at QTL on 3BS and 20 

7AL ignoring the effects of the minor QTL; group 2 carried the HFZ allele on 3BS but 21 

not the HFZ allele on 7AL; group 3 carried only the HFZ allele on 7AL; group 4 22 
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contained only HFZ minor alleles (1-3); and group 5 carried only Wheaton alleles at 1 

all five loci. Frequencies of lines within the five groups ranged from 8.8 to 26.5%. In 2 

the greenhouse experiments, the mean PIS of groups 1 and 2 were significantly lower 3 

(LSD, α= 0.05) than those of groups 3, 4 and 5 (Fig. 3). Group 3 had significantly 4 

lower PIS than groups 4 and 5. In the field experiment, group 1 showed lower PIS 5 

than the other four groups, and groups 2, 3 and 4 had almost the same PIS but all were 6 

lower than group 5. However, differences were significant only between groups 1 and 7 

5 (LSD, α=0.05). 8 

Discussion 9 

Five putative QTL for type II resistance to FHB were identified on chromosomes 3BS, 10 

7AL, 5AS, 1AS and 1B of Chinese landrace HFZ. The QTL on 3BS was first reported 11 

in Sumai 3, designated as Qfhs.ndsu-3BS (Waldron et al. 1999) and in Ning 7840 (Bai 12 

et al. 1999). This QTL has been detected in at least 26 different studies and shows a 13 

stable major effect on type II resistance (resistance to fungal spread within spikes) 14 

(Buerstmayr et al. 2009; Liu et al. 2009). In addition to Sumai 3 and its derivatives, 15 

including Ning7840 (Bai et al. 1999; Zhou et al. 2002), Ning 894037 (Shen et al. 16 

2003), CM-82036 (Buerstmayr et al. 2002), W14 (Chen et al. 2006), CJ 9306 (Jiang et 17 

al. 2007a, b) and Huapei 57-2 (Bourdoncle and Ohm 2003; Shen et al. 2003), this 18 

QTL was also reported in materials not related to Sumai 3, such as Wangshuibai (Lin 19 

et al. 2004; Zhang et al. 2004; Zhou et al. 2004; Mardi et al. 2005; Yu et al. 2008b) 20 

and Nyu Bai (McCartney et al. 2007). Because of its large effect on FHB response, 21 
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this QTL was fine mapped as a single Mendelian gene within a 1.2 cM interval, and 1 

renamed as Fhb1 (Cuthbert et al. 2006; Liu et al. 2006). Xumn10 was proposed as the 2 

best marker for prediction of Fhb1 (Liu et al. 2008). Xumn10 was also the closest 3 

marker in the present study indicating the QTL is most likely Fhb1. The 4 

non-significance of the QTL in CIM analysis of the field experiment may be due to 5 

confounding effects of further infections. In the field experiment, plants were infected 6 

by both single floret injection and naturally. Thus disease rating reflects not only 7 

disease spread from the artificially inoculated site but also from natural infections at 8 

other positions in the spike. Single marker analysis showed that flanking markers 9 

Xumn10 and Xbarc147 were significantly associated with PIS in the field experiment. 10 

Another problem could be the large differences in flowering time across the RIL 11 

population leading to non-uniform conditions for FHB development between early 12 

and late flowering lines. 13 

A QTL flanked by Xgwm276 and Xbarc121 was identified on 7AL of HFZ. Like 14 

the 3BS QTL, this QTL was also non-significant in CIM analysis of the field 15 

experiment, but was significant in single marker regression of Xbarc121. A QTL on 16 

7AL was also reported in Wangshuibai (Zhou et al. 2004; Jia et al. 2005), NK93604 17 

(Semagn et al. 2007) and Ritmo (Klahr et al. 2007). Xgwm276 was the most closely 18 

linked marker to the QTL in Wangshuibai (Jia et al. 2005) and NK93604. In another 19 

study, a QTL on T. dicoccoides 7AL (Kumar et al. 2007), was tightly associated with 20 

Xbarc121. This result suggests that the 7AL QTL may be the same QTL as previously 21 

reported in these various lines.  22 
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Three QTL on 5AS, 1AS and 1B showed only minor effects on type II resistance 1 

and were detected only by single marker regression. QTL from several sources were 2 

reported on chromosome 5AS. These were associated with either type I or type II 3 

resistance and explained 4 to 26% of the phenotypic variation in different experiments 4 

