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1 Introduction

The stability study of many evolution equations is a study of large time behavior of the
solutions to these equations. In this paper we reduce such a study to a study of the behavior
of a solution y(t) to some nonlinear inequalities. Assume that a nonnegative continuous
function y(t) satisfies the following conditions∫ ∞

0
ω(y(t))

1
(1+ t)α

dt <∞, 0 ≤ α ≤ 1, (1.1)
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and

y(t)− y(s) ≤
∫ t

s
f (x,y(x))dx, 0 ≤ s ≤ t, (1.2)

where f (x,y) is a nonnegative and locally integrable function on [0,∞)× [0,∞), 0 ≤ ω(t) is
a non-decreasing continuous function, and ω(t) = 0 implies t = 0.

The question arises:
Under what condition on f (y, t) does it follow that

lim
t→∞

y(t) = 0? (1.3)

There is a very large literature on inequalities (see, e.g., [1], [2] and references therein).
The Barbalat’s lemma is an integral inequality used in applied nonlinear control (see [12]).
The inequalities, derived in this paper, are new and are useful in many applications. In
[13, p.227] inequality (1.1) is studied for ω(t) = t and α = 0. In this case condition (1.1)
becomes y ∈ L1[0,∞). In [13] it is proved that (1.3) holds if y ∈ L1[0,∞) and the following
two conditions hold:

y(t)− y(s) ≤
∫ t

s
f (y(x))dx+

∫ t

s
h(x)dx,

∫ ∞
0

h(x)dx <∞. (1.4)

Here f and h are nonnegative functions, and f is continuous and non-decreasing. Proofs
of this result can be found in [13] and in [5]. Applications of this result to the stability
study of evolution equations can be found in [13] and references therein. This result is not
applicable if y(t) = O( 1

tβ ) as t→∞, where β ∈ (0,1), because then y(t) is not in L1[0,∞).
Also, this result is not applicable if (1.2) holds instead of (1.4) and f depends on x.

The second nonlinear inequality we study is the following one:

ġ(t) ≤ −a(t) f (g(t))+b(t), t ≥ 0, (1.5)

where a,b and g are nonnegative functions on [0,∞), g ∈ C1([0,∞)), a ∈ C([0,∞)) and
b ∈ L1

loc([0,∞)). Sufficient conditions for the relation limt→∞ g(t) = 0 to hold are proposed
and justified in [5], see also [7], [8], [9], and [10]. In our paper inequality (1.5) is studied
by a different method and some new sufficient conditions for (1.3) to hold are proposed and
justified.

The paper is organized as follows. In Theorems 2.1, 2.4 and 2.7 and their corollaries,
sufficient conditions for (1.3) to hold are formulated and justified. In Theorems 2.11, 2.13
and 2.14 sufficient conditions for the relation limt→∞ g(t) = 0 to hold are proposed and jus-
tified under the assumption that f (t) is a continuous and non-decreasing function on [0,∞).
In Section 3 applications of the new results to the stability study of evolution equations are
given.

2 Main results

Throughout the paper we assume that the following assumption holds.
Assumption A)
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1. ω(t) ≥ 0 is a locally integrable function.

2. There exists ε0 > 0 such that ω is non-decreasing on (0, ε0) and

ω(t) ≥ ω(ε0), ∀t ≥ ε0. (2.1)

3. If ω(t) = 0 then t = 0.

This assumption is standing and is not repeated.

Theorem 2.1. Let y(t) ≥ 0 be a continuous function on [0,∞),∫ ∞
0
ω(y(t))dt <∞, (2.2)

and

y(t)− y(s) ≤
∫ t

s
f (ξ,y(ξ))dξ, 0 ≤ s ≤ t, (2.3)

where f (t,y) is a nonnegative function. Assume that f (t,y) is continuous with respect to y
and that the function Gv(ξ) := sup0≤ζ≤v f (ξ,ζ) is locally integrable on [0,∞) for any fixed
v > 0. Let

F(t,v) :=
∫ t

0
sup

0≤ζ≤v
f (ξ,ζ)dξ, v, t ≥ 0. (2.4)

If there exists a constant a > 0 such that the function F(t,a) is uniformly continuous with
respect to t on [0,∞), then

lim
t→∞

y(t) = 0. (2.5)

Proof. If (2.5) does not hold, then there exists an ε > 0 and a sequence (tn)∞n=1 such that

0 < tn↗∞, y(tn) ≥ ε, ∀n ≥ 1. (2.6)

Without loss of generality we assume that

ε < min(a,2ε0). (2.7)

Since F(t,a) is uniformly continuous with respect to t, there exists δ > 0 such that∫ t+δ

t
sup

0≤y≤a
f (ξ,y)dξ = F(t+δ,a)−F(t,a) <

ε

2
, ∀t ≥ 0. (2.8)

Let us prove that

y(t) ≥
ε

2
, ∀t ∈ [tn−δ, tn], ∀n ≥ 1. (2.9)

Assume that (2.9) does not hold. Then there exist ñ > 0 and ξ ∈ [tñ−δ, tñ) such that

y(ξ) <
ε

2
. (2.10)
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Let
ν =min{x : ξ < x ≤ tñ, y(x) ≥ ε}. (2.11)

It follows from the continuity of y, (2.6), and (2.10) that this ν exists, it satisfies the follow-
ing inequality

tñ−δ ≤ ξ < ν ≤ tñ, y(ν) = ε, (2.12)

and
0 ≤ y(x) ≤ y(ν) = ε, ξ ≤ x ≤ ν. (2.13)

From (2.3), (2.10), (2.12), and (2.13) one obtains

ε

2
< y(ν)− y(ξ) ≤

∫ ν

ξ
f (x,y(x))dx ≤

∫ ν

ξ
sup

0≤ζ≤ε
f (x, ζ)dx

≤

∫ tn

tn−δ
sup

0≤ζ≤a
f (x, ζ)dx <

ε

2
.

