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THE BAUM-CONNES CONJECTURE FOR FREE ORTHOGONAL
QUANTUM GROUPS

CHRISTIAN VOIGT

Abstract. We prove an analogue of the Baum-Connes conjecture for free

orthogonal quantum groups. More precisely, we show that these quantum
groups have a γ-element and that γ = 1. It follows that free orthogonal

quantum groups are K-amenable. We compute explicitly their K-theory and

deduce in the unimodular case that the corresponding reduced C∗-algebras do
not contain nontrivial idempotents.

Our approach is based on the reformulation of the Baum-Connes conjecture by

Meyer and Nest using the language of triangulated categories. An important
ingredient is the theory of monoidal equivalence of compact quantum groups

developed by Bichon, De Rijdt and Vaes. This allows us to study the problem

in terms of the quantum group SUq(2). The crucial part of the argument is
a detailed analysis of the equivariant Kasparov theory of the standard Podleś

sphere.

1. Introduction

Let G be a second countable locally compact group and let A be a separable
G-C∗-algebra. The Baum-Connes conjecture with coefficients in A asserts that the
assembly map

µA : Ktop
∗ (G;A)→ K∗(Gnr A)

is an isomorphism [6], [7]. Here K∗(Gnr A) is the K-theory of the reduced crossed
product of A by G. The validity of this conjecture has applications in topology,
geometry and representation theory. In particular, if G is discrete then the Baum-
Connes conjecture with trivial coefficients C implies the Novikov conjecture on
higher signatures and the Kadison-Kaplansky idempotent conjecture.
Meyer and Nest have reformulated the Baum-Connes conjecture using the lan-
guage of triangulated categories and derived functors [21]. In this approach the left
hand side of the assembly map is identified with the localisation LF of the functor
F (A) = K∗(G nr A) on the equivariant Kasparov category KKG. Among other
things, this description allows to establish permanence properties of the conjecture
in an efficient way.
In addition, the approach in [21] is a natural starting point to study an analogue
of the Baum-Connes conjecture for locally compact quantum groups. The usual
definition of the left hand side of the conjecture is based on the universal space for
proper actions, a concept which does not translate to the quantum setting in an
obvious way. Following [21], one has to specify instead an appropriate subcategory
of the equivariant Kasparov category corresponding to compactly induced actions
in the group case. This approach has been implemented in [22] where a strong form
of the Baum-Connes conjecture for duals of compact groups is established. Duals
of compact groups are, in a sense, the most basic examples of discrete quantum
groups.
In this paper we develop these ideas further and prove an analogue of the Baum-
Connes conjecture for free orthogonal quantum groups. These quantum groups,
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2 CHRISTIAN VOIGT

introduced by Wang and van Daele [36], [33], can be considered as quantum analogs
of orthogonal matrix Lie groups. If Q ∈ GLn(C) is a matrix satisfying QQ = ±1
then the free orthogonal quantum group Ao(Q) is the universal C∗-algebra gener-
ated by the entries of a unitary n×n-matrix u satisfying the relations u = QuQ−1.
In this paper we will use the notation Ao(Q) = C∗f (FO(Q)) in order to emphasize
that we view this C∗-algebra as the full group C∗-algebra of a discrete quantum
group. Accordingly, we will refer to FO(Q) as the free orthogonal quantum group
associated to Q. In the case that Q = 1n ∈ GLn(C) is the identity matrix we
simply write FO(n) instead of FO(1n). In fact, this special case illustrates the link
to classical orthogonal groups since the algebra C(O(n)) of functions on O(n) is
the abelianization of C∗f (FO(n)). It is known [4] that the quantum group FO(Q) is
not amenable if Q ∈ GLn(C) for n > 2.
The main result of this paper is that FO(Q) has a γ-element and that γ = 1 for
Q ∈ GLn(C) and n > 2. The precise meaning of this statement, also referred to
as the strong Baum-Connes conjecture, will be explained in section 5 using the
language of triangulated categories. However, we point out that triangulated cate-
gories are not needed to describe the applications that motivated our study. Firstly,
it follows that free orthogonal quantum groups are K-amenable. This answers in an
affirmative way a question arising from the work of Vergnioux on quantum Cayley
trees [35]. Secondly, by studying the left hand side of the assembly map we obtain
an explicit calculation of the K-theory of FO(Q). In the same way as in the case of
free groups, the result of this calculation implies that the reduced group C∗-algebra
of FO(n) does not contain nontrivial idempotents. This may be regarded as an
analogue of the Kadison-Kaplansky conjecture.
Our results support the point of view that free quantum groups behave like free
groups in many respects. By work of Vaes and Vergnioux [32] it is known, for
instance, that the reduced C∗-algebra C∗r (FO(n)) of FO(n) is exact and simple for
n > 2. Moreover, the associated von Neumann algebra L(FO(n)) is a full and prime
factor. Let us note that, in contrast to the case of free groups, even the K-theory of
the maximal C∗-algebras of orthogonal quantum groups seems difficult to compute
directly.
As already mentioned above, our approach is motivated from the work of Meyer
and Nest [21]. In fact, the definition of the assembly map for torsion-free quantum
groups proposed by Meyer in [20] is the starting point of this paper. We proceed by
observing that the strong Baum-Connes conjecture for torsion-free quantum groups
is invariant under monoidal equivalence. The theory of monoidal equivalence for
compact quantum groups was developed by Bichon, De Rijdt, and Vaes [8]. We use
it to translate the Baum-Connes problem for free orthogonal quantum groups into
a specific problem concerning SUq(2). This step builds on the results in [8] and
the foundational work of Banica [3]. The crucial part of our argument is a precise
study of the equivariant KK-theory of the standard Podleś sphere. By definition,
the Podleś sphere SUq(2)/T is the homogeneous space of SUq(2) with respect to
the classical maximal torus T ⊂ SUq(2). Our constructions in connection with the
Podleś sphere rely on the considerations in [26]. Finally, the K-theory computation
for FO(Q) involves some facts from homological algebra for triangulated categories
worked out in [20].
Let us describe how the paper is organized. In section 2 we discuss some pre-
liminaries on compact quantum groups. In particular, we review the construction
of spectral subspaces for actions of compact quantum groups on C∗-algebras and
Hilbert modules. Section 3 contains basic definitions related to SUq(2) and the
standard Podleś sphere SUq(2)/T . Moreover, it is shown that the dual of SUq(2)
can be viewed as a torsion-free discrete quantum group in the sense of [20]. The
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most technical part of the paper is section 4 which contains our results on the Podleś
sphere. In section 5 we explain the formulation of the Baum-Connes conjecture for
torsion-free quantum groups proposed in [20]. Using the considerations from section
4 we prove that the dual of SUq(2) satisfies the strong Baum-Connes conjecture in
section 6. Section 7 contains the definition of free orthogonal quantum groups and
a brief review of the theory of monoidal equivalence for compact quantum groups
[8]. In section 8 we show that monoidally equivalent compact quantum groups have
equivalent equivariant KK-categories. This implies that the strong Baum-Connes
property is invariant under monoidal equivalence. Due to the work in [8] and our
results in section 6 it follows that free orthogonal quantum groups satisfy the strong
Baum-Connes conjecture. Finally, in section 9 we discuss applications and conse-
quences.
Let us make some remarks on notation. We write L(E) for the space of adjointable
operators on a Hilbert A-module E . Moreover K(E) denotes the space of compact
operators. The closed linear span of a subset X of a Banach space is denoted by
[X]. Depending on the context, the symbol ⊗ denotes either the tensor product of
Hilbert spaces, the minimal tensor product of C∗-algebras, or the tensor product
of von Neumann algebras. We write � for algebraic tensor products. For operators
on multiple tensor products we use the leg numbering notation.
It is a pleasure to thank U. Krähmer, R. Meyer, R. Nest and N. Vander Vennet for
interesting discussions on the subject of this paper.

2. Compact quantum groups and spectral decomposition

Concerning the general theory of quantum groups, we assume that the reader is
familiar with the definitions and constructions that are reviewed in the first section
of [26]. For more information we refer to the literature [18], [19], [31], [39]. Unless
explicitly stated otherwise, our notation and conventions will follow [26] throughout
the paper.
The purpose of this section is to explain some specific preliminaries on compact
quantum groups. In particular, we discuss the construction of spectral subspaces
for actions of compact quantum groups on C∗-algebras and Hilbert modules.
Let G be a compact quantum group. Since G is compact the corresponding reduced
C∗-algebra of functions Cr(G) is unital. A (unitary) representation π of G on a
Hilbert space Hπ is an invertible (unitary) element uπ ∈ L(Cr(G)⊗Hπ) satisfying
the relation

(∆⊗ id)(uπ) = uπ13u
π
23.

That is, a unitary representation of G is the same thing as a unitary corepresenta-
tion of the Hopf-C∗-algebra Cr(G).
Let π, η be representations ofG on the Hilbert spacesHπ,Hη, given by the invertible
elements uπ ∈ L(Cr(G)⊗Hπ) and uη ∈ L(Cr(G)⊗Hη), respectively. An operator
T in L(Hπ,Hη) is called an intertwiner between π and η if (id⊗T )uπ = uη(id⊗T ).
We will denote the space of intertwiners between Hπ and Hη by Mor(Hπ,Hη).
The representations π and η are equivalent iff Mor(Hπ,Hη) contains an invertible
operator. Every unitary representation of a compact quantum group decomposes
into a direct sum of irreducibles, and all irreducible representations are finite di-
mensional. Every finite dimensional representation is equivalent to a unitary rep-
resentation, and according to Schur’s lemma a representation π is irreducible iff
dim(Mor(Hπ,Hπ)) = 1. By slight abuse of notation, we will sometimes write Ĝ
for the set of isomorphism classes of irreducible unitary representations of G. The
trivial representation of G on the one-dimensional Hilbert space is denoted by ε.
The tensor product of the representations π and η is the representation π ⊗ η on
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Hπ ⊗ Hη given by uπ⊗η = uη13u
π
12 ∈ L(Cr(G) ⊗ Hπ ⊗ Hη). The class of all fi-

nite dimensional representations of G together with the intertwining operators as
morphisms and the direct sum and tensor product operations yields a C∗-tensor
category Rep(G). This category is called the representation category of G. By
construction, it comes equipped with a canonical C∗-tensor functor to the category
of finite dimensional Hilbert spaces.
Let π be a finite dimensional representation given by uπ ∈ L(Cr(G) ⊗ Hπ), and
let dim(π) = dim(Hπ) = n be the dimension of the underlying Hilbert space. If
eπ1 , . . . , e

π
n is an orthonormal basis for Hπ we obtain associated matrix elements

uπij ∈ Cr(G) given by
uπij = 〈eπi , uπ(eπj )〉.

The corepresentation identity for uπ corresponds to

∆(uπij) =
n∑
k=1

uπik ⊗ uπkj

for 1 ≤ i, j ≤ n. Conversely, a (unitary) invertible matrix u = (uij) ∈Mn(Cr(G)) =
L(Cr(G)⊗ Cn) satisfying these relations yields a (unitary) representation of G.
The linear span of the matrix elements of π ∈ Ĝ forms a finite dimensional coalgebra
C[G]π ⊂ Cr(G). Moreover

C[G] =
⊕
π∈Ĝ

C[G]π

is a dense Hopf ∗-algebra C[G] ⊂ Cr(G) by the Peter-Weyl theorem. In subsequent
sections we will use the fact that similar spectral decompositions exist for arbitrary
G-C∗-algebras and G-Hilbert modules. In order to discuss this we review some
further definitions and results.
Let π be an irreducible unitary representation of G, and let uπij be the matrix
elements in some fixed basis. The contragredient representation πc is given by
the matrix (uπ

c

)ij = S(uπji) where S is the antipode of C[G]. In general πc is
not unitary, but as any finite dimensional representation of G it is unitarizable.
The representations π and πcc are equivalent, and there exists a unique positive
invertible intertwiner Fπ ∈ Mor(Hπ,Hπcc) satisfying tr(Fπ) = tr(F−1

π ). The trace
of Fπ is called the quantum dimension of π and denoted by dimq(π).
With this notation, the Schur orthogonality relations are

φ(uπij(u
η
kl)
∗) = δπηδik

1
dimq(π)

(Fπ)lj

where π, η ∈ Ĝ and φ : Cr(G) → C is the Haar state of G. In the sequel we shall
fix bases such that Fπ is a diagonal operator for all π ∈ Ĝ.
Let π be a unitary representation of G with matrix elements uπij . The element

χπ =
dim(π)∑
j=1

uπjj

in Cr(G) is called the character of π. The subring in Cr(G) generated by the charac-
ters of unitary representations is isomorphic to the (opposite of the) representation
ring of G.
Let us now fix our terminology concerning coactions. By an algebraic coaction of
C[G] on a vector space M we mean an injective linear map γ : M → C[G]�M such
that (id�γ)γ = (∆� id)γ. For an algebraic coaction one always has (ε� id)γ = id
and (C[G]� 1)γ(M) = C[G]�M . Hence a vector space together with an algebraic
coaction of C[G] is the same thing as a (left) C[G]-comodule. Accordingly one de-
fines right coactions on vector spaces.
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By an algebraic coaction of C[G] on a ∗-algebra A we shall mean an injective ∗-
homomorphism α : A → C[G] � A such that (id�α)α = (∆ � id)α. Accordingly
one defines right coactions on ∗-algebras. A ∗-algebra equipped with an algebraic
coaction of C[G] will also be called a G-algebra.
Let G be a compact quantum group and let A be a G-C∗-algebra with coac-
tion α : A → M(Cr(G) ⊗ A). Since G is compact, such a coaction is an injec-
tive ∗-homomorphism α : A → Cr(G) ⊗ A satisfying the coassociativity identity
(∆ ⊗ id)α = (id⊗α)α and the density condition [(Cr(G) ⊗ 1)α(A)] = Cr(G) ⊗ A.
For π ∈ Ĝ we let

Aπ = {a ∈ A|α(a) ∈ C[G]π �A}
be the π-spectral subspace of A. The subspace Aπ is a closed in A, and there is a
projection operator pπ : A→ Aπ defined by

pπ(a) = (θπ ⊗ id)α(a)

where

θπ(x) = dimq(π)
dim(π)∑
j=1

(Fπ)−1
jj φ(x(uπjj)

∗).

