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CHERN CHARACTER FOR TOTALLY DISCONNECTED

GROUPS

CHRISTIAN VOIGT

Abstract. In this paper we construct a bivariant Chern character for the

equivariant KK-theory of a totally disconnected group with values in bivariant

equivariant cohomology in the sense of Baum and Schneider. We prove in
particular that the complexified left hand side of the Baum-Connes conjecture

for a totally disconnected group is isomorphic to cosheaf homology. Moreover,

it is shown that our transformation extends the Chern character defined by
Baum and Schneider for profinite groups.

1. Introduction

Let G be a second countable locally compact group. The Baum-Connes conjec-
ture [4] asserts that the K-theory of the reduced group C∗-algebra C∗red(G) of G
is isomorphic to the equivariant K-homology of the universal proper G-space EG.
More precisely, the assembly map

µ : KG
∗ (EG)→ K∗(C

∗
red(G))

is conjectured to be an isomorphism. In this paper we construct an equivariant
Chern character for the left hand side of the assembly map in the case that the
group G is totally disconnected. We show in particular that the complexified equi-
variant K-homology of EG for a totally disconnected group G is given by cosheaf
homology [4].
The corresponding result for discrete groups has been obtained independently by
Baum and Connes [3] and Lück [18]. The approach of Lück actually yields Chern
characters for arbitrary equivariant homology theories with source given by associ-
ated Bredon homologies. For equivariant K-homology and group actions on sim-
plicial complexes, the corresponding Bredon homology with complex coefficients is
naturally isomorphic to cosheaf homology. However, it seems to be unclear wether
the case of totally disconnected groups can still be handled in the framework of
Lück. We remark that the result for totally disconnected groups stated above has
also been obtained by Baum, Block and Higson in an unpublished paper [1].
In fact we prove a more general statement. The target of our Chern character is bi-
variant equivariant cohomology in the sense of Baum and Schneider [5]. One virtue
of this cohomology theory is that it unifies and generalizes previous constructions
in the literature. In particular, the theory of Baum and Schneider contains the
cosheaf homology groups mentioned above as a special case.
The main result of this paper is the construction of a bivariant Chern character

chG∗ : KKG
∗ (C0(X), C0(Y ))→

⊕
j∈Z

H∗+2j
G (X,Y )

from equivariant KK-theory with values in the theory of Baum and Schneider.
Here G is a totally disconnected group, X and Y are finite dimensional locally
finite G-simplicial complexes in the sense of [32] and X is assumed to be proper
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2 CHRISTIAN VOIGT

and G-finite. This Chern character becomes an isomorphism after tensoring the
left hand side with the complex numbers. We also discuss how the character can
be extended to G-CW -complexes. The restriction to simplicial complexes is neces-
sary in order to apply the machinery of equivariant cyclic homology [30]. In fact,
equivariant cylic homology is the main ingredient in our construction.
We remark that Baum and Schneider conjectured the existence of such a bivariant
Chern character in [5] and provided a construction in the case of profinite groups.
However, this construction does not extend to noncompact groups. Thus, in some
sense, the present paper completes the work of Baum and Schneider.
An important ingredient in the construction of Lück is the induction structure for an
equivariant homology theory [18]. As already mentioned above, the approach pre-
sented here is based on equivariant cyclic homology. In turn, for the construction of
our Chern character we need some information on the compatibility of equivariant
cyclic homology with induction. From a technical point of view the corresponding
considerations constitute the main part of this paper. Apart from this, the con-
structions and results from [31] play a central role. In fact, our Chern character is
obtained by combining the equivariant Chern-Connes character from [31] with the
description of bivariant equivariant cohomology in terms of cyclic homology given
in [32].
Let us explain how the paper is organized. In section 2 we recall some facts about
smooth representations of totally disconnected groups and anti-Yetter-Drinfeld mod-
ules. Smooth representations and anti-Yetter-Drinfeld modules are a basic ingre-
dient in the definition of equivariant cyclic homology and the theory of Baum and
Schneider. Section 3 contains a brief survey of the different variants of equivariant
cyclic homology involved in the construction of the Chern character. The basic the-
ory of restriction and induction of G-modules, G-algebras and anti-Yetter-Drinfeld
modules is discussed in section 4. In section 5 this is used to study induction in
equivariant cyclic homology. Section 6 contains the construction of the equivari-
ant Chern character for G-simplicial complexes. This yields the main result stated
above. In section 7 we show that our Chern character restricts to the natural trans-
formation defined by Baum and Schneider in the case of profinite groups. Finally,
in section 8 we explain how to extend the homological Chern character arising from
our constructions to proper G-CW -complexes and discuss the relation to the Chern
character constructed by Lück.
I would like to thank W. Lück for some helpful comments.

2. Smooth representations and anti-Yetter-Drinfeld modules

Throughout this paper let G be a second countable locally compact and totally
disconnected group. As in [32] we call an element t ∈ G elliptic if it is contained
in a compact subgroup. The set of all elliptic elements of G is denoted by Gell.
In contrast we shall say that an element t ∈ G is hyperbolic if it is not elliptic.
Let Ghyp be the set of all hyperbolic elements of G. Hence, according to these
definitions, we obtain a disjoint union decomposition

G = Gell ∪Ghyp

of the space G. It follows from the structure theory developped in [33] that Gell is
a closed subset of G and that Gell is the union of all compact open subgroups of G.
Consequently Ghyp is again an open and closed subset of G.
In this section we review some facts about smooth representations of totally dis-
connected groups on bornological vector spaces and anti-Yetter-Drinfeld modules.
For more information on bornological vector spaces and smooth representations we
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refer to [11], [12], [20], [23]. Concerning anti-Yetter-Drinfeld modules further de-
tails can be found in [30], [32] where these objects were called covariant modules
instead. All bornological vector spaces in this paper are assumed to be convex and
separated. The completion of a bornological vector space V is denoted by V c.
A representation of G on a bornological vector space V is a group homomorphism
π : G → Aut(V ) where Aut(V ) denotes the group of bounded linear automor-
phisms of V . A bounded linear map f : V → W between representations of G is
called equivariant if f(s · v) = s · f(v) for all s ∈ G, v ∈ V . To a representation
π : G → Aut(V ) one associates the linear map [π] : V → F (G,V ) defined by
[π](v)(t) = π(t)(v) where F (G,V ) denotes the space of all functions from G to V .
We denote by E(G,V ) the space of all locally constant functions on G with values
in V .

Definition 2.1. Let V be a separated bornological vector space. A representation π
of G on V is called smooth if [π] defines a bounded linear map from V into E(G,V ).
A separated (complete) G-module is a smooth representation of V on a separated
(complete) bornological vector space.

If V is a separated G-module the stabilizers of small subsets of V are open sub-
groups of G. Conversely, if π is a representation on a bornological vector space
V such that the stablizers of all small subsets are open it follows that π is a G-
module. In particular, if V carries the fine bornology one recovers the usual notion
of a smooth representation on a complex vector space.
The Hecke algebra of the group G is the space D(G) of locally constant functions
with compact support on G equipped with the convolution product with respect to
a fixed Haar measure. Every separated G-module V becomes a module over D(G)
using integration. Moreover, the D(G)-module V obtained in this way is essen-
tial in the sense that the canonical map D(G) ⊗D(G) V → V is an isomorphism.
Conversely, every essential D(G)-module is the integrated form of a smooth repre-
sentation.
For an arbitrary representation of G on a separated bornological vector space V
there exists a smoothing Smooth(V ) which is a smooth representation. This con-
struction yields a functor Smooth that is right adjoint to the natural forgetful
functor from the category of G-modules to the category of arbitrary representa-
tions on bornological vector spaces.
Let us now recall the concept of an anti-Yetter-Drinfeld module. We write OG for
the vector space D(G) equipped with pointwise multiplication and the action of G
by conjugation.

Definition 2.2. A separated (complete) anti-Yetter-Drinfeld module M is a sepa-
rated (complete) G-module which is at the same time an essential OG-module. The
G-module structure and the OG-module structure are required to be compatible in
the sense that

s · (f ·m) = (s · f) · (f ·m)

for all s ∈ G, f ∈ OG and m ∈M .

A homomorphism ξ : M → N of anti-Yetter-Drinfeld modules is a bounded
linear map which is both G-equivariant and OG-linear. In the sequel we will use
the abbreviations AYD-module and AYD-map for anti-Yetter-Drinfeld modules and
their homomorphisms. We write HomG(M,N) for the space of AYD-maps between
AYD-modules M and N .
The category of AYD-modules is isomorphic to the category of essential A(G)-
modules where A(G) = OG oG is the smooth crossed product of OG with respect
to the adjoint action. In particular, for any bornological vector space V the space
A(G)⊗V becomes an AYD-module. The modules arising in this way are projective,
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and every projective AYD-module is a direct summand in an AYD-module of this
form. An important property of AYD-modules is the fact that they are equipped
with a natural automorphism T . In this way the category of AYD-modules becomes
a para-additive category in the sense of [30]. For equivariant differential forms we
will describe the automorphism T explicitly in section 3 below.
Let us discuss some features of AYD-modules which are specific to the setting of
totally disconnected groups. For a totally disconnected group there is a natural
decomposition of an AYD-module into an elliptic and a hyperbolic part. Since the
group G is the disjoint union of its elliptic and hyperbolic elements one has two
natural multipliers Pell and Phyp of the algebra OG. By definition, the multiplier
Pell is the characteristic function of the set Gell whereas Phyp = 1−Pell is the char-
acteristic function of Ghyp. For every AYD-module M this yields a natural direct
sum decomposition of AYD-modules