(2.14)

This contradiction proves that (2.9) holds.
From (2.7), (2.9), and Assumption A) one gets∫ tn

tn−δ
ω(y(x))dx ≥ δω(

ε

2
) > 0, ∀n ≥ 1. (2.15)

This contradicts the Cauchy criterion for the convergence of the integral (2.2). Thus, (2.5)
holds.

Theorem 2.1 is proved. �

Remark 2.2. If F(t,a) is uniformly continuous with respect to t on [0,∞), then F(t,v) is
uniformly continuous with respect to t on [0,∞) for all v ∈ [0,a]. However, F(t,v) may be
not uniformly continuous with respect to t on [0,∞) for some v > a. Here is an example:

Let

f (x,y) :=
{

1 if 0 ≤ y ≤ 1
1+ (y−1)t if y ≥ 1.

(2.16)

By a simple calculation one gets

F(t,u) =
{

t if 0 ≤ u ≤ 1
t+ (u−1) t2

2 if u ≥ 1.
(2.17)

It follows from (2.17) that F(t,u) is uniformly continuous with respect to t on [0,∞) if and
only if u ∈ [0,1].

From Theorem 2.1 one derives the following corollary.

Corollary 2.3. Assume that y(t) ≥ 0 be a continuous function satisfying inequality (2.2),

y(t)− y(s) ≤
∫ t

s
[g(ξ)ϕ(y(ξ))+h(ξ)]dξ, 0 ≤ s ≤ t, (2.18)

where g and h are nonnegative locally integrable functions on [0,∞), ϕ ≥ 0 is a continuous
function on [0,∞), and the functions

∫ t
0 g(x)dx and

∫ t
0 h(x)dx are uniformly continuous with

respect to t on [0,∞). Then (2.5) holds.
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Proof. Let
f (x,y) := g(x)ϕ(y)+h(x), x ≥ 0, y ≥ 0.

It follows from the uniform continuity of
∫ t

0 g(x)dx and
∫ t

0 h(x)dx and the local boundedness
of ϕ(t) that the function F(x,a), defined in (2.4), is uniformly continuous on [0,∞) for any
fixed a > 0. Thus, (2.5) follows from Theorem 2.1. �

Theorem 2.4. Assume that y(t) ≥ 0 is a continuous function on [0,∞),∫ ∞
0
ω(y(t))ϕ(t)dt <∞, (2.19)

where ϕ(t) ≥ 0 is a continuous function on [0,∞), and there exists a constant C > 0 such
that

lim
t→∞

(
t−

C
ϕ(t)

)
=∞, M := limsup

t→∞

maxξ∈[t− C
ϕ(t) ,t]

ϕ(ξ)

minξ∈[t− C
ϕ(t) ,t]

ϕ(ξ)
<∞. (2.20)

Let f (x,y) ≥ 0 be a locally integrable function on R2 satisfying condition (2.3). If there exist
constants a > 0 and θ > 0 such that the following condition holds:∫ t

s
sup

0≤ζ≤a
f (x, ζ)dx ≤ (t− s)θa max

ξ∈[s,t]
ϕ(ξ), θ = const > 0, t > s� 1, (2.21)

then (2.5) holds.

Remark 2.5. In (2.21) and below the notation s� 1 means ”for all sufficiently large s > 0”.

Proof. Let us assume first that 0 < θ < 1, and call this Case 1. Later we consider Case 2,
namely, the assumption θ ≥ 1, and reduce it to Case 1.

Assume that (2.5) does not hold. Then there exists an ε > 0 and a sequence (tn)∞n=1 such
that

0 < tn↗∞, y(tn) ≥ ε, ∀n ≥ 1, (2.22)

and without loss of generality one assumes that

ε ≤min
(
2aMC,

ε0

1− θ

)
. (2.23)

Let us prove that

y(t) ≥ (1− θ)ε, ∀t ∈ [t̃n, tn], ∀n� 1, (2.24)

where
t̃n := tn−

ε

2aMϕ(tn)
< tn. (2.25)

Assume that (2.24) does not hold. Then there exists a sufficiently large ñ> 0 and a ξ ∈ [t̃ñ, tñ)
such that

y(ξ) < (1− θ)ε. (2.26)

Let
ν =min{x : ξ ≤ x ≤ tñ, y(x) ≥ ε}. (2.27)
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Then
t̃ñ ≤ ξ < ν ≤ tñ, (2.28)

and
0 ≤ y(x) ≤ y(ν) = ε, ξ ≤ x ≤ ν. (2.29)

It follows from (2.3), (2.21), (2.25), (2.26), (2.28), and (2.29) that

θε < y(ν)− y(ξ) ≤
∫ ν

ξ
f (x,y(x))dx ≤

∫ ν

ξ
sup

0≤ζ≤ε
f (x, ζ)dx

≤

∫ tñ

t̃ñ
sup

0≤ζ≤a
f (x, ζ)dx ≤ (tñ− t̃ñ)θa sup

ξ∈[t̃ñ,tñ]
ϕ(ξ)

= θa
εmaxξ∈[t̃ñ,tñ]ϕ(ξ)

2Maϕ(tñ)
≤ θε.