The spectral subalgebra S(A) ⊂ A is the ∗-subalgebra defined by

S(A) = SG(A) =
⊕
π∈Ĝ

Aπ,

and we note that S(A) is a G-algebra in a canonical way. From the Schur orthog-
onality relations and [(Cr(G)⊗ 1)α(A)] = Cr(G)⊗A it is easy to check that S(A)
is dense in A, compare [28].
In a similar way one defines the spectral decomposition of G-Hilbert modules. Let
EA be a G-Hilbert A-module over the G-C∗-algebra A. Since G is compact, the cor-
responding coaction γ : E →M(Cr(G)⊗E) is an injective linear map E → Cr(G)⊗E
satisfying the coaction identity (∆ ⊗ id)γ = (id⊗γ)γ and the density condition
[(Cr(G)⊗ 1)γ(E)] = Cr(G)⊗ E . For π ∈ Ĝ we let

Eπ = {ξ ∈ E|γ(ξ) ∈ C[G]π � E}
be the corresponding spectral subspace. As in the algebra case, the spectral sub-
space Eπ is closed in E , and there is a projection map pπ : E → Eπ.
By definition, the spectral submodule of E is the dense subspace

S(E) =
⊕
π∈Ĝ

Eπ

of E . The spectral submodule S(E) is in fact a right S(A)-module, and the scalar
product of E restricts to an S(A)-valued inner product on S(E). In this way S(E)
becomes a pre-Hilbert S(A)-module.
For a G-algebra A the spectral subspace Aπ for π ∈ Ĝ is defined in the same way.
This yields a corresponding spectral decomposition of A, the difference to the C∗-
setting is that we always have S(A) = A in this case. The same remark applies
to coactions of C[G] on arbitrary vector spaces. If H is another compact quantum
group and M is a C[G]-C[H]-bicomodule, we will also write πM for the π-spectral
subspace corresponding to the left coaction.
Finally, we recall the definition of cotensor products. Let M be a right C[G]-
comodule with coaction ρ : M → M � C[G] and N be a left C[G]-comodule with
coaction λ : N → C[G]�N . The cotensor product of M and N is the equalizer

M�C[G]N // M �N
//
M � C[G]�N//

of the maps id�λ and ρ� id.
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3. The quantum group SUq(2)

In this section we review some definitions and constructions related to SUq(2).
Moreover we show that the dual discrete quantum group of SUq(2) is torsionfree in
a suitable sense. Throughout we consider q ∈ [−1, 1] \ {0}, at some points we will
exclude the cases q = ±1.
By definition, C(SUq(2)) is the universal C∗-algebra generated by elements α and
γ satisfying the relations

αγ = qγα, αγ∗ = qγ∗α, γγ∗ = γ∗γ, α∗α+ γ∗γ = 1, αα∗ + q2γγ∗ = 1.

These relations are equivalent to saying that the fundamental matrix

u =
(
α −qγ∗
γ α∗

)
is unitary.
The comultiplication ∆ : C(SUq(2)) → C(SUq(2)) ⊗ C(SUq(2)) is given on the
generators by

∆(α) = α⊗ α− qγ∗ ⊗ γ, ∆(γ) = γ ⊗ α+ α∗ ⊗ γ,

and in this way the compact quantum group SUq(2) is defined. We remark that
there is no need to distinguish between full and reduced C∗-algebras here since
SUq(2) is coamenable, see [5].
The Hopf ∗-algebra C[SUq(2)] is the dense ∗-subalgebra of C(SUq(2)) generated by
α and γ, with counit ε : C[SUq(2)] → C and antipode S : C[SUq(2)] → C[SUq(2)]
determined by

ε(α) = 1, ε(γ) = 0

and

S(α) = α∗, S(α∗) = α, S(γ) = −qγ, S(γ∗) = −q−1γ∗,

respectively. We use the Sweedler notation ∆(x) = x(1)⊗ x(2) for the comultiplica-
tion and write

f ⇀ x = x(1)f(x(2)), x ↼ f = f(x(1))x(2)

for elements x ∈ C[SUq(2)] and linear functionals f : C[SUq(2)]→ C.
The antipode is an algebra antihomomorphism satisfying S(S(x∗)∗) = x for all
x ∈ C[SUq(2)]. In particular the map S is invertible, and the inverse of S can be
written as

S−1(x) = f1 ⇀ S(x) ↼ f−1

where f1 : C[SUq(2)]→ C is the modular character given by

f1(α) = |q|−1, f1(α∗) = |q|, f1(γ) = 0, f1(γ∗) = 0

and f−1 is defined by f−1(x) = f(S(x)). These maps are actually members of a
canonical family (fz)z∈C of characters. The character f1 describes the modular
properties of the Haar state φ of C(SUq(2)) in the sense that

φ(xy) = φ(y(f1 ⇀ x ↼ f1))

for all x, y ∈ C[SUq(2)].
For q ∈ (−1, 1) \ {0} we denote by Uq(sl(2)) the quantized universal enveloping
algebra of sl(2). This is the algebra generated by the elements E,F,K such that
K is invertible and the relations

KEK−1 = q2E, KFK−1 = q−2F, [E,F ] =
K −K−1

q − q−1
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are satisfied. We consider Uq(sl(2)) with its Hopf algebra structure determined by

∆(K) = K ⊗K, ∆(E) = E ⊗K + 1⊗ E, ∆(F ) = F ⊗ 1 +K−1 ⊗ F
ε(K) = 1, ε(E) = 0, ε(F ) = 0

S(K) = K−1, S(E) =− EK−1, S(F ) = −KF

and the ∗-structure

K∗ = K, E∗ = sgn(q)KF, F ∗ = sgn(q)EK−1

where sgn(q) denotes the sign of q. In our arguments below we use the fact that
there is a nondegenerate skew-pairing between the Hopf-∗-algebras Uq(sl(2)) and
C[SUq(2)], compare [17]. In particular, every finite dimensional unitary corepre-
sentation of C(SUq(2)) corresponds to a finite dimensional unital ∗-representation
of Uq(sl(2)).
Recall that a discrete group is called torsion-free if it does not contain nontrivial
elements of finite order. For discrete quantum groups the following definition was
proposed by Meyer [20].

Definition 3.1. A discrete quantum group G is called torsion-free iff every finite
dimensional Ĝ-C∗-algebra for the dual compact quantum group Ĝ is isomorphic to
a direct sum of Ĝ-C∗-algebras that are equivariantly Morita equivalent to C.

In other words, according to definition 3.1, a discrete quantum groupG is torsion-
free if for every finite dimensional Ĝ-C∗-algebra A there are finite dimensional
Hilbert spaces H1, . . . ,Hl and unitary corepresentations uj ∈ L(Cr(Ĝ)⊗Hj) such
that A is isomorphic to K(H1)⊕ · · · ⊕K(Hl) as a Ĝ-C∗-algebra. Here each matrix
block K(Hj) is equipped with the adjoint action corresponding to uj . If G is a
discrete group this is equivalent to the usual notion of torsion-freeness.
Definition 3.1 is motivated from the study of torsion phenomena that occur for
coactions of compact groups [22]. Hence it is not surprising that it also provides
the correct picture for duals of q-deformations. We shall discuss explicitly the case
of SUq(2).

Proposition 3.2. Let q ∈ (−1, 1) \ {0}. Then the discrete quantum group dual to
SUq(2) is torsion-free.

Proof. The following argument was suggested by U. Krähmer. For simplicity we
restrict ourselves to the case q > 0, the case of negative q is treated in a similar
way. Let us assume that A is a finite dimensional SUq(2)-C∗-algebra with coaction
α : A→ C(SUq(2))⊗A. Since A is finite dimensional we may write A = Mn1(C)⊕
· · · ⊕Mnl

(C). The task is to describe the coaction in terms of this decomposition.
First consider the restriction of α to C(T ). Since the torus T is a connected group,
the corresponding action of T preserves the decomposition of A into matrix blocks.
Moreover, on each matrix block the action arises from a representation of T . Hence,
if we view A as a Uq(sl(2))-module algebra, the action of K is implemented by
conjugating with an invertible self-adjoint matrix k = k1 ⊕ · · · ⊕ kl. Morever we
may suppose that k has only positive eigenvalues. With these requirements each of
the matrices kj is uniquely determined up to a positive scalar factor.
Next consider the skew-primitive elements E and F . From the definition of the
comultiplication in Uq(sl(2)) we obtain

E · (ab) = (E · a)(K · b) + a(E · b), F · (ab) = F (a)b+ (K−1 · a)(F · b)

for all a, b ∈ A. Hence E and F can be viewed as Hochschild-1-cocycles on A with
values in appropriate A-bimodules. Since A is a semisimple algebra the correspond-
ing Hochschild cohomology groups vanish. Consequently there are e, f ∈ A such
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that

E · a = ek−1(K · a)− aek−1

F · a = fa− (K−1 · a)f

for all a ∈ A. It follows that E and F preserve the decomposition of A into matrix
blocks. In particular, we may restrict attention to the case that A is a simple matrix
algebra.
Let us assume A = Mn(C) in the sequel. Then e and f are uniquely determined up
to addition of a scalar multiple of 1 and k−1, respectively. The relation KEK−1 =
q2E implies

k(ek−1a− k−1akek−1)k−1 = kek−1ak−1 − akek−2 = q2(eak−1 − aek−1)

for all a ∈ A and yields kek−1 − q2e = λ for some λ ∈ C. If we replace e by
e − λ(1 − q2)−1 we obtain kek−1 = q2e. Similarly we may achieve kfk−1 = q−2f ,
and we fix e and f such that these identities hold. The commutation relation for
E and F implies(

e(fa− k−1akf)k−1 − (fa− k−1akf)ek−1

)
−
(
f(eak−1 − aek−1)− k−1(eak−1 − aek−1)kf

)
= (ef − fe)ak−1 − k−1a(ef − fe)

=
1

q − q−1

(
kak−1 − k−1ak

)
.

As a consequence we obtain

ef − fe− k

q − q−1
= − µ

q − q−1
k−1

for some constant µ. In fact, since k has only positive eigenvalues the scalar µ is
strictly positive. Replacing k by λk and e by λe with λ = µ−1/2 yields

[e, f ] =
k − k−1

q − q−1
.

It follows that there is a representation of Uq(sl(2)) on Cn which induces the given
action on A by conjugation.
We have (E · a)∗ = −F · a∗ for all a ∈ A and hence

a∗(e∗ − kf) = (e∗ − kf)a∗

which implies e∗ − kf = ν for some ν ∈ C. Conjugating with k yields

ν = k−1(e∗ − kf)k = (kek−1)∗ − q2kf = q2(e∗ − kf) = q2ν

and thus ν = 0. It follows that the representation of Uq(sl(2)) given by e, f and k
is a ∗-representation. Finally, one can easily arrange that this representation is of
type I. We conclude that there exists a unitary corepresentation of C(SUq(2)) on
Cn which implements the coaction on A as desired. �
Let us next discuss the regular representation of SUq(2) for q ∈ (−1, 1) \ {0}. We
write L2(SUq(2)) for the Hilbert space obtained using the inner product

〈x, y〉 = φ(x∗y)

on C(SUq(2)). By definition, the regular representation on L2(SUq(2)) is given by
the multiplicative unitary W ∈ L(C(SUq(2))⊗ L2(SUq(2)).
The Peter-Weyl theory describes the decomposition of this representation into ir-
reducibles. As in the classical case, the irreducible representations of SUq(2) are
labelled by half-integers l, and the corresponding Hilbert spaces have dimension
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2l+ 1. The matrix elements u(l)
ij with respect to weight bases determine an orthog-

onal set in L2(SUq(2)). Moreover, if we write

[a] =
qa − q−a

q − q−1

for the q-number associated to a ∈ C, then the vectors

e
(l)
i,j = qi[2l + 1]

1
2u

(l)
i,j

form an orthonormal basis of L2(SUq(2)), compare [17].
The regular representation of C(SUq(2)) on L2(SUq(2)) is given by

α e
(l)
i,j = a+(l, i, j) e(

l+ 1
2 )

i− 1
2 ,j−

1
2

+ a−(l, i, j) e(
l− 1

2 )
i− 1

2 ,j−
1
2

γ e
(l)
i,j = c+(l, i, j) e(

l+ 1
2 )

i+ 1
2 ,j−

1
2

+ c−(l, i, j) e(
l− 1

2 )
i+ 1

2 ,j−
1
2

where the explicit form of a± and c± is

a+(l, i, j) = q2l+i+j+1 (1− q2l−2j+2)
1
2 (1− q2l−2i+2)

1
2

(1− q4l+2)
1
2 (1− q4l+4)

1
2

a−(l, i, j) =
(1− q2l+2j)

1
2 (1− q2l+2i)

1
2

(1− q4l)
1
2 (1− q4l+2)

1
2

and

c+(l, i, j) = −ql+j (1− q2l−2j+2)
1
2 (1− q2l+2i+2)

1
2

(1− q4l+2)
1
2 (1− q4l+4)

1
2

c−(l, i, j) = ql+i
(1− q2l+2j)

1
2 (1− q2l−2i)

1
2

(1− q4l)
1
2 (1− q4l+2)

1
2

.