M = Mell ⊕Mhyp

where Mell = Pell ·M and Mhyp = Phyp ·M . Usually, the behaviour of the operator
T is quite different on the two summands in this decomposition. For instance, for
every element m ∈Mell there exists a natural number n such that Tn(m) = m. Us-
ing this fact one constructs an AYD-map E : Mell →Mell which yields a projection
onto the T -invariant elements in Mell. In contrast, if M is a projective AYD-module
then the operator id−T is injective on the hyperbolic part Mhyp of M . Moreover
id−T : Mhyp → (id−T )Mhyp is an isomorphism in this case.
If M is an AYD-module we write M ⊗T C for the space of T -coinvariants, that is,
the quotient of M by the closed subspace generated by all elements T (m)−m for
m ∈ M . Note that the action of T on M can be viewed as a module structure
of the algebra R = C[z, z−1] of Laurent polynomials. Then M ⊗T C = M ⊗R C
where C is viewed as a module over R using the character given by evaluation at 1.
Remark that M ⊗T C is again an AYD-module in a natural way. Every AYD-map
M → N induces an AYD-map M ⊗T C→ N ⊗T C on T -coinvariants.
Finally, for local cyclic homology the concept of a primitive AYD-module is impor-
tant [31]. An AYD-module P is called primitive if there is a small disk S ⊂ P such
that the natural map A(G) ⊗ 〈S〉 → P is a quotient map. Every AYD-module M
can be written in a canonical way as direct limit of the primitive modules A(G)〈S〉
generated by small disks S in M . The relation between inductive systems of prim-
itive modules and general AYD-modules is analogous to the one between inductive
systems of normed spaces and separated bornological vector spaces.

3. Equivariant periodic, analytic and local cyclic homology

In this section we review the definition of equivariant periodic, analytic and local
cyclic homology. These theories are studied in detail in [30], [31].
A separated G-algebra is a separated bornological algebra A which is also a G-
module such that the multiplication map A ⊗ A → A is equivariant. The unita-
rization of a G-algebra A is denoted by A+ and again a G-algebra in a natural way
where the group acts trivially on scalar multiples of the unit element 1 ∈ A+.
Let A be a separated G-algebra. The equivariant n-forms of A are defined by
ΩnG(A) = OG ⊗ Ωn(A) where Ωn(A) = A+ ⊗ A⊗n is the space of noncommutative
differential forms over A. The group G acts diagonally on ΩnG(A) and there is an
obvious OG-module structure given by multiplication. In this way ΩnG(A) becomes
a separated AYD-module. We write ΩG(A) for the direct sum of the spaces ΩnG(A).
On equivariant differential forms there are two important boundary operators. The
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equivariant Hochschild boundary b : ΩnG(A)→ Ωn−1G (A) is defined by

b(f(s)⊗x0dx1 · · · dxn) = f(t)⊗ x0x1dx2 · · · dxn

+

n−1∑
j=1

(−1)jf(s)⊗ x0dx1 · · · d(xjxj+1) · · · dxn

+ (−1)nf(s)⊗ (s−1 · xn)x0dx1 · · · dxn−1.

Moreover we have the equivariant Connes operator B : ΩnG(A) → Ωn+1
G (A) which

is given by

B(f(s)⊗ x0dx1 · · · dxn) =

n∑
i=0

(−1)nif(s)⊗ s−1 · (dxn+1−i · · · dxn)dx0 · · · dxn−i.

Both b and B are AYD-maps and the natural isomorphism T for AYD-modules has
the form

T (f(s)⊗ ω) = f(s)⊗ s−1 · ω
on ΩnG(A). The space of equivariant differential forms together with the operators
b and B forms a paramixed complex [30] which means that the relations b2 = 0,
B2 = 0 and [b, B] = bB +Bb = id−T hold.
Equivariant differential forms are used to define the equivariant X-complex of a
separated G-algebra.

Definition 3.1. Let A be a separated G-algebra. The equivariant X-complex
XG(A) of A is

XG(A) : Ω0
G(A)

B //
Ω1
G(A)/b(Ω2

G(A)).
b

oo

If ∂ denotes the boundary operator in XG(A) then ∂2 = id−T is in general not
zero. Hence the equivariant X-complex is not a chain complex. Instead, it is a
paracomplex in the following sense [30].

Definition 3.2. A paracomplex C = C0 ⊕ C1 is a given by AYD-modules C0 and
C1 in C together with AYD-maps ∂0 : C0 → C1 and ∂1 : C1 → C0 such that

∂2 = id−T.

A chain map φ : C → D between two paracomplexes is an AYD-map from C to D
that commutes with the differentials.

In the same way as for ordinary chain complexes one defines homotopies, map-
ping cones and suspensions. Together with this additional structure the homotopy
category of paracomplexes becomes a triangulated category.
In order to obtain the paracomplexes needed for the definition of equivariant cyclic
homology one has to insert certain tensor algebras into the equivariant X-complex.
Consider the space Ω(A) of ordinary differential forms over a G-algebra A. By
definition, the analytic bornology on Ω(A) is the bornology generated by the sets

S ∪
∞⋃
n=1

S(dS)n ∪ (dS)n

for all small sets S ⊂ A. Unless explicitly stated otherwise, we will always equip
Ω(A) with the analytic bornology. The space Ω(A) becomes a separated G-algebra
with the Fedosov product

ω ◦ η = ωη − (−1)|ω|dωdη
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for homogenous forms ω and η and the diagonal action of G. By definition, the
analytic tensor algebra T A of A is the subalgebra of differential forms of even de-
gree. The basic ingredient in the definition of periodic, analytic and local cyclic
homology is the equivariant X-complex of the tensor algebra.
To obtain interesting homology groups one has to complete this paracomplex in
some way. The most evident way of completion, namely the completion of the
underlying bornological vector space, leads to the analytic theory. Before giving
the general definition of equivariant analytic cyclic homology let us first discuss the
completions needed to define the local and the periodic theory, respectively.
For the local theory the ordinary completion is replaced by the derived completion.
The derived completion is the left derived functor of the completion functor with
respect to the localization of the homotopy category of paracomplexes at the class of
locally contractible paracomplexes. A paracomplex C is called locally contractible
provided all chain maps P → C are homotopic to zero whenever P is a primitive
paracomplex. By definition, a paracomplex P is called primitive if its underlying
AYD-module is primitive. The class of locally contractible paracomplexes forms
a null system in the homotopy category of paracomplexes and the corresponding
localization is called the local derived category. The derived completion of a para-
complex C is given by

CLc ∼= P (C)c

where P (C) → C is a projective resolution with respect to the class of locally
contractible paracomplexes. For the explicit construction of a projective resolution
functor we refer to [31]. We remark that there is a natural map CLc → Cc for every
paracomplex C.
The completion needed for the periodic theory is obtained using quotients of the
analytic tensor algebra. More precisely, if A is a separated G-algebra then the
natural homomorphism τA : T A → A given by the projection onto differential
forms of degree zero fits into an extension

JA // // T A // // A

of separated G-algebras where JA denotes the kernel of the map τA. The n-th
power (JA)n of the ideal JA can be identified with the space of even differential
forms of degree greater or equal 2n. By definition, the periodic tensor algebra of A
is the projective system of G-algebras

T A/(JA)∞ = (T A/(JA)n)n∈N

which can be viewed as a pro-G-algebra in a natural way. Accordingly, the equivari-
ant X-complex of the periodic tensor algebra is a pro-paracomplex. In the context
of pro-modules and pro-paracomplexes, morphisms are always understood in the
sense of pro-categories.
We shall now give the definition of equivariant periodic, analytic and local cyclic
homology.

Definition 3.3. Let G be a totally disconnected group and let A and B be separated
G-algebras. The equivariant analytic cyclic homology of A and B is

HAG∗ (A,B) = H∗(HomG(XG(T (A⊗KG))c, XG(T (B ⊗KG))c)).

The equivariant local cyclic homology HLG∗ (A,B) is obtained by replacing the com-
pletion with the left derived completion. For equivariant periodic cyclic homology
HPG∗ (A,B) one has to replace instead the analytic tensor algebras by periodic tensor
algebras.

Here KG is a certain subalgebra of the algebra of compact operators on L2(G).
By definition, it consists of integral operators with kernels in D(G×G). We point
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out that, despite of the fact that both entries are only paracomplexes, the Hom-
complexes occuring on the right hand side are complexes in the usual sense.
It is sometimes useful to extend the previous definition to bornological algebras A
and B with an action of G by bounded automorphisms which is not necessarily
smooth. This is done simply by replacing A and B on the right hand side by their
smoothings Smooth(A) and Smooth(B), respectively.
For our considerations below it is crucial to compare the paracomplex XG(T A)
with a certain B + b-complex. More precisely, let A be a separated G-algebra and
consider the bornology on ΩG(A) generated by the sets

D ⊗ S ∪D ⊗ [S]dS ∪
∞⋃
n=1

n!D ⊗ [S][dS](dS)2n

for small subsets D ⊂ OG and S ⊂ A. Here we write [R] for the set R ∪ {1} where
1 is the unit in the unitarization. This bornology is called the transposed analytic
bornology. We denote by Ωan

G (A) the space ΩG(A) equipped with the transposed
analytic bornology. This space is an AYD-module in a natural way and there is
a bornological isomorphism XG(T A) ∼= Ωan

G (A) for every G-algebra A. Moreover
the operators b and B induce bounded maps on Ωan

G (A). In particular, together
with the boundary B + b the space Ωan

G (A) becomes a paracomplex. The following
theorem is proved in [31].