(2.30)

This contradiction proves (2.24). In the derivation of (2.30) we have used the following
inequality:

maxξ∈[t̃ñ,tñ]ϕ(ξ)
ϕ(tñ)

≤
maxξ∈[tñ−Cϕ−1(tñ),tñ]ϕ(ξ)

minξ∈[tñ−Cϕ−1(tñ),tñ]ϕ(ξ)
< 2M, ñ� 1, (2.31)

which follows from (2.20) for sufficiently large tñ, and the factor 2 in (2.31) can be replaced
by any fixed factor 1+q, where q > 0 can be arbitrarily small if tñ is sufficiently large.

It follows from (2.23) and (2.24) and Assumption A) that∫ tn

t̃n
ω(y(x))ϕ(x)dx ≥ (tn− t̃n)ω

(
(1− θ)ε

)
min

t̃n≤ξ≤tn
ϕ(ξ)

≥ ω
(
(1− θ)ε

) ε

2aM
mint̃n≤ξ≤tn ϕ(ξ)
maxt̃n≤ξ≤tn ϕ(ξ)

≥ ω
(
(1− θ)ε

) ε

2aM(M+q)
> 0,

(2.32)

where q > 0 is arbitrarily small for all sufficiently large n. From (2.23), (2.20), and (2.22),
one gets

lim
n→∞

(
tn−

ε

2aMϕ(tn)

)
≥ lim

n→∞

(
tn−

C
ϕ(tn)

)
=∞. (2.33)

Inequalities (2.32) and (2.33) contradict the Cauchy criterion for the convergence of
integral (2.19). Thus, (2.5) holds.

Consider Case 2, namely θ ≥ 1. In this case one replaces θ by θ1 =
1
2 , C by C1 = 2θC,

M by M1 = M, defined in (2.20) with the C1 in place of C, and, therefore, one reduces the
problem to Case 1 with θ = 1

2 < 1.
Let us give a more detailed argument. Let ϕ1(t) := 2θϕ(t) and C1 := 2θC. Then

C1

ϕ1(t)
=

C
ϕ(t)

, ∀t ≥ 0. (2.34)
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This, (2.19), (2.20) and (2.21) imply∫ ∞
0
ω(y(t))ϕ1(t)dt <∞, (2.35)

lim
t→∞

(
t−

C1

ϕ1(t)

)
=∞, limsup

t→∞

max
ξ∈[t− C1

ϕ1(t) ,t]
ϕ1(ξ)

min
ξ∈[t− C1

ϕ1(t) ,t]
ϕ1(ξ)

= M <∞ (2.36)

∫ t

s
sup

0≤ζ≤a
f (x, ζ)dx ≤ (t− s)

a
2

max
ξ∈[s,t]

ϕ1(ξ), t > s� 1. (2.37)

Theorem 2.4 is proved. �

Remark 2.6. (i) Conditions (2.20) hold if

liminf
t→∞

tϕ(t) > 0, limsup
t→∞

maxξ∈[(1−ε)t,t]ϕ(ξ)
minξ∈[(1−ε)t,t]ϕ(ξ)

<∞, (2.38)

for a sufficiently small ε > 0.

(ii) If y(t) is differentiable, then (2.2) is equivalent to

y′(t) ≤ f (t,y(t)), t ≥ 0. (2.39)

(iii) Theorem 2.4 holds if in place of (2.21) one assumes that

sup
0≤ζ≤a

f (t, ζ) ≤ C̃ϕ(t), t� 1, C̃ = const > 0. (2.40)

Indeed, if (2.40) hold then∫ t

s
sup

0≤ζ≤a
f (ξ,ζ)dξ ≤

∫ t

s
C̃ϕ(ξ)dξ ≤ C̃(t− s) max

s≤ξ≤t
ϕ(ξ).

(iv) If ϕ(t) is non-increasing, then the second relation in (2.20) becomes

M := limsup
t→∞

ϕ(t− C
ϕ(t) )

ϕ(t)
<∞. (2.41)

From Theorem 2.4 we derive the following theorem.

Theorem 2.7. Assume that y(t) ≥ 0 is a continuous on [0,∞) function,∫ ∞
0
ω(y(t))

1
(1+ t)α

dt <∞, 0 < α ≤ 1, (2.42)

y(t)− y(s) ≤
∫ t

s
f (x,y(x))dx, 0 ≤ s ≤ t, (2.43)

and there exist constants a > 0 and κ > 0 such that∫ t

s
sup

0≤ζ≤a
f (x, ζ)dx ≤ κa

t− s
sα

, κ > 0, t > s� 1. (2.44)

Then,
lim
t→∞

y(t) = 0. (2.45)
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Proof. Let ϕ(t) := 1
(1+t)α , α ∈ (0,1]. Then one can easily verify that conditions (2.20) hold

with C = 1/2. Condition (2.21) also holds for this choice of ϕ and θ= 2κ. Thus, Theorem 2.7
follows from Theorem 2.4. �

Remark 2.8. The assumption α ∈ (0,1] in (2.42) is essential: if α > 1, then inequality (2.20)
does not hold for ϕ(t) = 1

(1+t)α whatever fixed C > 0 is.

