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Abstract

This work addresses the optimal control strategy of diafiltration buffer utilisation in dis-
continuous membrane processes that are designed to fulfil the twin aims of concentration
and fractionation. The problem of optimal process operation is formulated using a gen-
eral membrane response model that encounters concentration-dependent flux and rejec-
tions. We consider two problems, operation time minimisation and diluant consumption
minimisation, and we apply theory of optimal control and derive necessary conditions of
optimality. Through selected case studies from literature, we demonstrate how to ap-
ply the proposed methodology to determine optimal time-dependent wash-water feeding
policy. The analytical results are confirmed by numerical computations, using numerical
methods of dynamic optimisation. The presented methodology allows decision makers to
analyse suboptimality of conventional diafiltration strategies in terms of processing time
and diluant consumption. Results show that depending on the complexity of the membrane
response model, it may be attractive to implement optimal trajectory.

Keywords: modelling, diafiltration, discontinuous operation, optimal control, dynamic
optimisation

1. Introduction

Membrane filtration offers a unique separation solution since it can be used for both
concentration and fractionation purposes. This feature is described by Jönsson et al. in
their review paper on ultrafiltration applications as “Killing two birds with one stone” [1].
In many applications, this characteristics puts membrane filtration in an attractive position
and compares favourably with other separation techniques or even with a sequence of
competitive unit operations.
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A membrane filtration plant can be designed for continuous or batch operation. This
work deals with the latter. In comparison with continuous processes, batch operations
allow to use membranes with reduced area in order to reach the target product quality, that
usually leads to smaller space requirement and lower investment costs [2]. Moreover, batch
processing is particularly suited to applications where the process liqueur is manufactured
in batches or lots before any subsequent separation is undertaken.

A schematic diagram of a discontinuous membrane diafiltration process is shown in
Figure 1. Considering a process liqueur with two solutes, the general purpose of such

permeateretentatediluant

feed tank

membrane
module

qαq

Figure 1: Schematic representation of a generalized batch diafiltration process.

batch plant can be summarized as to increase the macro-solute concentration from c1,0
to c1,f and to reduce the micro-solute concentration from c2,0 to c2,f. The fractionation
is accomplished by performing a so called diafiltration mode in which the micro-solute is
washed out of the process liqueur by introducing fresh buffer (i.e. diluant) into the feed
reservoir while simultaneously removing the macro-solute-free permeate.

Most filtration processes operate with constant transmembrane pressure that is achieved
by simply adjusting the pressure with the retentate valve. We note here that other types of
process control strategies, such as constant flux or constant wall concentration control, are
also implemented in engineering practice. These are normally preferred when unfavourable
effects such as enhanced fouling or product quality deterioration are associated with high
concentration of retained species at the membrane wall. For instance, when animal cell
damage [3] or denaturation/adsorption of high-value protein pharmaceuticals [4] are of
major concern. The work presented here examines the constant pressure approach.

Batch processing can be performed in different ways depending on how the addition of
the diluant (diafiltration or washing solvent) into the feed tank is scheduled. The standard
way of reaching the dual objective of fractionation and concentration is to perform a multi-
step process including pre-concentration (C), constant-volume diafiltration (CVD), and
post-concentration steps. Other strategies include variable-volume diafiltration (VVD) [5],
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or a variation of it, pre-concentration followed by variable-volume diafiltration (C-VVD) [6].
These processes are best described with α (i.e. the ratio of diluant flow to permeate flow)
as a function of operation time as shown in Figure 2.

α

C-CVD-C

C-VVD

VVD

time
0

1

Figure 2: Representation of classical three-step processing (C-CVD-C), pre-concentration combined with
variable-volume diafiltration (C-VVD), and variable-volume diafiltration (VVD) operation in terms of the
α function.

As it has been pointed out in [7], the best time-varying profile of the diluant addition
needs not necessarily be one of the pre-defined profiles depicted in Figure 2. The optimal
control trajectory of α(t) (or equivalently the diluant flow) can be determined by formu-
lating an optimization problem subject to process model described by a set of differential
equations. The diafiltration process, that is designed by the evaluation of the optimal
time-varying profile of the diluant flow, has been then referred to as dynamic-volume di-
afiltration (DVD).

The wash-water utilisation strategy of DVD may differ from conventional diafiltration
processes. However, in many cases it may be attractive to implement the optimal trajectory
since it can lead to reduced operation time, diluant consumption, and product losses. The
issue of product losses becomes only important when we have to deal with incomplete
macro-solute rejections, while the diluant consumption and operation time are generally
of major concern. Batch production takes place periodically; when the production is
complete, the plant and equipment are available for the next batch. Processing time is a key
factor to increase production throughput. Moreover, diafiltration is commonly associated
with high consumption of diafiltration solvent. This liquid is commonly water with strict
quality requirements regarding bacteriological contamination and organic/inorganic solute
content [8]. Thus, the production of diafiltration liquid can contribute significantly to the
overall operating costs of the plant.

As far as time minimisation problem considered, it has been previously demonstrated
that optimum diafiltration strategy can be found for filtration processes operating in dis-
continuous manner. The patent [9] issued by the Millipore Co. provides an implementation
procedure and a general formula for determining the optimal diafiltration path using idea
of maximization of mass flux of permeable component through the membrane. Despite
that this approach provides certain level of intuition and insight on time-optimal filtra-
tion control, its extendability onto different optimisation tasks and more complex process
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setups is questionable.
This work can be thought as a generalisation of our previous contributions [10] where

time optimal operation for special case with limiting flux model was investigated and of [11]
where numerical procedures for albumin production optimisation were applied. Here we
address problems of both minimisation of operational time and diluant consumption for a
large class of processes. We will show in specific cases that numerical optimisation can be
avoided and give concrete recipes to operate the process optimally. In a general case, we
will propose a numerical optimisation procedure of much simpler structure than in [7].

In Sect. 2, we present a general process model and formulate the optimal control prob-
lem. Then, we apply the theory of optimal control exploiting the Pontryagin’s minimum
principle to find optimal control strategy of diluant utilization. We discuss the general case
and several specific cases of rejection coefficients (constant, concentration-dependent, com-
plete, or incomplete rejection of macro- and micro-solutes) that are common in membrane
filtration practice. Finally, through selected case studies from literature, including reverse
osmosis (RO), ultrafiltration (UF), and nanofiltration (NF) applications, we demonstrate
how to apply the presented methodology to determine optimal control of batch filtration
processes.