Theorem 3.4. For every separated G-algebra A there exists a natural homotopy
equivalence between the paracomplexes XG(T A) and Ωan

G (A).

As a consequence, in the definition of the analytic and local theory one may
replace the equivariant X-complexes by the corresponding B + b-complexes. An
analogous result holds for the periodic theory [30].
Finally, we remark that according to the decomposition of an AYD-module into
an elliptic and a hyperbolic part discussed in section 2 we obtain corresponding
decompositions of the paracomplexes defining the different cyclic theories. This
will be used in section 5 when we study induction in equivariant cyclic homology.

4. Restriction and induction of modules and algebras

In this section we discuss restriction and compact induction of G-modules, G-
algebras and AYD-modules. We only consider these constructions in the particular
cases which are needed in the sequel. For a detailed account to induction and
restriction of smooth representations of locally compact groups we refer to [23]. We
remark that in the context of equivariant sheaves for totally disconnected groups
these constructions are treated in [26].
We begin with compact induction of smooth representations. Let K be a compact
open subgroup of a totally disconnected group G and let V be a separated K-
module. The compactly induced module indGK(V ) of V is given by

indGK(V ) = {f ∈ D(G,V )| f(ts) = s−1 · f(t) for all t ∈ G, s ∈ K}

where G acts by left translations. Since K is open there exists a natural K-
equivariant map θV : V → indGK(V ) given by θV (v)(t) = χ(t)t−1 · v where χ is
the characteristic function of the set K.
One may equivalently describe the compactly induced module as follows. Since K
is an open subgroup of G there is an evident map D(K)→ D(G) given by extending
functions by zero. We may thus view D(K) as a subalgebra of D(G) if the Haar
measure on K is chosen to be the restriction of the Haar measure on G. Then there
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is a natural isomorphism Φ : D(G)⊗D(K) V → indGK(V ) given by

Φ(f)(t) =

∫
K

s · f(ts)ds

for the class of f ∈ D(G,V ) = D(G)⊗ V .
If W is a separated G-module then restriction of the action to K yields the structure
of a K-module on W . We write resGK(W ) for the K-module obtained this way.
Compact induction and restriction are related as follows.

Proposition 4.1. Let K be a compact open subgroup of the totally disconnected
group G. Then the map θV induces a natural isomorphism

HomG(indGK(V ),W ) ∼= HomK(V, resGK(W ))

for all separated K-modules V and separated G-modules W .

Proof. The map Ψ : HomK(V, resGK(W ))→ HomG(indGK(V ),W ) defined by

Ψ(φ)(f) =
∑

t∈G/K

t · φ(f(t))

is inverse to the canonical map HomG(indGK(V ),W )→ HomK(V, resGK(W )) induced
by θV . �
Remark that induction is compatible with completion in the sense that the natural
map indGK(V )c → indGK(V c) is an isomorphism for every separated K-module V .
Next we consider induction and restriction for algebras. Let again K be a com-
pact open subgroup of G and let B be a separated K-algebra. By definition, the
induced G-algebra is indGK(B) with pointwise multiplication. The natural map

θB : B → indGK(B) is a K-equivariant algebra homomorphism. Moreover there is a

natural K-equivariant homomorphism πB : indGK(B) → B given by πB(f) = f(e)
and satisfying πBθB = id. On the other hand every separated G-algebra A is a
K-algebra in a natural way by restriction of the action. We will frequently denote
this K-algebra again by A instead of resGK(A).
Let us now discuss induction and restriction of AYD-modules. If K is a com-
pact open subgroup of G there is a natural K-equivariant inclusion homomorphism
OK → OG. Moreover we have an algebra homomorphism D(K) → D(G) as ex-
plained above. These maps yield an algebra homomorphism ι : A(K)→ A(G). The

induced module indGK(M) of a separated K-AYD-module M is the G-AYD-module
defined by

indGK(M) = A(G)⊗A(K) M

with the obvious left A(G)-module structure. Conversely, let M be a separated
G-AYD-module. We define the restriction resGK(M) of M to K by

resGK(M) = OK ⊗OG
M

where OK is viewed as an OG-module by restriction of functions. The space
resGK(M) becomes a K-module using the diagonal action. Moreover it is a non-
degenerate OK-module by multiplication of functions in the first tensor factor. In
this way resGK(M) becomes a K-AYD-module.
The following proposition describes the relation between induction and restriction
of AYD-modules.

Proposition 4.2. Let G be a totally disconnected group and let K ⊂ G be a compact
open subgroup. Then there exists a natural isomorphism

HomG(indGK(M), N) ∼= HomK(M, resGK(N))

for all separated K-AYD-modules M and G-AYD-modules N .
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Proof. We define a map α : HomK(M, resGK(N))→ HomG(indGK(M), N) by

α(φ)(f ⊗m) = f · µ(φ(m))

where µ : OK ⊗OG
N → N is the multiplication map. Conversely, we construct a

map β : HomG(indGK(M), N) → HomK(M, resGK(N)) as follows. Given a G-AYD-

map φ : indGK(M)→ N we let β(φ) be the composition

M ∼= A(K)⊗A(K) M
ι⊗id // A(G)⊗A(K) M

φ // N // resGK(N)

where the last maps sends n ∈ N to 1 ⊗ n ∈ OK ⊗OG
N = resGK(N). For the first

isomorphism we use the fact that M is a nondegenerate A(K)-module. Explicitly,
we have

β(φ)(f ·m) = 1⊗ φ(ι(f)⊗m)

for f ∈ A(K) and m ∈ M . It is straightforward to check that α and β are inverse
isomorphisms. �
We will mainly have to work with G-AYD-modules of the form M = OG ⊗ V for
some separated G-module V . In this case the reduced module resGK(M) is equal to
OK ⊗ resGK(V ). In particular, we may identify resGK(XG(A)) with XK(resGK(A)) for
every separated G-algebra A.
Similarly, there is a useful description of the induced modules for K-AYD-modules
of the form OK ⊗V for a separated K-module V . Let χ ∈ OG be the characteristic
function of the set K. Note that every element in OG determines a multiplier of
A(G) in a natural way.

Lemma 4.3. Let G be a totally disconnected group and let K ⊂ G be a compact
open subgroup. For every separated K-module V we have a natural isomorphism

indGK(OK ⊗ V ) ∼= I ⊗D(K) V

where I ⊂ A(G) denotes the left ideal generated by the multiplier χ.

Proof. First observe that the ideal I is indeed right K-invariant. We define a map
α : indGK(OK ⊗ V )→ I ⊗D(K) V by

α(f ⊗ h⊗ v) = f · h⊗ v

for f ∈ A(G) and h⊗ v ∈ OK ⊗V . Conversely, let β : I ⊗D(K) V → indGK(OK ⊗V )
be given by

β(f ⊗ v) = f ⊗ χ⊗ v.
It is easy to check that α and β define inverse isomorphisms. �
Finally, remark that if M is a paracomplex of K-AYD-modules then the induced
module indGK(M) is a paracomplex of G-AYD-modules in a natural way. Similarly,
if N is a paracomplex of G-AYD-modules then its restriction resGK(N) is a para-
complex of K-AYD-modules. Observe moreover that the isomorphism obtained in
proposition 4.2 is a chain map in this case.

5. Induction in equivariant cyclic homology

In this section we study the compatibility of equivariant cyclic homology with
induction. We will restrict attention to the situation which arises in the construction
of the equivariant Chern character later on.
The main result of this section is the following theorem.

Theorem 5.1. Let K be a compact open subgroup of G. For every separated K-
algebra A and every separated G-algebra B there is a natural homotopy equivalence

indGK(XK(T (A⊗ resGK(B))))Lc ' XG(T (indGK(A)⊗B))Lc
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of paracomplexes of G-AYD-modules. There are analogous homotopy equivalences
if the derived completion is replaced by the ordinary completion or if one considers
periodic tensor algebras instead.

The proof of theorem 5.1 is divided into several steps. We will carry out the de-
tails for the analytic tensor algebra and the derived completion, the other assertions
are obtained in a similar way. For simplicity we assume that the Haar measure on
G is normalized such that the measure of the compact set K is 1.
Consider the natural K-equivariant homomorphism θA : A → indGK(A) given by
θA(a)(t) = χ(t)t−1 · a where χ denotes the characteristic function of the set K.

