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Neurons with Stereotyped and Rapid Responses Provide a
Reference Frame for Relative Temporal Coding in Primate
Auditory Cortex
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Germany, *Robotics, Brain and Cognitive Sciences Department and Neuroscience and Cognitive Systems Centre, Italian Institute of Technology, 16163
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The precise timing of spikes of cortical neurons relative to stimulus onset carries substantial sensory information. To access this
information the sensory systems would need to maintain an internal temporal reference that reflects the precise stimulus timing.
Whether and how sensory systems implement such reference frames to decode time-dependent responses, however, remains debated.
Studying the encoding of naturalistic sounds in primate (Macaca mulatta) auditory cortex we here investigate potential intrinsic refer-
ences for decoding temporally precise information. Within the population of recorded neurons, we found one subset responding with
stereotyped fast latencies that varied little across trials or stimuli, while the remaining neurons had stimulus-modulated responses with
longer and variable latencies. Computational analysis demonstrated that the neurons with stereotyped short latencies constitute an
effective temporal reference for relative coding. Using the response onset of a simultaneously recorded stereotyped neuron allowed
decoding most of the stimulus information carried by onset latencies and the full spike train of stimulus-modulated neurons. Computa-
tional modeling showed that few tens of such stereotyped reference neurons suffice to recover nearly all information that would be
available when decoding the same responses relative to the actual stimulus onset. These findings reveal an explicit neural signature of an
intrinsic reference for decoding temporal response patterns in the auditory cortex of alert animals. Furthermore, they highlight a role for
apparently unselective neurons as an early saliency signal that provides a temporal reference for extracting stimulus information from

other neurons.

Introduction

Dynamic natural stimuli are represented by time-varying pat-
terns of neural activity in sensory cortices (Bair and Koch, 1996;
Rieke et al., 1999; Victor, 2000). In auditory cortex, for example,
ethological stimuli such as vocalizations or speech are encoded by
precisely timed responses of individual neurons on the few tens of
millisecond scale (Nelken et al., 2005; Chechik et al., 2006; Russ et
al., 2008). Importantly, this information is considerably reduced
when integrating the same responses over much longer time
scales, e.g., when considering spike counts in windows of several
tens of milliseconds (Schnupp et al., 2006; Engineer et al., 2008;
Kayser et al., 2010). These results, together with the high infor-
mation provided by response onset latencies about the sound
frequency of tones or noises (Nelken et al., 2005; Bizley et al.,
2010), support the importance of time-dependent responses
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for auditory information processing. Still, it remains unclear
how precisely timed responses are decoded within or across
cortical populations (Soteropoulos and Baker, 2009; Sharpee
et al., 2011).

Temporal response patterns are typically analyzed by aligning
spikes and sensory events using a laboratory-based clock that
registers the timing of individual stimuli and of neural events
with supreme accuracy (Victor, 2000; Panzeri et al., 2010). The
nervous system, however, does not have access to this artificial
reference (Gollisch and Meister, 2008; Shusterman et al., 2011). It
is therefore unclear how it succeeds in interpreting time-varying
responses. When the sampling of the sensory stimulus is not
initiated by an active movement or when the stimulus appears
suddenly and unpredictably, sensory cortices cannot access inde-
pendent estimates of stimulus timing based on a motor efference
copy or some intrinsic stimulus regularity. In such cases, it has
been suggested that the nervous systems must interpret time-
varying responses using an intrinsically available reference, such
as by encoding information in the relative timing of responses
(deCharms and Zador, 2000; Furukawa et al., 2000; Chase and
Young, 2007; Gollisch and Meister, 2008). Indeed, previous stud-
ies in anesthetized animals supported this hypothesis by report-
ing that auditory neurons in colliculus or cortex still carry
information about spatial sound features when their responses
are decoded using relative, rather than absolute, onset latencies
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Example data and neural response characteristics. A, Sound wave and spectrogram for the acoustic stimulus sequence on one example trial. Twelve natural sounds were presented in

pseudo-random sequence and with random intersound intervals (blue periods) on each trial. The top shows the sound wave, the bottom the spectral representation (red colors indicate sound high
amplitude). B, Left, Trial-averaged response time course (high response amplitude corresponds to bright colors) to all 12 stimuli (vertical axis) for two stereotyped and two modulated neurons. Time
t = 0 corresponds to sound onset. Right, Distribution of response onset latencies across trials for the same neurons and for each stimulus. Box plots display the median (central bar), 25th and 75th
percentiles (box), and the full data range (bar). The stereotyped neurons responded to each stimulus, with short latencies and low trial-by-trial variability of the latency. C, Response characteristics
for the entire population. These characteristics are the trial-by-trial variability of onset latency, the mean latency (averaged across trials and stimuli), and the fraction of nonresponsive trials (across
all stimuli). The distributions are shown separately for stereotyped (red) and modulated (blue) neurons. These were (by definition) separated using a single criterion: a threshold applied to the
latency variability (gray dashed line on latency variability), but segregate well also for the other response characteristics. Importantly, stereotyped neurons excel by short mean latency, low-latency

variability, and responsiveness on most trials.

(Furukawa et al., 2000; Zohar et al., 2011). However, to under-
stand how such relative coding schemes could be implemented as
a general principle in cortex, it is necessary to identify an explicit
reference signal that is sufficiently robust to allow the extraction of
information about complex stimulus features, such as the iden-
tity of naturalistic sounds, even in the alert animal and without
external predictive clues about stimulus timing.

Here we investigate the viability of a relative coding scheme in
the auditory cortex of awake primates. We recorded neural re-
sponses to naturalistic sounds using a paradigm where predictive
cues about stimulus appearance were minimized. We found that
a subset of neurons responded rapidly, with highly reproducible
latency and to all tested sounds. Using computational analysis we
confirmed that these stereotyped neurons constitute an ideal ref-
erence for accessing the information carried by onset latencies
and full spike trains of other, stimulus selective neurons.