2. Model development

We consider a membrane filtration plant (RO, UF, NF, or MF) with a given membrane
area that operates under fixed operating conditions. The studied filtration system applies
a cross-flow and pressure setpoint, and the permeate flows uncontrolled out of the mod-
ule. We assume a solution with two species with concentrations c1, c2. We assume that
the system is well-mixed, and the introduction of diluant causes no local concentration
differences. The balance of each solute can be written as

dci
dt

=
ciq

V
(Ri − α), ci(0) = ci0, i = 1, 2 (1)

where V is the retentate volume at time t. The rejection coefficient Ri(c1, c2) is assumed to
be a function of both concentrations. The same holds for the permeate flowrate q(c1, c2).
The volume balance can be written as

dV

dt
= (α− 1)q, V (0) = V0. (2)

Note that the time-dependent variables (i.e. permeate flux and the solute rejections)
are solely a function of feed concentrations in the process model. Thus, the model in its
current form does not encounter changes in process parameters (pressure, temperature,
hydrodynamic conditions, etc.) that might influence the membrane response during the
process run. Furthermore, the model is limited to applications where fouling is not pro-
nounced. This means that the findings are restricted to applications where (i) fouling does
not occur, (ii) the impact of fouling on flux is sufficiently less than the impact induced
by changes in feed composition, or (iii) fouling occurs rapidly within the time-scale of the
entire process, and Eqs. (1) and (2) representing the fouled membrane are given.
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2.1. Problem formulation

In this section, two different process optimisation problems are introduced. The first
one represents a traditional minimum time problem. In this problem, optimal trajectory of
function α(t) is computed in order to minimise running time of a batch diafiltration process.
The second considers minimisation of diluant consumption during the diafiltration process.

2.1.1. Minimum time problem

The objective of this optimisation task is to find the time-dependent function α(t)
which uses minimum time to drive the process from initial state to a prescribed terminal
state. Mathematical formulation of this dynamic optimisation problem is as follows

J1 =min
α(t)

tf = min
α(t)

∫ tf

0

1 dt. (3a)

s.t.

ċ1 =
c1q

V
(R1 − α), c1(0) = c1,0, c1(tf) = c1,f, (3b)

ċ2 =
c2q

V
(R2 − α), c2(0) = c2,0, c2(tf) = c2,f, (3c)

V̇ = (α− 1)q, V (0) = V0, (3d)

α ∈ [αmin, αmax] (3e)

where αmin and αmax represent lower and upper constraints on the value of α respectively.
Lower bound, αmin, obviously stands for pre/post-concentration mode when α = 0. Value
of upper constraint, αmax, may vary from one application to another. Some applications
require that α does not overcome 1.

Other ones do not impose any upper bound on the value of α which in principle means
that αmax = ∞. This can have a special meaning if it happens at the beginning or at the
end of the operation. We will speak about a pure dilution mode where a certain volume of
diluant is added into the system instantaneously. This can happen in a separate equipment
not related to membrane equipment.

2.1.2. Minimum diluant problem

The second problem addresses minimisation of total amount of diluant u(t) = α(t)q(t)
used to drive the process from initial state to a prescribed terminal state assuming that
the final time tf is a free variable. Mathematical formulation (3) remains unchanged in this
case except for the cost function

J2 = min
α(t)

∫ tf

0

α(t)q(t) dt. (4)

3. Main results

A detailed mathematical derivation of the main results is described in Appendix A.
Here we present them in compact way. We will at first treat the complete rejection of
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the macro-solute (R1 = 1). This will give us complete analytical characterization of the
optimal control operation. Next, we will treat the general case. Here, we will show that
the optimal operation can de determined from an optimization problem of much simpler
structure than derived previously in [7, 11].

3.1. Complete rejection of macro-solute

This is a special case from the theoretical point of view. However, this condition is in
practice satisfied almost always and it is thus not very restrictive.

Both studied problems (minimum time and minimum diluant) require that concentra-
tions lie on the optimal surface S(c1, c2) given as

Stime(c1, c2) = (R2 − 1)

(
q + c1

∂q

∂c1
+ c2

∂q

∂c2

)
+ q

(
c1
∂R2

∂c1
+ c2

∂R2

∂c2

)
= 0, (5)

Sdiluant(c1, c2) = R2 − 1 + c1
∂R2

∂c1
+ c2

∂R2

∂c2
= 0. (6)

We note that Eq. (5) is consistent with maximization of mass flux through the membrane
considered in [9].

The optimal control strategy α that will keep the concentrations on this surface can be
calculated as

α(c1, c2) =
∂S
∂c1

c1R1 +
∂S
∂c2

c2R2

∂S
∂c1

c1 +
∂S
∂c2

c2
. (7)

The overall optimal operation can be stated as follows:

1. The first step is either pure concentration (α = 0) or operation with α = αmax until
the condition S(c1, c2) = 0 is met.

2. The second step is filtration with time-dependent α(c1, c2) given by (7) maintaining
optimal concentration values.

3. Finally, the third step is again either pure concentration (α = 0) or operation with
α = αmax until final concentrations of both components are obtained.

Any of these three steps can be missing at a particular problem, depending on process
initial and final conditions as well as actual functions R2(c1, c2), q(c1, c2). For the most
common case R1 = 1, R2 = 0 and the minimum diluant problem, it follows from (6) that
the optimal surface will never be reached and the optimal control will be attained by α on
its constraints, so called bang-bang control.

The optimal surface in the minimum time problem (5) reduces for the most common
case R1 = 1, R2 = 0 to

Stime(c1, c2) = q + c1
∂q

∂c1
+ c2

∂q

∂c2
= 0. (8)
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3.2. General case

In the general case we do not know the optimal concentration surface and have to apply
numerical techniques of dynamic optimization to solve our problem. However, we can use
results derived in Appendix A to simplify it.

We form a problem of non-linear programming with five unknowns Δt1,Δt2, and Δt3
being the lengths of time intervals of the respective phases and α1 and α3 being the constant
values of α in the first and third phases. Optimal value of α1 and α3 will either be on
minimum or on maximum. In the second phase, optimal α will be given by (A.22) for
the minimum time problem and by (A.29) for the minimum diluant problem. See our
previous papers [7, 11] for the survey of numerical methods that can solve this non-linear
programming problem. Once it is solved numerically, we know all needed information
about optimal operation to apply it to the process.

4. Discussion and case studies

In this section we determine the optimal control strategies where the permeate flux is
given by some well-known models, including the limiting flux and osmotic pressure. We
then examine five case studies from the literature where the flux is predicted by empirical
models specific to the system in question.

4.1. Optimisation at the limiting flux

Let us consider a membrane plant that operates under limiting flux conditions, i.e. the
operation is performed in the pressure-independent flux regime under fixed hydrodynamic
conditions. Assuming R1 = 1 and R2 = 0, the limiting flux can be expressed as

q(c) = k′A ln
clim
c

, (9)

where the constants k′, A, and clim are the mass transfer coefficient under polarised-layer-
controlled conditions, the membrane area, and the limiting concentration at the membrane
wall, respectively. The macro-solute concentration c1 is denoted by c. Different nomencla-
ture and symbols have been in use in the literature for presenting Eq. (9) that is historically
referred to as “gel polarisation model”. From the point of view of mathematical treat-
ment, it is essentially the same diafiltration problem (provided by Eq. (9)-type formula)
that has been the subject of experimental and theoretical investigations by many authors
(e.g. in [12, 13, 14, 10, 15]). Note that the model restriction on constant pressure setpoint
mentioned in Sect. 2 does not apply here. In fact, pressure may be subject of change as
long as the flux is located in the pressure-independent regime, and thus, Eq. (9) holds.