Similarly, we have the K-equivariant homomorphism πA : indGK(A) → A given
by πA(α) = α(e). Tensoring the previous maps with the identity on B yields K-

equivariant homomorphisms θ : A ⊗ B → indGK(A) ⊗ B and π : indGK(A) ⊗ B →
A ⊗ B, respectively. In particular, θ induces a K-equivariant homomorphism
Θ : T (A⊗B)→ T (indGK(A)⊗B) and an A(K)-linear chain map XK(T (A⊗B))→
XG(T (indGK(A) ⊗ B)). According to proposition 4.2 this map corresponds to an
A(G)-linear chain map

i : indGK(XK(T (A⊗B)))→ XG(T (indGK(A)⊗B))

and using lemma 4.3 we obtain the explicit formula

i(F ⊗ x0)(s) =

∫
G

F (s, t)t ·Θ(x0)dt

i(F ⊗ x0Dx1)(s) =

∫
G

F (s, t)(t ·Θ(x0))D(t ·Θ(x1))dt

for i where F is an element in the left ideal I ⊂ A(G) generated by the multiplier
χ and xi ∈ T (A⊗B).
We construct a chain map p which is going to be the homotopy inverse of i. Using
lemma 4.3 we define p : XG(T (indGK(A)⊗B))→ indGK(XK(T (A⊗B))) by

p(f ⊗ α0)(s, t) = f(s)(t · χ)(s)Π(t−1 · α0)

p(f ⊗ α0Dα1)(s, t) = f(s)(t · χ)(s)Π(t−1 · α0)DΠ(t−1 · α1)

for αi ∈ T (indGK(A) ⊗ B) where Π : T (indGK(A) ⊗ B)) → T (B ⊗ A) denotes the

homomorphism induced by π : indGK(A) ⊗ B → A ⊗ B. Remark that Π(t · α) has

compact support as a function of t for every α ∈ T (indGK(A)⊗B). It is easy to check
that p is an AYD-map, and by definition p commutes with the boundary operator
d. A straightforward computation shows that p commutes with the boundary b as
well. It follows that p is a chain map. We compute

pi(F ⊗ x0)(s, t) =

∫
G

F (s, r)(t · χ)(s)Π(t−1r ·Θ(x0))dr

=

∫
K

F (s, tr)(t · χ)(s)Π(r ·Θ(x0))dr

where the second equality follows from left invariance of the Haar measure and the
fact that Π(r ·Θ(x0)) vanishes for r outside K. Using that Π is K-equivariant we
obtain ∫

K

F (s, tr)(t·χ)(s)Π(r ·Θ(x0))dr =

∫
K

F (s, t)(t · χ)(s)ΠΘ(x0)dr

= F (s, t)(t · χ)(s)x0 = F (s, t)x0

taking into account that the Haar measure on K is normalized and that F is
contained in the ideal I. In the same way one calculates

pi(F ⊗ x0Dx1)(s, t) = F (s, t)x0Dx1
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in degree one. Hence we have proved the relation pi = id.
Let us now assume that A and B are unital and show that ip is homotopic to the
identity. For this it is convenient to use theorem 3.4 and to work with equivariant
differential forms instead of equivariant X-complexes. Rewriting the formula for i
yields

i(F ⊗ x0dx1 · · · dxn)(s) =

∫
G

F (s, t)(t · θ(x0))d(t · θ(x1)) · · · d(t · θ(xn))dt

on indGK(ΩnK(A⊗B)). For the map p we obtain

p(f ⊗ α0dα1 · · · dαn)(s, t) = f(s)(t · χ)(s)π(t−1 · α0)dπ(t−1 · α1) · · · dπ(t−1 · αn)

on ΩnG(indGK(A) ⊗ B). Given α = β ⊗ b ∈ indGK(A) ⊗ B let us denote by α(t) the
element β(t) ⊗ b in A ⊗ B. Moreover, for t ∈ G we write α[t] for the element in

indGK(A)⊗B given by α[t](s) = α(s)χ(t−1s). That is, α[t] is equal to the function
α on the coset tK and zero elsewhere. Using this notation we obtain

ip(f ⊗ α0dα1 · · · dαn)(s)

=

∫
G

f(s)(t · χ)(s)(t · (θπ(t−1 · α0))d(t · θπ(t−1 · α1)) · · · d(t · θπ(t−1 · αn))dt

=

∫
G

f(s)(t · χ)(s) α0[t]dα1[t] · · · dαn[t]dt.

This implies

(id−ip)(f ⊗ α0dα1 · · · dαn)(s) =

∫
(1− χ(t1) · · ·χ(tn)(t0 · χ)(s))f(s)

α0[t0]dα1[t0t1] · · · dαn[t0 · · · tn] dt0dt1 · · · dtn

and

(id−ip)(f ⊗ dα1 · · · dαn)(s) =

∫
(1− χ(t2) · · ·χ(tn)(t1 · χ)(s))f(s)

dα1[t1] · · · dαn[t1 · · · tn] dt1 · · · dtn.

Let us abbreviate C = ΩG(indGK(A)⊗B) and define a map h : C → C by

h(f ⊗ α0dα1 · · · dαn)(s) =

n−1∑
j=0

(−1)j
∫
χ(t1) · · ·χ(tj)η(tj+1) f(s)α0[t0]dα1[t0t1] · · ·

· · · dαj [t0 · · · tj ]d1[t0 · · · tj ]dαj+1[t0 · · · tj+1] · · · dαn[t0 · · · tn] dt0 · · · dtn

+ (−1)n
∫
χ(t1) · · ·χ(tn) f(s)(t0 · η)(s)α0[t0]dα1[t0t1] · · ·

· · · dαn[t0 · · · tn]d1[t0 · · · tn] dt0 · · · dtn

where η(t) = 1− χ(t) as well as

h(f ⊗ dα1 · · · dαn)(s) =

n−1∑
j=1

(−1)j
∫
χ(t2) · · ·χ(tj)η(tj+1) f(s) dα1[t1]dα2[t1t2] · · ·

· · · dαj [t1 · · · tj ]d1[t1 · · · tj ]dαj+1[t1 · · · tj+1] · · · dαn[t1 · · · tn] dt1 · · · dtn
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+

n−1∑
j=1

(−1)j+n
∫
χ(t2) · · ·χ(tj)η(tj+1) f(s)η(t−11 s−1t1 · · · tn)

s−1 · αn[t1 · · · tn]ds−1 · 1[t1 · · · tn]dα1[t1] · · ·
· · · dαj [t1 · · · tj ]d1[t1 · · · tj ]dαj+1[t1 · · · tj+1] · · · dαn−1[t1 · · · tn−1] dt1 · · · dtn

+ (−1)n
∫
χ(t2) · · ·χ(tn) f(s)(t1 · η)(s) dα1[t1]dα2[t1t2] · · ·

· · · dαn[t1 · · · tn]d1[t1 · · · tn] dt1 · · · dtn

+

∫
χ(t2) · · ·χ(tn) f(s)(t1 · η)(s) ds−1 · 1[t1]dα1[t1] · · · dαn[t1 · · · tn] dt1 · · · dtn.

It is easy to check that h is an AYD-map and bounded with respect to the analytic
bornology. A lengthy but straightforward computation yields the relation

bh+ hb = id−ip
on C which shows that ip is homotopic to the identity with respect to the Hochschild
operator. Moreover we have hi = 0 and ph = 0.
Recall that M ⊗T C denotes the space of T -coinvariants of an AYD-module M . We
are interested in the space C ⊗T C of coinvariants of C. The transposed analytic
bornology on this space is generated by sets of the form

D ⊗ S ∪D ⊗ [S]dS ∪
∞⋃
n=1

n!D ⊗ [S][dS](dS)2n

where D ⊂ OG and S ⊂ indGK(A)⊗B are small. Actually it suffices to consider sets
D and S of a special form. Let us fix a K-invariant small disk R of A⊗B containing
the identity element. We may assume that S consists of all α in indGK(A)⊗B with
support in a K-invariant compact subset L of G such that the element α(t) is
contained in R for all t ∈ G. For the set D we may assume that it is closed under
multiplication by all functions t · η for t ∈ L. Let us call the pair D and S special
if these conditions are satisfied.
We define endomorphisms Tj of ΩnG(indGK(A)⊗B)⊗T C by the formula

Tj(f ⊗ α0dα1 · · · dαn)(s) = f(s) (s−1 · α0)d(s−1 · α1) · · · d(s−1 · αj−1)dαj · · · dαn,
and for small subsets D and S as before we set

DΩn(S) =

n⋃
j=0

Tj(D ⊗ [S](dS)n)

for n > 0 as well as DΩ0(S) = D ⊗ S. Using this notation we obtain the following
estimate.

Lemma 5.2. Let D and S be a pair of special small sets. There exists a positive
constant m dependent on S such that (hB)j(x) can be written as a sum of at most

mn+1(n+ 1)(n+ 3) · · · (n+ 2j − 1)2

terms in DΩn+2j(S) for any x ∈ DΩn(S) and j ∈ N.

Proof. Let us fix an element x ∈ DΩn(S). Then, by definition, the element B(x) is
given as a sum of n + 1 terms contained in DΩn+1(S). Similarly, h(x) is given as
a finite sum of elementary terms. Let m be the number of elements in the image
of L in G/K under the canonical projection where L ⊂ G is the compact subset
occuring in the definition of S. Using that D and S are special it is easily seen that
each term in the formula for h(x) can be written as a sum of at most mn+1 elements
belonging to DΩn+1(S). It suffices to estimate the number of nonzero summands in
(hB)j(x) for all j. In the definition of h for elements in the image of the map d only
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the terms in the second sum are not contained in the kernel of d. It follows that
(hB)j(x) can be written as a sum of at most mn+1(n+ 1)(n+ 3) · · · (n+ 2j − 1)2
terms in DΩn+2j(S) as claimed. �
With the notation as above we let DΩ(S) be the circled convex hull of the set

∞⋃
n=0

n!DΩ2n(S) ∪
∞⋃
n=0

n!DΩ2n+1(S)

in C ⊗T C. If D and S are small then the set DΩ(S) is small in the transposed
analytic bornology. Using lemma 5.2 we construct a map on the coinvariants of the
derived completion CLc as follows.

Proposition 5.3. On the space of coinvariants CLc⊗T C of the derived completion
of the paracomplex C the series

∞∑
j=0

(−1)j(hB)j

determines an endomorphism of AYD-modules.