(Buerstmayr et al. 2002, 2003; Steiner et al. 2004; Yang et al. 2005; Chen et al. 2006; 5 

Jiang et al. 2007a, b; Liu et al. 2007; McCartney et al. 2007). In our study, markers 6 

Xbarc117 and Xbarc186 on 5AS were associated with mean PIS in the three 7 

greenhouse experiments, but not the field experiment, suggesting that a QTL with a 8 

minor effect on type II resistance might be present in HFZ. According to the linked 9 

common marker location, it may be the same QTL as described by Chen et al. (2006). 10 

CJ 9306 carried a QTL for FHB resistance on 1AS (QFhs.nau-1AS), which 11 

reduced PIS by 11.7 to 21.2%. The QTL detected on 1AS in our study also enhanced 12 

type II resistance. Marker Xwmc120.2 was the closest marker for the QTL in HFZ. 13 

The QTL on chromosome 1B was significantly associated with SSRs Xbarc207 14 

and Xbarc181. In previous reports, a QTL from Arina was detected on 1BL (Semagn 15 

et al. 2007). Twelve QTL for type II resistance reported on 1BL fell into three 16 

different regions when subjected to a meta-analysis (Liu et al. 2009). Because 17 

common markers were not found between this study and others, the relationship of the 18 

present QTL on 1B to others remains unknown. 19 

In summary, FHB resistance in HFZ investigated in this study was contributed by 20 

a combination of five QTL that were probably reported previously in different 21 

germplasms. The QTL on chromosomes 3BS and 7AL contributing major effects on 22 
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type II resistance and consistently detected in multiple experiments in this and other 1 

studies should be used together to improve FHB resistance in breeding. Three other 2 

QTL showing minor effects and detected in only some experiments need further 3 

validation before they are used in breeding. Thus with a unique combination of QTL 4 

compared to other resistance sources, HFZ can be used as a valuable alternative 5 

source for improvement of FHB resistance. 6 

Acknowledgements 7 

This project is partly funded by NSFC (Grant no. 31171537), the Priority Academic 8 

Program Development of Jiangsu Higher Education Institution, Jiangsu Provincial 9 

Natural Science Foundation of China (Grant no. BK2010312), and National Research 10 

Initiative Competitive Grants CAP project 2011-68002-30029 from the USDA 11 

National Institute of Food and Agriculture. Mention of trade names or commercial 12 

products in this article is solely for the purpose of providing specific information and 13 

does not imply recommendation or endorsement by the U.S. Department of 14 

Agriculture. This is contribution no. 11-207-J from the Kansas Agricultural 15 

Experiment Station, Manhattan, Kansas, USA. 16 

References   17 

Bai G, Kolb FL, Shaner G, Domier LL (1999) Amplified fragment length 18 

polymorphism markers linked to a major quantitative trait locus controlling scab 19 

resistance in wheat. Phytopathology 89:343-348 20 

Bai G, Shaner G (2004) Management and resistance in wheat and barley to fusarium 21 



 15 

head blight. Annu Rev Phytopathol 42:135-161 1 

Bourdoncle W, Ohm HW (2003) Quantitative trait loci for resistance to Fusarium 2 

head blight in recombinant inbred wheat lines from the cross Huapei 3 

57-2/Patterson. Euphytica 131:131-136 4 

Buerstmayr H, Ban T, Anderson J (2009) QTL mapping and marker-assisted selection 5 

for Fusarium head blight resistance in wheat: a review. Plant Breeding 128:1-26 6 

Buerstmayr H, Lemmens M, Hartl L, Doldi L, Steiner B, Stierschneider M, 7 

Ruckenbauer P (2002) Molecular mapping of QTLs for Fusarium head blight 8 

resistance in spring wheat. I. Resistance to fungal spread (Type II resistance). 9 

Theor Appl Genet 104:84-91 10 

Buerstmayr H, Steiner B, Hartl L, Griesser M, Angerer N, Lengauer D, Miedaner T, 11 