Results. The time-optimal control strategy was found in [10]. Using the results derived in
this paper, the optimal concentration curve is defined by (8) and it is a function of the
macro-solute only

S(c) = q + c
dq

dc
= 0. (10)

7



This shows that optimal operation is obtained at a constant concentration which is from
the last equation derived as

c =
clim
e

. (11)

This optimal concentration stays on the optimal value if the control is calculated from (7)

α(t) =
∂S
∂c
c

∂S
∂c
c
= 1. (12)

If the minimum diluant problem is considered, the optimal curve does not exist and
optimal operation will consist of concentration step followed by pure dilution.

Here it is implicitly assumed that the actual concentration stays below clim during
the concentration step. If the limit case with c = clim is hit, the diluant consumption
will be minimised but at infinitely large final time. Therefore, practical considerations
indicate that a constraint c ≤ clim − ε must be added to the problem formulation where a
small positive ε would balance practical duration of the membrane filtration and diluant
consumption. This middle stage would thus be characterised by diafiltration operation
α = 1 at c = clim − ε.

4.2. Optimisation at limiting flux with viscosity-dependent mass transfer coefficient

The stagnant film model for R1 = 1 and R2 = 0 is given by

q = kA ln
clim
c

. (13)

A thorough discussion on the model parameters and their concentration-dependency can
be found in [13, 16]. Let us now consider an application where the filtration performance
can be described by a special case of Eq. (13) such that

q(c, clim) = k(c, clim)A ln
clim
c

, (14)

where the wall concentration clim is assumed to be a constant and the mass transfer co-
efficient k is a function of c and clim. Note that Eq. (14) can be also seen as a slightly
generalised form of Eq. (9). We consider both laminar and turbulent flow

k =

{
k0e

γz(c−clim) laminar

k0e
γ[z(c−clim)−c/2] turbulent

(15)

where k0 is average mass transfer coefficient without the wall correction factor, the constant
γ quantifies the concentration dependence of the solution viscosity and z is the exponent
in the wall correction factor.
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Results. The optimal switching curve S(c) for minimum time control is defined from (4.1)
as

ln
clim
c

(
1 +

c

k

dk

dc

)
= 1. (16)

Note that it again depends on c only and is a constant.
The appropriate optimal concentration for both types of flow is given from non-linear

equation

Slam(c) : (cγz + 1) ln
clim
c

= 1, (17a)

Stur(c) : [cγ(z − 0.5) + 1] ln
clim
c

= 1. (17b)

These equations predict that the optimum concentration will be shifted to higher concen-
trations (i.e. higher than clim/e) under laminar flow conditions and to lower concentrations
under turbulent conditions. Both expressions reduce to the classic result when γ = 0, i.e.,
when viscosity effects are negligible.

The minimum diluant operation will be again achieved by concentration step followed
by pure dilution.

4.3. Optimisation at fixed pressure with the osmotic pressure model

To show an applicability of the proposed approach we assume the same problem as
above where the limiting concentration clim is for given c defined by an implicit relation

E(c, clim) = k ln
clim
c

− ΔP − π(clim)

μ0Rm
= 0. (18)

In this model, the flux as predicted by concentration polarisation theory is equated to the
flux as predicted by osmotic pressure theory [17]. Function π(clim) is defined experimentally,
usually as a third order polynomial with coefficients π1, π2, π3

π(clim) = π1clim + π2c
2
lim + π3c

3
lim. (19)

For simplicity, only laminar case will be considered, case for turbulent regime can be
derived in the same manner. Therefore, the average mass transfer coefficient can be written
as

k = k0e
γz(c−clim). (20)

Results. If minimum time operation is considered, the optimal switching curve S(c) will
be again a constant defined by (4.1).
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To derive the expression for derivative of q with respect to c, let us note that (18)
defines an implicit relation between c and clim and the following holds

∂clim
∂c

= −
∂E
∂c
∂E
∂clim

, (21a)

∂E

∂c
=

∂k

∂c
ln

clim
c

− k
1

c
, (21b)

∂E

∂clim
=

∂k

∂clim
ln

clim
c

+ k
1

clim
+

1

μ0Rm

∂π(clim)

∂clim
. (21c)

Then, the following holds

dq

dc
=

∂q

∂c
+

∂q

∂clim

∂clim
∂c

, (22a)

1

A

dq

dc
=

∂k

∂c
ln

clim
c

− k

c
+

(
∂k

∂clim
ln

clim
c

+
k

clim

)
∂clim
∂c

. (22b)

The optimal switching curve S(c) can be derived as

0 =

(
1

clim
− γz ln

clim
c

)
ln

clim
c

+
1

k

1

μ0Rm

∂π(clim)

∂clim

(
ln

clim
c

(1 + γzc)− 1
)
. (23)

The optimal concentration c and the corresponding wall concentration clim can then be
calculated from the system of non-linear equations (18) and (23).

Both rejection coefficients are constant again and therefore minimum diluant operation
is defined with α being on constraints.

4.4. Case study 1: Separation of lactose from proteins

We consider a process described in [18] where lactose is separated from milk proteins.
Both retention coefficients are constant R1 = 1, R2 = 0. We will assume α ≥ 0 and
unbounded from above. Permeate flow was determined experimentally as

q(c1, c2) = b0 + b1 ln c1 + b2 ln c2 = 63.42− 12.439 ln c1 − 7.836 ln c2, (24)

where c1 is concentration of proteins and c2 denotes concentration of lactose.

Results. The optimum concentration curve for the minimum time problem depends on
both concentrations and is given by (8) as

S(c1, c2) = b0 + b1 + b2 + b1 ln c1 + b2 ln c2 = 0. (25)

Once these optimal concentrations are obtained the control is calculated from (7)

α(t) =
∂S
∂c1

c1
∂S
∂c1

c1 +
∂S
∂c2

c2
=

b1
b1 + b2

. (26)
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Figure 3: Separation of lactose from proteins: comparison of minimum time and C-CVD control strategy
in concentration diagram (left plot) and corresponding control (right plot).

As we can see, even if the optimal concentration curve depends on both concentrations,
the corresponding optimal control is constant and less than one due to special expression
for q.

We consider to drive concentrations from initial point [c1,0, c2,0] = [3.3, 5.5] to final
point [c1,f, c2,f] = [9.04, 0.64]. To perform this task in minimum time we use a three step
strategy (see state diagram in Fig. 3):

1. Start at circle, horizontal line: pure ultrafiltration until we arrive at optimal surface
S(c1, c2) = 0.

2. Stay on this surface using constant control α = b1/(b1 + b2) = 0.61 until the concen-
tration ratio is the same as the final one: c1(t)/c2(t) = c1,f/c2,f.