Proof. Every small subset of C ⊗T C is contained in a set of the form DΩ(S) where
D and S are a special pair of small sets in the sense above. Using lemma 5.2 we
see that the partial sums in the above series satisfy the Cauchy criterion if they are
viewed as bounded linear maps from the normed space 〈DΩ(S)〉 into the normed
space 〈DΩ(λS)〉 provided λ is chosen such that λn+2j ≥ 2mn+14j for all n and j.
It follows that the series converges to a bounded AYD-map from A(G)〈DΩ(S)〉 into
the completion of A(G)〈DΩ(λS)〉. In this way one obtains an endomorphism of
(C ⊗T C)Lc. Inspecting the construction of the derived completion yields a natural
isomorphism CLc ⊗T C ∼= (C ⊗T C)Lc. This proves the assertion. �
Let us write C = CLc and consider the map k : C ⊗T C → C ⊗T C obtained in
proposition 5.3. Using this map we are able to apply the perturbation lemma [15].
More precisely, together with the previously established properties of the maps i, p
and h we obtain the relation

ip− id = [∂, k]

on C ⊗T C where ∂ denotes the boundary map B + b. For the precise formulation
and a proof of the perturbation lemma in the context of paramixed complexes we
refer to [30].
Let us denote the natural projection C → C ⊗T C by q. It is not hard to check
that there exists an AYD-map K : C → C lifting k. As a consequence we see in
particular that the image of

δ = id−ip+ [∂,K]

is contained in the kernel (id−T )C of q.

Lemma 5.4. The chain map δ : C → C is homotopic to zero. Consequently, the
chain map ip : C → C is homotopic to the identity.

Proof. We have to consider the elliptic and hyperbolic part of C separately. On the
elliptic part we have (id−T )Cell = (id−E)Cell where E is the canonical projection
on the T -invariant part. The argument given in the proof of proposition 3.4 in [32]
shows that the natural inclusion (id−E)Cell → Cell is homotopic to zero. Hence
the chain map δ is homotopic to zero on the elliptic part.
Now consider the hyperbolic part. According to proposition 4.1 the G-module
indGK(A) is projective. Hence the G-module indGK(A)⊗B is projective as well, and
it follows that C is a projective AYD-module [30]. It is then easy to check that

(id−T ) : Chyp → (id−T )Chyp
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is an isomorphism. Hence there exists a chain map ∆ : Chyp → Chyp such that
δ = (id−T )∆ on Chyp. Since id−T is homotopic to zero this shows that the
restriction of δ to the hyperbolic part is homotopic to zero. We conclude that ip is
homotopic to the identity on C. �
Lemma 5.4 completes the proof of theorem 5.1 in the case that the algebras A
and B are unital. Now let A and B be arbitrary and consider the canonical split
extension 0→ A→ A+ → C→ 0 of K-algebras. The corresponding extension

0→ indGK(A)→ indGK(A+)→ indGK(C)→ 0

of G-algebras has an equivariant splitting as well, and similarly we have the split
extension 0→ B → B+ → C→ 0 of G-algebras. Using the result in the unital case
we obtain the assertion for general A and B by considering tensor products of the
algebras in these extensions and excision for K-equivariant and G-equivariant local
cyclic homology [31]. This finishes the proof of theorem 5.1.
Let us discuss some consequences of theorem 5.1. First of all, we deduce that
induction from compact open subgroups descends to the level of equivariant cyclic
homology.

Theorem 5.5. Let K ⊂ G be a compact open subgroup. Then there exists a
transformation

indGK : HLK∗ (A,B)→ HLG∗ (indGK(A), indGK(B))

which is compatible with the composition product. Analogous transformations exist
for the analytic and periodic theories.

Proof. Using lemma 4.3 one checks that induction is compatible with derived com-
pletion in the sense that there is a natural isomorphism

indGK(XK(T (C ⊗KG))Lc) ∼= indGK(XK(T (C ⊗KG)))Lc

for every K-algebra C. Hence theorem 5.1 yields a natural homotopy equivalence

indGK(XK(T (C ⊗KK))Lc) ' XG(T (indGK(C)⊗KG))Lc

where we take into account stability of K-equivariant cyclic homology [31]. As a
consequence one obtains easily the desired induction homomorphism for the local
theory. The assertions for the analytic and the periodic theories are proved in the
same way. �
Furthermore we obtain the following induction isomorphism.

Theorem 5.6. Let K ⊂ G be a compact open subgroup. For every separated K-
algebra A and every separated G-algebra B there exists a natural isomorphism

HLG∗ (indGK(A), B) ∼= HLK∗ (A, resGK(B)).

Analogous isomorphisms hold for the analytic and periodic theories.

Proof. Using the fact that induction is compatible with derived completion this
follows again by the homotopy equivalence

indGK(XK(T (A⊗KG)))Lc ' XG(T (indGK(A)⊗KG))Lc

obtained in theorem 5.1 together with proposition 4.2 and stability. In the same
way one obtains the assertions for the analytic and the periodic theories. �
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6. The equivariant Chern character

In this section we construct the equivariant Chern character with values in bi-
variant equivariant cohomology in the sense of Baum and Schneider.
The first ingredient in this construction is the equivariant Chern-Connes character
into equivariant local cyclic homology obtained in [31].

Theorem 6.1. Let A and B be separable G-C∗-algebras. Then there exists a trans-
formation

chG∗ : KKG
∗ (A,B)→ HLG∗ (A,B)

which is compatible with the Kasparov product in KKG
∗ and the composition product

in HLG∗ . This transformation maps elements in KKG
0 (A,B) induced by equivariant

∗-homomorphisms from A to B to the corresponding elements in HLG0 (A,B).

We remark that in the context of local cyclic homology all G-C∗-algebras are
equipped with the precompact bornology. Moreover, it is understood that the
smoothing functor Smooth is applied to the resulting bornological algebras since,
unless G is discrete, the group action on a G-C∗-algebra is not smooth in general.
For more information we refer to [31].
We shall apply theorem 6.1 in the case that A and B are algebras of functions on
G-simplicial complexes in the sense of [32]. By definition, a G-simplicial complex is
a simplicial complex equipped with smooth, simplicial and type-preserving action
of the group G. In the sequel we will only consider G-simplicial complexes that
have at most countably many simplices. In order to determine the right hand side
of the Chern-Connes character further in this situation we have to pass to smooth
functions. A suitable notion of smooth functions on simplicial complexes was in-
troduced in [32]. For a locally finite G-simplicial complex Z the resulting algebra
C∞c (Z) of regular smooth functions with compact support is a G-algebra in a natu-
ral way. Moreover, it is shown in [31] that the inclusion C∞c (Z)→ Smooth(C0(Z))
induces an invertible element in the local theory provided Z is finite dimensional.
It follows that there is an isomorphism

HLG∗ (C0(X), C0(Y )) ∼= HLG∗ (C∞c (X), C∞c (Y ))

for all finite dimensional locally finite G-simplicial complexes X and Y which is
compatible with the composition product.
The next aim is to determine the equivariant local cyclic homology of algebras of
regular smooth functions. In order to do this we shall use two auxiliary homology
theories. Firstly, we define HLAG∗ (A,B) by

HLAG∗ (A,B) = H∗(HomG(XG(T (A⊗KG))Lc, XG(T (B ⊗KG))c))

for all G-algebras A and B. By construction, this theory is a combination of
equivariant local and analytic cyclic homology. There is a homomorphism

HLG∗ (A,B)→ HLAG∗ (A,B)

induced by the canonical map from the derived completion to the ordinary com-
pletion in the second variable. According to a result from [31] the natural chain
map XG(T (B⊗KG))Lc → XG(T (B⊗KG))c is an isomorphism in the local derived
category provided B is a Schwartz space satisfying the approximation property.
This yields the following assertion.

Proposition 6.2. Assume that B is a G-algebra whose underlying bornological
vector space is a Schwartz space satisfying the approximation property. Then the
natural map

HLG∗ (A,B)→ HLAG∗ (A,B)

is an isomorphism for every separated G-algebra A.
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In particular, proposition 6.2 applies in the case that B = C∞c (Y ) for a finite
dimensional locally finite G-simplicial complex Y .
Let us define another homology theory HPAG∗ (A,B) by

HPAG∗ (A,B) = H∗(HomG(XG(T (A⊗KG)/J (A⊗KG)∞), XG(T (B ⊗KG))c))

for all G-algebras A and B. This theory provides a link between equivariant periodic
cyclic homology and HALG∗ . In particular, there is a natural transformation

HPAG∗ (A,B)→ HLAG∗ (A,B)

induced by the canonical map from the derived completion to the ordinary com-
pletion and the projection from the analytic tensor algebra to the periodic tensor
algebra in the first variable.

Proposition 6.3. Let X be a G-finite proper G-simplicial complex and let B be
any G-algebra. Then the natural map

HPAG∗ (C∞c (X), B)→ HLAG∗ (C∞c (X), B)

is an isomorphism.

Proof. Observe that the transformation HPAG∗ (A,B) → HLAG∗ (A,B) is compat-
ible with the boundary maps in the six-term exact sequences associated to an ex-
tension of algebras. Using induction on the dimension of X and excision [30], [31]
it suffices to prove the assertion in the case that X = G/K is a homogenous space

for a compact open subgroup K of G. Remark that we have C∞c (X) = indGK(C) in
this situation and consider the commutative diagram

XG(T (indGK(C)⊗KG))Lc //
OO

'

XG(T (indGK(C)⊗KG)/J (indGK(C)⊗KG)∞)
OO

'

indGK(XK(T (KG)))Lc //
OO

'

indGK(XK(T (KG)/J (KG)∞)
OO

'

indGK(OK [0])Lc
∼= // indGK(OK [0])

where the upper vertical homotopy equivalences are obtained using theorem 5.1 and
the lower vertical homotopy equivalences follow from stability in equivariant cyclic
homology [30], [31]. According to the definition of the derived completion the lower
horizontal map is an isomorphism. Hence the remaining horizontal arrows in this
diagram are homotopy equivalences. This yields the assertion for X = G/K and
finishes the proof. �
Applying the natural projection from the analytic to the periodic tensor algebra in
the second variable we obtain a transformation

HPAG∗ (A,B)→ HPG∗ (A,B)

for all separated G-algebras A and B.