Schneider B, Lemmens M (2003) Molecular mapping of QTLs for Fusarium 12 

head blight resistance in spring wheat. II. Resistance to fungal penetration and 13 

spread. Theor Appl Genet 107:503-508 14 

Chen J, Griffey CA, Maroof MAS, Stromberg EL, Biyashev RM, Zhao W, Chappell 15 

MR, Pridgen TH, Dong Y, Zeng Z (2006) Validation of two major quantitative 16 

trait loci for fusarium head blight resistance in Chinese wheat line W14. Plant 17 

Breeding 125:99-101 18 

Cuthbert PA, Somers DJ, Thomas J, Cloutier S, Brule-Babel A (2006) Fine mapping 19 

Fhb1, a major gene controlling fusarium head blight resistance in bread wheat 20 

(Triticum aestivum L.). Theor Appl Genet 112:1465-1472 21 

Jayatilake DV, Bai GH, Dong YH (2011) A novel quantitative trait locus for Fusarium 22 

head blight resistance in chromosome 7A of wheat. Theor Appl Genet 23 

122:1189-1198 24 

Jia G, Chen PD, Qin GJ, Bai GH, Wang X, Wang SL, Zhou B, Zhang SH, Liu DJ 25 

(2005) QTLs for Fusarium head blight response in a wheat DH population of 26 

Wangshuibai/Alondra's'. Euphytica 146:183-191 27 

Jiang GL, Dong Y, Shi J, Ward RW (2007a) QTL analysis of resistance to Fusarium 28 

head blight in the novel wheat germplasm CJ 9306. II. Resistance to 29 

deoxynivalenol accumulation and grain yield loss. Theor Appl Genet 30 



 16 

115:1043-1052 1 

Jiang GL, Shi JR, Ward RW (2007b) QTL analysis of resistance to Fusarium head 2 

blight in the novel wheat germplasm CJ 9306. I. Resistance to fungal spread. 3 

Theor Appl Genet 116:3-13 4 

Klahr A, Zimmermann G, Wenzel G, Mohler V (2007) Effects of environment, disease 5 

progress, plant height and heading date on the detection of QTLs for resistance 6 

to Fusarium head blight in an European winter wheat cross. Euphytica 7 

154:17-28 8 

Kosambi DD ( 1944) The estimation of map distance from recombination values. Ann 9 

Eugen:172-175 10 

Kumar S, Stack RW, Friesen TL, Faris JD (2007) Identification of a novel Fusarium 11 

head blight resistance quantitative trait locus on chromosome 7A in tetraploid 12 

wheat. Phytopathology 97:592-597 13 

Lin F, Kong ZX, Zhu HL, Xue SL, Wu JZ, Tian DG, Wei JB, Zhang CQ, Ma ZQ 14 

(2004) Mapping QTL associated with resistance to Fusarium head blight in the 15 

Nanda2419 x Wangshuibai population. I. Type II resistance. Theor Appl Genet 16 

109:1504-1511 17 

Liu S, Abate ZA, Lu H, Musket T, Davis GL, McKendry AL (2007) QTL associated 18 

with Fusarium head blight resistance in the soft red winter wheat Ernie. Theor 19 

Appl Genet 115:417-427 20 

Liu S, Hall MD, Griffey CA, McKendry AL (2009) Meta-analysis of QTL associated 21 

with Fusarium head blight resistance in wheat. Crop Sci 49:1955-1968 22 

Liu S, Zhang X, Pumphrey MO, Stack RW, Gill BS, Anderson JA (2006) Complex 23 

microcolinearity among wheat, rice, and barley revealed by fine mapping of the 24 

genomic region harboring a major QTL for resistance to Fusarium head blight in 25 

