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Abstract 

We previously demonstrated that a dry, room temperature stable formulation of a live bacterial vaccine 

was highly susceptible to bile, and suggested that this will lead to significant loss of viability of any live 

bacterial formulation released into the intestine using an enteric coating or capsule. We found that bile 

and acid tolerance is very rapidly recovered after rehydration with buffer or water, raising the possibility 

that rehydration in the absence of bile prior to release into the intestine might solve the problem of bile 

toxicity to dried cells. We describe here a novel formulation that combines extensively studied bile acid 

adsorbent resins with the dried bacteria, to temporarily adsorb bile acids and allow rehydration and 

recovery of bile resistance of bacteria in the intestine before release. Tablets containing the bile acid 

adsorbent cholestyramine release 250-fold more live bacteria when dissolved in a bile solution, compared 

to control tablets without cholestyramine or with a control resin that does not bind bile acids. We propose 

that a simple enteric coated oral dosage form containing bile acid adsorbent resins will allow improved 

live bacterial delivery to the intestine via the oral route, a major step towards room temperature stable, 

easily administered and distributed vaccine pills and other bacterial therapeutics.
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1 Introduction 

There are three main applications for oral live bacteria delivery. Firstly, attenuated strains of 

pathogenic enteric bacteria are attractive candidate vaccines, as oral administration avoids injections. 

Currently, a number of human clinical trials are in progress testing various strains of attenuated live 

bacteria for protection against enteric diseases such as Cholera, Enterotoxic E. coli and Typhoid fever [1]. 

Furthermore, these attenuated bacteria can be genetically modified to carry heterologous antigens from 

other pathogens or tumours, and be used to provoke immune responses in humans to heterologous 

antigens after oral administration [2]. Secondly, several enteric bacteria strains are of therapeutic interest 

in re-colonisation of the intestine after antibiotic treatment [3], in symptomatic relief for sufferers of 

inflammatory intestinal disease [4], and for modifying gut metabolism (e.g. reduction of cholesterol or 

reducing gall stone susceptibility [5]). Thirdly, genetically engineered forms of enteric bacteria can be 

used for delivery of biological therapies (e.g. IL-10 [6]). 

 An ideal delivery system for oral bacterial immunisation or therapy would have the following 

features: a simple pill, tablet or capsule, with room temperature stability, would be cheap to manufacture, 

and would be made from well characterised safe materials to reduce development costs. However, since 

ingestion of bacterial pathogens represents a major source of infection to humans, the GI tract has several 

features that act as significant barriers to oral administration of live bacterial vaccines and therapeutics, 

including stomach acidity and bile acids in the intestine. Therefore, as well as the features mentioned, the 

delivery system must ensure live bacteria are protected from GI microbicides such as acid and bile. To 

overcome the extremely low pH of the stomach, which few bacteria can survive [7], two formulations 

have been tried, specifically neutralisation with bicarbonate buffers (or similar solutions) and enteric 

delivery using capsules coated with conventional acid-insoluble enteric polymers. The former technique 

might be expected to be less effective simply because of the extreme quantity of acid secreted into the 

stomach, whereas enteric delivery is well established and should deliver live dry bacteria very efficiently 

past the stomach avoiding any reduced pH. Furthermore, liquid formats of administration present serious 

safety and logistical problems in third world vaccination programmes; either clean safe water has to be 

locally sourced to make up buffers, or clean water has to be distributed with the vaccine. In contrast, 

enteric coated capsules are simple to distribute and administer. Current trials of live bacterial vaccines are 

conducted using various liquid formulations including carbonate buffer plus additional components such 

as rice solids to improve palatability (e.g. [8-11]). This format is favoured for early trials since safety and 

efficacy data can be established without a fully developed formulation as trial participants can be given 

buffer plus liquid samples from a frozen vaccine cell bank; later trials incorporate bridging studies to 

demonstrate equivalency of a fully-formulated vaccine (e.g. freeze-dried cells, packaged for distribution) 

that would eventually become an approved product. Another reason for preferring liquid buffered 

administration is that large, long-term human field trials showed that administration of three doses of the 