Note here that a−(l, i, j) vanishes if i = −l or j = −l, and similarly, c−(l, i, j)
vanishes for i = l or j = −l. We obtain

α∗ e
(l)
i,j = a+(l − 1

2 ,i+ 1
2 , j + 1

2 ) e(
l− 1

2 )
i+ 1

2 ,j+
1
2

+ a−(l + 1
2 , i+ 1

2 , j + 1
2 ) e(

l+ 1
2 )

i+ 1
2 ,j+

1
2

and

γ∗ e
(l)
i,j = c+(l − 1

2 ,i−
1
2 , j + 1

2 ) e(
l− 1

2 )
i− 1

2 ,j+
1
2

+ c−(l + 1
2 , i−

1
2 , j + 1

2 ) e(
l+ 1

2 )
i− 1

2 ,j+
1
2

for the action of α∗ and γ∗, respectively. Let us also record the formulas

u
(l)∗
i,j = (−1)2l+i+jqj−iu(l)

−i,−j

and
e
(l)∗
i,j = (−1)2l+i+jqi+je(l)−i,−j

for the adjoint.
The classical torus T = S1 is a closed quantum subgroup of SUq(2). Explicitly,
the inclusion T ⊂ SUq(2) is determined by the ∗-homomorphism π : C[SUq(2)] →
C[T ] = C[z, z−1] given by

π(α) = z, π(γ) = 0.

By definition, the standard Podleś sphere SUq(2)/T is the corresponding homoge-
neous space [27]. In the algebraic setting, it is described by the dense ∗-subalgebra
C[SUq(2)/T ] ⊂ C(SUq(2)/T ) of coinvariants in C[SUq(2)] with respect to the right
coaction (id⊗π)∆ of C[T ]. Equivalently, it is the unital ∗-subalgebra of C[SUq(2)]
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generated by the elements A = γ∗γ and B = α∗γ. These elements satisfy the
relations

A = A∗, AB = q2BA, BB∗ = q−2A(1−A), B∗B = A(1− q2A),

and we record the following explicit formulas for the action ofA andB on L2(SUq(2))
for q ∈ (−1, 1) \ {0}. Firstly,

γ∗γ e
(l)
i,j = γ∗

(
c+(l, i, j) e(

l+ 1
2 )

i+ 1
2 ,j−

1
2

+ c−(l, i, j) e(
l− 1

2 )
i+ 1

2 ,j−
1
2

)
= c+(l − 1, i, j)c−(l, i, j) e(l−1)

ij + (c+(l, i, j)2 + c−(l, i, j)2) e(l)ij

+ c−(l + 1, i, j)c+(l, i, j) e(l+1)
ij

= −q2l+i+j−1 (1− q2l−2j)
1
2 (1− q2l+2i)

1
2 (1− q2l+2j)

1
2 (1− q2l−2i)

1
2

(1− q4l−2)
1
2 (1− q4l)(1− q4l+2)

1
2

e
(l−1)
ij

+
(
q2l+2j (1− q2l−2j+2)(1− q2l+2i+2)

(1− q4l+2)(1− q4l+4)
+ q2l+2i (1− q2l+2j)(1− q2l−2i)

(1− q4l)(1− q4l+2)

)
e
(l)
ij

− q2l+i+j+1 (1− q2l+2j+2)
1
2 (1− q2l−2i+2)

1
2 (1− q2l−2j+2)

1
2 (1− q2l+2i+2)

1
2

(1− q4l+4)(1− q4l+6)
1
2 (1− q4l+2)

1
2

e
(l+1)
ij

determines the action of A. Similarly, we get

α∗γ e
(l)
i,j = α∗

(
c+(l, i, j)e(

l+ 1
2 )

i+ 1
2 ,j−

1
2

+ c−(l, i, j)e(
l− 1

2 )
i+ 1

2 ,j−
1
2

)
= a+(l − 1, i+ 1, j)c−(l, i, j)e(l−1)

i+1,j

+
(
a+(l, i+ 1, j)c+(l, i, j) + a−(l, i+ 1, j)c−(l, i, j)

)
e
(l)
i+1,j

+ a−(l + 1, i+ 1, j)c+(l, i, j)e(l+1)
i+1,j

= q3l+2i+j (1− q2l−2j)
1
2 (1− q2l−2i−2)

1
2 (1− q2l+2j)

1
2 (1− q2l−2i)

1
2

(1− q4l−2)
1
2 (1− q4l)(1− q4l+2)

1
2

e
(l−1)
i+1,j

+
(
ql+i

(1− q2l+2j)(1− q2l+2i+2)
1
2 (1− q2l−2i)

1
2

(1− q4l)(1− q4l+2)

− q3l+i+2j+2 (1− q2l−2j+2)(1− q2l−2i)
1
2 (1− q2l+2i+2)

1
2

(1− q4l+2)(1− q4l+4)

)
e
(l)
i+1,j

− ql+j (1− q2l+2j+2)
1
2 (1− q2l+2i+4)

1
2 (1− q2l−2j+2)

1
2 (1− q2l+2i+2)

1
2

(1− q4l+4)(1− q4l+6)
1
2 (1− q4l+2)

1
2

e
(l+1)
i+1,j

for the action of B.
In the sequel we abbreviate SUq(2) = Gq. If Ck denotes the irreducible represen-
tation of T of weight k ∈ Z, then the cotensor product

Γ(Ek) = Γ(Gq ×T Ck) = C[Gq]�C[T ]Ck ⊂ C[Gq]

is a noncommutative analogue of the space of sections of the homogeneous vector
bundle G ×T Ck over G/T . The space Γ(Ek) is a C[Gq/T ]-bimodule in a natural
way which is finitely generated and projective both as a left and right C[Gq/T ]-
module. The latter follows from the fact that C[Gq/T ] ⊂ C[Gq] is a faithfully flat
Hopf-Galois extension, compare [30].
We denote by C(Ek) the closure of Γ(Ek) inside C(Gq). The space C(Ek) is a Gq-
equivariant Hilbert C(Gq/T )-module with coaction induced by comultiplication.
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We write L2(Ek) for the Gq-Hilbert space obtained by taking the closure of Γ(Ek)
inside L2(Gq).
Let us recall the definition of the Drinfeld double D(Gq) of Gq. It is the locally
compact quantum group determined by C0(D(Gq)) = C(Gq)⊗C∗(Gq) with comul-
tiplication

∆D(Gq) = (id⊗σ ⊗ id)(id⊗ad(W )⊗ id)(∆⊗ ∆̂).
Here ad(W ) denotes the adjoint action of the left regular multiplicative unitary
W ∈M(C(Gq)⊗ C∗(Gq)) and σ is the flip map.
Observe that both C(Gq) and C∗(Gq) are quotient Hopf-C∗-algebras of C0(D(Gq)).
It is shown in [26] that a D(Gq)-C∗-algebra A is uniquely determined by coactions
α : A→M(C(Gq)⊗A) and λ : A→M(C∗(Gq)⊗A) satisfying the Yetter-Drinfeld
compatibility condition

(σ ⊗ id)(id⊗α)λ = (ad(W )⊗ id)(id⊗λ)α.

In a similar fashion on can study D(Gq)-equivariant Hilbert modules. For instance,
the space C(Ek) defined above carries a coaction λ : C(Ek)→M(C∗(Gq)⊗ C(Ek))
given by λ(f) = Ŵ ∗(1 ⊗ f)Ŵ where Ŵ = ΣW ∗Σ. Together with the canonical
coaction of C(Gq) this turns C(Ek) into a D(Gq)-equivariant Hilbert C(Gq/T )-
module.

4. Equivariant KK-theory for the Podleś sphere

In this section we study the equivariant KK-theory of the standard Podleś sphere
SUq(2)/T . Background information on equivariant KK-theory for quantum group
actions can be found in [1], [26]. Most of the ingredients in this section have already
been introduced in [26] in the case q ∈ (0, 1). However, for the purposes of this paper
we have to allow for negative values of q. In the sequel we consider q ∈ (−1, 1)\{0},
and as in the previous section we abbreviate Gq = SUq(2).
Let us first recall the definition of the Fredholm module corresponding to the Dirac
operator on the standard Podleś sphere Gq/T , compare [12], [26]. The underlying
graded Gq-Hilbert space is

H = H1 ⊕H−1 = L2(E1)⊕ L2(E−1)

with its natural coaction of C(Gq). The covariant representation φ of C(Gq/T ) is
given by left multiplication.
We note that H1 and H−1 are isomorphic representations of Gq due to Frobenius
reciprocity. Hence we obtain a self-adjoint unitary operator F on H by

F =
(

0 1
1 0

)
if we identify the basis vectors e(l)i,1/2 and e

(l)
i,−1/2 in H1 and H−1, respectively. Us-

ing the explicit formulas for the generators of the Podleś sphere from section 3 one
checks that D = (H, φ, F ) is a Gq-equivariant Fredholm module defining an element
in KKGq (C(Gq/T ),C).
Our first aim is to lift this construction to D(Gq)-equivariant KK-theory where
D(Gq) denotes the Drinfeld double of Gq as in section 3. We recall that the C∗-
algebra C(Gq/T ) = indGq

T (C) is naturally a D(Gq)-C∗-algebra [26]. The corre-
sponding coaction C(Gq/T )→M(C∗(Gq)⊗C(Gq/T )) is determined by the adjoint
action

h · g = h(1)gS(h(2))
of C[Gq] on C[Gq/T ].
The following lemma shows that the Hilbert spaces L2(Ek) become D(Gq)-Hilbert
spaces in a similar way.
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Lemma 4.1. For every k ∈ Z the formula

ω(x)(ξ) = x(1)ξ f1 ⇀ S(x(2))

determines a ∗-homomorphism ω : C(Gq) → L(L2(Ek)) which turns L2(Ek) into a
D(Gq)-Hilbert space such that the representation of C(Gq/T ) by left multiplication
is covariant.

Proof. Let us write H = L2(Ek) and define a map ω : C[Gq]→ L(H) by the above
formula, where we recall that f1 : C[Gq] → C denotes the modular character. For
ξ ∈ Γ(Ek) one obtains

(id⊗π)∆(ω(x)(ξ)) = (id⊗π)∆(x(1)ξ f1 ⇀ S(x(2)))

= x(1)ξ(1)S(x(4))⊗ π(x(2)ξ(2)f1 ⇀ S(x(3)))

= x(1)ξ(1)S(x(4))⊗ π(x(2))π(ξ(2))π(f1 ⇀ S(x(3)))

= x(1)ξS(x(4))⊗ π(x(2)f1 ⇀ S(x(3)))zk

= x(1)ξS(x(4))⊗ π(S−1(x(3)) ↼ f1)π(x(2))zk

= x(1)ξS(x(3))⊗ π(f−1(x(2))1)zk

= x(1)ξf1 ⇀ S(x(2))⊗ zk

= ω(x)(ξ)⊗ zk

using that C[T ] is commutative and S−1(x) = f1 ⇀ S(x) ↼ f−1 for all x ∈ C[Gq].
It follows that the map ω is well-defined. Using f1 ⇀ x∗ = (f−1 ⇀ x)∗ and the
modular properties of the Haar state φ we obtain

〈ω(x∗)(ξ), η〉 = φ((ω(x∗)(ξ))∗η)

= φ((x∗(1)ξf1 ⇀ S(x∗(2)))
∗η)

= φ((x∗(1)ξf1 ⇀ S−1(x(2))∗)∗η)

= φ(f−1 ⇀ S−1(x(2))ξ∗x(1)η)

= φ(S(x(2)) ↼ f−1ξ
∗x(1)η)

= φ(ξ∗x(1)η f1 ⇀ S(x(2)))

= φ(ξ∗ω(x)(η))

= 〈ξ, ω(x)(η)〉,

and this shows that ω defines a ∗-homomorphism from C(Gq) to L(H). We deduce
that ω corresponds to a coaction λ : H → M(C∗(Gq) ⊗ H), and λ combines with
the standard coaction of C(Gq) such that H becomes a D(Gq)-Hilbert space.
Recall that the action of C(Gq/T ) onH by left multiplication yields aGq-equivariant
∗-homomorphism φ : C(Gq/T )→ L(H). We have

ω(x)(φ(g)(ξ)) = x(1)gξf1 ⇀ S(x(2))

= x(1)gS(x(2))x(3)ξf1 ⇀ S(x(4))

= φ(x(1) · g)(ω(x(2))(ξ))

for all x ∈ C[Gq], g ∈ C[Gq/T ] and ξ ∈ H, and this implies that φ is covariant with
respect to λ. �
We shall now show that the Fredholm module constructed in the beginning of this
section determines a D(Gq)-equivariant KK-element.