wheat. Funct Integr Genomics 6:83-89 26 

Liu SX, Pumphrey MO, Gill BS, Trick HN, Zhang JX, Dolezel J, Chalhoub B, 27 

Anderson JA (2008) Toward positional cloning of Fhb1, a major QTL for 28 

Fusarium head blight resistance in wheat. In: 3rd Int. FHB Symposium, Szeged, 29 

Hungary. Cereal Res Comm, Suppl. B 36:195-201 30 



 17 

Maguire TL, Collins GG, Sedgley M (1994) A modified CTAB DNA extraction 1 

procedure for plants belonging to the family proteaceae. Plant Mol Biol Reptr 2 

12:106-109 3 

Mardi M, Buerstmayr H, Ghareyazie B, Lemmens M, Mohammadi SA, Nolz R, 4 

Ruckenbauer P (2005) QTL analysis of resistance to Fusarium head blight in 5 

wheat using a 'Wangshuibai'-derived population. Plant Breeding 124:329-333 6 

McCartney CA, Somers DJ, Fedak G, DePauw RM, Thomas J, Fox SL, Humphreys 7 

DG, Lukow O, Savard ME, McCallum BD, Gilbert J, Cao W (2007) The 8 

evaluation of FHB resistance QTLs introgressed into elite Canadian spring 9 

wheat germplasm. Mol Breeding 20:209-221 10 

Semagn K, Skinnes H, Bjornstad A, Maroy AG, Tarkegne Y (2007) Quantitative trait 11 

loci controlling Fusarium head blight resistance and low deoxynivalenol content 12 

in hexaploid wheat population from 'Arina' and NK93604. Crop Sci 47:294-303 13 

Shen X, Zhou M, Lu W, Ohm H (2003) Detection of Fusarium head blight resistance 14 

QTL in a wheat population using bulked segregant analysis. Theor Appl Genet 15 

106:1041-1047 16 

Steiner B, Lemmens M, Griesser M, Scholz U, Schondelmaier J, Buerstmayr H (2004) 17 

Molecular mapping of resistance to Fusarium head blight in the spring wheat 18 

cultivar Frontana. Theor Appl Genet 109:215-224 19 

Trail F (2009) For blighted waves of grain: Fusarium graminearum in the 20 

postgenomics era. Plant Physiol 149:103-110 21 

Van Ooijen J, Voorrips R (2001) JoinMap® 3.0, Software for the calculation of 22 

genetic linkage maps. Plant Research International, Wageningen, the 23 

Netherlands 24 

Waldron BL, Moreno-Sevilla B, Anderson JA, Stack RW, Frohberg RC (1999) RFLP 25 

mapping of QTL for fusarium head blight resistance in wheat. Crop Sci 26 

39:805-811 27 

Wang S, Basten C, Zeng Z-B (2007) Windows QTL Cartographer 2.5. Department of 28 

Statistics, North Carolina State University, Raleigh, NC  29 

( http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)  30 

http://statgen.ncsu.edu/qtlcart/WQTLCart.htm


 18 

Yang Z, Gilbert J, Fedak G, Somers DJ (2005) Genetic characterization of QTL 1 

associated with resistance to Fusarium head blight in a doubled-haploid spring 2 

wheat population. Genome 48:187-196 3 

Yu JB, Bai GH, Cai SB, Ban T (2006) Marker-assisted characterization of Asian 4 

wheat lines for resistance to Fusarium head blight. Theor Appl Genet 5 

113:308-320 6 

Yu JB, Bai GH, Cai SB, Dong YH, Ban T (2008a) New Fusarium head blight-resistant 7 

sources from Asian wheat germplasm. Crop Sci 48:1090-1097 8 

Yu JB, Bai GH, Zhou WC, Dong YH, Kolb FL (2008b) Quantitative trait loci for 9 

Fusarium head blight resistance in a recombinant inbred population of 10 

Wangshuibai/Wheaton. Phytopathology 98:87-94 11 

Zhang X, Zhou MP, Ren LJ, Bai GH, Ma HX, Scholten OE, Guo PG, Lu WZ (2004) 12 

Molecular characterization of Fusarium head blight resistance from wheat 13 

variety Wangshuibai. Euphytica 139:59-64 14 

Zhou WC, Kolb FL, Bai GH, Shaner G, Domier LL (2002) Genetic analysis of scab 15 

resistance QTL in wheat with microsatellite and AFLP markers. Genome 16 

45:719-727 17 

Zhou WC, Kolb FL, Yu JB, Bai GH, Boze LK, Domier LL (2004) Molecular 18 

characterization of Fusarium head blight resistance in Wangshuibai with simple 19 

sequence repeat and amplified fragment length polymorphism markers. Genome 20 

47:1137-1143 21 

 22 

23 



 19 

Table 1 Analysis of variance (ANOVA) of percentage infected spikelets (PIS) for the RIL 1 

population over experiments and blocks  2 

Source of variation df SS MS F-value p-value 

Experiments 3 6.739  2.246  59.646  <0.0001  

Genotypes 105 37.830  0.360  9.567  <0.0001  

Blocks 4 0.149  0.037  0.990  0.413  

Experiment×Genotype 315 22.267  0.071  1.877  <0.0001  

Error 420 15.817  0.038  
  

Total 847 82.801        

 3 

4 
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Table 2 Coefficients of determination (R
2
), LOD values and additive effects of QTL regions 1 

detected by composite interval mapping based on mean FHB data for single greenhouse 2 

experiments, mean GH data (Mean GH) and the combined GH-FIELD data 3 

QTL Experiment QTL interval cM 

distance 

Closest 

marker 

Additive 

effect (%) 