Typhoid fever vaccine strain Ty21a resuspended in a bicarbonate buffer (78% protection) gave 

marginally higher protection to three enteric capsules (62% protection [12]). This relative failure of the 



enteric capsule delivery suggests loss of live cell viability in the intestine, however enteric bacteria 

(including Salmonella typhi Ty21a) have robust bile resistance mechanisms and are not thought to be 

killed by intestinal bile concentrations [13]. In an earlier study [14], we discovered that dried bacteria can 

have elevated sensitivity to bile, providing an explanation for the poor performance of enteric capsules for 

live bacterial vaccine delivery- the enteric capsule protects dry cells from stomach acidity, but the cells 

are then killed by bile on release into the intestine. 

 In order to protect dried bacteria from bile sensitivity, we hypothesised that a bile acid 

sequestrant resin (BAR) could be used. 30% of the cholesterol in humans is found in the form of bile 

acids in the intestine, and so oral administration of agents that bind bile acids and prevents re-absorption 

effectively reduces total cholesterol levels. The use of the anion-exchanging resin cholestyramine for 

reducing cholesterol levels was first demonstrated in 1959 [15], and since then, a wide range of bile acid 

adsorbant resins have been developed and shown to be safe when taken orally in large doses (e.g. 10g per 

day) [16]. We found that bile- and acid- sensitive dried bacteria rapidly recover resistance after 

rehydration in buffer. Based on this observation, we wondered if BAR could temporarily protect dry 

bacteria from a bile solution whilst they recover bile resistance, and therefore tested the sensitivity to bile 

solutions of dried cells combined in different ways with cholestyramine. 

 

2 Methods 

2.1 Reagents and bacteria 

LB (Luria-Bertani) broth, LB agar, ampicillin, M9 salts and all growth medium supplements, phosphate 

buffered saline (PBS), ox bile, cholestyramine and 400 mesh Dowex 1X2 and Dowex 50WX2, 

microcrystalline cellulose (MCC, Avicel PH101) were purchased from Sigma (Poole, Dorset, UK). 

Before use, cholestyramine and other ion exchange resins were washed extensively and neutralised with 

phosphate buffer and sterilised with 70% Ethanol before thorough drying. Phosphate buffer used for 

tablet dissolution was 0.025 M potassium dihydrogen phosphate and 0.025 M di-sodium hydrogen 

phosphate at pH7.0. Bile solutions were made by dissolving ox bile in either PBS or phosphate 

dissolution buffer as indicated in the figure legends and sterilised by 0.2 micron filtration. The model live 

bacterial vaccine strain SLDAPD/pUC18I is a version of Salmonella typhimurium SL3261 modified for 

stable plasmid maintenance using the ORT-VAC system, and carrying the pUC18I plasmid providing 

ampicillin resistance [17].  

2.2 Production of room temperature stable dry bacteria 

SLDAPD/pUC18I [14, 17] was grown overnight in M9 medium (M9 salts plus 2.5% glucose, 1mM 

MgSO4, 0.1mM CaCl2, supplemented with amino acids and vitamins or enriched with 1% LB broth, as 

described [14]) and osmotically preconditioned with 300-500mM NaCl as indicated [14]. Cells were 

harvested and resuspended in PBS/40% trehalose/1.5% polyvinylpyrrolidone (PVP) followed by drying 

for 48h in a vacuum desiccator, either in 10 l samples in 96 well plates, or in 0.5ml samples in 24 well 

plates (forming a glassy foam [18]). For tablet production, several 0.5ml samples were ground to a 



homogeneous powder in a mortar. In some cases, 5-10% cholestyramine was added to the drying 

excipient before adding to cells, as indicated below. 