Proposition 4.2. Let q ∈ (−1, 1) \ {0}. The Fredholm module D defined above
induces an element [D] in KKD(Gq)(C(Gq/T ),C) in a natural way.
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Proof. We have to verify that F commutes with the action of D(Gq) up to compact
operators. Since F is Gq-equivariant this amounts to showing

(C∗(Gq)⊗ 1)(1⊗ F − adλ(F )) ⊂ C∗(Gq)⊗K(H)

where λ : H → M(C∗(Gq) ⊗ H) is the coaction on H = H1 ⊕ H−1 defined in
lemma 4.1. It suffices to check that F commutes with the corresponding action
ω : C(Gq) → L(H) up to compact operators. This is an explicit calculation using
the formulas for the regular representation from section 3. In fact, we will obtain
the assertion as a special case of our computations below. It turns out that F is
actually D(Gq)-equivariant. �
In the sequel we need variants of the representations defined in lemma 4.1. Let
t ∈ [0, 1] and consider the representation πt of C[Gq] on Γ(Ek) given by

πt(x)(ξ) = x(1)ξ ft ⇀ S(x(2))

where ft : C[Gq]→ C is the modular character given by ft(α) = |q|tα and ft(γ) = 0.
This action has the correct algebraic properties to turn L2(Ek) into a D(Gq)-Hilbert
space except that it is not compatible with the ∗-structures for t < 1. In order to
proceed we need explicit formulas for the action of the generators.
More precisely, a straightforward computation based on the formulas for the regular
representation in section 3 yields

πt(α)(e(l)i,j) = |q|tαe(l)i,jα
∗ + |q|−tq2γ∗e(l)i,jγ

= |q|tq−1a+(l,−i,−j)
(
a+(l + 1

2 , i+ 1
2 , j + 1

2 )e(l+1)
i,j + a−(l + 1

2 , i+ 1
2 , j + 1

2 )e(l)i,j

)
+ |q|tq−1a−(l,−i,−j)

(
a+(l − 1

2 , i+ 1
2 , j + 1

2 )e(l)i,j + a−(l − 1
2 , i+ 1

2 , j + 1
2 )e(l−1)

i,j

)
− |q|−tq2c+(l − 1

2 ,−i−
1
2 ,−j + 1

2 )
(
c+(l − 1, i, j)e(l−1)

i,j + c−(l, i, j)e(l)i,j

)
− |q|−tq2c−(l + 1

2 ,−i−
1
2 ,−j + 1

2 )
(
c+(l, i, j)e(l)i,j + c−(l + 1, i, j) e(l+1)

i,j

)
and

πt(α∗)(e
(l)
i,j) = |q|−tα∗e(l)ij α+ |q|tγe(l)ij γ

∗

= |q|−tqa+(l − 1
2 ,−i+ 1

2 ,−j + 1
2 )
(
a+(l − 1, i, j) e(l−1)

i,j + a−(l, i, j) e(l)i,j

)
+ |q|−tqa−(l + 1

2 ,−i+ 1
2 ,−j + 1

2 )
(
a+(l, i, j) e(l)i,j + a−(l + 1, i, j) e(l+1)

i,j

)
− |q|tc+(l,−i,−j)

(
c+(l + 1

2 , i−
1
2 , j + 1

2 ) e(l+1)
i,j + c−(l + 1

2 , i−
1
2 , j + 1

2 ) e(l)i,j

)
− |q|tc−(l,−i,−j)

(
c+(l − 1

2 , i−
1
2 , j + 1

2 ) e(l)i,j + c−(l − 1
2 , i−

1
2 , j + 1

2 ) e(l−1)
i,j

)
.

Similarly we obtain

πt(γ)(e(l)ij ) = |q|tγe(l)ij α
∗ − |q|−tqα∗e(l)ij γ

= |q|tq−1a+(l,−i,−j)
(
c+(l + 1

2 , i+ 1
2 , j + 1

2 ) e(l+1)
i+1,j + c−(l + 1

2 , i+ 1
2 , j + 1

2 ) e(l)i+1,j

)
+ |q|tq−1a−(l,−i,−j)

(
c+(l − 1

2 , i+ 1
2 , j + 1

2 ) e(l)i+1,j + c−(l − 1
2 , i+ 1

2 , j + 1
2 ) e(l−1)

i+1,j

)
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+ |q|−tqc+(l − 1
2 ,−i−

1
2 ,−j + 1

2 )
(
a+(l − 1, i+ 1, j) e(l−1)

i+1,j + a−(l, i+ 1, j) e(l)i+1,j

)
+ |q|−tqc−(l + 1

2 ,−i−
1
2 ,−j + 1

2 )
(
a+(l, i+ 1, j) e(l)i+1,j + a−(l + 1, i+ 1, j) e(l+1)

i+1,j

)

and

πt(γ∗)(e
(l)
ij ) = |q|−tγ∗e(l)ij α− |q|

tq−1αe
(l)
ij γ
∗

= |q|−tqa+(l − 1
2 ,−i+ 1

2 ,−j + 1
2 )
(
c+(l − 1, i− 1, j) e(l−1)

i−1,j + c−(l, i− 1, j) e(l)i−1,j

)
+ |q|−tqa−(l + 1

2 ,−i+ 1
2 ,−j + 1

2 )
(
c+(l, i− 1, j) e(l)i−1,j + c−(l + 1, i− 1, j) e(l+1)

i−1,j

)
+ |q|tq−1c+(l,−i,−j)

(
a+(l + 1

2 , i−
1
2 , j + 1

2 ) e(l+1)
i−1,j + a−(l + 1

2 , i−
1
2 , j + 1

2 ) e(l)i−1,j

)
+ |q|tq−1c−(l,−i,−j)

(
a+(l − 1

2 , i−
1
2 , j + 1

2 ) e(l)i−1,j + a−(l − 1
2 , i−

1
2 , j + 1

2 ) e(l−1)
i−1,j

)
.

This may be written in the form

πt(α)(e(l)i,j) = a1(t, l, i, j)e(l+1)
i,j + a0(t, l, i, j)e(l)i,j + a−1(t, l, i, j)e(l−1)

i,j

πt(α∗)(e
(l)
i,j) = b1(t, l, i, j)e(l+1)

i,j + b0(t, l, i, j)e(l)i,j + b−1(t, l, i, j)e(l−1)
i,j

πt(γ)(e(l)i,j) = c1(t, l, i, j)e(l+1)
i+1,j + c0(t, l, i, j)e(l)i+1,j + c−1(t, l, i, j)e(l−1)

i+1,j

πt(γ∗)(e
(l)
i,j) = d1(t, l, i, j)e(l+1)

i−1,j + d0(t, l, i, j)e(l)i−1,j + d−1(t, l, i, j)e(l−1)
i−1,j

where

a1(t, l, i, j) = |q|tq4l+3 (1− q2l+2j+2)
1
2 (1− q2l+2i+2)

1
2 (1− q2l−2j+2)

1
2 (1− q2l−2i+2)

1
2

(1− q4l+2)
1
2 (1− q4l+4)(1− q4l+6)

1
2

− |q|−tq2l+3 (1− q2l−2j+2)
1
2 (1− q2l+2i+2)

1
2 (1− q2l+2j+2)

1
2 (1− q2l−2i+2)

1
2

(1− q4l+2)
1
2 (1− q4l+4)(1− q4l+6)

1
2

a0(t, l, i, j) = |q|tq2l−i−j (1− q2l+2j+2)(1− q2l+2i+2)
(1− q4l+2)(1− q4l+4)

+ |q|tq2l+i+j (1− q2l−2j)(1− q2l−2i)
(1− q4l)(1− q4l+2)

+ |q|−tq2l+i−j+2 (1− q2l+2j)(1− q2l−2i)
(1− q4l)(1− q4l+2)

+ |q|−tq2l−i+j+2 (1− q2l−2j+2)(1− q2l+2i+2)
(1− q4l+2)(1− q4l+4)

a−1(t, l, i, j) = |q|tq−1 (1− q2l−2j)
1
2 (1− q2l−2i)

1
2 (1− q2l+2j)

1
2 (1− q2l+2i)

1
2

(1− q4l)(1− q4l+2)
1
2 (1− q4l−2)

1
2

− |q|−tq2l+1 (1− q2l+2j)
1
2 (1− q2l−2i)

1
2 (1− q2l−2j)

1
2 (1− q2l+2i)

1
2

(1− q4l)(1− q4l+2)
1
2 (1− q4l−2)

1
2



BAUM-CONNES CONJECTURE 15

and

b1(t, l, i, j) = |q|−tq (1− q2l−2j+2)
1
2 (1− q2l−2i+2)

1
2 (1− q2l+2j+2)

1
2 (1− q2l+2i+2)

1
2

(1− q4l+2)
1
2 (1− q4l+4)(1− q4l+6)

1
2

− |q|tq2l+1 (1− q2l+2j+2)
1
2 (1− q2l−2i+2)

1
2 (1− q2l−2j+2)

1
2 (1− q2l+2i+2)

1
2

(1− q4l+2)
1
2 (1− q4l+4)(1− q4l+6)

1
2

b0(t, l, i, j) = |q|−tq2l−i−j+2 (1− q2l+2j)(1− q2l+2i)
(1− q4l)(1− q4l+2)

+ |q|−tq2l+i+j+2 (1− q2l−2j+2)(1− q2l−2i+2)
(1− q4l+2)(1− q4l+4)

+ |q|tq2l+i−j (1− q2l+2j+2)(1− q2l−2i+2)
(1− q4l+2)(1− q4l+4)

+ |q|tq2l−i+j (1− q2l−2j)(1− q2l+2i)
(1− q4l)(1− q4l+2)

b−1(t, l, i, j) = |q|−tq4l+1 (1− q2l+2j)
1
2 (1− q2l+2i)

1
2 (1− q2l−2j)

1
2 (1− q2l−2i)

1
2

(1− q4l)(1− q4l+2)
1
2 (1− q4l−2)

1
2

− |q|tq2l−1 (1− q2l−2j)
1
2 (1− q2l+2i)

1
2 (1− q2l+2j)

1
2 (1− q2l−2i)

1
2

(1− q4l)(1− q4l+2)
1
2 (1− q4l−2)

1
2

,

similarly

c1(t, l, i, j) = −|q|tq3l−i+1 (1− q2l+2j+2)
1
2 (1− q2l+2i+2)

1
2 (1− q2l−2j+2)

1
2 (1− q2l+2i+4)

1
2

(1− q4l+2)
1
2 (1− q4l+4)(1− q4l+6)

1
2

+ |q|−tql−i+1 (1− q2l−2j+2)
1
2 (1− q2l+2i+2)

1
2 (1− q2l+2j+2)

1
2 (1− q2l+2i+4)

1
2

(1− q4l+2)
1
2 (1− q4l+4)(1− q4l+6)

1
2

c0(t, l, i, j) = |q|tq3l−j+1 (1− q2l+2j+2)(1− q2l+2i+2)
1
2 (1− q2l−2i)

1
2

(1− q4l+2)(1− q4l+4)

− |q|tql+j−1 (1− q2l−2j)(1− q2l−2i)
1
2 (1− q2l+2i+2)

1
2

(1− q4l)(1− q4l+2)

− |q|−tql−j+1 (1− q2l+2j)(1− q2l−2i)
1
2 (1− q2l+2i+2)

1
2

(1− q4l)(1− q4l+2)

+ |q|−tq3l+j+3 (1− q2l−2j+2)(1− q2l+2i+2)
1
2 (1− q2l−2i)

1
2

(1− q4l+2)(1− q4l+4)

c−1(t, l, i, j) = |q|tql+i−1 (1− q2l−2j)
1
2 (1− q2l−2i)

1
2 (1− q2l+2j)

1
2 (1− q2l−2i−2)

1
2

(1− q4l)(1− q4l+2)
1
2 (1− q4l−2)

1
2

− |q|−tq3l+i+1 (1− q2l+2j)
1
2 (1− q2l−2i)

1
2 (1− q2l−2j)

1
2 (1− q2l−2i−2)

1
2

(1− q4l)(1− q4l+2)
1
2 (1− q4l−2)

1
2

,
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and

d1(t, l, i, j) = |q|−tql+i+1 (1− q2l−2j+2)
1
2 (1− q2l−2i+2)

1
2 (1− q2l+2j+2)

1
2 (1− q2l−2i+4)

1
2

(1− q4l+2)
1
2 (1− q4l+4)(1− q4l+6)

1
2

− |q|tq3l+i+1 (1− q2l+2j+2)
1
2 (1− q2l−2i+2)

1
2 (1− q2l−2j+2)

1
2 (1− q2l−2i+4)

1
2

(1− q4l+2)
1
2 (1− q4l+4)(1− q4l+6)

1
2

d0(t, l, i, j) = |q|−tq3l−j+1 (1− q2l+2j)(1− q2l+2i)
1
2 (1− q2l−2i+2)

1
2

(1− q4l)(1− q4l+2)

− |q|−tql+j+1 (1− q2l−2j+2)(1− q2l−2i+2)
1
2 (1− q2l+2i)

1
2

(1− q4l+2)(1− q4l+4)

− |q|tql−j−1 (1− q2l+2j+2)(1− q2l−2i+2)
1
2 (1− q2l+2i)

1
2

(1− q4l+2)(1− q4l+4)

+ |q|tq3l+j−1 (1− q2l−2j)(1− q2l+2i)
1
2 (1− q2l−2i+2)

1
2

(1− q4l)(1− q4l+2)

d−1(t, l, i, j) = −|q|−tq3l−i+1 (1− q2l+2j)
1
2 (1− q2l+2i)

1
2 (1− q2l−2j)

1
2 (1− q2l+2i−2)

1
2

(1− q4l)(1− q4l+2)
1
2 (1− q4l−2)

1
2

+ |q|tql−i−1 (1− q2l−2j)
1
2 (1− q2l+2i)

1
2 (1− q2l+2j)

1
2 (1− q2l+2i−2)

1
2

(1− q4l)(1− q4l+2)
1
2 (1− q4l−2)

1
2

.

Let us now set

m(t, l) =
|q|−tq2 − |q|tq2l

|q|t − |q|−tq2l+2
=
q2 − |q|2tq2l

|q|2t − q2l+2

for t ∈ [0, 1] and l ∈ N. Note that m(1, l) = 1 for all l if we interpret m(1, 0) = 1.
We define

A1(t, l, i) = m(t, l + 1)−
1
2 a1(t, l, i, 0)

A0(t, l, i) = a0(t, l, i, 0)

A−1(t, l, i) = m(t, l)
1
2 a−1(t, l, i, 0),

and by rescaling bk(t, l, i, 0), ck(t, l, i, 0) and dk(t, l, i, 0) for k = −1, 0, 1 in the same
way we obtain constants Bk(t, l, i), Ck(t, l, i) and Dk(t, l, i). Inspection of the formu-
las above shows that the expressions X1(t, 0, 0) for X = A,B,C,D are well-defined
and depend continuously on t ∈ [0, 1] although m(0, 1) = 0.