Materials and Methods

Recording procedures, sensory stimuli, and data extraction

All procedures were approved by the local authorities (Regierungspri-
sidium Tiibingen) and were in full compliance with the guidelines of the
European Community (EUVD 86/609/EEC). Neural activity was re-
corded from the auditory cortex of two adult male rhesus monkeys
(Macaca mulatta) using procedures detailed in previous studies (Kayser
et al., 2009, 2010). Briefly, responses were recorded using multiple mi-
croelectrodes (1-6 M() impedance, 750 wm spacing), high-pass filtered
(4 Hz, digital two pole Butterworth filter), amplified (Alpha Omega sys-
tem) and digitized at 20.83 kHz. Recordings were performed in a dark
and anechoic booth while the animals were passively listening to the
acoustic stimuli. Recording sites were located in primary auditory cortex

(field A1), as confirmed by frequency maps constructed for each animal
and the responsiveness for tone versus band-passed stimuli (Kayser et al.,
2009). Spike-sorted activity was extracted using commercial spike-
sorting software (Plexon Offline Sorter) after high-pass filtering the raw
signal at 500 Hz (third-order Butterworth filter). For the present study
only units with high signal-to-noise ratio (>8) and <2% of spikes with
interspike intervals shorter than 2 ms were included.

Acoustic stimuli (average 65 dB SPL) consisted of 12 naturalistic
sounds (3 vocalizations of conspecifics, 9 vocalizations or noises of other
animals, 0.3-1.5 s duration, 8 ms cosine-ramp) and were delivered from
two calibrated free field speakers (JBL Professional) at 70 cm distance
positioned 45° to the left and right of the head. Individual sounds were
presented in pseudo-random order and were separated by silent inter-
stimulus intervals of random duration (between 1.8 and 5 s; cf. Fig. 1 A).
The randomization of the interstimulus time was made to ensure that the
stimulus paradigm does not provide any information about the timing of
presentation of individual stimuli, does not create an expectation of pre-
sentation of the next stimulus within a restricted time interval, and can-
not entrain auditory cortical rhythms to a temporal regularity in the
stimulus sequence (cf. Lakatos et al., 2008; Jaramillo and Zador, 2011).
All sounds were presented many times (on average about 50 repeats of
the same stimulus, range 3970 repeats). For the present purpose only
the responses during the first 300 ms of each sound were analyzed.

Quantification of single-trial response latencies and of response
selectivity

Response latencies were defined for each individual stimulus presenta-
tion (trial) as follows. Spike trains were convolved with an exponentially
decaying filter (3 ms time constant) to create an analog signal. The re-
sponse onset was defined as the first point during stimulus presentation
where this signal exceeded the 95% percentile of the distribution of its
values attained during the prestimulus baseline period. On trials for
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which no threshold crossing occurred (during the first 300 ms of stimu-
lus) the neuron was considered nonresponsive. These single-trial laten-
cies were later used for referencing spike times of other neurons recorded
simultaneously in the same trial (see below). To characterize the statisti-
cal properties of response latencies we computed the following quantities
from the distribution of single-trial latencies of each neuron: (1) the
mean latency (across trials and stimuli), (2) the fraction of responsive
trials in which a well defined latency could be detected, (3) the latency
variability, computed as the SD of the latency over all responsive trials to
each stimulus, and then averaged across stimuli. The selectivity of each
neuron was determined using the “50% of maximal response” criterion
(Tian et al., 2001; Remedios et al., 2009): for each stimulus we computed
the average firing rate during the 300 ms window. From this we com-
puted the fraction of stimuli for which this firing rate was larger than half
the maximal of all these 12 responses.

Classification of neurons based on latency variability

These response characteristics varied considerably across cells (Fig. 1C).
However, a subset of neurons excelled by very low trial-by-trial latency
variability and by responsiveness on nearly every trial. For subsequent
analysis we hence defined two groups of neurons using a single criterion:
a threshold applied to the latency variability (threshold = 19.5 ms,
dashed gray line in lower right, Fig. 1C). The group of neurons with
latency variability smaller than this criterion was termed “stereotyped
latency neurons” (briefly “stereotyped neurons”), as these neurons had
very low latency variability (by definition) and short mean latencies. The
remaining neurons were termed “modulated latency neurons” (briefly
“modulated neurons”) because their response latency was (by definition)
highly variable across trials, was longer, and was modulated by sound
identity.

Calculation of stimulus information

We calculated the information carried by the responses of modulated
neurons about which stimulus was currently presented (stimulus iden-
tity). We performed this calculation for each of n = 48 modulated neu-
rons for which we recorded at least one other modulated and one
stereotyped neuron at the same time (usually on a different electrode).
This allowed us to compare the information carried by the same single-
trial responses when referenced to (1) the actual physical stimulus onset
time, (2) the response onset of a stereotyped neuron, and (3) the response
onset of a modulated neuron. We performed this analysis by considering
the stimulus information carried by different putative neural codes, (1)
the full spike pattern within a specific time window, and (2) the response
onset latency. To perform the actual calculations of stimulus information
we used different analytical techniques to obtain direct estimates of the
stimulus information carried by spike sequences within short time win-
dows, direct estimates of the stimulus information carried by onset la-
tencies and we used a stimulus decoding approach to quantify the
stimulus information provided by responses in progressively longer time
windows. The results obtained from the different analytical methods and
different putative neural codes were well consistent.

Information carried by spike trains estimated using the direct
approach

Information relative to the physical stimulus onset time. We estimated
the stimulus information carried by spike trains at a given poststimu-
lus time by dividing these using sliding windows of length T (T rang-
ing from 20 to 40 ms). Within each window we quantified the
response r as binary 5-letter word: the time window was divided into
five 4, 6 or 8 ms bins, and the letter (1/0) associated with each bin
indicated the presence/absence of spike(s) within the respective bin
(Strong et al., 1998; Kayser et al., 2009). Information between stimuli
and the so defined neural responses was computed for each window T'
using Shannon’s formula:

p
I(S$;R) = EP(S)P(r|S)1ngP(+lS)), 1)

s
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with P(s) the probability of stimulus s, P(r]s) the probability of the re-
sponse r given presentation of stimulus s, and P(r) the probability of
response r across all trials to any stimulus. To correct for the sampling
bias, we used the so-called shuffling procedure to compute information
from high-dimensional codes (Montemurro et al., 2007; Panzeri et al.,
2007), combined with the quadratic extrapolation procedure (Strong et
al., 1998). These calculations were performed using the “information
break-down toolbox” for Matlab (http://www.ibtb.org) (Magri et al.,
2009). For subsequent analysis, we obtained the “average” information
per neuron, defined as the average of the stimulus information over the
first 300 ms of stimulus presentation.