3. Follow the line towards origin: use pure dilution step to arrive at the final point
(cross).

We note that the final dilution step with α = ∞ need not occur in the filtration setup. The
solution can be treated in some separate equipment after the actual filtration operation.
Therefore, we can interpret its duration as zero and it does not add to the overall processing
time. However, if the dilution step is not realistic we can replace α = ∞ with some upper
limit α = αmax. Overall structure of optimal control will remain the same, only the cost
function value will increase correspondingly.

The resulting final time in this case is 4.49 hours. This can be compared to the operation
described in [18] where two step process C-CVD (UF-CVD) was used. This traditional
operation takes for the same initial and final conditions 4.74 hours, an increase of 5.6%. As
we can see from the right diagram in Fig. 3, traditional CVD step (α = 1) starts earlier
but it takes more time to reach the final point as the VVD step (α = 0.61) in minimum
time control. There, it is assumed that the last step (upward arrow) takes no time.

The overall minimum time strategy is sketched in Fig. 4 where horizontal solid lines
represent evolution of concentrations during the concentration (UF) step and dashed lines
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Figure 4: Separation of lactose from proteins: analytical minimum time control in concentration diagram.

during pure dilution (α = ∞). Arrows in these lines denote directions, in which the
respective operations influence concentrations. Previously used initial and final points are
depicted again to illustrate how the minimum time optimal strategy is chosen. We note that
it seems theoretically possible to use two step strategy starting with dilution step followed
by ultrafiltration. However, the resulting final time will be much longer. As a practical
rule of thumb it is necessary to consider only such strategies that approach the optimal
concentration curve. Also note that it is not possible to use dilution and ultrafiltration
steps more times. Optimal control theory does not allow this arbitrary switching and the
resulting trajectory can consists at most of three steps.

Consider now a case where we want to arrive at final point [5, 3.97] (square in Fig. 4)
starting from the same initial point. As shown in Fig. 4, it is not admissible to use three
step operation since once we would reach the surface S(c1, c2) (by using UF) it would not
be possible anymore to reach the final point neither by using UF nor pure dilution. Thus,
the middle step is skipped in this case and minimum time operation is attained only by
using ultrafitration and pure dilution operation. Order of these operations is again not
arbitrary and it is such that the resulting curve in state diagram is as close as possible to
optimal surface S(c1, c2). The switching moment between the steps is determined by the
concentration ratio equal to c1,f/c2,f.

The optimal concentration surface does not exist for the minimum diluant problem
and the resulting optimal operation is of bang-bang type. To illustrate this we could
construct a diagram similar to Fig. 4 by prolonging the horizontal lines corresponding to
pure ultrafiltration.
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4.5. Case study 2: Albumin – ethanol separation
This ultrafiltration/diafiltration process was originally studied in [5]. The flow q was

determined experimentally as

q(c1, c2) =
1

b1 + b2c1 + b3c2 + b4c1c2 + b5c21 + b6c22
, (27)

where bi are constants that can be found in [5]. Both retention coefficients are constant
R1 = 1, R2 = 0 and α ∈ [0, 1].

We studied optimal control of this diafiltration process by means of numerical methods
in [11]. Here we compare proposed analytical procedure with numerical results from [11].
Three different cases of initial concentration of ethanol c2,0 are investigated: case 1 with
98.35 kgm−3, case 2 with 146.3 kgm−3, and case 3 with 194.3 kgm−3. Other concentrations
are held constant: c1,0 = 15 kgm−3, c1,f = 80 kgm−3, c2,f = 0.1 kgm−3.

Results. The optimum concentration curve for the minimum time problem depends on
both concentrations and is given by (8) as

S(c1, c2) = b1 − b5c
2
1 − c1c2b4 − b6c

2
2 = 0. (28)

Once these optimal concentrations are obtained the control is calculated from (7)

α(t) =
∂S
∂c1

c1
∂S
∂c1

c1 +
∂S
∂c2

c2
=

0.5b4c1c2 + b5c
2
1

b5c
2
1 + b4c1c2 + b6c

2
2

. (29)

Figures 5 and 6 show the optimal control of diafiltration process for cases 1 and 2.
Even if analytical and numerical curves seem to be different, the resulting final times are
practically the same.

Both initial and final concentrations in case 1 are below the optimal concentration curve.
Therefore, the corresponding optimal operation is to perform UF first until the optimal
curve is attained. In the second step, α is given by (29) until the final concentration of
albumin c1,f = 80 kgm−3 is reached. The final step is CVD until the final concentration of
ethanol is reached.

Cases 2 and 3 differ from the case 1 as they start above the optimal concentration
curve. Therefore, the first step is CVD (upper constraint on α is 1). Its duration depends
on the distance of the initial point from the optimal curve. The second and the third steps
are then the same as before.

Table 1 gives a comparison and optimality loss of C-CVD (UF followed by CVD) and
VVD control strategy. VVD strategy is clearly suboptimal. We can observe that C-CVD
strategy is nearly time-optimal even if the minimum time control is quite different from
that used in C-CVD. This results from the restriction on upper value of control α. If this
value is raised such that pure dilution step is allowed the resulting operation times will
dramatically drop down.

In the case of minimum diluant problem, bang-bang type of control (CVD operation)
was observed numerically in [11]. Results derived here confirm this behaviour as both
retention coefficients are constant. Comparison with VVD strategy shows 61% optimality
loss in all considered cases.
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Figure 5: Analytical and numerical [11] minimum time control for Case 1. Left plot – optimal concentra-
tions diagram, right plot – optimal α(t).
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Figure 6: Analytical and numerical [11] minimum time control for Case 2. Left plot – optimal concentra-
tions diagram, right plot – optimal α(t).

Table 1: Comparison of time optimality loss (Δ) between optimal control and traditionally used strategies.

Case 1 Case 2 Case 3
C-CVD 0% 0.9% 0.4%
VVD 15% 13% 11%
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Table 2: Design factors and their levels (adopted from [19]).