2.3 Testing bile and acid tolerance of dried bacteria 

 To measure the kinetics of bile and acid tolerance after rehydration, replicate 10μl samples of 

SLDAPD/pUC18I cells were dried in 96 well plates and challenged with buffer, acid or bile by incubation 

for 60 minutes at 37
o
C either directly in the plates they were dried in (t=0), or after rehydration in 100μl 

of LB broth for the indicated times. After challenge, cells were diluted and plated overnight on LB agar to 

determine live colony forming units (CFU). In all cases bacteria were diluted at least 50-fold in test 

media, to ensure no dilution or neutralisation of test buffers, and bile and acid sensitivity was independent 

of cell density (data not shown and [14]). Live cell counts were corrected for the overall dilution during 

the assay, and were expressed relative to the original volume of cells dried (relative CFU/ml). 

In order to determine if bile acid adsorption by cholestyramine effectively prevents bile toxicity 

to dried bacteria, a 5% bile solution was pre-treated with or without 10% w/v cholestyramine for 1h at 

room temperature with mixing. Cholestyramine was removed by centrifugation and 0.2 micron filtration, 

and total bile acid concentration was measured using the Randox Total Bile Acid Assay (Randox labs, 

Co. Antrim). The filtered solutions were diluted to the indicated concentrations then added directly to 

dried SLDAPD/pUC18I cells and incubated for 1h at 37
o
C, followed by dilution, overnight plating on LB 

agar for determination of relative CFU/ml.  

To show cholestyramine could protect cells when added directly to dried cells, replicate 10μl 

samples of SLDAPD/pUC18I cells were dried in 6ml test tubes. 100mg of cholestyramine or no resin was 

added on top of the dry cells, then 2ml control or bile solutions were added dropwise onto the dry resin. 

Tubes were incubated for 30 minutes at 37
o
C, followed by dilution, plating overnight and colony counting 

to determine relative CFU/ml. 

The effect of cholestyramine addition into drying excipient was tested as follows: 

SLDAPD/pUC18I cells were grown, harvested by centrifugation, and replicate portions were resuspended 

in drying excipient consisting of PBS/40% Trehalose/1.5% PVP either with no addition, with 5% w/v 

cholestyramine, or with 10% w/v cholestyramine added. Replicate 10μl samples of these cells were then 

dried in 96 well plates. Bile resistance was tested by the addition of 200μl samples of various 

concentrations of bile or control solutions (as indicated in figure legend) and incubation for 30 minutes at 

37
o
C, followed by serial dilution, plating and incubation overnight on LB agar plates; the resulting 

colonies were counted and used to quantify relative CFU/ml.  

2.4 Making and testing compressed matrix tablets 

SLDAPD/pUC18I cells were dried in standard excipient as above, and then ground in a mortar to 

make a powder. The powdered dried bacteria were mixed in carefully weighed proportions as shown in 

Table 1. 70-90mg samples of the mixed powders were then pressed in a 7mm die in a modified KBr press 

(Port-A-Press from International Crystal Laboratories, supplied by Crystan Ltd, using 10 newton metres 

torque applied with a Roebuck torque wrench) to make compressed matrix tablets approximately 1mm 



thick. The tablets were then tested for bile resistance as follows: tablets were weighed and individually 

added to 17ml portions of phosphate buffer ± 1% ox bile and incubated for 45 minutes at 37
O
C. Samples 

were serially diluted, plated onto LB agar plates, followed by overnight incubation. The resulting colonies 

were counted to quantify CFU/ml, and then expressed in terms of the original dried bacteria weight, i.e. in 

CFU/mg of dried bacteria. 

2.5 Imaging anion diffusion into tablets 

Tablets were pressed either with ground sucrose, or sucrose with 50% cholestyramine, and held 

between two clear polystyrene plates for imaging with transmitted light from a white light box. To ensure 

diffusion only occurred from the tablet edges, the plates were coated with a thin film of hydrophobic 

silicone grease. 10ml of 1mg/ml solution of bromophenol blue in pH7.0 phosphate buffer was added, and 

images were captured using a Qicam CCD camera (Qimaging, Surrey, Canada) using Streampix III 

software (Norpix, Montreal, Canada). 