Information relative to an intrinsic reference frame. In the above calcu-
lation each single-trial spike train was aligned to the actual stimulus onset
on the respective trial. To quantify the information carried by same spike
trains when referenced relative to an internal reference, we proceeded as
follows. Each spike train was realigned to one of two internal reference
frames: (1) the response onset latency of a simultaneously recorded ste-
reotyped neuron, or (2) the response onset latency of a simultaneously
recorded modulated neuron. For alignment each single-trial spike train
was shifted according to the single-trial latency of the respective reference
neuron such that the response onset time of the reference neuron was
considered as time t = 0 (cf. Fig. 2). For trials on which the reference
neuron was unresponsive, the actual single-trial spike train of the con-
sidered neuron was replaced by a random section of the neuron’s re-
sponse extracted from the prestimulus baseline period, mimicking the
fact that there is no well defined reference point for alignment in this
case. After performing these shifts, the stimulus information in the re-
referenced spike trains was calculated as above. For quantitative analysis
we compared the information carried by each modulated neurons re-
sponse when aligned relative to a stereotyped reference and when aligned
to other modulated reference neurons (averaged over all modulated neu-
rons available as reference for this neuron).

Response features contributing to stimulus information. The infor-
mation provided by the spike train within window T could be carried
by either stimulus variations of the time-dependent firing rate or by
correlations between spike patterns (expressed, for example, as com-
binations of spikes in different bins occurring with a distribution that
cannot be explained only in terms of firing rate variations) (Perkel
and Bullock, 1968; Panzeri et al., 2010). We obtained an estimate of
the contribution of the time-dependent firing rate using the construct
of Ipgry (Montemurro et al., 2007). This reflects the information
carried by a hypothetical neuron with the same time-dependent firing
rate as the considered one, but whose spike train has no additional
correlations between spike times other than those arising from the
time-dependent rate:

Pind(r|s)
Pind(r) '

Tpsty = E P(s) Pind(r|5)10g2 (2)

Here P, ,(]s) is the probability of obtaining response r to stimulus s of
a Poisson neuron with the same time-dependent rate as the one mea-
sured experimentally, and P;,,(r) is the average across stimuli of
P, ,(r]s) weighted by P(s). Ipsr;; was computed with the same bias
corrections as used in Equation 1. The comparison between I,g; and
I(S;R) provides a direct assessment of the additional information
carried by spike pattern correlations. In agreement with previously
published results (Kayser et al., 2010) we found the contributions of
correlations to be small.

Information carried by spike trains estimated using a decoding
approach

By using direct information estimates the above analysis includes an
assessment of arbitrary and possibly nonlinear stimulus—response rela-
tions (Quian Quiroga and Panzeri, 2009; Panzeri et al., 2010). However,
given the technical difficulty of obtaining reliable direct information
estimates using high-dimensional response variables this approach is
limited to responses in short windows (i.e., few time bins). We performed
a separate analysis using a framework of stimulus decoding that al-
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diagonal and zero otherwise. A measure of mu-
tual information between stimulus and re-
sponse can be derived from the confusion
matrix using the following formula (Victor and
Purpura, 1996; Quian Quiroga and Panzeri,
2009):
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While even for an optimal decoder the infor-
mation in the confusion matrix (Eq. 3) may be
less than the total information available in the
response, its computation is more data-robust
than the one based on the direct method.
Therefore Eq. (3) offers the possibility to char-
acterize selectivity of spike trains over longer
time windows. We used this method to evalu-
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Figure2.  Example data from one modulated example neuron showing responses aligned u

Responses of the example neuron when each single-trial response was aligned to the actual stimulus onset time. Trial-averaged
responses for each stimulus are shown in the color-coded panel on the left. The single-trial spike rasters for one stimulus (indicated
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180 240 300 point f, and systematically varying ¢ from 0 up
to 300 ms following stimulus onset.

As for the above described direct method, we
computed information in the confusion matrix
of the decoder using different referencing
frames, by aligning spike trains to the actual
stimulus onset or to the latency of other simul-
taneously recorded neurons exactly as de-
scribed in Information relative to an intrinsic

reference frame, above.

sing different reference frames. 4,

by blue arrow in left panel) are shown in the panel on the right. Time t = 0 corresponds to stimulus onset. B, Single-trial spike

rasters for one stimulus of the stereotyped reference neuron which is used to align the response of the example neuron in C. The

detected single-trial response onsets of the stereotyped reference neuron are indicated by the
stimulus onset. €, Response of the example neuron when each single-trial response was al
reference neuron. Trial averaged responses for each stimulus are shown on the left and single-tri

shown on the right. Note that t = 0 corresponds to the reference time point, i.e., the onset latency of the reference neuron on each

trial. As aresult, the apparent response latency differs from that visible when the same response

onset (cf. A). D, Response of the modulated example neuron when each single-trial response was aligned relative to a modulated

reference neuron. When using this as reference, the stimulus-evoked response becomes much
responses (left) and the spike raster (right). E, Time course of the stimulus information in spike
example neuron calculated using each reference condition. Information was calculated using th
windows of 4 ms bins.

lowed us to consider longer time windows and to obtain estimates of
cumulative stimulus information.

Specifically, we used a linear discriminant decoder in conjunction with
a leave-one-out cross-validation procedure (Nelken and Chechik, 2007;
Russ et al., 2008; Kayser et al., 2010). For each individual trial of a given
stimulus (s;), this proceeded as follows. (1) The average responses to all
other 11 stimuli were computed by averaging the responses of all re-
peats of the respective stimuli. (2) For the current stimulus (s;) the
mean response was computed by averaging across all trials, excluding
the current “test” trial. The thereby obtained average responses repre-
sent the “codebook.” (3) The Euclidean distance (over time points) was
computed between the response on the test trial and the average re-
sponses in the codebook, and the test trial was decoded as that stimulus
yielding the minimal distance to the test response. This procedure was
repeated for each trial of each of the 12 stimuli providing the total per-
centage of correctly decoded trials and the confusion matrix. The values
on a given row s and column d of the confusion matrix Q(ds) represent
the fraction of trials on which the presented stimulus s was decoded to be
stimulus d. If decoding were perfect, the values in Q would be one on the