Corollary 2.9. Let y(t) ≥ 0 be a continuous function on [0,∞) and∫ ∞
0
ω
(
y(t)
)
ϕ(t)dt <∞, (2.46)

where ϕ(t) > 0 is a continuous function on [0,∞). Assume that there exists a constant C > 0
such that

lim
t→∞

(
t−

C
ϕ(t)

)
=∞, M := limsup

t→∞

maxξ∈[t− C
ϕ(t) ,t]

ϕ(ξ)

minξ∈[t− C
ϕ(t) ,t]

ϕ(ξ)
<∞, (2.47)

y(t)− y(s) ≤
∫ t

s
h(ξ)dξ, 0 ≤ s ≤ t, (2.48)

where h(t) is a nonnegative and locally integrable function on [0,∞), and

A := limsup
t→∞

h(t)
ϕ(t)

<∞. (2.49)

Then,
lim
t→∞

y(t) = 0. (2.50)

Proof. Let
f (t,y) := h(t), t ≥ 0, y ≥ 0. (2.51)

Let us check that condition (2.21) holds for this f (t,y) and a = 2A. From (2.51) one gets

f (t,y) ≤ 2Aϕ(t), t� 1, ∀y ≥ 0. (2.52)

This implies∫ t

s
max

0≤ζ≤2A
f (ξ,ζ)dξ ≤

∫ t

s
2Aϕ(ξ)dξ ≤ 2A(t− s) sup

ξ∈(s,t)
ϕ(ξ), t > s� 1. (2.53)

This and Theorem 2.4 imply (2.50). �

Corollary 2.10. Let y(t) ≥ 0 be a continuous function on [0,∞),∫ ∞
0
ω
(
y(t)
) 1
(1+ t)α

dt <∞, 0 < α ≤ 1, (2.54)

and

y(t)− y(s) ≤
∫ t

s
h(ξ)dξ, 0 ≤ s ≤ t, (2.55)
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where h(t) is a nonnegative and locally integrable function on [0,∞). If

A := limsup
t→∞

h(t)tα <∞, (2.56)

then
lim
t→∞

y(t) = 0. (2.57)

Proof. Let ϕ(t) = 1
(t+1)α , α ∈ (0,1]. Then conditions (2.47) hold with C = 1

2 and M = 1, and
condition (2.49) also holds. Thus, (2.57) follows from Corollary 2.9. �

Let us study inequality (1.5) and justify sufficient conditions for relation (1.3) to hold.
Since inequality (1.5) is a special case of inequality (1.2), some of the results below are
obtained by applying results proved earlier for inequality (1.2).

Theorem 2.11. Assume that g ≥ 0 is a continuously differentiable function on [0,∞),

ġ(t) ≤ −a(t) f (g(t))+b(t), (2.58)

where f (t) is a nonnegative continuous function on [0,∞), f (0) = 0, f (t) > 0 for t > 0, and

m(ε) := inf
x≥ε

f (x) > 0, ∀ε > 0. (2.59)

If a(t) > 0, b(t) ≥ 0 are continuous on [0,∞) functions, and∫ ∞
0

a(s)ds =∞, lim
t→∞

b(t)
a(t)
= 0, (2.60)

then
lim
t→∞

g(t) = 0. (2.61)

Proof. Let

s := s(t) :=
∫ t

0
a(ξ)dξ. (2.62)

It follows from (2.60) that the map t→ s maps [0,∞) onto [0,∞). Let t(s) be the inverse
map and define w(s) = g(t(s)). Then (2.58) takes the form

w′(s) ≤ − f (w)+β(s), w(0) = g0, (2.63)

where
w′ =

dw
ds
, β(s) =

b(t(s))
a(t(s))

, lim
s→∞

β(s) = 0. (2.64)

Assume that (2.61) does not hold. Then there exist ε > 0 and (sn)∞n=1) such that

0 < sn↗∞, w(sn) > ε, ∀n. (2.65)

From the last relation in (2.64) it follows that there exists T > 0 such that

β(s) <
m(ε)

2
, ∀s ≥ T. (2.66)
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Since sn↗∞, there exists N > 0 such that sn > T , ∀n ≥ N. Thus,

w′(sn) ≤ − f (w(sn))+β(sn) ≤ −m(ε)+
m(ε)

2
< 0, ∀n ≥ N. (2.67)

Since w(s) is continuously differentiable on the interval (sn−1, sn) and w′(sn) < 0, ∀n ≥ N,
there are two possibilities:

Case 1: w′(s) < 0, n ≥ N, for all s ∈ (sn−1, sn).
Case 2: there exists a point tn ∈ (sn−1, sn) such that w′(s) < 0, ∀s ∈ (tn, sn) and w′(tn) = 0

where n ≥ N.
We claim that Case 2 cannot happen if n ≥ N is sufficiently large, namely so large that

β(tn) < m(ε). Indeed, if Case 2 holds for such n, then

w′(tn) = 0, w(tn) > w(sn) > ε. (2.68)

This and (2.63) imply

0 = w′(tn) ≤ − f (w(tn))+β(tn) ≤ −m(ε)+β(tn), (2.69)

i.e., 0 < m(ε) ≤ β(tn). This contradicts the assumption limt→∞ β(t) = 0 because if n is suffi-
ciently large then tn is so large that β(tn) < m(ε).