 

3 Results 

3.1 Rapid recovery of bile tolerance after rehydration  

 We studied the model live bacterial vaccine strain S. typhimurium SLDAPD/pUC18I, previously 

shown to be bile sensitive when dried in a room temperature stable formulation [14]. Replicate samples 

were either kept dry or rehydrated with 100μl LB broth and kept at room temperature for 1, 5 or 20 

minutes as indicated. Dry or recovered samples or control cells from rich broth cultures were then tested 

by incubation for 1h diluted extensively in acid or bile solution or control buffer, as indicated, followed 

by dilution, plating on agar plates, and counting overnight colonies. As expected [14] direct addition of 

bile solution to dried cells resulted in 37-fold loss of viability compared to buffer (figure 1, t=0). In 

contrast, even 1 minute after rehydration at room temperature, only 8.7-fold loss was seen, representing a 

4-fold increase in viable cell recovery (figure 1). Further recovery was seen after 5-20 minutes (figure 1), 

and by 1h after rehydration, bacteria behaved indistinguishably from control cells from liquid cultures 

([14] and data not shown). Similar results were obtained by rehydration in buffer and water, but no 

recovery was seen if cells were kept on ice during the recovery period (data not shown).  

3.2 The BAR cholestyramine protects dried bacteria from bile toxicity 

 Initial tests were conducted to determine if the BAR cholestyramine is suitable for protecting 

dried bacteria from bile toxicity. 

 A 5% w/v solution of bile in PBS was pre-treated with 10% w/v of cholestyramine for 1h, 

followed by centrifugation and filtration to remove cholestyramine and adsorbed bile acids. Measurement 

of bile salts using an enzymatic assay demonstrated that the concentration of bile acids was reduced from 

130mM to 0.8mM by cholestyramine treatment, as expected from the high capacity of cholestyramine for 

bile acids [19]. The resulting solutions were added at differing dilutions to replicate samples of dried 

bacteria and incubated for 1h at 37
 O

C, followed by dilution, plating onto LB agar plates, overnight 

incubation, followed by the quantification of colonies and calculation of relative CFU/ml. As expected 



untreated bile solutions showed toxicity over a range of concentrations, from 4-fold loss of viable cells at 

0.19%, up to 43-fold loss at 5% bile. In contrast even at the highest concentration of cholestyramine-

treated solution tested (i.e. 5% bile prior to treatment), no loss of viable cells was detected, confirming 

that all toxic components of the bile solution were successfully removed by cholestyramine (figure 2a). 

 To determine if either cholestyramine or a complex of bile acid bound to cholestyramine is toxic 

to dried bacteria, dry cholestyramine powder was added on top of a sample of dried bacteria followed by 

buffer or bile solution addition and incubation for 30 minutes at 37
 O

C. Cholestyramine alone had no 

effect on cell recovery in buffer, but when bile solutions were added, cholestyramine completely blocked 

bile toxicity (figure 2b). This demonstrated that neither cholestyramine nor bile acids complexed to 

cholestyramine are toxic to dried bacteria. 

 Finally, we tested if BAR could be combined with the drying excipient, to make a dry bacterial 

preparation with inherent bile resistance. Drying bacteria with 10% w/v cholestyramine added to the 

drying excipient resulted in 50-fold more live bacteria when resuspended in a 2% bile solution than 

control dried cells (figure 2c). Adding 5% w/v cholestyramine to the drying excipient gave nearly as 

much protection (figure 2c). This demonstrated the potential of BAR for protecting dried bacteria from 

bile toxicity. 