Proposition 6.4. Let X and Y be G-simplicial complexes where X is G-finite and
proper and Y is finite dimensional and locally finite. Then the natural map

HPAG∗ (C∞c (X), C∞c (Y ))→ HPG∗ (C∞c (X), C∞c (Y ))

is an isomorphism.

Proof. Using excision in the first variable we can reduce the assertion to the case
that X = G/K is a homogenous space where K is a compact open subgroup of
G. Due to theorem 5.1 it thus suffices to consider the case that G is compact
and that X is a point. Observe that for a compact group G the chain complexes
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defining HPAG∗ (C, B) and HPG∗ (C, B) for a G-algebra B are obtained by taking
the G-invariant part of XG(T (B))c and XG(T (B)/J (B)∞), respectively.
We will now use induction on the dimension of Y . If dim(Y ) = 0 the space Y is
the disjoint union of a family of homogenous spaces. Accordingly, we have

C∞c (Y ) =
⊕
j∈J

C(G/Kj)

for some countable index set J in this case where each Kj is an open subgroup of
the compact group G. If the set J is finite it follows in the same way as in the proof
of proposition 6.3 that the natural map

XG(T (C∞(Y )))c → XG(T (C∞(Y ))/J (C∞(Y ))∞)

is a homotopy equivalence. Observe that due to stability we may drop the algebra
KG in our arguments since G is compact. In order to treat the case of an infi-
nite index set J we use a direct limit argument. More precisely, since completion
commutes with direct limits the natural map⊕

j∈J
HPAG∗ (C, C(G/Kj))→ HPAG∗ (C, C∞c (Y ))

is an isomorphism. For the periodic theory there is an analogous isomorphism ac-
cording to the results obtained in [32]. Using the case of finite J treated before it
follows that the claim is true for arbitrary Y of dimension 0. As in the proof of
proposition 6.3 the induction step is carried out using excision. �
The link between equivariant cyclic homology and the theory of Baum and Schnei-
der is provided by the main result of [32].

Theorem 6.5. Let G be a totally disconnected group and let X and Y be finite
dimensional locally finite G-simplicial complexes. If the action of G on X is proper
there exists an isomorphism

HPG∗ (C∞c (X), C∞c (Y )) ∼=
⊕
j∈Z

H∗+2j
G (X,Y ).

Combining theorem 6.1 with propositions 6.2, 6.3, 6.4 and theorem 6.5 we obtain
the following result.

Theorem 6.6. Let G be a totally disconnected group and let X and Y be finite
dimensional locally finite G-simplicial complexes. If X is proper and G-finite there
exists an equivariant Chern character

chG∗ : KKG
∗ (C0(X), C0(Y ))→

⊕
j∈Z

H∗+2j
G (X,Y )

which becomes an isomorphism after tensoring the left hand side with C.

Proof. It is not very hard to verify that the character chG∗ is natural with respect
to proper equivariant simplicial maps in both variables. In order to show that it
becomes an isomorphism after tensoring the left hand side with C we proceed in
the same way as in the proof of proposition 6.3 and proposition 6.4 to reduce to
the case that G is compact and X and Y are one-point spaces. In this case the
assertion follows from proposition 12.4 in [31]. �
Our arguments above show in fact that for A = C0(X) and B = C0(Y ) satisfying
the assumptions of theorem 6.6 the Chern-Connes character with values in equi-
variant local cyclic homology is an isomorphism after tensoring the left hand side
with C. Moreover, all the different variants of equivariant cyclic homology for the
corresponding algebras of smooth functions agree in this case.
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Let us discuss some consequences of theorem 6.6. The equivariant K-homology of
a proper G-simplicial complex X is defined by

KG
∗ (X) = lim−→

F⊂X
KKG

∗ (C0(F ),C)

where the limit is taken over all G-finite subcomplexes F of X. Note that every
G-finite subcomplex of X is locally finite and hence locally compact. In a similar
way we define the equivariant homology of X by

HG
∗ (X) = lim−→

F⊂X
HPG∗ (C∞c (F ),C).

if X is a proper G-simplicial complex. We remark that, taking into account the
above considerations, one could as well take equivariant analytic or local cyclic
homology in this definition. Moreover, using theorem 6.5 and the work of Baum
and Schneider [5] it follows that the groups HG

∗ (X) are naturally isomorphic to the
cosheaf homology of X as defined in [4].
Taking direct limits in the first variable in theorem 6.6 we obtain the following
statement.

Theorem 6.7. Let G be a totally disonnected group and let X be a proper G-
simplicial complex. Then there exists a natural transformation

KG
∗ (X)→ HG

∗ (X)

which becomes an isomorphism after tensoring the left hand side with the complex
numbers.

For totally disconnected groups the universal space for proper actions EG can
be chosen to be a G-simplicial complex. Applying theorem 6.7 to this particular
space yields the following result.

Theorem 6.8. Let G be a totally disonnected group. Then there exists a Chern
character

chG∗ : KG
∗ (EG)→ HG

∗ (EG)

from the topological K-theory of G to the cosheaf homology of EG which is an
isomorphism after tensoring the left hand side with C.

7. The character of Baum and Schneider

In this section we compare the Chern character obtained in section 6 with the
bivariant equivariant Chern character for profinite groups defined by Baum and
Schneider in [5]. The construction of Baum and Schneider is based on universal
coefficient theorems for equivariant KK-theory and bivariant equivariant cohomol-
ogy. Roughly speaking, we show that in the case of profinite groups the equivariant
Chern character chG∗ reduces to the character defined by Baum and Schneider. In
this way we obtain in particular a convenient description of chG∗ for profinite groups.
For simplicity we consider only finite G-simplicial complexes in this section.
Let G be a profinite group. To every locally compact G-space X one associates the
Brylinski space

X̂ = {(t, x) ∈ G×X| t · x = x} ⊂ G×X
which is again a G-space by considering the action given by

s · (t, x) = (sts−1, s · x)

for s ∈ G and (t, x) ∈ X̂. Note that if G is a finite group one may view X̂ as the
disjoint union of the fixed point sets Xt = {x ∈ X| t · x = x} of elements t ∈ G.
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Now let X and Y be finite G-simplicial complexes. The Chern character constructed
by Baum and Schneider is of the form

φG∗ : KKG
∗ (C(X), C(Y ))→ HomG(K∗(X̂)C,K

∗(Ŷ )C)→ HomG(H∗(X̂), H∗(Ŷ ))

where the subscript C stands for tensoring with C over the integers and the second
arrow is induced by the classical Chern character for K-theory. Similarly, we may
view chG∗ as a map

chG∗ : KKG
∗ (C(X), C(Y ))→ HPG∗ (C∞(X), C∞(Y )) ∼= HomG(H∗(X̂), H∗(Ŷ ))

using the universal coefficient formula for bivariant equivariant cohomology ob-
tained in [5].
In order to compare these transformations we consider first the case that X is a
point. Let us review the construction of Baum and Schneider in this situation.
Given a G-equivariant vector bundle E over a compact G-space Y one considers
the pull-back bundle π∗E along the natural projection π : Ŷ → Y . The bundle π∗E
is again G-equivariant and carries in addition an action of the profinite completion
Ẑ of the integers. To describe this action note that the space of sections of π∗E
is an AYD-module in a natural way. On the level of sections, the action of Ẑ is
determined by the natural automorphism T of this AYD-module. In fact pull-back
along π yields a homomorphism

π∗ : K0
G(Y )→ K0

Ẑ(Ŷ )G

of equivariant K-groups where the superscript G on the right hand side denotes
taking the invariant part under the action of G. Taking the trace of the element
1 ∈ Ẑ in a representation of Ẑ defines a ring homomorphism

τ : R(Ẑ)→ C.

Since the action of Ẑ on Ŷ is trivial one obtains a homomorphism

Π : K0
G(Y )

π∗
// K0

Ẑ(Ŷ )GC
∼= // (K0(Ŷ )⊗Z R(Ẑ)C)G

id⊗τ // K0(Ŷ )GC

where, as above, the subscript C stands for tensoring with C. The transformation φ0
is obtained by composing the map Π with the map induced by the ordinary Chern
character ch : K0(Ŷ ) → H∗(Ŷ ). We shall assume that the latter is normalized as
in [6] in order to be compatible with cyclic homology. In the odd case the character
of Baum and Schneider is defined using suspension.

Proposition 7.1. Let G be a finite group and let Y be a finite G-simplicial complex.
The equivariant Chern character

chG∗ : KG
∗ (C(Y ))→

⊕
j∈Z

H∗+2j(Ŷ )G

agrees with the transformation φG∗ constructed by Baum and Schneider in this case.

Proof. The algebra C∞(Y ) is a dense subalgebra of C(Y ) which is closed under
holomorphic functional calculus. As in the nonequivariant situation the natural
inclusion C∞(Y ) → C(Y ) induces an isomorphism KG

0 (C∞(Y )) ∼= KG
0 (C(Y )).