Lemma 4.3. Let q ∈ (−1, 1) \ {0}. For t ∈ [0, 1] the formulas

ωt(α)(e(l)i,0) = A1(t, l, i)e(l+1)
i,0 +A0(t, l, i)e(l)i,0 +A−1(t, l, i)e(l−1)

i,0

ωt(α∗)(e
(l)
i,0) = B1(t, l, i)e(l+1)

i,0 +B0(t, l, i)e(l)i,0 +B−1(t, l, i)e(l−1)
i,0

ωt(γ)(e(l)i,0) = C1(t, l, i)e(l+1)
i+1,0 + C0(t, l, i)e(l)i+1,0 + C−1(t, l, i)e(l−1)

i+1,0

ωt(γ∗)(e
(l)
i,0) = D1(t, l, i)e(l+1)

i−1,0 +D0(t, l, i)e(l)i−1,0 +D−1(t, l, i)e(l−1)
i−1,0

define a ∗-homomorphism ωt : C(Gq)→ L(L2(E0)).
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Proof. The main point is to show that ωt is compatible with the ∗-structures. In
order to prove ωt(α)∗ = ωt(α∗) we have to verify

A1(t, l, i) = B−1(t, l + 1, i)

A0(t, l, i) = B0(t, l, i)

A−1(t, l, i) = B1(t, l − 1, i).

We obtain

m(t, l + 1)
1
2A1(t, l, i) = (|q|tq4l+3 − |q|−tq2l+3)×

(1− q2l+2)(1− q2l+2i+2)
1
2 (1− q2l−2i+2)

1
2

(1− q4l+2)
1
2 (1− q4l+4)(1− q4l+6)

1
2

and

m(t, l + 1)
1
2B−1(t, l + 1, i, 0) =

|q|tq4l+3 − |q|−tq2l+3

|q|−tq4l+5 − |q|tq2l+1
×

(|q|−tq4l+5 − |q|tq2l+1)
(1− q2l+2)(1− q2l+2i+2)

1
2 (1− q2l−2i+2)

1
2

(1− q4l+4)(1− q4l+6)
1
2 (1− q4l+2)

1
2

.

Similarly we find

A0(t, l, i) = (|q|tq2l−i + |q|−tq2l−i+2)
(1− q2l+2)(1− q2l+2i+2)

(1− q4l+2)(1− q4l+4)

+ (|q|tq2l+i + |q|−tq2l+i+2)
(1− q2l)(1− q2l−2i)
(1− q4l)(1− q4l+2)

= (|q|tq2l−i + |q|−tq2l−i+2)
(1− q2l+2i+2)

(1 + q2l+2)(1− q4l+2)

+ (|q|tq2l+i + |q|−tq2l+i+2)
(1− q2l−2i)

(1 + q2l)(1− q4l+2)

and hence

(1 + q2l)(1 + q2l+2)(1− q4l+2)A0(t, l, i)

= (|q|tq2l−i + |q|−tq2l−i+2)(1− q2l+2i+2)(1 + q2l)

+ (|q|tq2l+i + |q|−tq2l+i+2)(1− q2l−2i)(1 + q2l+2)

= (|q|tq2l−i + |q|−tq2l−i+2)(1− q2l+2i+2 + q2l − q4l+2i+2)

+ (|q|tq2l+i + |q|−tq2l+i+2)(1− q2l−2i + q2l+2 − q4l−2i+2)

= |q|t(q2l−i − q4l+i+2 + q4l−i − q6l+i+2

+ q2l+i − q4l−i + q4l+i+2 − q6l−i+2)

+ |q|−t(q2l−i+2 − q4l+i+4 + q4l−i+2 − q6l+i+4

+ q2l+i+2 − q4l−i+2 + q4l+i+4 − q6l−i+4)

= |q|t(q2l−i − q6l+i+2 + q2l+i − q6l−i+2)

+ |q|−t(q2l−i+2 − q6l+i+4 + q2l+i+2 − q6l−i+4).
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Conversely,

B0(t, l, i) = (|q|−tq2l+i+2 + |q|tq2l+i) (1− q2l+2)(1− q2l−2i+2)
(1− q4l+2)(1− q4l+4)

+ (|q|−tq2l−i+2 + |q|tq2l−i) (1− q2l)(1− q2l+2i)
(1− q4l)(1− q4l+2)

= (|q|−tq2l+i+2 + |q|tq2l+i) (1− q2l−2i+2)
(1− q4l+2)(1 + q2l+2)

+ (|q|−tq2l−i+2 + |q|tq2l−i) (1− q2l+2i)
(1 + q2l)(1− q4l+2)

and hence

(1 + q2l)(1 + q2l+2)(1− q4l+2)B0(t, l, i)

= (|q|−tq2l+i+2 + |q|tq2l+i)(1− q2l−2i+2)(1 + q2l)

+ (|q|−tq2l−i+2 + |q|tq2l−i)(1− q2l+2i)(1 + q2l+2)

= (|q|−tq2l+i+2 + |q|tq2l+i)(1− q2l−2i+2 + q2l − q4l−2i+2)

+ (|q|−tq2l−i+2 + |q|tq2l−i)(1− q2l+2i + q2l+2 − q4l+2i+2)

= |q|t(q2l+i − q4l−i+2 + q4l+i − q6l−i+2

+ q2l−i − q4l+i + q4l−i+2 − q6l+i+2)

+ (|q|−t(q2l+i+2 − q4l−i+4 + q4l+i+2 − q6l−i+4

+ q2l−i+2 − q4l+i+2 + q4l−i+4 − q6l+i+4)

= |q|t(q2l+i − q6l−i+2 + q2l−i − q6l+i+2)

+ (|q|−t(q2l+i+2 − q6l−i+4 + q2l−i+2 − q6l+i+4).

Finally,

m(t, l)
1
2A−1(t, l, i, 0) =

|q|tq2l−1 − |q|−tq
|q|−tq2l+1 − |q|tq−1

×

(|q|tq−1 − |q|−tq2l+1)
(1− q2l)(1− q2l−2i)

1
2 (1− q2l+2i)

1
2

(1− q4l)(1− q4l+2)
1
2 (1− q4l−2)

1
2

and

m(t, l)
1
2B1(t, l − 1, i, 0) = (|q|−tq − |q|tq2l−1)

(1− q2l)(1− q2l−2i)
1
2 (1− q2l+2i)

1
2

(1− q4l−2)
1
2 (1− q4l)(1− q4l+2)

1
2

.

One verifies ωt(γ)∗ = ωt(γ∗) in a similar fashion. It is then easy to check that the
operators ωt(α) and ωt(γ) satisfy the defining relations of C(Gq). �

Lemma 4.4. Let q ∈ (−1, 1) \ {0}. For l→∞ the expressions

|a1(1, l, i,±1)−A1(t, l, i)|, |a0(1, l, i,±1)|, |A0(t, l, i)|, |a−1(1, l, i,±1)−A−1(t, l, i)|

and

|c1(1, l, i,±1)− C1(t, l, i)|, |c0(1, l, i,±1)|, |C0(t, l, i)|, |c−1(1, l, i,±1)− C−1(t, l, i)|

tend to zero uniformly for t ∈ [0, 1] and independently of i.

Proof. Since the constants ak(1, l, i, j) and ck(1, l, i, j) for k = −1, 0, 1 are symmet-
ric in the variable j we may restrict attention to the case j = 1.
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The estimates involving A1, A0 and a0 are easy. For A−1 it suffices to consider∣∣∣∣m(t, l)
1
2 |q|tq−1 (1− q2l)(1− q2l−2i)

1
2 (1− q2l+2i)

1
2

(1− q4l)(1− q4l+2)
1
2 (1− q4l−2)

1
2

−|q|q−1 (1− q2l−2)
1
2 (1− q2l−2i)

1
2 (1− q2l+2)

1
2 (1− q2l+2i)

1
2

(1− q4l)(1− q4l+2)
1
2 (1− q4l−2)

1
2

∣∣∣∣
which reduces to∣∣∣∣ (|q|tq2l − |q|−tq2)

1
2

(|q|−tq2l+2 − |q|t) 1
2
|q|t(1− q2l)− |q|(1− q2l−2)

1
2 (1− q2l+2)

1
2

∣∣∣∣.
It is enough to estimate∣∣∣∣ |q|tq2l − |q|−tq2|q|−tq2l+2 − |q|t

|q|2t(1− q2l)2 − |q|2(1− q2l−2)(1− q2l+2)
∣∣∣∣

=
∣∣∣∣ |q|2tq2l − q2|q|−2tq2l+2 − 1

(1− q2l)2 − |q|2(1− q2l−2)(1− q2l+2)
∣∣∣∣.

We may estimate this expression by∣∣∣∣ |q|2tq2l

|q|−2tq2l+2 − 1
(1− q2l)2

∣∣∣∣
+
∣∣∣∣ q2

1− |q|−2tq2l+2
(1− q2l)2 − |q|2(1− q2l−2)(1− q2l+2)

∣∣∣∣,
and both terms converge to zero for l → ∞. The remaining assertions are verified
in a similar fashion. �
In the sequel we write sgn(q) for the sign of q, that is, sgn(q) = 1 if q > 0 and
sgn(q) = −1 if q < 0.

Lemma 4.5. Let q ∈ (−1, 1) \ {0}. We have

A1(0, l, i) = a1(1, l, i,±1)

A0(0, l, i) = sgn(q) a0(1, l, i,±1)

A−1(0, l, i) = a−1(1, l, i,±1)

and similarly

C1(0, l, i) = c1(1, l, i,±1)

C0(0, l, i) = sgn(q) c0(1, l, i,±1)

C−1(0, l, i) = c−1(1, l, i,±1)

for l > 0 and all i.

Proof. Since the coefficients ak(1, l, i, j) and ck(1, l, i, j) for k = −1, 0, 1 are sym-
metric in the variable j it suffices again to consider the case j = 1. We have

A1(0, l, i) = m(0, l + 1)−
1
2 (q4l+3 − q2l+3)×

(1− q2l+2)(1− q2l+2i+2)
1
2 (1− q2l−2i+2)

1
2

(1− q4l+2)
1
2 (1− q4l+4)(1− q4l+6)

1
2

and

a1(1, l, i, 1) = (|q|q4l+3 − |q|−1q2l+3)×

(1− q2l)
1
2 (1− q2l+2i+2)

1
2 (1− q2l+4)

1
2 (1− q2l−2i+2)

1
2

(1− q4l+2)
1
2 (1− q4l+4)(1− q4l+6)

1
2

.
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Then

m(0, l + 1)−
1
2 (q2l+1 − q)(1− q2l+2) =

(1− q2l+4)
1
2

(q2 − q2l+2)
1
2

(q2l+1 − q)(1− q2l+2)

=
(1− q2l+4)

1
2

(1− q2l) 1
2
|q|−1(−q)(1− q2l)(1− q2l+2)

= (1− q2l+4)
1
2 |q|−1(1− q2l) 1

2 (q2l+3 − q)

= (|q|q2l+1 − |q|−1q)(1− q2l)
1
2 (1− q2l+4)

1
2

yields the first claim. Next we note

A0(0, l, i) = (q2l−i + q2l−i+2)
(1− q2l+2)(1− q2l+2i+2)

(1− q4l+2)(1− q4l+4)

+ (q2l+i + q2l+i+2)
(1− q2l)(1− q2l−2i)
(1− q4l)(1− q4l+2)

and

a0(1, l, i, 1) = (|q|q2l−i−1(1− q2l+4) + |q|−1q2l−i+3(1− q2l)) 1− q2l+2i+2

(1− q4l+2)(1− q4l+4)

+ (|q|q2l+i+1(1− q2l−2) + |q|−1q2l+i+1(1− q2l+2))
1− q2l−2i

(1− q4l)(1− q4l+2)
.