Factor Code Unit Factor levels
Low(-) High(+)

Pressure A bar 4 8
Temperature B ◦C 28 50
pH C - 4 11
Dye concentration D ppm 100 400
Salt concentration E ppm 1000 6000

4.6. Case study 3: Dye – salt separation

We consider the nanofiltration (NF) model reported by Lau and Ismail [19]. In their
study, response surface methodology (RSM) was employed to evaluate the separation per-
formance of an NF membrane in the removal of salt and reactive dye by varying different
variables such as pressure, temperature, pH, dye concentration and salt concentration.
According to half fractional design of experiments (DoE), twenty-nine experiments were
carried out to investigate the effect of five inputs (i.e. pressure, temperature, pH, dye con-
centration, and salt concentration) on three responses (i.e. permeate flux, dye rejection,
and salt rejection). The design factors and their levels are shown in Table 2. The per-
meation of salt was found to be greatly influenced by pressure, pH and salt concentration
whereas the rejection of dye remained constant regardless of the changes in the variables.
The mean value of the dye rejection for the entire experimental data set is 98.0%. The
resulting surface responses for the salt rejection and the permeate flux in terms of coded
factors are given as

Y1 = 83.26 + 2.79A+ 8.37C − 4.52E − 1.96AC, (30a)

Y3 = 6.31 · 10−7 + 1.89 · 10−7A− 1.67 · 10−8D − 1.30 · 10−7E−
− 6.07 · 10−8C2 − 2.85 · 10−8AE − 2.096.31 · 10−8BD, (30b)

where Y1 is the salt rejection expressed in percentage and Y3 is the permeate flux given in
m s−1.

In this case study, we consider a textile waste stream with the initial dye and salt
concentrations to be c1(0) = 100 ppm and c2(0) = 4000 ppm. This is to be processed to
meet the quality constraints of the final product, c1(tf) = 400 ppm and c2(tf) = 1000 ppm.

Lau and Ismail [19] have found that the salt rejection increases with pressure and
decreases with feed pH. Thus, we fix the pressure at 4 bar, the pH at 4, and additionally,
the temperature at 50◦C. Using original scale instead of the coded factors and taking into
account the above mentioned process conditions, the membrane response can be formulated
as follows

R1 = b1, (31a)

R2(c2) = b2 − b3c2, (31b)

q(c1, c2) = b4 − b5c1 − b6c2, (31c)
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Table 3: Model parameters.

constant value
b1 0.9800
b2 0.7647
b3 1.8080×10−5

b4 5.8607×10−7

b5 2.5066×10−10

b6 4.0600×10−11
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Figure 7: Dye – salt separation: optimal operation. Left plot – optimal concentrations diagram with
different values of αmax, right plot – optimal α(t).

where bi are constants that are listed in Table 3.

Results. The dye rejection R1 is independent of the feed composition and we can assume
that it is sufficiently close to unity. In this case, because R11 = R12 = 0 and R1 ≈ 1, the
minimum time state curve is given by (5). Using the membrane response formulas given
in (31b) and (31c) we then obtain

Stime(c1, c2) = (b3c2 − b2 + 1) (2b5c1 − b4 + 2b6c2) + b3c2 (b5c1 − b4 + b6c2) = 0. (32)

The singular control α(t) is calculated by (7) which results in

α(t) =
c2 (2b2b6 − 2b22b6 − 2b2b3b4) + c22 (2b

2
3b4 − 2b3b6 + 8b2b3b6)− 6b23b6c

3
2

2(b5c1 + b6c2 − b2b5c1 − b3b4c2 − b2b6c2 + 3b3b6c
2
2 + 3b3b5c1c2)

+
c1 (2b1b5 − 2b1b2b5) + c1c2 (3b1b3b5 + 3b2b3b5)− 3b23b5c1c

2
2

2(b5c1 + b6c2 − b2b5c1 − b3b4c2 − b2b6c2 + 3b3b6c
2
2 + 3b3b5c1c2)

. (33)

The optimal control is shown in Fig. 7. Both initial and final concentrations are located
under the optimal concentration curve and the optimal process is a three-step process.
The first step is concentration mode (α = 0) until optimum concentration curve presented
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Table 4: Comparison of time optimality loss (Δ) between optimal control, optimal control with different
αmax and traditionally used strategies.

control C-DVD C-DVD C-DVD
C-CVD VVD

strategy (αmax=5) (αmax=2) (αmax=1)
Δ 0.1% 0.6% 8.3% 14.0% 55.3%

by (32) is reached. The second step is a dynamic-volume diafiltration with non-constant
α(t) where the diluant usage is given by (33). Since there is no upper limit for α, the third
step is a pure dilution mode with α = ∞. This step starts when the concentration ratio is
the same as the final one: c1(t)/c2(t) = 0.4.

Figure 7 shows for comparison the concentration profiles for different choice of maximum
value of α. As noted above, the limiting cast α = ∞ can simply be realized by postponing
the pure dilution step after the end of batch processing once the final solution is prepared
for the next operation. Another possibility would be to constrain αmax ≈ 5 where the
difference to optimal operation is not large.

Table 4 shows comparison of time optimality loss between optimal control (αmax = ∞),
optimal control with αmax restricted to different values and traditional control approaches.
Here we can see that the difference between optimal control and optimal control with
αmax = 5 is practically negligible. This difference increases, but not dramatically, if α is
constrained from above by 2. However, it becomes significant (8.3% of optimality loss) in
the case of αmax = 1. Comparison with traditional control strategies shows 14% slower
process with C-CVD approach. Finally, the VVD approach controls the process slower by
more than 50%.

Also note that traditional operation is constrained with c1 < 400 ppm whereas the
proposed optimal operation needs this constraint approximately twice as large. It may
happen that S(c1, c2) is located outside of the experimentally investigated region of c1 and
c2 where the membrane response model is not validated. It seems that the common practice
is that investigators focus on obtaining experimental data from the design space bounded
by (c1,0, c2,0) and (c1,f, c2,f) coordinates whereas optimal operation might be performed
outside of this area. In other words, optimal operation might involve over-concentration
or dilution of the solution and thus, a bigger design space should be considered during the
experimentation phase.

Recalling that R1 = 1 is assumed, the optimal state curve for the minimum diluant
problem is defined by (6). Using the membrane response formulas given in (31b) and (31c),
the optimal state curve can be written as

Sdiluant(c2) = b2 − 2b3c2 − 1 = 0. (34)

This results in a single equation involving only variable c2. Solving this equation yields a
negative value (c2 = −6508) that is technically not feasible. The optimal control is then of
bang-bang type: a two-step process where the first step is a concentration step with α = 0
and the second is a dilution mode operation applying the maximum value of α.
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4.7. Case study 4: Sucrose – sodium chloride separation

This case study is taken from our previous study [7] where we concentrated on utilisation
of numerical methods of dynamic optimisation to derive the optimal control of diafiltration
process using an economic cost function.

This case study represents diafiltration system with one variable retention coefficient
(R1 is almost constant and equal to one) and the empirical relations for q and R2 as
functions of feed composition are as follows:

q = U1(c2)e
U2(c2)c1, (35a)

R2 = V1(c2)e
V2(c2)c1 , (35b)

where U1, U2, V1, and V2 are second order polynomials in c2 whose coefficients were de-
termined from laboratory experiments with the process solution [20]. It is assumed that
α ∈ [0, 1].

Results. It is desired to concentrate sucrose and dilute sodium chloride in solution from
their initial concentrations given by point [c1,0, c2,0] = [10, 250] to final concentrations
represented by the point [c1,f, c2,f] = [50, 50].