Since Case 2 cannot happen for all sufficiently large n, there exists N1 > 0 sufficiently
large so that

w′(s) < 0, ∀s ∈ (sn−1, sn), n ≥ N1. (2.70)

This and (2.67) imply
w′(t) < 0, ∀t ≥ sN1 . (2.71)

Therefore w(t) decays monotonically for all sufficiently large t. Since w(t) ≥ 0, one con-
cludes that the following limit W ≥ 0 exists and is finite

lim
t→∞

w(t) =W <∞. (2.72)

This and (2.63) imply

limsup
t→∞

w′(t) ≤ lim
t→∞

[− f (w(t))+β(t)] ≤ −m(W). (2.73)

If W , 0, then m(W) > 0 and

limsup
t→∞

w′(t) ≤ −m(W) < 0. (2.74)

Thus, w′(t) ≤ −m(W) < 0 for all t sufficiently large. This is impossible since w(t) ≥ 0, ∀t.
This contradiction implies that W = 0, so (2.61) holds.

Theorem 2.11 is proved. �

Remark 2.12. Theorem 2.11 is proved in [5] under the assumption that f ∈ Liploc[0,∞) and

f (0) = 0, f (u) > 0 for u > 0, f (u) ≥ c > 0 for u ≥ 1, (2.75)

where c = const. The assumption f ∈ Liploc[0,∞) was used in [5] in order to prove the
global existence of g(t). In this paper we assume the global existence of g(t), and give a
new simple proof of Theorem 2.11.
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Theorem 2.13. Assume that g ≥ 0 is a C1([0,∞))−function,

ġ(t) ≤ −a(t) f (g(t))+b(t), g(0) = g0, (2.76)

where f (t) ≥ 0 is a non-decreasing function on [0,∞), f (0) = 0, f (t) > 0 if t > 0. If a(t) > 0,
b(t) ≥ 0 are continuous on [0,∞) functions, and∫ ∞

0
a(s)ds =∞,

∫ ∞
0
β(s)ds <∞, β(t) :=

b(t)
a(t)

, (2.77)

then
lim
t→∞

g(t) = 0. (2.78)

Proof. Let s be defined in (2.62) and w(s) = g(t(s)). From (2.63) one gets

w(t)−w(0)+
∫ t

0
f (w(s))ds ≤

∫ t

0
β(s)ds ≤

∫ ∞
0
β(s)ds <∞, ∀t ≥ 0. (2.79)

This and the assumption that w ≥ 0 imply∫ ∞
0

f (w(s))ds <∞. (2.80)

From (2.63) one obtains
w′(s) ≤ β(s), ∀s ≥ 0. (2.81)

Since
∫ ∞

0 β(s)ds <∞, the function ψ(t) :=
∫ t

0 β(s)ds <∞ is uniformly continuous with re-
spect to t on [0,∞). This, relation (2.80), inequality (2.81), and Theorem 2.1 imply

lim
s→∞

w(s) = 0. (2.82)

This and the relation w(s) = g(t(s)) imply (2.78).
Theorem 2.13 is proved. �

Theorem 2.14. Assume that g ≥ 0 is a C1([0,∞)) function,

ġ(t) ≤ −a(t) f (g(t))+b(t), g(0) = g0, (2.83)

where f (t) ≥ 0 is a non-decreasing continuous function on [0,∞), f (0) = 0, f (t) > 0 if t > 0,
a(t) > 0 and b(t) ≥ 0 are continuous functions on [0,∞), and there exists a constant C > 0
such that

lim
t→∞

(
t−

C
a(t)

)
=∞, limsup

t→∞

maxξ∈[t− C
a(t) ,t]

a(ξ)

minξ∈[t− C
a(t) ,t]

a(ξ)
<∞. (2.84)

If

K := limsup
t→∞

b(t)
a(t)

<∞,

∫ ∞
0

b(s)ds <∞, (2.85)

then
lim
t→∞

g(t) = 0. (2.86)
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Proof. From (2.83) one gets for all t ≥ 0 the following inequalities

g(t)−g(0)+
∫ t

0
a(s) f (g(s))ds ≤

∫ t

0
b(s)ds ≤

∫ ∞
0

b(s)ds <∞. (2.87)

Thus ∫ ∞
0

a(s) f (g(s))ds <∞. (2.88)

This relation, (2.85), (2.84), and Corollary 2.9 imply (2.86). Theorem 2.14 is proved. �

Remark 2.15. If a(t) = O( 1
(1+t)γ ), γ ∈ [0,1), then conditions (2.84) hold for any C > 0. If

a(t) = O( 1
1+t ) then conditions (2.84) hold if C > 0 is sufficiently small.