Information carried by response

onset latencies

Information in the response onset latency was
calculated by binning the latency values for
each neuron into 6 equi-populated bins, and
by calculating the mutual information between
these values and the stimulus identity using di-
rect estimates of Shannon mutual information
(Eq. 1). The information in the onset latency
was also computed either when latency was
measured relative to the stimulus time or rela-
tive to the latency of another neuron, as de-
scribed in above sections.

ed dots. Time t = 0 corresponds to
igned relative to the stereotyped
al spike rasters for one stimulus are

s are aligned to the actual stimulus

weaker, both in the trial averaged
trains on a short time scale for this
e direct approach and using sliding

Dependence of information upon the effective temporal precision
of the reference frame

The amount of information that could be recovered from responses
aligned to other reference neurons rather than stimulus onset was re-
duced mostly because the reference neuron provides an imperfect repre-
sentation of stimulus timing. To better interpret the information loss
caused by using an intrinsic reference, it is useful to compare this to the
information loss induced by directly degrading the precision with which
single-trial responses are aligned to stimulus onset (see Fig. 5B). We
estimated this decrease in information parametrically by adding inde-
pendent Gaussian random jitter with zero mean and SD J to the actual
stimulus onset time of each trial. We obtained the stimulus information
as a function J for each neuron by averaging 10 repeats for each value of
], and we expressed the fraction of the information at each value of |
relative to the information without added temporal jitter (J = 0). The
result was averaged across neurons and confidence intervals for the pop-
ulation average were obtained using a jackknife procedure: we calculated
a distribution of values by systematically discarding individual neurons
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and derived the confidence interval associated with this jackknife distri-
bution (Sokal and Rohlf, 1995). For later use we fit the resulting curve
using an exponential (see Fig. 5B, blue line): y = 0.35 + 0.65 *
exp[—J/21].

Using a population of neurons as intrinsic reference

We performed additional computational analysis to quantify whether
and how much more information could be extracted when using a pop-
ulation of N stereotyped neurons as reference, as opposed to using a
single reference neuron. To this end we assumed that the response laten-
cies of reference neurons are distributed according to a multivariate
Gaussian distribution, and that the latency of the aggregate population
response is obtained as the mean latency across all neurons. Following
previous theoretical work the variability of the population latency (0,,,,,)
can be derived analytically as follows, given a population of neurons with
known trial-to-trial latency variability o-and known latency covariance ¢
between pairs of neurons (Abbott and Dayan, 1999):

. 7

Cpop = N[l + (N — 1)]. (4)

The resulting values of o,,,, are shown in Figure 4C (see below) for a
range of values for o and c. To obtain a self-consistent estimate of o,
with a population of N reference neurons, we estimated the parameters o
and ¢ from the actual data as follows. We derived the latency variability
across neurons using the dependency of the recovered information on
the precision with which the stimulus onset is registered (see Fig. 5B):
using a single stereotyped neuron as reference, one can recover on aver-
age 86% of the information available relative to actual stimulus onset,
which corresponds to an effective precision of o4 = 5.1 ms (see Fig. 5B,
orange line). The latency covariance was estimated from the observed
covariance of 8 pairs of simultaneously recorded stereotyped neurons
across 12 stimuli as the median (robust estimate) across these 96 (8*12)
values (¢ = 0.042). To convert the variability of the population latency
(00p) into estimates of information loss, we again exploited the depen-
dency of stimulus information on the temporal precision of the reference
system: the exponential fit to Figure 5B (see below) was used to relate
Tpop to the fraction of preserved information. Finally, the inversion of
this relationship and the inversion of Eq. 4 allowed us to determine the
minimal population size N required to reach an information value that
exceeds 95% of the information available when referencing responses
relative to the physical stimulus onset (see Fig. 5D).

Results

We recorded the responses of n = 70 neurons from primary
auditory cortex during the presentation of natural sounds (con-
specific vocalizations, vocalizations or noises of other animals)
presented at unpredictable times. Within this population some
neurons responded with short and highly reproducible latency to
each sound (Fig. 1B, top examples), while other neurons were
more selective, responded with variable latencies only to some
stimuli and not in all trials (bottom examples).

We characterized the responsiveness and single-trial latencies
of these neurons by means of several quantitative metrics (see
Materials and Methods): the mean latency across trials and stim-
uli; the fraction of trials for which a well defined latency could be
detected; the latency variability, defined as the SD of the latency
on all responsive trials (and averaged across stimuli); and an
index of stimulus selectivity. These response metrics varied
markedly from neuron to neuron and revealed a subset of neu-
rons responding with short and little-varying latencies on almost
all repeats of the stimuli. For the present analysis we selected
neurons with such highly stereotyped responses by partitioning
the population into two groups using a single criterion. We ap-
plied a threshold to the latency variability (threshold = 19.5 ms,
dashed gray line in lower right, Fig. 1C) and termed one resulting
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subpopulation stereotyped latency (briefly “stereotyped”) neu-
rons and one subpopulation modulated latency (“modulated”)
neurons. These terms reflect the observation that neurons within
the first group had similar onset latencies across stimuli and re-
sponded to all tested stimuli (Fig. 1C, red), while latencies of
neurons in the second group were modulated by stimulus iden-
tity and varied across repeats of the same stimulus as well as
across stimuli (Fig. 1C, blue).

A quantitative comparison of these response metrics revealed
several differences between neurons in the two subpopulations,
despite them being partitioned based only upon a single criterion
(single-trial latency variability). Stereotyped neurons (17 of 70,
24%) responded with short mean latencies (21.7 = 0.8 ms), had a
well identifiable response latency on almost all trials (>96%,
mean 99%), and responded significantly to almost all stimuli
(11.5 £ 0.2 0f 12, mean = SEM). By definition, these neurons had
low trial-by-trial latency variability (11.9 = 1.4 ms). Modulated
neurons (53 of 70, 76%), in contrast, responded with longer
mean latencies (72.0 % 4.6 ms; two-sample t test, p < 10 7, only
on a subset of trials (78.6 + 3.4% trials, p < 10 ~?), responded
only to some stimuli (9.8 = 0.4, p < 0.05), and by definition
responded with variable onset latencies (59.5 = 3.0 ms; p <
10 ~°). In addition, stereotyped neurons also responded with
significantly higher firing rates, creating a strong population
response (28.2 = 2.6 vs 7.6 = 1.0 spikes during the first 300
ms, two-sample t test p =~ 0).