The optimum concentration curve for the minimum time problem depends on both
concentrations and is given by (5). The optimum concentration curve corresponding to
the minimum diluant problem is given by (6).

Both curves have been found using numerical non-linear equation solvers. Figure 8
shows the optimal control of the process for the considered case. Results show that even
if the optimal concentration curve expressions look entirely different, solutions to both
optimal control problems are nearly the same: minimum-time approach takes 10.24 hours
and 0.143m3 of diluant, and minimum-diluant approach takes 10.25 hours and consumes
0.143m3 of diluant. In contrast to that, a traditional treatment with NF followed by CVD
and ended by another NF (C-CVD-C) step lasts 14.46 hours and uses 0.256m3 of diluant.
Here 3.61 and 1.35 are pre-concentration and post-concentration factors, respectively.

Although the two-step approach (α = {0, 1}) would result in faster process, it would
yield high concentrations of salt during the process run that lay out of the range studied
in [20]. The model is not validated through experiments for this regime, thus, we have
to exclude this strategy from further discussion. In general, a great care is needed when
using empirical models, especially polynomials, for predicting flux and rejections out of
the validated range. In such cases, application of mechanism-driven models could be
considered instead. Note that even complex physical models can be easily treated by the
here proposed optimisation methodology. Physical models can be used first to compute
membrane response for a defined set of c1 and c2 that covers the entire area of question,
and then simplified by fitting some simpler empirical relations.

VVD approach is clearly sub-optimal since it takes 22.753 hours and 0.505m3 of dilu-
ant. Another interesting result here is that C-VVD (process duration 14.07 hours, diluant
consumption 0.253m3, pre-concentration factor 3.69) approach is faster than C-CVD-C.
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Figure 8: Analytical optimal control of sucrose–sodium chloride separation. Left plot – optimal concen-
trations diagram, right plot – optimal α(t).

Table 5: Comparison of optimality loss (Δ) between optimal control and traditionally used strategies.

Δtime Δdiluant

C-CVD-C 41% 79%
C-VVD 37% 77%
VVD 122% 253%

However, this is caused by the previously mentioned inadmissibility of two-step C-CVD op-
eration. Table 5 summarizes how much we gain by using of optimal control in comparison
with traditional strategies.

4.8. Case study 5: Radiopaque – ethylene glycol separation

We treat a variation of the case study examined in [9] where authors studied filtra-
tion using reverse osmosis membrane to treat a solution containing 12 g/dL of radiopaque
component (c1) and 0.5 g/dL of ethylene glycol (c2) to end up with the product with con-
centrations: 40 g/dL of radiopaque and 0.01 d/dL of ethylene glycol. For the purpose of
this study constants which characterize rejection of radiopaque were slightly changed to re-
flect the situation where rejection R1 is not close to one. Model of the membrane response
then reads as

q = −29.19 ln c1 + 118.1, (36a)

R1 = 1− (0.01c1 + 0.25c2 + 0.1), (36b)

R2 = 1− (0.0073c1 + 0.813). (36c)

Results. This example represents a situation when we are not able to obtain expression
for optimal concentration surface analytically. We proceed as suggested in Section 3.2
and derive an expression for singular optimal control from (A.22). Then we use numerical
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Figure 9: Minimum time control of radiopaque – ethylene glycol separation.

optimization to find corresponding lengths of three time intervals and extremal values of
α in the first and third phases.

Once the structure and lengths of respective intervals are fixed, we can operate the
process optimally with singular control (A.22) in the middle part.

Fig. 9 shows optimal evolution of concentrations under minimum time control α. When
compared with traditional control strategies, minimum time strategy saves 4.5% of process
time in comparison with C-CVD (CVD step done at concentration clim/e) and 18% of
process time when compared to VVD control strategy.

In minimum diluant case, although that it is possible that optimal surface exists, it did
not appear for given initial and final conditions. The optimal control is of bang-bang type.

5. Conclusions

This study deals with batch concentration/diafiltration problems that are often occur in
the RO, NF, UF, and MF engineering practice. We have employed optimal control theory
and derived an analytical solution to the problem that involves complete rejection of macro-
solute (R1 = 1), concentration-dependent rejection of micro-solute (R2 = R2(c1, c2)), and
a general flux model (q = q(c1, c2)). The extension of this problem to concentration-
dependent rejection of macro-solute (R1 = R1(c1, c2)) remains analytically unsolved. How-
ever, for this general case we have developed an efficient numerical procedure that exploits
the findings of our theoretical analysis and considerably reduces the required computational
efforts.

We provide a step-by-step procedure to compute the optimal diluant utilization. By
applying this procedure, one can determine the optimal time-varying profile of wash-water
addition for the entire operation. In some cases, the computed optimal profile is found to be
a sequence of conventionally-used steps (i.e. concentration mode, constant-volume diafil-
tration, variable-volume diafiltration). The provided procedure readily finds the optimal
sequence (number and order) of such steps as well as the corresponding switching times.
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In most of the cases, however, the optimal trajectory does not follow the shape of known
diafiltration techniques. Such non-linear α-control strategies can either be implemented
through advanced control configuration or be simplified by a sequence of conventional pro-
cess steps having a similar shape. The procedure allows one to quantify time and diluant
savings of the optimal trajectory, thus, it is a useful engineering tool in the decision maker’s
hand.

We have demonstrated through selected case studies how one can apply the provided
optimization theory. We have considered various, both theoretical and empirical, mem-
brane response models as inputs for the given optimization procedure. A great deal of care
is needed when generalizing the findings as far as general patterns in the shape of optimal
trajectory are considered among different applications. This is due to the great variety
and complexity of possible membrane response models regarding concentration-dependent
rejections and flux functions. Note that the provided procedure is general in a sense that it
can be readily applied to different membrane response models, but the computed optimal
profile may vary with the complexity of the membrane response model, the initial and
final values, and the constraints involved in the model. We have shown that in many cases,
time and diluant savings become more significant with increasing complexity of the model
of membrane response, e.g. strongly non-linear membrane response with regard to both
considered components.

Analysis and numerical optimisation have shown that the optimal solution of the time
minimisation problem consists of usually three stages. The first and the last ones take
extremal values of α which is pure concentration and either pure dilution (when α is
unbounded from above) or operation with maximal α. The middle stage can have various
time varying trajectories of control. Its complexity depends in the majority of studied
cases on the functional dependence of the outflow q on concentrations. Often, if it is a
function of macro-solute concentration only, the corresponding middle control strategy is
constant macro-solute concentration maintaining operation (this is CVD if R1 = 1) with
various optimal concentrations of the macro-solute. This is shown in the examples with
limiting flux and osmotic pressure models. There are also cases where the middle stage is
VVD with α < 1 as can be seen in the first treated case study. The most general form,
however, is a complex non-linear curve (remaining case studies).