3 Applications

Let H be a real Hilbert space. Consider the following problem

u̇ = A(t,u)+ f (t), u(0) = u0; f ∈C([0,∞); H), (3.1)

where u0 ∈ H, A(t,u) : [0,∞)×H→ H is continuous with respect to t and u. Assume that

A(t,0) = 0, ∀t ≥ 0, (3.2)

〈A(t,u)−A(t,v),u− v〉 ≤ −γ(t)‖u− v‖ω(‖u− v‖), u,v ∈ H, (3.3)

where γ(t) > 0 for all t ≥ 0 is a continuous function and ω(t) ≥ 0 is continuous and strictly
increasing function on [0,∞), ω(0) = 0. Here, 〈·, ·〉 denotes the inner product in H and ‖ · ‖
denotes the norm in H.

The above assumptions are standing and are not repeated. Assumption (3.3) means that
A is a dissipative operator. Existence of the solution to problem (3.1) with such operators
was discussed in the literature (see, e.g., [4], [5], and [11]).

Let
β(t) := ‖ f (t)‖.

Consider the following three assumptions:

• Assumption B) ∫ ∞
0
γ(t)dt =∞, lim

t→∞

β(t)
γ(t)
= 0. (3.4)

• Assumption C) ∫ ∞
0
γ(t)dt =∞,

∫ ∞
0

β(t)
γ(t)

dt <∞. (3.5)

• Assumption D)

γ(t) = O(
1

(1+ t)α
),

∫ ∞
0
β(t)dt <∞, limsup

t→∞

β(t)
γ(t)

<∞, (3.6)

where α = const ∈ (0,1].
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Remark 3.1. Assumption (3.2) is not an essential restriction: if it does not hold, define
f1(t) := f (t)+ A(t,0), and A1(t,u) := A(t,u)− A(t,0). Then A1(t,u) satisfies assumptions
(3.2) and (3.3) and f1(t) plays the role of f (t).

Lemma 3.2. If assumptions (3.2)–(3.3) hold, then there exists a unique global solution u(t)
to (3.1).

Proof. Let us first prove the uniqueness of solution to (3.1).
Assume that u and v are two solutions to (3.1). Then one gets

u̇− v̇ = A(t,u)−A(t,v), t ≥ 0. (3.7)

Multiply (3.7) by u− v and use (3.3) to obtain

1
2

d
dt
‖u− v‖2 = 〈A(t,u)−A(t,v),u− v〉 ≤ 0. (3.8)

Integrating (3.8) one gets

1
2

(
‖u(t)− v(t)‖2−‖u(0)− v(0)‖2

)
≤ 0, ∀t ≥ 0. (3.9)

This implies u(t) = v(t), ∀t ≥ 0, since u(0) = v(0).
Let us prove the local existence of a solution to (3.1).
In this proof an argument similar to the one in [3] or [5] is used. Let un(t), called Peano’s

approximation of u, solve the following equation

un(t) = u0+

∫ t

0
[A(s,un(s−

1
n

))+ f (s)]ds, t ≥ 0, (3.10)

and un(t) = u0, ∀t ≤ 0.
Fix some positive numbers r > 0 and t1 > 0. Let

B(u0,r) := {u : ‖u−u0‖ ≤ r},

and
c := sup

(t,u)∈[0,t1]×B(u0,r)
(‖A(t,u)‖+ ‖ f (t)‖) <∞. (3.11)

Let

T1 :=min(t1,
r
c

) > 0, T2 := sup{t ≥ 0 : ‖un(ξ)−u0‖ ≤ r, ∀ξ ∈ (0, t]}. (3.12)

Let us prove that T2 ≥ T1. Arguing by contradiction, we assume that T2 < T1. Then it
follows from (3.10), (3.11), and (3.12) that

‖un(t)−u0‖ ≤

∫ t

0

(
‖A(s,un(s−

1
n

))‖+ ‖ f (s)‖
)
ds

≤

∫ T2+ζ

0
sup

(t,u)∈[0,t1]×B(u0,r)

(
‖A(s,v)‖+ ‖ f (s)‖

)
ds

≤ c(T2+ ζ)

≤ cT1 ≤ r, 0 ≤ t ≤ T2+ ζ,

(3.13)
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where ζ = min( 1
n ,T1 − T2) > 0. This contradicts the definition of T2. Thus, T2 ≥ T1 and,

therefore,
‖un(t)−u0‖ ≤ r, ∀t ∈ [0,T1]. (3.14)

Define
wnm := un(t)−um(t), gmn := ‖wmn(t)‖, t ≥ 0. (3.15)

From (3.10) one obtains

gmn(t)ġmn(t) =〈A(t,un(t−
1
n

))−A(t,um(t−
1
m

)),un(t)−um(t)〉

=〈A(t,un(t−
1
n

))−A(t,um(t−
1
m

)),un(t−
1
n

)−um(t−
1
m

)〉

+ 〈A(t,un(t−
1
n

))−A(t,um(t−
1
m

)),un(t)−un(t−
1
n

)〉

+ 〈A(t,un(t−
1
n

))−A(t,um(t−
1
m

)),um(t−
1
m

)−um(t)〉.