Consequently, to obtain the assertion in the even case it suffices to compare the
characters chG0 (p) and φ0(p) of a G-invariant idempotent p ∈ C∞(Y )⊗L(V ) where
V is a finite dimensional Hilbert space equipped with a unitary representation λ of
G. Here the algebra L(V ) of linear operators on V is equipped with the natural
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action s · T = λ(s)Tλ(s−1) induced by λ. Under the Chern character chG0 the
element in HPG0 (C, C∞(Y )) corresponding to p is given by the cycle

chG0 (p)(s) = tr(λ(s)p) +

∞∑
j=1

(−1)j
(2j)!

j!
tr

(
λ(s)

(
p− 1

2

)
(dpdp)j

)
in the equivariant periodic cyclic complex of C∞(Y ) where tr denotes the ordinary
trace. Here we use the analogue of theorem 3.4 for the periodic theory and work
with noncommutative differential forms instead of the X-complex in the second
variable. The above formula for the Chern character appears also in the work of
Block and Getzler on actions of compact Lie groups [8].

Since G is finite the space Ŷ is the disjoint union of the fixed point sets Y s for
all elements s ∈ G. The equivariant Hochschild-Kostant-Rosenberg theorem [32]
shows that chG0 (p) is given by the class∑

s∈G

∞∑
j=0

(−1)j

j!
tr(λ(s)p(dpdp)j)|Y s

in the even cohomology of Ŷ . It is straightforward to check that this class is equal
to the Chern character of the element Π(p) ∈ K0(Ŷ )C. Note that the occurence of
the operator λ(s) arises from the map τ above. As a consequence, we see that the
cohomology classes chG0 (p) and φ0(p) are equal.
In the order to treat the odd case consider the space S1 with trivial G-action and
the split extension

C0(Y × (0, 1)) // // C(Y × S1)
ι∗ // // C(Y )

of G-C∗-algebras where ι∗ is the transpose of the inclusion ι : Y → Y × S1 given
by ι(y) = (y, 1). One obtains a corresponding commutative diagram

KG
0 (C0(Y × (0, 1))) // //

φG
0

��

KG
0 (C(Y × S1)) // //

φG
0

��

KG
0 (C(Y ))

φG
0

��
H∗c (Ŷ × (0, 1))G // // H∗(Ŷ × S1)G // // H∗(Ŷ )G

for the transformation defined by Baum and Schneider. In order to apply the
character chG0 in this situation we choose an equivariant triangulation of Y × S1

such that the inclusion ι : Y → Y × S1 becomes a map of G-simplicial complexes.
Similarly, we choose an equivariant triangulation of Y × (0, 1). Remark that the
inclusion Y × (0, 1) → Y × S1 will not be a simplicial map with respect to these
triangulations. Still, it is easily verified that the analogue of the previous diagram
for chG0 is commutative.
According to our previous considerations the transformations φG0 and chG0 agree for
Y × S1 and Y . It follows that φG0 and chG0 agree also for the suspension Y × (0, 1)
of Y . As already mentioned above, the character φG1 is obtained from the even case
using suspension. Assuming that φG1 is normalized correctly it follows that chG∗ and
φG∗ agree in the odd case as well. �
One can verify directly that the assertion of proposition 7.1 holds also for profinite
groups. We shall obtain this as a special case of the following result.

Theorem 7.2. Let G be a profinite group. On the category of finite G-simplicial
complexes the equivariant Chern character

chG∗ : KKG
∗ (C(X), C(Y ))→

⊕
j∈Z

H∗+2j
G (X,Y )

agrees with the natural transformation φG∗ constructed by Baum and Schneider.
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Proof. Let us first assume that G is finite. As before we use the identification⊕
j∈Z

H∗+2j
G (X,Y ) ∼= HomG(H∗(X̂), H∗(Ŷ ))

for the bivariant equivariant cohomology of X and Y . It suffices to show for every
t ∈ G that the transformations chG∗ and φG∗ agree after localization in t on the right
hand side. If Zt denotes the centralizer of t in G and f ∈ KKG

∗ (C(X), C(Y )) is an
arbitrary class we shall thus prove that the elements in HomZt

(H∗(Xt), H∗(Y t))
induced by chG∗ (f) and φG∗ (f) are equal.
The localized Chern character chG∗ can be written as the composition

chG∗ : KKG
∗ (C(X), C(Y ))→ KKZt

∗ (C(X), C(Y ))→ HomZt
(H∗(Xt), H∗(Y t))

where the first arrow is the obvious forgetful map and the second arrow is the
localized Chern character chZt

∗ for Zt. There is an analogous factorization for the
localized character φG∗ due to its construction. Hence it suffices to consider the
group G = Zt and localization in t.
Let us moreover specialize to X = Zt/(t) where (t) denotes the subgroup of Zt
generated by t. The cohomology H∗(Zt/(t)) ∼= C(Zt/(t))[0] is located in degree
zero and we have a commutative diagram

KKZt
∗ (C(Zt/(t)), C(Y ))

∼= //

ch
Zt
∗

��

KK
(t)
∗ (C, C(Y ))

ch(t)
∗

��
HomZt(C(Zt/(t))[0], H∗(Y t))

∼= // Hom(t)(C[0], H∗(Y t))

obtained by induction. Note that Hom(t)(C[0], H∗(Y t)) = H∗(Y t) since the action
of t on Y t is trivial. Inspecting the construction in [5] we see that there is a
corresponding commutative diagram where the vertical maps are replaced by the

transformations φZt
∗ and φ

(t)
∗ , respectively. According to proposition 7.1 the right

vertical arrows in these diagrams coincide. It follows that the localized characters
for Zt are equal in the case X = Zt/(t).
Both transformations φZt

∗ and chZt
∗ are multiplicative with respect to the Kasparov

product and the composition product. Let f ∈ KKZt
∗ (C(X), C(Y )) be an arbitrary

element and consider v ∈ KKZt
∗ (C(Zt/(t)), C(X)). After localization in t we obtain

chZt
∗ (v) · φZt

∗ (f) = φZt
∗ (v) · φZt

∗ (f) = φZt
∗ (v · f) = chZt

∗ (v · f) = chZt
∗ (v) · chZt

∗ (f)

according to our previous discussion. Since the images of elements of the form
chZt
∗ (v) in Hom(t)(C[0], H∗(Xt)) generateH∗(Xt) it follows that φZt

∗ (f) and chZt
∗ (f)

define the same element in HomZt(H
∗(Xt), H∗(Y t)). We conclude that the char-

acters φG∗ and chG∗ agree in the case that G is finite.
For an arbitrary profinite group G the construction of φG∗ in section 3 of [5] shows
that one has a commutative diagram

lim−→H⊂GKK
G/H
∗ (C(X), C(Y/H))

lim−→φG/H
∗

��

∼= // KKG
∗ (C(X), C(Y ))

φG
∗
��

lim−→H⊂G

⊕
j∈ZH

∗+2j
G/H (X,Y/H)

∼= //⊕
j∈ZH

∗+2j
G (X,Y )

where the limits are taken over all open normal subgroups H of G which act trivially
on X. It is easily verified that there is an analogous commutative diagram where

the vertical arrows are replaced by lim−→ ch
G/H
∗ and chG∗ , respectively. According to

our discussion for finite groups the left vertical maps in these diagrams are equal.
Hence the same is true for the right vertical maps φG∗ and chG∗ . �
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8. The homological Chern character and equivariant Bredon
homology

In this section we consider the homological Chern character otained by inserting
the complex numbers in the second variable of the equivariant KK-groups. The
target of this transformation can be identified with equivariant Bredon homology.
We show how to extend the homological Chern character obtained in section 6
appropriately from proper G-simplicial complexes to proper G-CW -complexes.
Let G be a totally disconnected group. We call a G-space X smooth if all isotropy
groups Gx for x ∈ X are open subgroups of G. A G-space X is obtained from
the G-space A by attaching smooth equivariant k-dimensional cells if there is a
G-equivariant pushout

∐
i∈I G/Hi × Sk−1 //

��

A

��∐
i∈I G/Hi ×Dk // X

where (Hi)i∈I is a family of open subgroups of G. A smooth G-CW -complex is a
G-space X together with a G-invariant filtration

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂
∞⋃
k=0

Xk = X

such that X carries the weak topology with respect to this filtration and for every k
the space Xk is obtained from Xk−1 by attaching smooth equivariant k-dimensional
cells. In the sequel all G-CW -complexes are assumed to be smooth. This means in
particular that every G-CW -complex can be viewed as an ordinary CW -complex
in a natural way. Note that every G-simplicial complex is a G-CW -complex. A
G-CW -complex X is called G-finite if the quotient X/G is compact. It is proper
iff all isotropy groups Gx for x ∈ X are compact open subgroups of G. For more
detailed information about G-CW -complexes we refer to [17].
We denote by sdn(X) the nth iterated barycentric subdivision of a G-simplicial
complex X. Note that the barycentric subdivision of a G-simplical complex is
again a G-simplicial complex. The following equivariant simplicial approximation
theorem is a straightforward extension of ordinary simplicial approximation as it
can be found, for instance, in [28].

Proposition 8.1. Let f : X → Y be an equivariant continuous map between
G-simplicial complexes. If X is G-finite there exists a natural number n and an
equivariant simplicial map F : sdn(X)→ Y equivariantly homotopic to f .

The next proposition contains the basic ingredient needed to extend the equi-
variant Chern character chG∗ to G-CW -complexes.

Proposition 8.2. Let X be a G-finite G-CW complex. Then there exists a G-finite
G-simplicial complex which is equivariantly homotopy equivalent to X.