Since

sgn(q)(q2l−i + q2l−i+2)(1− q2l+2) = sgn(q)(q2l−i + q2l−i+2 − q4l−i+2 − q4l−i+4)

= |q|q−1(q2l−i − q4l−i+4) + |q|−1q(q2l−i+2 − q4l−i+2)

= |q|q2l−i−1(1− q2l+4) + |q|−1q2l−i+3(1− q2l)

and

sgn(q)(q2l+i + q2l+i+2)(1− q2l) = sgn(q)(q2l+i + q2l+i+2 − q4l+i − q4l+i+2)

= |q|q−1(q2l+i+2 − q4l+i) + |q|−1q(q2l+i − q4l+i+2)

= |q|q2l+i+1(1− q2l−2) + |q|−1q2l+i+1(1− q2l+2)

we obtain the second assertion. Moreover,

A−1(0, l, i) = m(0, l)
1
2 (q−1 − q2l+1)(1− q2l) (1− q2l−2i)

1
2 (1− q2l+2i)

1
2

(1− q4l)(1− q4l+2)
1
2 (1− q4l−2)

1
2

and

a−1(1, l, i, 1) = (|q|q−1 − |q|−1q2l+1)×

(1− q2l−2)
1
2 (1− q2l−2i)

1
2 (1− q2l+2)

1
2 (1− q2l+2i)

1
2

(1− q4l)(1− q4l+2)
1
2 (1− q4l−2)

1
2

.
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Hence

m(0, l)
1
2 (q−1 − q2l+1)(1− q2l) =

(q2 − q2l)
1
2

(1− q2l+2)
1
2

(q−1 − q2l+1)(1− q2l)

=
(1− q2l−2)

1
2

(1− q2l+2)
1
2

|q|q−1(1− q2l+2)(1− q2l)

= (1− q2l−2)
1
2 |q|q−1(1− q2l+2)

1
2 (1− q2l)

= (|q|q−1 − |q|−1q2l+1)(1− q2l−2)
1
2 (1− q2l+2)

1
2

yields the third claim. The remaining assertions are verified in the same way. �
We need some further constructions. Recall that C(Ek) for k ∈ Z is a D(Gq)-
equivariant Hilbert C(Gq/T )-module in a natural way. Left multiplication yields a
D(Gq)-equivariant ∗-homomorphism ψ : C(Gq/T ) → K(C(Ek)), and (C(Ek), ψ, 0)
defines a class [[Ek]] in KKD(Gq)(C(Gq/T ), C(Gq/T )). Moreover [[Em]] ◦ [[En]] =
[[Em+n]] for all m,n ∈ Z.
For k ∈ Z we define [Dk] ∈ KKD(Gq)(C(Gq/T ),C) by

[Dk] = [[Ek]] ◦ [D]

where [D] ∈ KKD(Gq)(C(Gq/T ),C) is the element obtained in proposition 4.2. Re-
mark that [D0] = [D] since [[E0]] = 1.
Evidently, the unit homomorphism u : C → C(Gq/T ) induces a class [u] in
KKD(Gq)(C, C(Gq/T )). We define [Ek] in KKD(Gq)(C, C(Gq/T )) by restricting
[[Ek]] along u, or equivalently, by taking the product

[Ek] = [u] ◦ [[Ek]].

In the sequel we will interested in the elements αq ∈ KKD(Gq)(C(Gq/T ),C ⊕ C)
and βq ∈ KKD(Gq)(C⊕ C, C(Gq/T )) given by

αq = [D0]⊕ [D−1], βq = (−[E1])⊕ [E0],

respectively.

Theorem 4.6. Let q ∈ (−1, 1)\{0}. Then C is a retract of C(Gq/T ) in KKD(Gq).
More precisely, we have βq ◦ αq = id in KKD(Gq)(C⊕ C,C⊕ C).

Proof. In order to prove the assertion we have to compute the Kasparov products
[E0] ◦ [D] and [E±1] ◦ [D].
Let us first consider [E0] ◦ [D]. This class is obtained from the D(Gq)-equivariant
Fredholm module D by forgetting the left action of C(Gq/T ). As already mentioned
in the proof of proposition 4.2, the operator F intertwines the representations of
C(Gq) on H1 and H−1 induced from the D(Gq)-Hilbert space structure. This
can be read off from the fact that the coefficients xk(1, l, i, j) for x = a, b, c, d
and k = −1, 0, 1 are symmetric in the variable j. It follows that the resulting
D(Gq)-equivariant Kasparov C-C-module is degenerate, and hence [E0] ◦ [D] = 0 in
KKD(Gq)(C,C).
Let us now study [E−1] ◦ [D]. The underlying graded D(Gq)-Hilbert space of this
Kasparov module is

H = H0 ⊕H−2 = L2(E0)⊕ L2(E−2),

and the corresponding action of C(Gq) is given by ω as defined in lemma 4.1. We
choose the standard orthonormal basis vectors e(l)i,0 for H0 and e

(l)
i,−1 for H−2. The
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operator

F =
(

0 F−
F+ 0

)
is determined by

F+(e(l)i,0) =

{
e
(l)
i,−1 l > 0

0 l = i = 0,
F−(e(l)i,−1) = e

(l)
i,0.

By construction, this operator is Gq-equivariant, but F does not commute with the
action of the discrete part of D(Gq).
Let us construct a D(Gq)-equivariant Kasparov C-C[0, 1]-module as follows. As
underlying graded Gq-equivariant Hilbert C[0, 1]-module we take the constant field

H⊗ C[0, 1] = (H0 ⊗ C[0, 1])⊕ (H−2 ⊗ C[0, 1])

of Gq-Hilbert spaces. It follows from lemma 4.3 that

Ω(x)(ξ)(t) = ωt(x)ξ(t)

defines a ∗-homomorphism Ω : C(Gq) → L(H0 ⊗ C[0, 1]), and the corresponding
coaction of C∗(Gq) turns the even partH0⊗C[0, 1] into a D(Gq)-equivariant Hilbert
C[0, 1]-module. In odd degree we consider the constant D(Gq)-Hilbert module
structure induced fromH−2. The left action of C onH⊗C[0, 1] is given by multiples
of the identity operator, and as a final ingredient we take the constant operator F⊗1
on H⊗C[0, 1]. By construction, this operator is Gq-equivariant, and it follows from
lemma 4.4 that F ⊗1 commutes with the action of C(Gq) up to compact operators.
Hence we have indeed defined a Kasparov module.
Evaluation of this Kasparov module at t = 1 yields [E−1] ◦ [D]. The evaluation at
t = 0 agrees with the cycle defining [E−1] ◦ [D] except that the action of C(Gq) on
H0 is given by ω0 instead of ω1. We decompose

H0 = C⊕ C⊥

as a direct sum of the one-dimensional subspace C spanned by e(0)0,0 and its orthogo-
nal complement C⊥. Inspection of the explicit formulas shows that ω0 preserves this
decomposition and implements the trivial representation ε : C(Gq)→ C = L(C) on
the first component. It follows that the Kasparov module decomposes as a direct
sum of the trivial module C representing the identity and its orthogonal comple-
ment which we denote by R. That is, the underlying graded D(Gq)-Hilbert space
of R is C⊥⊕H−2, the representation of C is given by multiples of the identity, and
the operator F defines a Gq-equivariant isomorphism between C⊥ and H−2.
For q > 0 we see from lemma 4.5 that F intertwines the representation ω0 on
C⊥ with the representation ω on H−2. It follows that R is degenerate, and hence
[E−1] ◦ [D] = id in KKD(Gq)(C,C) in this case.
For q < 0 the module R fails to be degenerate since the representations of C(Gq)
do not match. Let F be the operator on H−2 ⊕H−2 given by

F =
(

0 1
1 0

)
.

We define a homotopy T by considering the constant field of graded Gq-Hilbert
spaces

H⊗ C[0, 1] = (H−2 ⊕H−2)⊗ C[0, 1]⊕ (H−2 ⊕H−2)⊗ C[0, 1],

the representation φ : C→ L(H⊗ C[0, 1]) given by

φ =
(
φ+ 0
0 φ−

)
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where

φ±(λ)
(
ξ
η

)
=
(
λ ξ
0

)
and the constant operator (F ⊕ F )⊗ 1.
Let us use the canonical identification of C⊥ with H−2 in order to view ω0 as a
representation on H−2. We define a D(Gq)-Hilbert module structure on the even
part (H−2 ⊕H−2)⊗ C[0, 1] of T by the action

Θ+(x)
(
ξ
η

)
(t) = U(t)

(
ω0(x) 0

0 ω(x)

)
U−1(t)

(
ξ(t)
η(t)

)
of C(Gq) where U(t) is the rotation matrix

U(t) =
(

cos(πt/2) sin(πt/2)
− sin(πt/2) cos(πt/2)

)
.

In odd degree we consider the constant D(Gq)-Hilbert module structure

Θ−(x)
(
ξ
η

)
=
(
ω(x) 0

0 ω(x)

)(
ξ
η

)
=
(
ω(x)(ξ)
ω(x)(η)

)
.

Writing Θ = Θ+⊕Θ− we see from lemma 4.4 and lemma 4.5 that the commutators
[(F ⊕ F ) ⊗ 1,Θ(x)] are compact for all x ∈ C(Gq). It follows that T defines a
D(Gq)-equivariant Kasparov C-C[0, 1]-module.
The evaluation of T at t = 0 identifies with the sum of R and a degenerate module,
and evaluation at t = 1 yields a degenerate module. We conclude that the Kasparov
module R is homotopic to zero, and hence [E−1] ◦ [D] = id in KKD(Gq)(C,C).
In a similar way one proves the relation (−[E1]) ◦ [D] = id in KKD(Gq)(C,C) for all
q ∈ (−1, 1) \ {0}. The calculations are analogous and will be omitted. �
As a corollary of theorem 4.6 we obtain the following result.

Theorem 4.7. Let q ∈ (0, 1). The standard Podleś sphere C(Gq/T ) is isomorphic
to C⊕ C in KKD(Gq).

Proof. According to theorem 6.7 in [26] the elements αq and βq considered above
satisfy αq ◦ βq = id in KKD(Gq)(C(Gq/T ), C(Gq/T )). Hence due to theorem 4.6
these elements induce inverse isomorphisms in KKD(Gq) as desired. �
We have not checked wether the assertion of theorem 4.7 holds for q < 0 as well.
For our purposes the following result is sufficient, compare [26].

Proposition 4.8. Let q ∈ (−1, 1) \ {0}. The standard Podleś sphere C(Gq/T ) is
isomorphic to C⊕ C in KKGq .

Proof. For q > 0 this is an immediate consequence of theorem 4.7. Hence it re-
mains to treat the case of negative q, and clearly it suffices to show αq ◦ βq = id in
KKGq (C(Gq/T ), C(Gq/T )) for all q ∈ (−1, 1) \ {0}.
Note first that the definition of the C∗-algebras C(Gq) and C(Gq/T ) makes sense
also for q = 0. Moreover, the algebras C(Gq/T ) assemble into a T -equivariant con-
tinuous field over [q, 1] for all q ∈ (−1, 1], see [9], [24]. Let us write C(G/T )
for the corresponding algebra of sections. The elements αt yield a class α ∈
KKT (C(G/T ), C[q, 1]), in particular, we have a well-defined element α0 for t = 0.
Similarly, the elements βt determine a class β ∈ KKT (C[q, 1], C(G/T )). Using a
comparison argument as in [26], the claim follows from the induction isomorphism

KKGq (C(Gq/T ), C(Gq/T )) ∼= KKT (C(Gq/T ),C)

and the fact that α1 ◦ β1 = id ∈ KKG1(C(G1/T ), C(G1/T )). �
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5. The Baum-Connes conjecture for torsion-free discrete quantum
groups

In this section we recall the formulation of the Baum-Connes conjecture for
torsion-free discrete quantum groups proposed by Meyer [20]. This involves some
general concepts from homological algebra in triangulated categories. For more
detailed information we refer to [23], [20], [21].
Let G be a torsion-free discrete quantum group in the sense of definition 3.1. The
equivariant Kasparov category KKG has as objects all separable G-C∗-algebras,
and KKG(A,B) as the set of morphisms between two objects A and B. Compo-
sition of morphisms is given by the Kasparov product. The category KKG is tri-
angulated with translation automorphism Σ : KKG → KKG given by the suspen-
sion ΣA = C0(R, A) of a G-C∗-algebra A. Every G-equivariant ∗-homomorphism
f : A→ B induces a diagram of the form

ΣB // Cf // A
f // B

where Cf denotes the mapping cone of f . Such diagrams are called mapping cone
triangles. By definition, an exact triangle is a diagram in KKG of the form ΣQ→
K → E → Q which is isomorphic to a mapping cone triangle.
Associated with the inclusion of the trivial quantum subgroup E in G we have the
obvious restriction functor resGE : KKG → KKE = KK and an induction functor
indGE : KK → KKG. Explicitly, indGE(A) = C0(G)⊗A for A ∈ KK with action of
G given by translation on the copy of C0(G).
We consider the following full subcategories of KKG,

CCG = {A ∈ KKG| resGE(A) = 0 ∈ KK}

CIG = {indGE(A)|A ∈ KK},
and refer to their objects as compactly contractible and compactly induced G-C∗-
algebras, respectively. Since G is torsion-free, it suffices to consider the trivial
quantum subgroup in the definition of these categories. If there is no risk of confu-
sion we will write CC and CI instead of CCG and CIG.
The subcategory CC is localising, and we denote by 〈CI〉 the localising subcategory
generated by CI. It follows from theorem 3.21 in [20] that the pair of localising
subcategories (〈CI〉, CC) in KKG is complementary. That is, KKG(P,N) = 0 for
all P ∈ 〈CI〉 and N ∈ CC, and every object A ∈ KKG fits into an exact triangle

ΣN // Ã // A // N

with Ã ∈ 〈CI〉 and N ∈ CC. Such a triangle is uniquely determined up to isomor-
phism and depends functorially on A. We will call the morphism Ã → A a Dirac
element for A.
The localisation LF of a homological functor F on KKG at CC is given by

LF (A) = F (Ã)

where Ã → A is a Dirac element for A. By construction, there is an obvious map
LF (A)→ F (A) for every A ∈ KKG.
In the sequel we write Gnf A and GnrA for the full and reduced crossed products
of A by G. Let us remark that in [26] these algebras are denoted by C∗f (G)cop nf A
and C∗r (G)cop nr A, respectively.

Definition 5.1. Let G be a torsion-free discrete quantum group and consider the
functor F (A) = K∗(G nr A) on KKG. The Baum-Connes assembly map for G
with coefficients in A is the map

µA : LF (A)→ F (A).



BAUM-CONNES CONJECTURE 25

We say that G satisfies the Baum-Connes conjecture with coefficients in A if µA
is an isomorphism. We say that G satisfies the strong Baum-Connes conjecture if
〈CI〉 = KKG.