The problem of the minimisation of the diluant consumption is analogous to the pre-
ceding case, but it depends only on the functional dependence of rejection coefficients
on concentrations. The most usual case of constant rejection coefficients results in the
so-called bang-bang control where only UF and pure dilution are allowed.

Results indicate that improvement of the proposed procedure as compared to traditional
operation depends on the problem complexity. Processes with simpler membrane and/or
permeate flow characteristics already operate near optimal regime. The improvement for
more complex scenarios can be significant enough to invest in better models and advanced
control configuration.

List of symbols
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A membrane area (m2)
c concentration in feed tank
H Hamiltonian function
J objective function
k mass transfer coefficient (m s−1)
k0 mass transfer coefficient without the wall correction factor (m s−1)
k′ mass transfer coefficient under limiting flux conditions (m s−1)
ΔP average transmembrane pressure (Pa)
q permeate flow (m3 s−1)
R rejection coefficient
Rm membrane resistance (m−1)
S optimal state surface
t operation time (s)
u vector of control variables
V volume in feed tank (m3)
x vector of state variables
z exponent in the wall correction factor in Eq. (15)

Greek symbols
α proportionality factor of diluant flow to permeate flow
γ coefficient in Eq. (15)
λ vector of adjoint variables
μ0 solution viscosity (Pa s)
π osmotic pressure (Pa)

Subscripts
i component (i=1 macro-solute, and i=2 micro-solute)
0 initial condition
f final condition

lim limiting
Abbreviations
C concentration mode

CVD constant-volume diafiltration
DF diafiltration
DVD dynamic-volume diafiltration
MF microfiltration
NF nanofiltration
RO reverse osmosis
UF ultrafiltration
VVD variable-volume diafiltration
VCF volume concentration factor
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Appendix A. General formulation of optimal diluant utilization strategy

To solve the specified problems, we will make use of Pontryagin’s minimum principle,
which is in our case as follows [21, 22].

Let us consider a dynamical system with state vector x = (c1, c2, V )T and scalar control
α that enters system equations linearly such that

ẋ = f (x) + g(x)α, x(0) = x0, x(tf) = xf, α(t) ∈ [αmin, αmax], t ∈ [0, tf], (A.1)

and the cost function

J = min
α

∫ tf

0

[F0(x) + Fα(x)α] dt. (A.2)

Further, let us define the HamiltonianH and the vector of adjoint variables λ = (λ1, λ2, λ3)
T

such that

H(x, α,λ) = F0(x) + Fα(x)α + λT [f (x) + g(x)α] = H0(x,λ) +Hα(x,λ)α. (A.3)

Necessary conditions of optimality as derived in Pontryagin’s principle of minimum are
then defined as

α = argmin
α

H(x, α,λ), α ∈ [αmin, αmax], (A.4a)

ẋ =
∂H

∂λ
, x(0) = x0, x(tf) = xf, (A.4b)

λ̇ = −∂H

∂x
, (A.4c)

H = 0, ∀t ∈ [0, tf]. (A.4d)

The last condition arises because of the synergy of two facts: optimal Hamiltonian is
constant over the whole time horizon since it is not an explicit function of time and it is
zero at final time since the final time is unspecified in treated optimization problems.

The Hamiltonian is linear in α. Thus, its minimum will be attained with α on its
boundaries as

α =

{
αmin if Hα > 0,

αmax if Hα < 0.
(A.5)

If Hα = 0 the Hamiltonian is singular and does not depend on α. In this case, according
to [23, 24], it may be possible to construct optimal surface S(c1, c2, V ) = 0 corresponding
to singular control that depends on state variables only. We use the fact that the condition
Hα = 0 implies (because of (A.4d)) that H0 = 0 and also their derivatives with respect to
time are equal to zero as well. We will make use of the following equations

H0(c1, c2, V, λ1, λ2, λ3) = 0, (A.6a)

Hα(c1, c2, V, λ1, λ2, λ3) = 0, (A.6b)

diH0

dti
(c1, c2, V, α, λ1, λ2, λ3) = 0, (A.6c)

diHα

dti
(c1, c2, V, α, λ1, λ2, λ3) = 0, (A.6d)
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to eliminate the adjoint variables λ1, λ2, λ3 where ith order time derivatives will be con-
sidered with i = {1, 2, . . .} taking the necessary value. We note that it is not possible to
use both conditions (A.6c) and (A.6d) simultaneously since they are linearly dependent on
each other. This can be shown for i = 1 using (A.4d) and its time derivative

dH

dt
=

dH0

dt
+

dHα

dt
α +Hα

dα

dt
= 0. (A.7)

Since term Hα = 0 it is clear that Ḣ0 and Ḣα may not vary independently so zeroing one
of these terms zeroes the other as well. This applies analogically for i > 1.

Optimal control in special cases. As it will be shown later, the optimal state surface will
be in special cases a function of concentrations only S(c1, c2) = 0. Thus, it will be a curve
in the concentration space. Once it is found, the corresponding singular control can be
obtained by considering its derivative with respect to time

dS(c1, c2)

dt
=

∂S

∂c1
ċ1 +

∂S

∂c2
ċ2 = 0. (A.8)

Using process differential equations (1) then yields

∂S

∂c1

c1q

V
(R1 − α) +

∂S

∂c2

c2q

V
(R2 − α) = 0. (A.9)

This equation can be satisfied if α is calculated as

α(t) =
∂S
∂c1

c1R1 +
∂S
∂c2

c2R2

∂S
∂c1

c1 +
∂S
∂c2

c2
. (A.10)

Optimal control in general case. In general it might be not possible to end up with closed
form representation of singular surface without using adjoint variables λ which trajectories
are in our case not known. However, it is possible to find an expression for optimal control
as a function of concentrations only.

This argument is based on a fact that optimality conditions (A.6) represent the system
of equations linear in adjoint variables. By taking linear equations with zero right-hand
side, it is possible to form a homogeneous system which has a non-trivial solution only
if the determinant of its coefficient matrix is zero [24]. Thus by selecting three linearly
independent homogeneous equations from (A.6) and by computing the determinant we find
the expression for optimal control on so-called singular arc, if such exists.