The stereotyped neurons clearly stand out from the entire
population because of their rapid, reliable and comparatively
strong responses (see Fig. 5A). Their rapid and unspecific re-
sponses make these stereotyped neurons natural candidates to
form an intrinsic temporal reference frame, relative to which the
latencies and the time-varying responses of other stimulus mod-
ulated neurons could be interpreted. In the following we test this
hypothesis quantitatively using methods of information theory
and stimulus decoding.

Response patterns relative to an intrinsic reference

We calculated the information about the identity of the presented
stimulus carried by modulated neurons when their responses
were referenced (aligned) either to the single-trial response onset
of a simultaneously recorded stereotyped neuron or to the single-
trial response of another modulated neuron. We compared these
values to the information available from the same responses
when referenced to the actual stimulus onset to evaluate the effi-
ciency of the two internal references in preserving stimulus infor-
mation. Figure 2 displays the responses of one example neuron
when aligned to each of these three references. Examination of
the trial-averaged responses aligned to stimulus onset (Fig. 2 A,
left) shows that these are stimulus specific and time dependent. In
particular, stimulus-specific episodes of high mean firing rates
are localized in time periods of few tens to hundreds of millisec-
onds poststimulus and correspond to epochs during which spike-
rasters reveal a reliable response across stimulus repeats (black
rasters, Fig. 2 A, right). These temporal response patterns can
only be correctly interpreted by downstream decoders that have
some knowledge of the poststimulus time at which the response
was emitted. For example, a downstream decoder could deter-
mine whether a low firing rate was elicited by a noneffective
stimulus or by an effective stimulus at a non-optimal poststimu-
lus time only if it had some information about the time of the
current response with respect to the stimulus onset. Similar
stimulus-specific response patterns are visible in the responses of
two additional example neurons shown in Figure 3.
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Additional example data showing responses aligned using different reference frames. 4, B, Responses of one example neuron each. The uppermost panels display the time course of the

stimulus information for this example neuron calculated from the full spike train using each reference condition. Subsequent panels display the trial averaged responses for each stimulus (left) and
the single-trial spike rasters for one stimulus indicated by a blue arrow (right) for each type of reference frame. Note that for the sound onset reference time t = 0 corresponds to the actual stimulus
onset time, while for the intrinsic references t = 0 corresponds to the reference time point, i.e., the onset latency of the reference neuron on each trial. Conventions otherwise as in Figure 2.

To gain some intuition about how the nervous system may
form an intrinsic time frame for decoding time-varying re-
sponses, it is useful to visualize the spike rasters when referenced
to an internal reference frame provided by the firing of another
neuron. For the example case the single-trial responses and the
detected onset latencies for a stereotyped neuron are shown for
one stimulus in Figure 2 B. When the single-trial spike trains of
the investigated neuron are aligned relative to the onset latencies
of this reference neuron the resulting responses (Fig. 2C; trial-
averaged responses, left, and single-trial rasters in red, right) are
still stimulus-selective, temporally modulated and resemble the
responses as aligned to stimulus onset. Thus, the use of a stereo-
typed neuron as reference qualitatively preserves the stimulus
selectivity and temporal profile of the response (compare black
and red rasters in Fig. 2 A, C). However, when the same responses
are aligned relative to the response onset latencies derived from a
simultaneously recorded modulated neuron, the structured re-
sponse patterns disappear (blue rasters, Fig. 2D). Together with
the additional examples (Fig. 3) this suggests that aligning spike
trains of a considered neuron relative to the response of another
stereotyped neuron largely preserves the stimulus related re-
sponse modulation, an important prerequisite for the internal
readout of the stimulus-specific information carried by a neurons
response.

Information in spike trains on a short time scale
We used information theoretic analyses to quantify how much
the stimulus information carried by these neurons is affected
by the choice of reference frame. Figure 2 E (see also Fig. 3) dis-
plays the stimulus information obtained from the spike trains of
the example neurons using a sliding window analysis. Notewor-
thy, the information values are considerably higher when using
a stereotyped neuron compared with a modulated neuron as ref-
erence, and they fall only little short of the values attained when
responses are referenced relative to the actual sound onset time.
Analysis of the entire population confirmed that informa-
tion values were larger when using a stereotyped rather than a
modulated reference. For each neuron we calculated the average
information in spike patterns (averaged over all sliding window
positions along the first 300 ms of the response) and we then
compared these values when using different types of reference
neurons. Across the population (n = 48 modulated neurons that

could be paired with a simultaneously recorded stereotyped and a
modulated reference neuron) information relative to the stereo-
typed reference was significantly higher than relative to the mod-
ulated reference (median values: 0.07 vs 0.05 bits, sign-rank test
p < 107° Fig. 4A). Of these 48 neurons, 44 (92%) carried more
information relative to the stereotyped rather than to the modu-
lated reference. For comparison, information in the same neu-
rons when referenced to the actual stimulus onset time was 0.08
bits, significantly higher than relative to the stereotyped neurons
(Fig. 44, inset; p < 10 ~°). Noteworthy, the prevalence of higher
information obtained using the stereotyped reference extended
over the entire response time, as shown by the population aver-
aged information time course (Fig. 4 B). To evaluate how effective
intrinsic reference frames are with respect to preserving knowl-
edge about the precise stimulus onset, we expressed the informa-
tion values obtained using the intrinsic references relative to the
information carried by same responses when aligned to stimulus
onset (Fig. 4C). We found that the stereotyped reference pre-
served 86% (median value) while the modulated reference pre-
served only 66% of the information available relative to the actual
stimulus onset.

We verified that these results do not depend on the specific
parameters used to characterize the responses as binned n-spike
patterns. We repeated the analysis using bins of 4, 6 and 8 ms
duration (resulting in time windows T of 20, 30 and 40 ms re-
spectively) and we obtained very comparable results (Fig. 4C).
Importantly, the fraction of information preserved by the stereo-
typed reference was largely independent on the specific parame-
ter choice and was larger than when using the modulated
reference for all choices of bins (sign-rank tests, p < 10 ~°).