Proof. We use induction on the dimension of X, the case dim(X) = 0 being clear.
Using lemma 2.13 in [18] it suffices to show that the space obtained by attaching a
finite number of smooth equivariant k-dimensional cells to a (k−1)-dimensional G-
simplical complex Y is equivariantly homotopy equivalent to aG-simplicial complex.
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Hence let us consider a G-pushout diagram∐
i∈I G/Hi × ∂∆k f //

��

Y

��∐
i∈I G/Hi ×∆k // X

where ∆k denotes the standard k-simplex and I is finite. According to proposition
8.1 there exists n ∈ N such that the upper horizontal map f is equivariantly ho-
motopic to an equivariant simplicial map g :

∐
i∈I G/Hi × sdn(∂∆k) → Y . Using

again lemma 2.13 in [18] it follows that the G-pushouts corresponding to f and g are
equivariantly homotopy equivalent. Let us abbreviate Y0 =

∐
i∈I G/Hi×sdn(∂∆k)

and Y1 =
∐
i∈I G/Hi × sdn(∆k) and consider the map g : Y0 → Y . After replac-

ing Y0 by an equivariantly homotopy equivalent G-simplicial complex Z0 we can
achieve that neighbouring vertices, that is, vertices which are connected by an edge,
are mapped to different vertices in Y . If we also replace Y1 appropriately by an
equivariantly homotopy equivalent G-simplicial complex Z1 we obtain a G-pushout
diagram

Z0
h //

��

Y

��
Z1

// Z

of G-finite G-simplicial complexes and equivariant simplicial maps. Moreover, by
construction, in the commutative diagram

Y1 oo

��

Y0
g //

��

Y

Z1
oo Z0

h // Y

the left horizontal arrows are G-cofibrations and the vertical maps are equivariant
homotopy equivalences. Using once more lemma 2.13 in [18] we conclude that Z
and X are equivariantly homotopy equivalent. This proves the assertion. �
Let kG and hG be homotopy invariant functors on the category of G-finite proper
G-CW -complexes and equivariant maps. Moreover assume that φ : kG → hG is a
natural transformation on the subcategory ofG-finite properG-simplicial complexes
and equivariant simplicial maps. We shall show how φ can be extended to a natural
transformation on the whole category. This is similar to the techniques explained
in the appendix of [10].
For a proper G-finite G-CW -complex X let SX be the following category. The
objects in SX are the equivariant homotopy equivalences S → X where S is a proper
G-finite G-simplicial complex. Note that there exist such equivariant homotopy
equivalences due to proposition 8.2. A morphism from R→ X to S → X in SX is
an equivariant simplicial map f : R→ S such that the diagram

R //

f

��

X

S // X

is commutative up to equivariant homotopy. To be precise, we shall rather work
with isomorphism classes of G-simplicial complexes in order to achieve that the
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category SX is small. Let us define

SkG(X) = lim−→
S→X

kG(S)

where the limit is taken over SX . Using proposition 8.1 one checks that SkG(X) is
a functor on the category of G-finite proper G-CW -complexes. There is a canonical
natural transformation SkG → kG which is an isomorphism since kG was supposed
to be homotopy invariant. In a similar way we obtain a functor ShG and a natural
isomorphism ShG → hG. For every S → X in SX let us define ΦS(X) : kG(S) →
ShG(X) to be the composition kG(S) → hG(S) → ShG(X) of φ(S) with the
canonical map. Passing to the limit we obtain a family of maps Φ(X) : SkG(X)→
ShG(X). Using again proposition 8.1 this family is easily seen to be a natural
transformation on the category of G-finite proper G-CW -complexes. Due to the
natural isomorphisms SkG ∼= kG and ShG ∼= hG we can view Φ as a natural
transformation from kG to hG. By construction one obtains Φ(X) = φ(X) for
everyG-simplicial complexX. Moreover, the extended transformation Φ is uniquely
determined by φ. We have thus proved the following statement.

Proposition 8.3. Let kG and hG be homotopy invariant functors on the category of
G-finite proper G-CW -complexes. Every natural transformation kG → hG defined
on the subcategory of G-simplicial complexes and equivariant simplicial maps can
be uniquely extended to a natural transformation kG → hG on the whole category
of G-finite proper G-CW -complexes and equivariant continuous maps.

Next we recall the definition of Bredon homology [18], [32]. The smooth orbit
category Or(G) of a totally disconnected group G has as objects all homogenous
spaces G/H where H is an open subgroup of G. The morphisms in Or(G) are all
G-equivariant maps. One obtains subcategories of Or(G) by restricting the class of
subgroups. We are interested in the class F of all compact open subgroups of G.
The corresponding full subcategory Or(G,F) of Or(G) consists of all homogeneous
spaces G/H where H is compact open.
We will work over the complex numbers in the sequel. If C is a small category a
covariant (contravariant) C-vector space is a covariant (contravariant) functor from
C to the category of vector spaces. Morphisms of C-vector spaces are natural trans-
formations. More generally one defines covariant and contravariant C-objects as
functors with values in arbitrary target categories.
Given a contravariant C-vector space M and a covariant C-vector space N the ten-
sor product M ⊗CN is the direct sum of M(c)⊗N(c) over all objects c ∈ C divided
by the tensor relations mf ⊗ n−m⊗ fn for m ∈ M(d), n ∈ N(c) and morphisms
f : c→ d in C.
Let X be a proper G-CW -complex. There is a contravariant functor from Or(G,F)
to the category of CW -complexes which associates to G/H the fixed point set XH .
Composition with the covariant functor from CW -complexes to chain complexes
which associates to a CW -complex Y the cellular chain complex C∗(Y ) with com-

plex coefficients yields a contravariant Or(G,F)-chain complex C
Or(G,F)
∗ (X).

We define a covariant Or(G,F)-vector space Rq as follows. For a compact open
subgroup H of G set

Rq(G/H) = Kq(C
∗(H))⊗Z C

where K∗ denotes topological K-theory and C∗(H) is the group C∗-algebra of H.
Note that K0(C∗(H)) = R(H) is the representation ring of H and K1(C∗(H)) = 0.
The character map induces an isomorphism

R0(G/H) = K0(C∗(H))⊗Z C ∼= R(H)
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where R(H) is the ring of conjugation invariant smooth functions on H.

We define a chain complex C
Or(G,F)
∗ (X;R) by equipping

C
Or(G,F)
∗ (X;R) =

⊕
p+q=∗

COr(G,F)
p (X)⊗Or(G,F) Rq

with the differential induced from C
Or(G,F)
∗ (X).

Definition 8.4. Let G be a totally disconnected group. The equivariant Bredon
homology of a proper G-CW -complex X (with coefficients in R) is

BHG
∗ (X;R) = H∗(C

Or(G,F)
∗ (X;R)).

Let us recall the relation between Bredon homology and cosheaf homology [32].
In section 6 the latter was described in terms of equivariant cyclic homology.

Proposition 8.5. Let G be a totally disconnected group and let X be a proper
G-simplicial complex. Then there is a natural isomorphism

HG
∗ (X) ∼= BHG

∗ (X;R)

where HG
∗ denotes cosheaf homology.

We shall now extend the homological Chern character obtained as a special
case of theorem 6.7 to a natural transformation on the category of proper G-CW-
complexes.

Theorem 8.6. Let X be a proper G-CW -complex. There exists a natural trans-
formation

chG∗ : KG
∗ (X)→ BHG

∗ (X;R)

which is an isomorphism after tensoring the left hand side with C.

Proof. Set kG∗ = KG
∗ and let hG∗ be equivariant Bredon homology. According to

proposition 8.3 and proposition 8.5, the homological Chern character obtained in
theorem 6.7 can be extended to the category of G-finite proper G-CW -complexes.
Since both kG∗ and hG∗ are theories with G-compact supports, this transformation
extends uniquely to the whole category of proper G-CW -complexes. Moreover
theorem 6.7 implies that the extended transformation becomes an isomorphism
after tensoring the left hand side with the complex numbers. �
In [18] Lück has constructed Chern characters for proper equivariant homology
theories in the context of discrete groups. A proper equivariant homology theory is
an assignment which associates to every group G a proper G-homology theory such
that the theories for different groups are related by an induction structure. As a
special case of this construction Lück obtains a natural isomorphism

λG∗ : BHG
∗ (X;R)→ KG

∗ (X)⊗Z C
on the category of proper G-CW -complexes for a discrete group G. The construc-
tion is compatible with the induction structures of the corresponding equivariant
homology theories. In particular, induction from H to G yields a commutative
diagram

BHG
∗ (G/H;R)

λG
∗ //

∼=
��

KG
∗ (G/H)⊗Z C

∼=
��

BHH
∗ (? ;R)

λH
∗ // KH

∗ (?)⊗Z C
where ? denotes the trivial H-space consisting of a single point. Our Chern char-
acter ch∗ is compatible with induction from H to G in the same way. Moreover,
the bottom horizontal arrow λH∗ in the above diagram is given by the identity map
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R(H) → R(H) ∼= R(H) ⊗Z C. On the other hand, the equivariant Chern char-
acter chH∗ for the space ? is induced by the character map R(H) → R(H). This
is precisely the map used for the identification R(H) ⊗Z C ∼= R(H). Hence the
complexified character chH∗ and the map λH∗ for the one-point space are inverse to
each other.
Let us assume that we are given a natural transformation αG∗ : BHG

∗ → BHG
∗ of

equivariant Bredon homology for every group G. Suppose moreover that each αG∗
is compatible with the boundary maps and αH∗ (?) = id for all finite groups H. As
explained in [19], if the natural transformations αG∗ are in addition compatible with
induction from finite subgroups, then αG∗ = id on the category of proper G-CW -
complexes for all G.
Despite of the above observations, for αG∗ = chG∗ ◦ λG∗ we cannot conclude αG∗ = id

since chG∗ commutes with the boundary maps only up to a factor
√

2πi and possibly
a sign. However, in view of the constructions, the complexification of chG∗ and the
character λG∗ of Lück are as close as possible to being mutually inverse.
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