The overall control strategy will not change from the previously mentioned one. In
this case however, switches between constrained and singular control trajectories have to
be found by other means. In our study we find them numerically by formulating a simple
optimisation problem.
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Appendix A.1. Minimum time problem

The Hamiltonian function for the studied problem is of the form

H = 1 + λ1
c1q

V
(R1 − α) + λ2

c2q

V
(R2 − α) + λ3(α− 1)q (A.11a)

= α
q

V
(−λ1c1 − λ2c2 + λ3V ) +

q

V
(λ1c1R1 + λ2c2R2 − λ3V ) + 1, (A.11b)

and the adjoint variables are defined by the following differential equations

λ̇1 = −λ1
1

V
[(q + c1q1)(R1 − α) + c1qR11]− λ2

1

V
[c2q1(R2 − α) + c2qR21]− λ3(α− 1)q1,

(A.12a)

λ̇2 = −λ1
1

V
[c1q2(R1 − α) + c1qR12]− λ2

1

V
[(q + c2q2)(R2 − α) + c2qR22]− λ3(α− 1)q2,

(A.12b)

λ̇3 =
q

V 2
[λ1c1(R1 − α) + λ2c2(R2 − α)], (A.12c)

where

q1 =
∂q

∂c1
, R11 =

∂R1

∂c1
, R21 =

∂R2

∂c1
, (A.13a)

q2 =
∂q

∂c2
, R12 =

∂R1

∂c2
, R22 =

∂R2

∂c2
. (A.13b)

The optimality conditions (A.6) are as follows

Hα : − λ1c1 − λ2c2 + λ3V = 0, (A.14a)

H0 : λ1c1R1q + λ2c2R2q − λ3V q + V = 0, (A.14b)

dHα

dt
: λ1c1p1(c1, c2) + λ2c2p2(c1, c2) + λ3V p3(c1, c2) = 0, (A.14c)

where

pi(c1, c2) = Ri(q + c1q1 + c2q2) + q(c1Ri1 + c2Ri2) i = 1, 2 (A.15a)

p3(c1, c2) = −(q + c1q1 + c2q2). (A.15b)

For the next step, we use equations (A.14a) and (A.14c) which let us, after some manipu-
lations, arrive at condition

S = λ1c1S1 + λ2c2S2 = 0, (A.16)

where S1 and S2 are given as

S1(c1, c2) = (R1 − 1)(q + c1q1 + c2q2) + q(c1R11 + c2R12), (A.17a)

S2(c1, c2) = (R2 − 1)(q + c1q1 + c2q2) + q(c1R21 + c2R22). (A.17b)

Since (A.16) depends on unknown trajectories of adjoint variables it might be in general
very difficult (maybe even impossible) to find concentration trajectory along which this
equation is satisfied. However, there are some cases when it will be easily satisfied:
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• R1 = 1 (R11 = R12 = 0). This represents a common situation for a macro-solute that
does not get through the membrane and micro-solute can have arbitrary properties.
The optimal curve is given as

S(c1, c2) = (R2 − 1)(q + c1q1 + c2q2) + q(c1R21 + c2R22) = 0, (A.18)

• both R1 ≤ 1, R2 are constant (Rij = 0). If both retention coefficients R1 and R2

are constant and do not depend on concentrations (for example a perfect membrane
with R1 = 1, R2 = 0) the optimal curve is given as

S(c1, c2) = q + c1q1 + c2q2 = 0. (A.19)

In both these special cases we can proceed to find expressions for optimal control (7)
and use directly the optimal control procedure as stated above. In order to advance in the
general case we will further differentiate w.r.t. time the equation (A.16) (note that this is
equivalent to taking the second order time derivative of (A.6b)). This differentiation yields

λ1c1(a1α + b1) + λ2c2(a2α + b2) + λ3V b3 = 0, (A.20)

where expressions ai and bi for i = 1, 2 are given as follows

ai = −c1q
∂Si

∂c1
− c2q

∂Si

∂c2
, (A.21a)

bi = c1

(
qR1

∂Si

∂c1
− (qRi1 +Riq1)S1

)
+ c2

(
qR2

∂Si

∂c2
− (qRi2 +Riq2)S2

)
, (A.21b)

and
b3 = c1q1S1 + c2q2S2. (A.21c)

By writing equations (A.14a), (A.14c) and (A.20) together we recognize homogeneous
system of linear equations in variables λ1c1, λ2c2 and λ3V . Such a system possesses a
non-trivial solution only if determinant of its coefficient matrix is equal to zero. Using this
and after some rearrangement we arrive at expression for optimal control∣∣∣∣∣∣

1 1 −1
S1 S2 0

a1α + b1 a2α + b2 b3

∣∣∣∣∣∣ = 0 ⇒ α =
(S1 − S2)b3 + S1b2 − S2b1

S2a1 − S1a2
. (A.22)

Appendix A.2. Minimum diluant problem

The Hamiltonian function for the diluant problem is of the form

H = αq + λ1
c1q

V
(R1 − α) + λ2

c2q

V
(R2 − α) + λ3(α− 1)q (A.23a)

= α
q

V
(−λ1c1 − λ2c2 + λ3V + V ) +

q

V
(λ1c1R1 + λ2c2R2 − λ3V ), (A.23b)
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where the adjoint variables are defined by the following differential equations

λ̇1 = −αq1 − λ1
1

V
[(q + c1q1)(R1 − α) + c1qR11]− λ2c2

1

V
[q1(R2 − α) + qR21]− λ3(α− 1)q1,

(A.24a)

λ̇2 = −αq2 − λ1c1
1

V
[q2(R1 − α) + qR12]− λ2

1

V
[(q + c2q2)(R2 − α) + c2qR22]− λ3(α− 1)q2,

(A.24b)

λ̇3 =
q

V 2
[λ1c1(R1 − α) + λ2c2(R2 − α)], (A.24c)

and variables qi, Rij are defined in (A.13). The optimality conditions (A.6) are as follows

Hα : − λ1c1 − λ2c2 + λ3V + V = 0, (A.25a)

H0 : λ1c1R1 + λ2c2R2 − λ3V = 0, (A.25b)

dH0

dt
: λ1c1m1(c1, c2) + λ2c2m2(c1, c2)− λ3V = 0, (A.25c)

where

m1(c1, c2) = 1− c1R11 − c2R12, (A.26a)

m2(c1, c2) = 1− c1R21 − c2R22. (A.26b)

Using equations (A.25b) and (A.25c) we can arrive at condition

S = λ1c1S1 + λ2c2S2 = 0, (A.27)

where S1 = R1−m1 and S2 = R2−m2. Again, validity of this equation depends on adjoint
variables except for special cases:

• R1 = 1 (R11 = R12 = 0). The optimal curve is given as

S(c1, c2) = R2 − 1 + c1R21 + c2R22 = 0, (A.28)

• either R1 	= 1 or R2 is constant. The optimal surface does not exist and the optimal
control is of bang-bang type.

As in previous problem, if optimal surface exists, a control which will maintain optimal
concentrations can be found by further differentiation (w.r.t. time) of (A.27). If it is not
the case, we choose system of three linearly independent homogeneous equations (A.25a),
(A.25c) and time derivative of (A.27) to form a coefficient matrix. Its determinant gives
the condition for optimal control along singular arc

α =
b2S1 − b1S2

a1S2 − a2S1
, (A.29)

where

ai = −c1
∂Si

∂c1
− c2

∂Si

∂c2
, (A.30a)

bi = c1R1
∂Si

∂c1
+ c2R2

∂Si

∂c2
− c1Ri1S1 − c2Ri2S2. (A.30b)
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