(3.16)

From (3.16), (3.11), and (3.3), one obtains

1
2

d
dt

g2
nm(t) ≤ 4c2(

1
n
+

1
m

), m,n ≥ 0, t ∈ [0,T1]. (3.17)

Integrating (3.17), using the relation gmn(0)= 0, and taking the limit as m,n→∞ one obtains

0 ≤ lim
n,m→∞

g2
nm(t) ≤ lim

n,m→∞
t4c2(

1
n
+

1
m

) = 0, ∀t ∈ [0,T1]. (3.18)

It follows from (3.18) and the Cauchy criterion for convergence of a sequence that the
following limit exists

u(t) := lim
n→∞

un(t), 0 ≤ t ≤ T1. (3.19)

Passing to the limit n→∞ in equation (3.10) and using the continuity of A(t,u) on [0,∞)×H
and (3.19) one concludes that u(t) solves the equation

u(t) = u0+

∫ t

0
[A(s,u(s))+ f (s)]ds, ∀t ∈ [0,T1]. (3.20)

Thus, the local existence of the solution u(t) to equation (3.1) is proved.
Let us prove the global existence of u(t).
Assume that u(t) does not exist globally. Let [0,T ] be the maximal existence interval of

u(t). Then, 0 < T <∞. By similar arguments as in the proof of Theorem (3.3) (see (3.32)
below) one gets

d
dt
‖u(t)‖ ≤ −γ(t)w(‖u(t)‖)+ ‖ f (t)‖ ≤ ‖ f (t)‖, 0 ≤ t < T.

This implies

‖u(t)‖ ≤ ‖u(0)‖+
∫ T

0
‖ f (t)‖dt, 0 ≤ t < T.

Thus
‖u(t)‖ = g(t) < c = const <∞, ∀t ∈ [0,T ). (3.21)
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Let us prove the existence of the finite limit

lim
t→T−

u(t) = uT . (3.22)

Let zh(t) := u(t+h)−u(t), 0 < t ≤ t+h < T . From (3.1) one gets

żh(t) = A(t+h,u(t+h))−A(t,u(t))+ f (t+h)− f (t). (3.23)

Multiply (3.23) by zh(t) and get

1
2

d
dt
‖zh(t)‖2 ≤ −γ(‖zh(t)‖)‖zh(t)‖ω(‖zh(t)‖)+ ‖zh(t)‖‖ f (t+h)− f (t)‖. (3.24)

This implies
d
dt
‖zh(t)‖ ≤ ‖ f (t+h)− f (t)‖, 0 < t ≤ t+h < T. (3.25)

Integrating (3.25) one gets

‖zh(t)‖ ≤ ‖zh(0)‖+
∫ t

0
‖ f (x+h)− f (x)‖dx

≤ ‖zh(0)‖+T max
0≤t≤T−h

‖ f (t+h)− f (t)‖.
(3.26)

Since limh→+0 ‖u(h)−u(0)‖ = 0 and limh→+0 max0≤t≤T−h ‖ f (t+h)− f (t)‖ = 0, one concludes
that

lim
h→0
‖u(t+h)−u(t)‖ = 0, (3.27)

and this relation holds uniformly with respect to t and t+h such that t < t+h < T . Relation
(3.27) and the Cauchy criterion for convergence imply the existence of the finite limit in
(3.22).

Consider the following Cauchy problem

u̇ = A(t,u)+ f (t), u(T ) = uT . (3.28)

By the arguments similar to the given above one derives that there exists a unique solution
u(t) to (3.28) on [T,T + δ], where δ > 0 is a sufficiently small number. From the continuity
of f (t) and u(t) in t and A(t,u) in both t and u one gets

lim
t→T−

u̇(t) = lim
t→T−

A(t,u)+ f (t) = lim
t→T+

A(t,u)+ f (t) = lim
t→T+

u̇(t), (3.29)

and the above limits are finite. Thus, the solution to (3.1) can be extended to the interval
[0,T +δ]. This contradicts the definition of T . Thus, T =∞ i.e., u(t) exists globally.

Lemma 3.2 is proved. �

The main result of this Section is the following theorem.

Theorem 3.3. Let assumptions (3.2) and (3.3) hold. If u(t) is the solution to problem (3.1)
and at least one of the assumptions B), C), or D) holds, then

lim
t→∞
‖u(t)‖ = 0. (3.30)
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Proof. The global existence of u(t) follows from Lemma 3.2 under the assumptions of this
lemma, or from the results in [4] and [11].

Let us prove relation (3.30).
Multiplying (3.1) by u, one obtains

1
2

d
dt
‖u(t)‖2 = 〈A(t,u),u〉+ 〈 f (t),u〉 ≤ −γ(t)‖u‖ω(‖u‖)+ ‖ f (t)‖‖u‖. (3.31)

Since u(t) is continuously differentiable, so is ‖u(t)‖ at the points t at which ‖u(t)‖ > 0. At
these points inequality (3.31) implies

d
dt
‖u(t)‖ ≤ −γ(t)ω(‖u(t)‖)+ ‖ f (t)‖, t ≥ 0. (3.32)

If ‖u(t)‖ = 0 on an open interval (a,b) ⊂ [0,∞), then d
dt ‖u(t)‖ = 0 on (a,b), and inequality

(3.32) holds trivially, because ω(0) = 0 and ‖ f (t)‖ ≥ 0. If ‖u(s)‖ = 0 at an isolated point
s > 0, then the right-sided derivative of ‖u(t)‖ at the point s exists, and

d
dt
‖u(t)‖ = lim

τ→+0

‖u(s+τ)‖
τ

= ‖
d
dt

u(s)‖,

and inequality (3.32) holds for this derivative. In what follows we understand by d
dt ‖u(t)‖ the

right-sided derivative at the points s at which ‖u(s)‖ = 0. The left-sided derivative of ‖u(t)‖
also exists at such points, and is equal to −‖ d

dt u(s)‖, but we will not need this left-sided
derivative.