Observe that the strong Baum-Connes conjecture implies the Baum-Connes con-
jecture with arbitrary coefficients. Indeed, for A ∈ 〈CI〉 the assembly map µA is
clearly an isomorphism.
By the work of Meyer and Nest [21], the above terminology is consistent with the
classical definitions in the case that G is a torsion-free discrete group. The strong
Baum-Connes conjecture amounts to the assertion that G has a γ-element and
γ = 1 in this case.
In section 9 we will need further considerations from [23], [20] relying on the notion
of a homological ideal in a triangulated category. Let us briefly discuss the relevant
material adapted to our specific situation.
We denote by J the homological ideal in KKG consisting of all f ∈ KKG(A,B)
such that resGE(f) = 0 ∈ KK(A,B). By definition, J is the kernel of the exact
functor resGE : KKG → KK. The ideal J is compatible with countable direct sums
and has enough projective objects. The J-projective objects in KKG are precisely
the retracts of compactly induced G-C∗-algebras.
A chain complex

· · · // Cn+1
dn+1 // Cn

dn // Cn−1
// · · ·

in KKG is J-exact if

· · · // KK(A,Cn+1)
(dn+1)∗// KK(A,Cn)

(dn)∗ // KK(A,Cn−1) // · · ·

is exact for every A ∈ KK.
A J-projective resolution of A ∈ KKG is a chain complex

· · · // Pn+1
dn+1 // Pn

dn // Pn−1
// · · · d2 // P1

d1 // P0

of J-projective objects in KKG, augmented by a map P0 → A such that the
augmented chain complex is J-exact.
For our purposes it is important that a J-projective resolution of A ∈ KKG can
be used to construct a Dirac element Ã → A. In general, this construction leads
to a spectral sequence computing the derived functor LF (A). In the specific case
of free orthogonal quantum groups that we are interested in, the spectral sequence
reduces to a short exact sequence. This short exact sequence will be discussed in
section 9 in connection with our K-theory computations.

6. The Baum-Connes conjecture for the dual of SUq(2)

In this section we show that the dual of SUq(2) satisfies the strong Baum-Connes
conjecture. We work within the general setup explained in the previous section,
taking into account proposition 3.2 which asserts that the dual of SUq(2) is torsion-
free. Let us remark that the strong Baum-Connes conjecture for the dual of the
classical group SU(2) is a special case of the results in [22].

Theorem 6.1. Let q ∈ (−1, 1) \ {0}. The dual discrete quantum group of SUq(2)
satisfies the strong Baum-Connes conjecture.

Proof. In the sequel we write G = SUq(2). Due to Baaj-Skandalis duality it suffices
to prove that every G-C∗-algebra is contained in the localising subcategory T of
KKG generated by all trivial G-C∗-algebras.
Let A be a G-C∗-algebra. Theorem 4.6 implies that A is a retract of C(G/T ) �GA
in KKG, and according to theorem 3.6 in [26] there is a natural G-equivariant
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isomorphism C(G/T ) �G A ∼= indGT resGT (A).
Since T̂ = Z is a torsion-free discrete abelian group the strong Baum-Connes con-
jecture holds for T̂ . More precisely, the trivial T̂ -C∗-algebra C is contained in the
localising subcategory 〈C0(T̂ )〉 of KK T̂ generated by C0(T̂ ). Next observe that
there is a T̂ -equivariant ∗-isomorphism C0(T̂ ) ⊗ B ∼= C0(T̂ ) ⊗ Bτ for every T̂ -C∗-
algebra B where Bτ denotes B with the trivial T̂ -action. It follows that

T n resGT (A) ∼= C⊗ T n resGT (A) ∈ 〈C0(T̂ )⊗ T n resGT (A)〉

= 〈C0(T̂ )⊗ (T n resGT (A))τ 〉

in KK T̂ . According to Baaj-Skandalis duality, this implies

resGT (A) ∼= T̂ n T n resGT (A) ∈ 〈T̂n(C0(T̂ )⊗ (T n resGT (A))τ )〉
= 〈(T n resGT (A))τ 〉

in KKT . Using proposition 4.8 we thus obtain

indGT resGT (A) ∈ 〈C(G/T )⊗ (T n resGT (A))τ 〉 ⊂ 〈(T n resGT (A))τ 〉 ⊂ T

in KKG since the induction functor indGT is triangulated.
Combining the above considerations shows A ∈ T and finishes the proof. �
Starting from theorem 6.1 it is easy to calculate the K-groups of C(SUq(2)) and
C(SOq(3)). We shall not present these computations here.

7. Free orthogonal quantum groups and monoidal equivalence

In this section we review the definition of free orthogonal quantum groups and
discuss the concept of monoidal equivalence for compact quantum groups.
We begin with the definition of free orthogonal quantum groups. These quantum
groups were introduced by Wang and van Daele [36], [33]. As usual, for a matrix
u = (uij) of elements in a ∗-algebra we shall write u and ut for its conjugate and
transposed matrices, respectively. That is, we have (u)ij = u∗ij and (ut)ij = uji for
the corresponding matrix entries.

Definition 7.1. Let Q ∈ GLn(C) such that QQ = ±1. The group C∗-algebra
C∗f (FO(Q)) of the free orthogonal quantum group FO(Q) is the universal C∗-algebra
with generators uij , 1 ≤ i, j ≤ n such that the resulting matrix u is unitary and the
relation u = QuQ−1 holds.

In definition 7.1 we basically adopt the conventions in [4]. However, we write Q
instead of F for the parameter matrix, and we deviate from the standard notation
Ao(Q) = C∗f (FO(Q)). The latter is motivated from the fact that we shall view this
C∗-algebra as the group C∗-algebra of a discrete quantum group.
It is well-known that C(SUq(2)) can be written as the group C∗-algebra of a free
orthogonal quantum group for appropriate Q ∈ GL2(C). Moreover, the free quan-
tum groups FO(Q) for Q ∈ GL2(C) exhaust up to isomorphism precisely the duals
of SUq(2) for q ∈ [−1, 1] \ {0}.
The quantum groups FO(Q) for higher dimensional matrices Q are still closely re-
lated to quantum SU(2). In order to explain this, we shall discuss the notion of
monoidal equivalence for compact quantum groups introduced by Bichon, de Rijdt
and Vaes [8]. For the algebraic aspects of monoidal equivalences and Hopf-Galois
theory we refer to [30].
As in section 2 we write Rep(G) for the C∗-tensor category of finite dimensional
representations of a compact quantum group G. Recall that the objects in Rep(G)
are the finite dimensional representations of G, and the morphism sets consist of
all intertwining operators.
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Definition 7.2. Two compact quantum groups G and H are called monoidally
equivalent if the representation categories Rep(G) and Rep(H) are equivalent as
C∗-tensor categories.

We point out that in definition 7.2 the representation categories are only required
to be equivalent as abstract C∗-tensor categories. In fact, by the Tannaka-Krein
reconstruction theorem [38], a compact quantum group G is determined up to
isomorphism by the C∗-tensor category Rep(G) together with its canonical fiber
functor into the category of Hilbert spaces.
Let H be a compact quantum group. An algebraic coaction λ : P → C[H]� P on
the unital ∗-algebra P is called ergodic if the invariant subalgebra C�C[H]P ⊂ P is
equal to C. We say that P is a left Galois object if λ is ergodic and the Galois map
γP : P � P → C[H]� P given by

γP(x� y) = λ(x)(1� y)

is a linear isomorphism. Similarly one defines ergodicity for right coactions and the
notion of a right Galois object.
Like in Morita theory, it is important that monoidal equivalences can be imple-
mented concretely.

Definition 7.3. Let G and H be compact quantum groups. A bi-Galois object for
G and H is a unital ∗-algebra P which is both a left C[H]-Galois object and a right
C[G]-Galois object, such that the corresponding coactions turn P into a C[H]-C[G]-
bicomodule.

A linear functional ω on a unital ∗-algebra P is called a state if ω(x∗x) ≥ 0 for
all x ∈ P and ω(1) = 1. A state ω is said to be faithful if ω(x∗x) = 0 implies x = 0.
If P is in addition equipped with a coaction λ : P → C[H] � P then ω is called
invariant if (id�ω)λ(x) = ω(x)1 for all x ∈ P.
The following result is proved in [8].

Theorem 7.4. Let G and H be monoidally equivalent compact quantum groups.
Then there exists a bi-Galois object P for G and H such that

F(H) = P�C[G]H
defines a monoidal equivalence F : Rep(G)→ Rep(H), and there exists a canonical
faithful state ω on P which is left and right invariant with respect to the coactions
of C[G] and C[H], respectively.

As a first application of the concept of monoidal equivalence let us record the
following fact.

Proposition 7.5. Let G and H be discrete quantum groups with monoidally equiv-
alent duals. Then G is torsion-free iff H is torsion-free.

Proof. As explained in [14], actions of monoidally equivalent compact quantum
groups on finite dimensional C∗-algebras are in a bijective correspondence. We
will discuss this more generally, for arbitrary C∗-algebras and on the level of equi-
variant KK-theory, in section 8. Under this correspondence, actions associated to
representations of G correspond to actions associated to representations of H. This
immediately yields the claim. �
In the sequel we will make use of the following crucial result from [8], which in turn
relies on the fundamental work of Banica [3], [4].

Theorem 7.6. Let Qj ∈ GLnj (C) such that QjQj = ±1 for j = 1, 2. Then the
dual of FO(Q1) is monoidally equivalent to the dual of FO(Q2) iff Q1Q1 and Q2Q2

have the same sign and
tr(Q∗1Q1) = tr(Q∗2Q2).
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In particular, for any Q ∈ GLn(C) such that QQ = ±1, the dual of FO(Q) is
monoidally equivalent to SUq(2) for a unique q ∈ [−1, 1] \ {0}.

Theorem 7.6 implies in particular that the dual of FO(Q) for Q ∈ GLn(C) and
n > 2 is not monoidally equivalent to SU±1(2). With this in mind we obtain the
following consequence of proposition 3.2 and proposition 7.5.

Corollary 7.7. Let Q ∈ GLn(C) for n > 2 such that QQ = ±1. Then the free
orthogonal quantum group FO(Q) is torsion-free.

8. Monoidal equivalence and equivariant KK-theory

Extending considerations in [14], we discuss in this section the correspondence
for actions of monoidally equivalent compact quantum groups. We show in par-
ticular that the strong Baum-Connes property for torsion-free quantum groups is
invariant under monoidal equivalence.
Let G and H be monoidally equivalent compact quantum groups and let P be the
bi-Galois object for G and H as in theorem 7.4. Moreover let A be a G-C∗-algebra,
and recall from section 2 that we write S(A) for the dense spectral ∗-subalgebra
of A. The algebraic cotensor product F(A) = P�C[G]S(A) ⊂ P � S(A) is again
a ∗-algebra and carries an algebraic coaction λ : F(A) → C[H] � F(A) inherited
from P.
Consider the C∗-algebra P ⊗A where P denotes the minimal completion of P, that
is, the C∗-algebra generated by P in the GNS-representation of the invariant state
ω. The left coaction on P turns P ⊗ A into an H-C∗-algebra. Let F (A) = P�GA
be the closure of F(A) = P�C[G]S(A) inside P ⊗A. By construction, the coaction
of P ⊗A maps F(A) into Cr(H)⊗F (A). In this way we obtain a coaction on F (A)
which turns F (A) into an H-C∗-algebra.
If f : A → B is a G-equivariant ∗-homomorphism then id⊗f : P ⊗ A → P ⊗ B
induces an H-equivariant ∗-homomorphism id �Gf : P�GA → P�GB. Conse-
quently, we obtain a functor F : G-Alg → H-Alg by setting F (A) = P�GA on
objects and F (f) = id �Gf on morphisms. Here G-Alg and H-Alg denote the cat-
egories of separable G-C∗-algebras and H-C∗-algebras, respectively. Note that a
trivial G-C∗-algebra A is mapped to the trivial H-C∗-algebra F (A) ∼= A under the
functor F . Moreover F (A⊕B) ∼= F (A)⊕ F (B) for all G-C∗-algebras A and B.
By symmetry, we have the dual Galois object Q for H and G and a correspond-
ing functor H-Alg → G-Alg. This functor sends an H-C∗-algebra B to the G-
C∗-algebra Q�HB. Here Q denotes the C∗-algebra generated by Q in the GNS-
representation associated to its natural invariant state η.

Proposition 8.1. For every G-C∗-algebra A there is a natural isomorphism

Q�HP�GA ∼= A

of G-C∗-algebras.

Proof. Consider first the case A = Cr(G). In this case we have a canonical iso-
morphism P�GA ∼= P . By construction, Q�HP ⊂ Q ⊗ P is the closure of
Q�C[H]P ∼= C[G]. Since η and ω are faithful states on Q and P , respectively,
the state η ⊗ ω is faithful on Q⊗ P , and hence also on Q�HP . Moreover η ⊗ ω is
both left and right invariant with respect to the natural coactions of Cr(G). From
this we conclude that the above inclusion C[G] → Q ⊗ P induces an equivariant
∗-isomorphism Cr(G) ∼= Q�HP .
Now let A be an arbitrary G-C∗-algebra. Using the previous discussion we obtain a
well-defined injective ∗-homomorphism α : A→ Q⊗P⊗A by applying the coaction
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followed with the isomorphism Cr(G) ∼= Q�HP ⊂ Q ⊗ P . Due to associativity of
the cotensor product the coaction S(A)→ C[G]� S(A) induces an isomorphism

S(A) ∼= C[G]�C[G]S(A) ∼= Q�C[H]P�C[G]S(A).

Now let π ∈ Ĥ. The spectral subspace πP is a finite dimensional right C[G]-
comodule, and we observe that π(P ⊗A) = (πP )�A. In fact, we have π(P ⊗A) =
(pπ ⊗ id)(P ⊗ A) ⊂ (πP ) � A where pπ : P → πP is the projection operator,
and the reverse inclusion is obvious. This implies π(P�GA) = (πP )�C[G]S(A) and
hence S(P�GA) = P�C[G]S(A) for the spectral subalgebras. Using a symmetric
argument for Q we conclude

S(Q�HP�GA) = Q�C[H]S(P�GA) = Q�C[H]P�C[G]S(A).