3.3 Combining BAR and dried bacteria in a compressed matrix tablet protects bacteria from bile 

 Bacteria dried in trehalose can be ground and compressed into matrix tablets [18], and so we 

tested a simple prototype bacteria pill containing BAR plus dried SLDAPD/pUC18I. We tested tablets 

containing live dried cells mixed with the fillers sucrose or microcrystalline cellulose (MCC) or MCC 

mixed with either cholestyramine (a fine powder of Dowex 1X2), a coarser 400 mesh form of Dowex 

1X2 or the control cation exchange resin Dowex 50WX2. Intestinal release was then simulated by 

dissolution in 1% bile dissolved in phosphate dissolution buffer, and compared with total live cell release 

in buffer alone. With control tablets containing dried bacteria diluted in sucrose as a filler, 1228-fold 

fewer cells were recovered after dissolution in 1% bile solution compared to dissolution in buffer alone, 

indicating significant bile toxicity. Similarly, with tablets made using MCC as a filler, 638-fold fewer 

cells were recovered after dissolution in a 1% bile solution compared to buffer alone. In contrast, with 

tablets containing 33% cholestyramine or 62% of the coarser 400 mesh Dowex 1X2 resin in addition to 

the dried bacteria and MCC filler, dissolution in bile only gave a 2.5 to 3.1-fold reduction in live cell 

recovery. This represents an improvement of 208 to 254-fold more live cells with the BAR tablet 

compared to control tablets. Tablets containing 43% of 400 mesh Dowex 1X2 resin showed a 26-fold loss 

in bile, representing a 50-fold improvement over control tablets. Tablets containing the control cation 

exchange resin Dowex 50WX2, that does not bind bile acids, showed 731-fold loss of cells in bile 

solution compared to buffer, indicating no protection from bile. Thus, simply compressing BAR with 

bile-sensitive dried bacteria was sufficient to prevent most bile toxicity. 

3.4 Modelling temporary anion exclusion by BAR in matrix tablets  



 In order to visualise how the BAR might prevent bile acid penetration into the hydrating matrix 

tablets, the dye bromophenol blue (which is anionic and binds cholestyramine at pH 7) was used to mimic 

the behaviour of bile acids. Tablets without dried bacteria containing cholestyramine or control tablets 

made from sucrose alone were imaged during hydration in a 1mg/ml bromophenol blue solution, whilst 

illuminated by a light box providing transmitted light (figure 4; note that this concentration of the 

bromophenol blue dye appears red under transmitted light conditions). As the tablets are hydrated in the 

dye solution, the migration of water can be seen into the tablet due to an increase in transmittance of the 

wet tablet compared to the dry tablet. At the same time, dye penetration can be monitored. When the rate 

of dye and water penetration was compared visually, a clear difference was seen between control and 

cholestyramine-containing tablets. By 1 minute after solution addition to the cholestyramine-containing 

tablet, a clear ring surrounded by a dark blue ring were seen, indicating that water penetrated rapidly but 

the dye was retarded by adsorption to the cholestyramine. By 6 minutes the entire core of the tablet 

appeared clear, but the dye had not penetrated significantly, indicating that the tablet can fully hydrate 

whilst anions are excluded (figure 4). In contrast, with control tablets the dye penetrated fully as the tablet 

hydrated (figure 4). 

4 Discussion 

 Crucial to the development of our novel bile protection formulation was the observation that 

dried cells rapidly recovered bile tolerance after rehydration (figure 1). This rapid recovery of bile 

tolerance is similar to that seen in an early studies of bacterial injury caused by freeze-drying [20]. 

Bacterial injury was defined as the inability of freeze-dried Salmonella anatum to survive plating on 

nutrient agar supplemented with the bile salt deoxycholine, and may therefore occur through a similar 

mechanism to the sensitivity of dried cells to bile solutions in the current study. If the same mechanism is 

responsible, it will be interesting to see if the recovery of bile resistance observed in the current study is 

dependent on ATP synthesis, as seen for freeze-dried cells [20]. Interestingly, the kinetic for recovery of 

acid resistance seems slower, suggesting a different mechanism of recovery (figure 1). In the context of 

oral delivery, however, the rapid recovery of bile resistance suggested that temporary removal of bile 

acids would be sufficient to protect dry cells from bile after delivery into the intestine using an enteric 

coating.  