Let g(t) := ‖u(t)‖ and β(t) := ‖ f (t)‖. From (3.32) one gets

ġ(t) ≤ −γ(t)ω(g(t))+β(t), t ≥ 0. (3.33)

Let a(t) := γ(t) and b(t) := β(t).
If Assumption B) holds, then (3.30) follows from this assumption and Theorem 2.11.
If Assumption C) holds, then (3.30) follows from this assumption and Theorem 2.13.
If Assumption D) holds, then (3.30) follows from this assumption and Theorem 2.14.
Thus, (3.30) holds.
Theorem 3.3 is proved. �

Example.
Let D ⊂ R3 be a bounded domain with a smooth boundary, H = L2(D), ‖ f (t)‖ is the

norm of f in H, f (t) is a locally bounded function of t with values in H. Let H`, ` = 1,2,
be the usual Sobolev spaces. By the Sobolev embedding theorem, the embedding operator
from H1(D) into L6(D) is bounded, so if u ∈ H1(D), then u3 ∈ H. Consider problem (3.1)
with γ(t) = (1+ t)−α, α = const ∈ (0,1], ‖ f (t)‖ = O( 1

(1+t)k ), k > 1, and A(t,u) := γ(t)L1, L1 :=
Lu−u3, where L is a second order negative-definite selfadjoint Dirichlet elliptic operator in
D, e.g., L = ∆, where ∆ is the Dirichlet Laplacian in D. Then

β(t) = ‖ f (t)‖ ≤
c

(1+ t)k , k > 1, (3.34)

conditions (3.2) and (3.3) are satisfied for u,v ∈D(A)=D(A(t,u)), where D(A) is the domain
of definition of the operator A, and D(A) = D(L) = D(L1), L1(u) := ∆u−u3, namely, D(A) =
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H2(D)∩H1
0(D) ⊂C(D), where C(D) is the space of continuous in D functions with the sup

norm, and the inclusion holds by the Sobolev embedding theorem. The function ω(r) in
(3.3) in this example is ω(r) = cr, where c > 0 is a constant. This follows from the known
inequality

−〈Lu,u〉 = ‖∇u‖2 ≥ c(D)‖u‖2, (3.35)

valid for u ∈D(A), c(D) = const does not depend on u ∈H1
0(D). In this example the operator

A is not continuous in H, but the global solution to problem (3.1) exists and is unique (see,
e.g., [4], [11], and [13]). One checks that Assumption D) is satisfied, and concludes using
Theorem 2.14 that (3.30) holds for the solution to (3.1) in this example.

Theorem 2.14 can be applied regardless of the method by which the global existence of
the unique solution to problem (3.1) is established and inequality (3.32) is derived for this
solution.

Let 〈·, ·〉 denote the inner product and ‖ · ‖ denote the norm in L2(D). Then the usual
ellipticity constant c1 = γ(t)c(D) in the inequality

c1‖u‖2 ≤ −γ(t)〈Lu,u〉 (3.36)

tends to zero as t→∞, so one deals with a degenerate elliptic operator as t→∞ in problem
(3.1) in this example.

One can extend the result in this example to much more general nonlinearities. For
instance, if A(t,u) = γ(t)[Lu− h(u)], where uh(u) ≥ 0 for all u ∈ R, and h satisfies a local
Lipschitz condition, then one can derive an a priori bound for the solution u(t) of (3.1)
supt≥0 ‖u(t)‖ ≤ c, and prove the global existence and uniqueness of the solution u(t) to prob-
lem (3.1) using, for instance, the method from [6]. The assumption uh(u) ≥ 0 for all u ∈ R
makes it possible to consider nonlinearities h(u) with an arbitrary large speed of growth at
infinity. Let us outline the derivation of the above bound. Multiplying equation (3.1) by
u, taking real part, using the estimate 〈Lu,u〉 ≤ −c‖u‖2, the assumption uh(u) ≥ 0, denoting
g := ‖u‖2, and using the relation 2Re〈u̇,u〉 = ġ, one gets the following inequality

ġ ≤ −2cγ(t)g+2‖ f ‖g1/2, g(0) = ‖u0‖
2. (3.37)

For simplicity and without loss of generality assume that u0 = 0. Then it is not difficult to
derive the following estimate:

‖u(t)‖ ≤
∫ t

0
‖ f (s)‖e−c

∫ t
s γ(τ)dτds. (3.38)

Using the assumptions

‖ f (t)‖ ≤ c(1+ t)−k, k > 1, γ(t) = (1+ t)−α > 0, 0 < α ≤ 1,

one obtains from this inequality the following estimate:

sup
t≥0
‖u(t)‖ ≤ c

∫ ∞
0

(1+ s)−kds ≤
c

k−1
. (3.39)
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