The above demonstrates that the responses of auditory cortex
neurons remain highly stimulus informative, even when analyzed
relative to a temporal reference frame provided by the subset of
stereotyped neurons. However, it remains unclear what aspects of
neural response actually carry this information. In particular,
when considering binary n-spike patterns information can be
provided by variations in the overall spike count within the time
window T, by temporal variations in the firing rate (spike den-
sity) within this window, or by higher-order correlations of
spikes within the n-spike pattern. Previous studies have demon-
strated that auditory cortex neurons encode information about
naturalistic sounds by patterns of activity on the time scale of few
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(or few tens of) milliseconds (Engineer et
al., 2008) and that most of this informa-
tion is carried by short-time variations of
firing rate (spike density) rather than
higher-order correlations of spikes
(Kayser et al., 2010). We confirmed this
dominance of firing rate variations in car-
rying information for the present dataset.
Specifically, we compared the informa-
tion carried by the actual spike train (I(S;R),
Eq. 1, Materials and Methods) to the in-
formation provided by the spike train of a
hypothetical Poisson neuron with the
same time-dependent rate as the one un-
der analysis (Ipgr(S;R), Eq. 2, Materials
and Methods). Note that for this analysis
we analyzed only responses of modulated
neurons when aligned to stimulus onset.
Across neurons Ipgpy; accounted for the
largest fraction of the total information
for most of the neurons. For example,
when using 4 ms bins the median ratio
was 0.94 (Fig. 4D), and similar values
were obtained when using longer time
bins (e.g., median ratio of 0.92 for 8 ms
bins). These findings are in good agree-
ment with previous work (Kayser et al.,
2010). We conclude that stereotyped neu-
rons provide an internal temporal refer-
ence frame that is sufficiently precise to
allow recovering the temporal variations
of modulated neurons’ firing rates that
carry sensory information.

Cumulative information in spike trains

We performed additional analysis to com-
pare the performance of different refer-
ence frames when stimulus information is
characterized on longer time scales. While
the above analysis focused on spike trains
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Figure4. Population analysis of stimulus information using different reference frames. A, Average information in the full spike
train for each modulated neuron, when referenced to either a stereotyped another modulated neuron (large panel), and when
referenced to the physical sound onset (small inset). Each dot corresponds to one neuron, information values were computed using
the direct method, using 4 ms bins, and were averaged over all sliding window (7 = 20 ms duration) positions. B, Time course of
the stimulus information following stimulus (or reference neuron) onset (each aligned to t = 0) when using each reference frame.
Lines denote the mean across all neurons (n = 48), shaded areas the standard error (SEM). Information was computed using the
direct method, using 4 ms bins, and were averaged over all sliding window (T = 20 ms duration) positions. C, Fraction of stimulus
information preserved by each type of reference (red, stereotyped; blue, modulated neurons) when stimulus information was
computed using different bin sizes. The relative information was computed as the ratio of the information available using both
types of reference neuron to the information available relative to the physical stimulus onset. Box plots display the median (central
bar), 25th and 75th percentiles (box). D, Distribution (across the population of all modulated neurons when aligned to stimulus
onset) of the ratio between the information provided by the spike train of a hypothetical Poisson neuron with the same time-
dependent rate as the one under analysis (/ps4(S;R), Eq. 2) and the information carried by the actual spike train (/(S;R), Eq. 1). fpsry
accounted for a large fraction of the total information for most of the neurons. Information was calculated using 4 ms bins (7= 20
ms windows). E, Stimulus information obtained from a linear decoder applied to response epochs of increasing duration. Left,
Information obtained when using the response in progressively longer time windows for decoding (starting att = 0 and ending at
each indicated time point). Lines denote the mean across neurons, shaded areas the standard error (SEM). Right, Information
obtained when using the full 300 ms of the response for each modulated latency neuron, when referenced to either a stereotyped
oranother modulated neuron (large panel), and when referenced to the physical sound onset (small inset). Each dot corresponds
to one neuron. £, Stimulus information in the response onset latency for each neuron, when referenced to either a stereotyped or
amodulated reference neuron. Information was calculated using the direct approach and by considering only the onset latency as
response variable.

on the short time scale (up to 40 ms) and used direct estimates of
stimulus information, in an additional analysis we used a stimu-
lus decoding framework to estimate the stimulus information
from responses in longer time windows. Specifically, we esti-
mated the cumulative information provided by spike trains be-
tween stimulus onset and a specific time point later during the
response.

This confirmed the above result that stereotyped (but not mod-
ulated) neurons provide a suitable intrinsic reference frame. The
overall stimulus information increased with increasing length of the
considered response epoch, reflecting the accumulation of stimulus
information over time (Fig. 4E). In addition, the benefit of using
stereotyped (over modulated) neurons as a reference became larger
when considering progressively longer time windows. For example,
when using the full 300 ms window stimulus information was sig-
nificantly higher when using stereotyped rather than modulated
neurons as reference (median 0.25 vs 0.13 bits; sign-rank test p <
10 ~7; Fig. 4E). For comparison, information relative to the actual
onset was 0.3 bits (median, p < 10 ). When calculated relative to
the information available in the same responses when aligned to
actual stimulus onset the stereotyped reference preserved 84%
(median) while the modulated reference preserved only 52%
of the available information (sign-rank test, p < 10 °).

Information in response onset latencies

In addition to the information provided by the full spike train, we
also calculated the information provided by the response onset
latency of each neuron. Onset latencies of auditory cortical neu-
rons are known to carry information about sounds features such
as spatial location or pitch and are considered as a rapid and
potentially valuable code for auditory processing (Nelken et al.,
2005; Chechik et al., 2006; Bizley et al., 2010). We found that the
information carried by single-trial onset latencies was higher
when referenced to a stereotyped rather than a modulated refer-
ence (median values 0.10 vs 0.07 bits, sign-rank test, p < 10 ™%
Fig. 4 F). When expressed to the information available relative to
the actual stimulus onset, information in onset latencies relative
to stereotyped neurons reached 91%, relative to modulated neu-
rons only 63%. This demonstrates that stereotyped neurons can
act as an effective internal reference frame for decoding in the
context of several putative codes.