 We modelled temporary anion exclusion from BAR containing tablets using the dye 

bromophenol blue. We found that anionic bile acids were adsorbed at the surface of the cholestyramine 

tablet whilst ‘clean’ anion-free water diffused rapidly into the core of the tablet (figure 4). The dye 

penetrated freely into control tablets without cholestyramine. Note that the dye used, bromophenol blue is 

not intended to model bile acid behaviour precisely, since it is significantly different in size, composition 

and hydrophobicity. However, the dye has two key features that justify its use. Firstly, it has the same 

negative charge at pH7 as bile acids and therefore binds the anion exchange resin cholestyramine. 

Secondly, it can be simply visualised in real time whereas imaging of bile acid diffusion is not feasible. 

These images suggest a mechanism for BAR protection of dried bacteria from bile acid toxicity. 



 If this proposed mechanism is correct, BAR containing tablets should be able to protect dry 

bacteria from an excess of bile acids, since initial hydration in the absence of bile acids would allow the 

dried bacteria to recover their intrinsic bile resistance within the hydrating tablet. Therefore, it is 

important to calculate the molar quantities of bile acids present in the bile solution used and compare this 

to the maximal binding capacity of cholestyramine for bile acids. Bile comprises a mix of different bile 

acids that bind to BAR to differing degrees [19]. The maximal capacity at equilibrium of cholestyramine 

for bile acids is 2.9-3.8 μmoles bile acid per mg resin for cholate and deoxycholate, respectively [19]. In 

the experiments testing bile protection by drying cells with cholestyramine (figure 2c), the 10μl sample of 

bacteria dried with 10% w/v resin contained 1mg resin with a capacity for 2.9-3.8 μmoles bile acid. To 

this, 2 ml of a 2% bile solution was added, containing a total of 100 μmoles of bile acids. Therefore bile 

acids were present at a 25 to 34-fold molar excess over resin in this test. In the experiments testing bile 

protection conferred by adding cholestyramine to compressed matrix tablets, the tablets tested contained a 

maximum of 30mg cholestyramine (calculated for 90mg tablet with 33% cholestyramine), with the 

capacity to bind a maximum of 86-112 μmoles bile acids. They were tested in 17ml of 1% bile solution 

that contained 425 μmoles bile acids. Therefore bile acids were present at a 3.8 to 4.9-fold molar excess 

over resin in this test. The protection seen against an excess of bile acids in these experiments indicates 

that the BAR is not simply sequestering total bile acids in the test sample (as achieved in figure 2a). This 

supports the proposed model whereby a temporary zone of protection from bile acids is established during 

hydration of the dry cells, either in the dried cell pellet or in the matrix tablet. The protected rehydration 

allows the dry bacteria to recover bile tolerance; subsequently, when bacteria are released from the pellet 

or tablet into the unbound bile acid solution, they are fully tolerant of bile acids. 

 The importance of bile acid binding for protection is demonstrated by the comparison with the 

cation exchange resin Dowex 50WX2 that does not bind bile acids. This resin has the same crosslinked 

polystyrene backbone as Dowex 1X2 but different ion exchange groups, and the 400 mesh preparations of 

these two resins have the same swelling, water absorption and porosity. Matrix tablets containing this 

resin showed the same bile sensitivity as control tablets with sucrose or MCC alone, confirming that bile 

acid binding to the resin is essential to protect the dried cells from bile (figure 3). 

 The current study used bile solutions to accurately determine bile sensitivity in controlled in vitro 

assays. The concentration of bile acids found in the human intestine typically ranges from 2-10mM  

[21], but the concentration in bile secreted from the gall bladder can be as high as 100mM; we previously 

showed that 3mM deoxycholine causes significant toxicity to dried vaccine cells, suggesting that 

intestinal bile acid concentrations are high enough to impact on therapeutic bacterial viability [14]. The 

bile acid concentrations used in the current study were chosen to reflect a relatively high intestinal bile 

concentration (26mM total bile acids in a 1% ox bile solution) in order to stringently test the protection 

conferred by BAR. However, the exact conditions encountered will depend on a number of factors, 

including exact position of release by an enteric coating, time of tablet ingestion relative to feeding, 

nature of food [13]. Therefore, although we have clearly demonstrated protection from bile toxicity using 



BAR, it is difficult to accurately assess how much effect this will have on the live cell dose received after 

oral administration, and the effects of BAR formulation on bacterial delivery or vaccine efficacy remain 

to be determined. However, by protecting dry cells from an excess bile acids, the bile concentration 

encountered should not influence cell viability, eliminating a potential source of variability in live cell 

delivery.  