LOD 

R2 

Qfhb.uhgl-3BS 2007GHs
a 

Xbarc147-Xumn10 1.0 Xumn10 -12.6 4.45  0.234 

 2007GHf Xbarc147-Xumn10 1.0 Xbarc147 -14.1 7.17  0.281 

 2008GHf Xbarc147-Xumn10 1.0 Xumn10 -12.2 6.14  0.231 

 Mean GH  Xbarc147-Xumn10 1.0 Xumn10 -14.1 9.74  0.356 

 GH-FIELD combined Xbarc147-Xumn10 1.0 Xumn10 -13.1 9.82  0.354 

Qfhb.uhgl-7AL 2007GHs Xgwm276-Xbarc121 4.0 Xgwm276 -12.2 3.56  0.182 

 2007GHf Xgwm276-Xbarc121 4.0 Xbarc121 -9.9 2.79  0.159 

 Mean GH  Xgwm276-Xbarc121 4.0 Xgwm276 -9.3 3.44  0.177  

 GH-FIELD combined Xgwm276-Xbarc121 4.0 Xbarc121 -9.1 3.73  0.180  

a
s, spring; f, fall4 
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Table 3. Coefficients of determination (R
2
) of the closest markers associated with FHB resistance 1 

QTL identified by single marker analysis of data from single experiments or when combined 2 

Experiment Closest marker Chr. Additive effect (%) p-value R2 

2007GHsa Xbarc207 1B -9.1 0.002 0.099 

 Xwmc120.2 1AS -8.9 0.003 0.093 

2007GHf Xbarc207 1B -7.2 0.007 0.071 

 Xbarc186 5AS -7.6 0.005 0.069 

 Xwmc24 1AS -5.4 0.048 0.037 

2008GHf Xgwm276 7AL -6.4 0.017 0.078 

 Xwmc120.2 1AS -6.6 0.009 0.072 

2009FIELDs Xbarc147 3BS -10.4 0.0003 0.129 

 Xwmc24 1AS -7.8 0.008 0.070 

 Xbarc121 7AL -7.6 0.015 0.061 

Mean GH Xwmc120.2 1AS -7.0 0.002 0.111 

 Xbarc207 1B -6.8 0.002 0.091  

 Xbarc186 5AS -6.3 0.006 0.073  

GH-FIELD combined Xwmc120.2 1AS -6.7 0.001 0.102 

 Xbarc117 5AS -5.9 0.006 0.073 

 Xbarc207 1B -5.6 0.006 0.071 

a
s, spring; f, fall 3 

4 
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Fig. 1 Frequency distributions of percentage infected spikelets (PIS) per spike for recombinant 1 

inbred lines in greenhouse (upper) and field (lower) experiments 2 

Fig. 2 QTL map based on four individual experiments (2007GHs, 2007GHf, 2008GHf and 3 

2009FIELDs), mean greenhouse data and combined greenhouse-field data 4 

Fig. 3 Comparisons of percentage infected spikelets (PIS) among genotypes with different QTL 5 

combinations based on FHB data in greenhouse experiments. G1=Qfhb.uhgl-3BS + Qfhb.uhgl-7AL 6 

+ 0-3 minor QTL; G2 = Qfhb.uhgl-3BS + 0-3 minor QTL; G3 = Qfhb.uhgl-7AL + 0-3 minor QTL; 7 

G4 = 1-3 minor QTL; G5 = no identified QTL. The solid circle on the vertical line is the mean PIS 8 

of each group and the length of the line represents the confidence interval. Two groups not sharing 9 

a horizontal dashed line are significantly different at LSD.05. Numbers in parentheses on the 10 

horizontal axis are frequencies of RIL in each group 11 
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