It follows that the image of S(A) in Q�HP�GA under the map α is dense. Hence
α induces an equivariant ∗-isomorphism A ∼= Q�HP�GA as desired. �
We have thus proved the following theorem.

Theorem 8.2. Let H and G be monoidally equivalent compact quantum groups.
Then the categories G-Alg and H-Alg are equivalent.

Our next aim is to extend the equivalence of theorem 8.2 to the level of equi-
variant Kasparov theory.
For this we need an appropriate version of the cotensor product for Hilbert mod-
ules. Let E be a G-Hilbert A-module, and recall from section 2 that S(E) denotes
the spectral submodule of E . We define P�GE as the closure of P�C[G]S(E) inside
the Hilbert P ⊗ A-module P ⊗ E . It is straightforward to check that P�GE is an
H-Hilbert P�GA-module. Moreover, the following assertion is proved in the same
way as proposition 8.1.

Proposition 8.3. For every G-Hilbert A-module E there is a natural isomorphism

Q�HP�GE ∼= E
of G-Hilbert A-modules.

If E is a G-Hilbert A-module then K(E) is a G-C∗-algebra in a natural way. The
cotensor product constructions for C∗-algebras and Hilbert modules are compatible
in the following sense.

Proposition 8.4. Let E be a G-Hilbert A-module. Then

K(P�GE) ∼= P�GK(E)

as H-C∗-algebras.

Proof. Note that there are canonical inclusions P�GK(E) ⊂ P ⊗K(E) ∼= K(P ⊗E)
and K(P�GE) ⊂ K(P ⊗ E). These inclusions determine a homomorphism ιE :
K(P�GE) → P�GK(E) of H-C∗-algebras. Using proposition 8.3 and proposition
8.1 we obtain a map

P�GK(E) ∼= P�GK(Q�HP�GE)→ P�GQ�HK(P�GE) ∼= K(P�GE)

where the middle arrow is given by id �ιP�GE . It is readily checked that this map
is inverse to ιE . �
Let E and F be G-Hilbert-A-modules and let T ∈ L(E ,F) be G-equivariant. Then
id⊗T : P ⊗E → P ⊗F induces an adjointable operator id �GT : P�GE → P�GF .
If φ : A→ L(E) is a G-equivariant ∗-homomorphism then id⊗φ : P⊗A→ L(P⊗E)
induces an H-equivariant ∗-homomorphism id �Gφ : P�GA→ L(P�GE).
Now let (E , φ, F ) be a G-equivariant Kasparov A-B-module with G-invariant op-
erator F . Since G is compact we may restrict to such Kasparov modules in
the definition of KKG. Using our previous observations it follows easily that
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(P�GE , id �Gφ, id �GF ) is an H-equivariant Kasparov P�GA-P�GB-module. It
is not difficult to check that this assignment is compatible with homotopies and
Kasparov products.
As a consequence we obtain the desired functor KKG → KKH extending the func-
tor F : G-Alg→ H-Alg defined above. This functor, again denoted by F , preserves
exact triangles and suspensions.
We may summarize our considerations as follows.

Theorem 8.5. If H and G are monoidally equivalent compact quantum groups
then the triangulated categories KKH and KKG are equivalent.

Note that a trivial G-C∗-algebra is mapped to the corresponding trivial H-C∗-
algebra under this equivalence. As a consequence we immediately obtain the fol-
lowing assertion.

Theorem 8.6. Let G and H be torsion-free discrete quantum groups whose dual
compact quantum groups are monoidally equivalent. Then G satisfies the strong
Baum-Connes conjecture iff H satisfies the strong Baum-Connes conjecture.

Proof. Using Baaj-Skandalis duality and theorem 8.5 we see that KKG and KKH

are equivalent triangulated categories. In addition, the compactly induced G-C∗-
algebra C0(G)⊗A corresponds to the compactly induced H-C∗-algebra C0(H)⊗A
under this equivalence. Hence 〈CIG〉 = KKG holds iff 〈CIH〉 = KKH holds. �
Combining theorem 8.6 with theorem 6.1 yields the main result of this paper.

Theorem 8.7. Let n > 2 and Q ∈ GLn(C) such that QQ = ±1. Then the free
orthogonal quantum group FO(Q) satisfies the strong Baum-Connes conjecture.

9. Applications

In this section we discuss consequences and applications of theorem 8.7. In
particular, we show that free orthogonal quantum groups are K-amenable and
compute their K-theory.
The concept of K-amenability, introduced by Cuntz for discrete groups in [11],
extends to the setting of quantum groups in a natural way [34]. More precisely, a
discrete quantum group G is called K-amenable if the unit element in KKG(C,C)
can be represented by a Kasparov module (E , π, F ) such that the representation
of G on the Hilbert space E is weakly contained in the regular representation. As
in the case of discrete groups, this is equivalent to saying that the canonical map
Gnf A→ Gnr A is an isomorphism in KK for every G-C∗-algebra A.
Of course, every amenable discrete quantum group is K-amenable. It is known [4]
that FO(Q) is not amenable for Q ∈ GLn(C) with n > 2.
The main application of theorem 8.7 is the following result.

Theorem 9.1. Let n > 2 and Q ∈ GLn(C) such that QQ = ±1. Then the free
orthogonal quantum group FO(Q) is K-amenable. In particular, the map

K∗(C∗f (FO(Q)))→ K∗(C∗r (FO(Q)))

is an isomorphism.
The K-theory of FO(Q) is

K0(C∗f (FO(Q))) = Z, K1(C∗f (FO(Q))) = Z.

These groups are generated by the class of 1 in the even case and the class of the
fundamental matrix u in the odd case.
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Proof. Let us write G = FO(Q). The reduced and full crossed product functors
KKG → KK agree on 〈CI〉 because they agree for all compactly induced G-C∗-
algebras. Indeed, for B ∈ KK we have

Gnf indGE(B) = Gnf (C0(G)⊗B) ∼= K⊗B ∼= Gnr (C0(G)⊗B) = Gnr indGE(B)

by strong regularity. According to theorem 8.7 it follows that the canonical map
G nf A → G nr A is an isomorphism in KK for every G-C∗-algebra A, and this
means precisely that G is K-amenable.
As in section 5 we denote by J the homological ideal in KKG given by the ker-
nel of the restriction functor resGE : KKG → KK. To compute the K-groups
K∗(C∗f (G)) ∼= K∗(C∗r (G)) we shall construct a concrete J-projective resolution of
the trivial G-C∗-algebra C.
Let Ĝ be the dual compact quantum group of G, and let us identify the set of
irreducible representations of Ĝ with N. We write πk for the representation corre-
sponding to k ∈ N and denote by Hk the underlying Hilbert space. In particular,
π0 = ε is the trivial representation. Moreover, π1 identifies with the fundamental
representation given by u, and we have dim(H1) = n. The representation ring R(Ĝ)
of Ĝ is isomorphic to the polynomial ring Z[t] such that t corresponds to H1.
Due to the Green-Julg theorem and the Takesaki-Takai duality theorem, we have
a natural isomorphism

KKĜ(C, Gnr B) ∼= K(KG ⊗B) ∼= K(B)

for B ∈ KKG. Consequently, taking into account KKĜ(C,C) ∼= R(Ĝ), the Kas-
parov product

KKĜ(C,C)×KKĜ(C, Gnr B)→ KKĜ(C, Gnr B)

induces an R(Ĝ)-module structure on K(B), and every element f ∈ KKG(B,C)
defines an R(Ĝ)-module homomorphism f∗ : K(B)→ K(C).
For B = C0(G) this construction leads to the action of R(Ĝ) on itself by multipli-
cation, and for B = C the corresponding module structure on Z is induced by the
augmentation homomorphism ε : Z[t]→ Z given by ε(t) = n.
Let us now consider the Koszul complex

0 // C0(G)
n−T // C0(G) λ // C

in KKG defined as follows. The map λ : C0(G)→ KG
∼= C is given by the regular

representation. Moreover, n : C0(G) → C0(G) denotes the sum of n copies of the
identity element. The morphism T : C0(G) → C0(G) ⊗Mn(C) ∼= C0(G) is the
∗-homomorphism induced by the comultipliation ∆ : C0(G)→M(C0(G)⊗C0(G))
followed by projection onto the matrix block corresponding to π1 in the second
factor.
Let us determine the map T∗ : R(Ĝ)→ R(Ĝ) induced by T on the level of K-theory.
Consider the Hopf ∗-algebra C[Ĝ] of matrix elements for Ĝ, and denote by 〈 , 〉 the
natural bilinear pairing between C[Ĝ] and C0(G). Under this pairing, the character
χk ∈ C[Ĝ] of the representation πk corresponds to the trace on K(Hk). Moreover
we observe

〈∆(f), χl ⊗ χ1〉 = 〈f, χlχ1〉 = 〈f, χl+1 + χl−1〉 = 〈f, χl+1〉+ 〈f, χl−1〉
for f ∈ K(Hk) ⊂ C0(G). According to the definition of T this implies

T∗(Hk) = Hk+1 +Hk−1

for all k ∈ N, where we interpret H−1 = 0. It follows that T∗ corresponds to
multiplication by t under the identification Z[t] = R(Ĝ).
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Applying K-theory to the Koszul complex yields the exact sequence of Z[t]-modules

0 // Z[t]
n−t // Z[t] ε // Z // 0

where ε is again the augmentation homomorphism given by ε(t) = n. Taking into
account that C0(G) is J-projective, it follows easily that the Koszul complex yields
a J-projective resolution of C.
Since the Koszul resolution has length 1, we obtain a Dirac morphism C̃→ C as in
the proof of theorem 4.4 in [23]. The only piece of information that we need about
this construction is that the G-C∗-algebra C̃ fits into an exact triangle

C0(G) // C0(G) // C̃ // ΣC0(G)

in KKG. Here the first arrow C0(G) → C0(G) is given by n − T , but we will not
make use of this fact. By applying the crossed product functor we obtain an exact
triangle

K // K // Gnf C̃ // ΣK

in KK. Hence the associated long exact sequence in K-theory takes the form

Z //
OO K0(Gnf C̃) // 0

��
Z oo K1(Gnf C̃) oo 0

Since C∗f (G) has a counit the group K0(G nf C̃) ∼= K0(C∗f (G)) contains a direct
summand Z generated by the unit element 1 ∈ C∗f (G). It follows that the upper
left horizontal map in the diagram is an isomorphism. Hence the vertical arrow is
zero, and the lower left horizontal map is an isomorphism as well.
It remains to identify the generator of K1(C∗f (G)) ∼= K1(G nf C̃). Clearly, the
fundamental unitary u ∈ Mn(C∗f (G)) defines an element [u] ∈ K1(C∗f (G)). The
discussion at the end of section 5 in [8] shows that we find a quotient homomor-
phism π : C∗f (G) → C∗f (FO(M)) for some matrix M ∈ GL2(C). On the level of
K-theory, the class [u] maps under π to the class of the fundamental matrix of
C∗f (FO(M)) in K1(C∗f (FO(M))). Since M ∈ GL2(C), the quantum group FO(M)
is isomorphic to the dual of SUq(2) for some q ∈ [−1, 1] \ {0}.
Let uq ∈M2(C(SUq(2))) be the fundamental matrix of SUq(2). For positive q, the
index pairing of uq with the Fredholm module corresponding to the Dirac operator
on SUq(2) is known to be equal to 1, see [13]. The argument extends to the case of
negative q in a straightforward way.
As a consequence of these observations we conclude that [u] is a generator of
K1(C∗f (G)) = Z, and this finishes the proof. �
In his work on quantum Cayley trees [35], Vergnioux has constructed an analogue
of the Julg-Valette element for FO(Q). Our considerations imply that this element
is homotopic to the identity, although we do not get an explicit homotopy.

Corollary 9.2. Let n > 2 and Q ∈ GLn(C) such that QQ = ±1. The Julg-Valette
element for FO(Q) is equal to 1 in KKFO(Q)(C,C).

Proof. Let us write G = FO(Q). An analogous argument with K-homology instead
of K-theory as in the proof of theorem 9.1 shows that KK(C∗f (G),C) ∼= Z is gen-
erated by the class of the counit ε : C∗f (G) → C. It follows that the forgetful map
KKG(C,C) → KK(C,C) ∼= Z is an isomorphism. Since the Julg-Valette element
in [35] has index 1 this yields the claim. �
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In the special case Q = 1 ∈ GLn(C) the quantum group FO(Q) = FO(n) is uni-
modular. Hence the Haar functional φ : C∗r (FO(n))→ C is a trace and determines
an additive map φ0 : K0(C∗r (FO(n)))→ Z.

Theorem 9.3. Let n > 2. The free quantum group FO(n) satisfies the analogue of
the Kadison-Kaplansky conjecture. That is, C∗r (FO(n)) does not contain nontrivial
idempotents.

Proof. The classical argument for free groups carries over. Since every idempo-
tent is similar to a projection it suffices to show that C∗r (FO(n)) does not contain
nontrivial projections. We know that the Haar functional is a faithful tracial state
on C∗r (FO(n)). Assume that p ∈ C∗r (FO(n)) is a projection. Then from the pos-
itivity of φ we obtain φ(p) ∈ [0, 1], and from the above considerations we know
φ(p) = φ0([p]) ∈ Z. This implies p = 0 or 1− p = 0. �
Finally, we note that the dual of SUq(2) does not satisfy the analogue of the
Kadison-Kaplansky conjecture. In fact, there are lots of nontrivial idempotents
in C(SUq(2)) for q ∈ (−1, 1) \ {0}.
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