 Further work is needed to optimise formulation of dried bacteria using BAR. Although adding 

cholestyramine to compressed matrix tablets gave a higher degree of protection compared to adding to the 

drying excipient (figures 2c and 3), more BAR was used. Increasing the amount of cholestyramine added 

to drying excipient would require significant modification of the drying protocol. Therefore, we favour 

the simpler approach of mixing BAR with bacteria post-drying. When added to compressed matrix 

tablets, the fine powder form of Dowex 1X2 (i.e. cholestyramine) showed similar protection at 33% as 

almost double the quantity of a coarser 400 mesh form of the same resin. Furthermore, 43% of the coarser 

resin was 5 times less effective at protecting cells than 62% (figure 3). It is likely that the improved 

protection by cholestyramine reflects either a higher capacity from bile acids or more rapid binding by the 

fine powder, which has a higher surface area. Thus the quantity of BAR added and the exact form of BAR 

(e.g. particle size) used has a significant influence on protection from bile. Addition of other BAR such as 

colestimide with higher bile binding capacity should also be compared [19]. As well as preventing bile 

acid penetration, tablet composition must be compatible with manufacturing processes and enteric coating 

and therefore the effects of other additives such as fillers, binders and delayed release excipients must 

also be determined.  

 Once an optimal formulation has been established, the ultimate test will be to compare oral 

bacterial delivery by this formulation with existing formulations such as enteric capsules and buffered 

liquid formats. The effect of this formulation on live bacterial vaccine function will also need to be 

determined. In order to do so, a large animal model will be needed for two reasons. Firstly, enteric coated 

dosages cannot be made small enough for rodents and the mouse intestine has a lower pH than humans, 

so enteric polymers will dissolve at a different location. Secondly, the adsorptive separation of bile acids 

essential to this formulation will be difficult to achieve in a scaled down dose form.  

 

5 Conclusions 

 We present here an initial description of a new bacterial delivery formulation comprising a 

mixture of dried bacteria and bile acid binding resin, surrounded with a conventional enteric coating. The 

formulation has the following advantages: an oral tablet represents the simplest possible dosage format; 

the formulation is cheap and safe since all individual components are already extensively tested in 

humans; dry bacteria can be stabilised for room temperature storage saving refrigeration costs during 

distribution; enteric delivery avoids issue of stomach acidity and finally, the BAR incorporated within the 

enteric coating provides protection from intestinal bile toxicity. We provide here the following evidence 

to support our formulation: dry bacteria rapidly recover tolerance to bile, if rehydrated prior to bile 



exposure (figure 1); BAR in a tablet can transiently prevent anion (i.e. bile acid) penetration (figure 4); 

and crucially, either adding the BAR cholestyramine to excipient prior to drying, or formulating matrix 

tablets with a mixture of cholestyramine plus dried bacteria provides 50 to 250-fold protection against 

bile toxicity compared to bacteria tested without cholestyramine (figures 2 and 3). 
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Table 1: Composition of compressed matrix tablets 

 

 

Tablet type 

Dried cells in 

Trehalose/PVP 

% 

Sucrose 

% 

MCC 

% 

Cholestyramine 

% 

400 mesh 

Dowex 1X2 

% 

400 mesh 

Dowex 50WX2 

% 

Sucrose control 9 91 - - - - 

MCC control 8 - 92 - - - 

33% cholestyramine 8 - 59 33 - - 

62% Dowex 1X2 6 - 32 - 62 - 

43% Dowex 1X2 7 - 50 - 43 - 

61% Dowex 50WX2 6 - 33 - - 61 

Numbers indicate % by weight mixed as dry powder before compression into tablet form of tablets tested 

in figure 3. 