Population responses as intrinsic reference

The above analysis focuses on the information available in neural
responses when referenced to the onset time of a simultaneously
recorded individual reference neuron. Although referencing to
single stereotyped neurons was effective, it seems conceivable
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(red) and modulated (blue) neurons around stimulus onset (t = 0). Thick lines denote the mean across stereotyped and modulated neurons. B, Fraction of stimulus information preserved when
reducing the precision about the knowledge of the actual stimulus onset time. For this analysis, a Gaussian jitter of increasing variance was added to the single-trial stimulus onset times and the
graph displays the ratio of the information at each jitter value (“effective precision”) relative to the information obtained with zero jitter (dashed lines: SEM from a jackknife procedure). The decrease
of information with increasing jitter is well fit by an exponential (blue line). Using individual stereotyped neurons as reference allowed recovering 86% of the information available relative to
stimulus onset, which corresponds to a latency variability (o) of 5.1 ms (orange line). C, D, Estimate of the minimal size of a population of stereotyped neurons required to achieve a given effective
precision in the estimate of the population response onset. The exponential fit in B) was used to relate stimulus information to the latency variability and a population model was used to derive the
variability of the summed population response (a,,) for a given single-neuron latency variability o, latency covariance between pairs of neurons ¢, and population size N (Eq. 4). C displays the
variability of the summed population response as a function of o-and ¢, with the experimentally observed values marked by *. D displays the decrease of o, with increasing population size Nand
the corresponding increasingly preserved fraction of stimulus information (green curve). The latter reveals that a population size of N = 25 neurons is sufficient to recover at least 95% of the

pop
information available when using the physical sound as reference (dashed line).

that the nervous system may use an aggregate population signal as
reference, such as for example a pooled population response
(Chase and Young, 2007; Panzeri and Diamond, 2010). Such a
population signal is not only relatively easy to evaluate and access
by cortical microcircuits, but in addition may provide a timing
signal more precise and reliable than that provided by the laten-
cies of individual reference neurons. Indeed, considering that the
stereotyped neurons are the first to respond from the entire pop-
ulation, pooling the responses across stereotyped neurons
directly corresponds to the aggregate response of the entire sam-
pled auditory cortex population during the first tens of millisec-
onds following the occurrence of a stimulus (Fig. 5A). We hence
performed a population-based analysis to investigate whether
using a larger population of stereotyped neurons as reference
would increase the amount of extractable information. To this
end we considered a population of stereotyped neurons assuming
their latencies were distributed according to a multivariate Gauss-
ian distribution with trial-to-trial covariance matching that of the
actually recorded neurons. From this we then obtained the latency
variability of a modeled population of varying population size N
following previous theoretical studies (Abbott and Dayan, 1999).
We first determined the relation between the amount of re-
covered stimulus information and the effective temporal preci-

sion (latency variability) of a presumed intrinsic reference. By
adding Gaussian noise to the physical stimulus onset time we
obtained the dependency of stimulus information provided by
the full spike train of each neuron on the precise temporal align-
ment of each trial to stimulus onset (Fig. 5B). Using the above
result that stereotyped neurons can recover 86% of the informa-
tion available relative to stimulus onset this provided an equiva-
lent temporal jitter of 5.1 ms. This equivalent jitter was used
together with the measured trial-by-trial latency covariation be-
tween simultaneously recorded stereotyped neurons as parame-
ters to obtain the effective jitter from a presumed population of
size N (see Materials and Methods; Eq. 4).

The dependency of the latency variability of the modeled pop-
ulation (0,,,) on the values of the single-neuron variability (o)
and the latency covariance is shown in Figure 5C. To convert the
variability of the population latency estimates into estimates of
information loss, we again used the measured dependency of
stimulus information on effective reference precision: we used
the exponential curve fit to the data in Figure 5B to relate effective
precision (0,,,,) to the fraction of preserved information. Per-
forming this calculation using the experimentally observed val-
ues for o-and ¢ for a range of population sizes (Fig. 5D) we found
that a population of 25 stereotyped neurons provided an estimate
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of stimulus onset that is sufficiently precise to recover at least 95%
of the stimulus information available when using the physical
stimulus onset as reference (dashed line; Fig. 5D). This illustrates
the efficiency of small sets of stereotyped neurons as intrinsic
reference frame of high temporal precision that allows the forma-
tion of highly informative relative coding schemes.

Discussion

We recognize natural sounds such as animal noises in a forest or
the call of our name despite their unpredictable occurrence. Nat-
ural sounds vary on multiple time scales, especially fast ones, and
neurons in auditory areas represent them by finely timed re-
sponses (Liu et al., 2006; Engineer et al., 2008; Wang et al., 2008;
Kayser et al., 2010). Our ability to detect and recognize these
sounds suggests that the auditory system features mechanisms to
extractinformation from precisely timed responses, such as those
found in auditory cortex (Yang et al., 2008; Sharpee et al., 2011).
What these mechanisms are and how they are implemented in
neural populations remains a matter of debate.

The problem of reference frames

Typical experimental analyses of time-dependent responses align
single-trial spike trains to stimulus onset, and thereby exploit a
priori knowledge about experimental design and timing. The au-
ditory system, however, has to extract information from time-
varying responses without access to precise and independent
knowledge of stimulus timing. Instead, the auditory system must
rely on some internal temporal reference frame and previous
work suggested the relative timing of responses to a population-
defined event as one potential reference (Reich et al., 2000;
Gollisch and Meister, 2008). Such relative timing does not rely on
external evidence about stimulus occurrence, and studies on the
representation of spatial acoustic cues in midbrain and cortex
provided evidence for the feasibility of such relative coding
schemes, at least in the context of simplistic stimuli (tone or noise
bursts) and the anesthetized state (Furukawa et al., 2000; Chase
and Young, 2007; Zohar et al., 2011). Here, we made significant
progress by demonstrating that relative coding schemes can op-
erate efficiently in the alert animal for decoding latencies and
sustained time-varying responses to natural sounds. Our work
enhances previous insights about the use of relative temporal
references by demonstrating an explicit neural signature of stim-
ulus time in the auditory cortex of alert animals, and by proving
its effectiveness in the decoding of behaviorally relevant sounds
such as communication signals.