 

Figure legends 

Figure 1: Rapid recovery of bile resistance after rehydration of dry bacteria 

Replicate dried samples of the Salmonella typhimurium vaccine strain SLDAPD/pUC18I were either 

directly challenged with buffer, acid or bile solutions (t=0) or rehydrated for the indicated times then 

diluted extensively into buffer, acid or bile solutions. After 1h in test media at 37
o
C cells were diluted, 

plated on LB agar, incubated overnight and colonies counted to determine viable CFU. Error bars 

represent standard deviation of replicate counts. A similar kinetic of bile and acid resistance recovery was 

seen in two independent experiments. 



Figure 2: Protection of dry bacteria from bile toxicity by the BAR cholestyramine 

(a) A 5% w/v solution of bile (Sigma, Ox-bile) in PBS was mixed with or without 10% w/v of 

cholestyramine (Dowex 1X2, Sigma, Poole UK) for 1 hour at room temperature, then removed by 

centrifugation followed by filtration. The resulting solutions were diluted to the indicated concentrations 

or used neat, and added to replicate samples of dried SLDAPD/pUC18I and cultured for 1h, followed by 

dilution, plating on LB agar, incubation overnight, counting colonies and calculation of relative CFU/ml.  

(b) 10μl dried samples of SLDAPD/pUC18I were dried in 6ml test tubes. To replicate samples, either 

nothing or 150mg of cholestyramine were added on top of the dried cells. Then, 2 ml of a 2% solution of 

bile dissolved in PBS or control PBS were added into the tubes, followed by incubation for 30 minutes at 

37
o
C. After incubation, samples were taken, diluted, plated on LB agar, incubated overnight and colonies 

were counted, and relative CFU/ml were calculated.   (c) SLDAPD/pUC18I were suspended in either 

control excipient (40% trehalose, 1.5%PVP in PBS) or BAR-containing excipient (40% trehalose, 

1.5%PVP plus 5 or 10% cholestyramine in PBS) and 10ul samples were dried in 6ml test tubes. 2ml of 

2% or 0.4% bile solutions in PBS or PBS alone were added and the tubes were incubated for 1h at 37
o
C, 

then samples were diluted, plated on LB agar, incubated overnight and colonies counted, and relative 

CFU/ml were calculated. Data shown are representative of two independent experiments. 

Figure 3: A prototype human dosage form comprising BAR added to matrix tablets protects dry 

cells from bile 

SLDAPD/pUC18I cells were dried in trehalose, ground, mixed with ground dry sucrose as a filler, or 

MCC filler alone or with the indicated proportion of resins, then pressed into tablet form (tablet 

composition listed in table 1). Tablets were weighed and individually added to 17ml portions of pH7 

phosphate buffer with or without 1% ox bile, and incubated for 45 minutes at 37
o
C. Samples were taken, 

diluted, plated on LB agar, incubated overnight and colonies counted to determine viable CFU. The 

bacterial count recovered was then expressed in terms of the weight of original dried bacteria, and each 

bar represents a single tablet, with the error bar representing standard deviation of between 4 to 8 

replicate counts for the tablet. Similar protection from bile toxicity was seen in 5 independent 

experiments, and equivalent cell recovery was seen after 30 minutes, 45 minutes or 1 hour incubation 

with dissolution solutions. 

Figure 4: Modelling anion penetration into BAR matrix tablets 

Tablets were pressed either with ground sucrose, or sucrose with 50% cholestyramine, and held between 

two clear polystyrene plates for imaging. The tablets were illuminated with white transmitted light and 

imaged with a CCD camera, whilst a 1mg/ml solution of bromophenol blue in pH7 phosphate buffer was 

added. Images shown represent the indicated time points after dye addition, and illustrate hydration of the 

tablets indicated by increased light transmittance, as well as dye penetration indicated by red/blue colour. 

Images are representative of at least 5 replicate tablets. 