Our findings highlight a role for neurons with rapid and ste-
reotyped responses to various natural stimuli, which may easily
go unnoticed in typical experiments due to lack of sought-after
specificity. Such rapid and apparently unselective neurons may
provide a saliency signal that constitutes a reliable reference for
decoding information from the responses of other more selective
neurons. In our data, the stereotyped neurons responded first
and with stronger amplitude than selective neurons, hence con-
tributing most to the initial population response. Our modeling
analysis demonstrated that about two dozen reference neurons
are sufficient to create a population signature with sufficiently
high precision to recover nearly as much information from rela-
tive responses as could be obtained from the original responses
aligned to stimulus onset. It will be worthwhile to investigate
whether similarly stereotyped neurons that qualify as intrinsic
reference signal exist in other sensory cortices or modalities.

The division we made between “reference” and “encoding”
neurons is not meant to refer to a strict dichotomy. Rather, our
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data suggest that auditory cortex neurons form a continuum, at
one end of which are neurons responding selectively and with
variable latencies and at the other end are neurons with stereo-
typed, rapid and highly reliable responses (cf. Fig. 1C). The latter
evidently excel in the aggregate population response (compare
Fig. 5A) and collectively provide an early saliency signal that may
serve as intrinsic reference.

Putative coding schemes in auditory cortex and stereotyped
neurons as reference
Auditory cortex neurons encode naturalistic sounds using rapid
variations of firing and to extract most information from their
responses decoding mechanisms need to read these responses
using a precision of a few to a few tens of milliseconds (Schnupp
et al., 2006; Engineer et al., 2008; Kayser et al., 2010). Previous
work has demonstrated that the exact time scale of neural coding
precision depends on the precise stimulus context and that the
vast majority of stimulus information carried by auditory cortical
spike trains results from rapid variations of firing rate and not
from higher-order patterns within the spike train (Kayser et al.,
2010). Our analysis confirmed this dominance of rapid modula-
tions of firing rates in carrying stimulus information and com-
pared different reference frames for decoding such informative
temporal response patterns. In the following we discuss the im-
plications of our findings at the light of previous proposals for
candidate decoding mechanisms of time-varying responses.
One possibility is that sensory systems rely on an explicit in-
ternal representation of stimulus timing. Information about tem-
poral stimulus structure is crucial for sensation and behavior, and
this is particularly true for the auditory system (Heil and Irvine,
1997; Schnupp etal., 2006). An internal explicit representation of
stimulus timing by a short latency population response as re-
ported here is appealing, as it is rapidly available following stim-
ulus occurrence and precedes subsequent neural events that carry
stimulus-specific information. Our results assign a representa-
tion of stimulus time to neurons with short and stereotyped la-
tencies while at the same time imputing the representation of
stimulus identity to neurons with longer latency and time-
varying responses. Such separated instantiation of saliency signal
and stimulus representation differs from previous proposals that
attributed stimulus information to the latencies of all neurons
while considering separate subsets of neurons for the encoding of
distinct stimulus features. In the rat somatosensory cortex, for
example, each potential object location is encoded by the latency
of a specific population, and the stimulation time of each location
can be estimated from the pooled activity of local populations
(Panzeri et al., 2001; Foffani et al., 2008; Panzeri and Diamond,
2010). This scheme, however, has the disadvantage of requiring
similarly stimulus tuned latencies in each subpopulation, hence
introducing considerable redundancy in the neural representa-
tion. Exploiting separate neuron subsets for stimulus encoding
and the saliency signal, in contrast, puts little constraints on what
and how the remaining majority of neurons may encode, thereby
offering the benefits of a high dimensional coding space.

Efference motor copies as reference signals

A different possibility for sensory systems to receive temporal
information about stimulus context is by direct feedback related
to motor commands. Especially for systems that critically rely on
the active exploration of the environment, such as the rodent
somatosensory system, olfaction or vision, the problem of decod-
ing information from precise spike times could be solved if sen-
sory inputs were generated in response to an active motor
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command. Indeed, feedback or motor-efference signals related to
saccadic eye movements (Gawne et al., 1996; Gollisch, 2009), to
sniffing during olfactory exploration (Shusterman et al., 2011) or
to the rhythmic movement of facial whiskers (Diamond et al.,
2008b; Hill et al., 2011) have been reported in the respective
sensory areas. These motor efference signals could provide sen-
sory cortices with some estimate of stimulus timing, or at least
narrow down the processing into a window of “expectation” that
may be used to constrain the decoding of time-dependent re-
sponses. Rats, for example, sweep their vibrissae toward objects of
interest and may be able to register incoming spike trains with
respect to their whisker protraction with a resolution of some
tens of milliseconds (Kleinfeld et al., 2006; Diamond et al.,
2008a). Similarly, neurons within the olfactory bulb can elicit
responses that are precisely timed relative to the sniff cycle (Shus-
terman et al., 2011).

In the auditory system, however, there are no obvious motor
efference copies. The problem of establishing an intrinsic refer-
ence frame is therefore even more compelling for auditory pro-
cessing than for other modalities, especially in absence of external
predictive clues of stimulus dynamics. While it may well be that
attention or cross-modal inputs to the auditory system provide
feedback related to active exploration (Lakatos et al., 2009; Schr-
oeder et al., 2010), general sound processing mechanisms likely
rely on intrinsic reference signals driven by sensory inputs (Chase
and Young, 2007).

Encoding based on purely internally defined reference frames
Another proposed mechanism for an intrinsic temporal refer-
ence is the phase of firing, which does not rely on a direct rela-
tionship to stimulus onset. The phase of firing codes information
by the relative time of a spike with respect to an ongoing intrinsic
rhythm (Hopfield, 1995; Lisman, 2005; Tiesinga et al., 2008; Pan-
zeri et al., 2010), and thereby facilitates decoding and the orga-
nizing of information over time and across populations
(Hopfield, 1995; Lisman, 2005; Fries, 2009; Panzeri et al., 2010).
However, using oscillations as intrinsic temporal reference natu-
rally constrains the speed of computations by the cycle length of
the respective oscillation. For slow oscillations such as the audi-
tory theta rhythm (Luo and Poeppel, 2007; Kayser et al., 2009;
Chandrasekaran et al., 2010) this would result in a relatively slow
encoding process, which seems at odds with the fast speed at
which sensory systems can detect or recognize natural stimuli
(Thorpe et al., 1996; VanRullen et al., 2005; Murray et al., 2006).
The high speed of perception seems better accommodated by
intrinsic references that are immediately available following
stimulus occurrence and which do not necessitate integration
over longer time windows. One such example is the rapid onset of
stereotyped neurons described here.
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