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An explicit Lagrangian finite element method for free-surface
weakly compressible flows

Massimiliano Cremonesi · Simone Meduri · Umberto Perego · Attilio
Frangi

Abstract In the present work, an explicit finite ele-
ment approach to the solution of the Lagrangian formu-

lation of the Navier-Stokes equations for weakly com-
pressible fluids or fluid-like materials is investigated.
The introduction of a small amount of compressibility

is shown to allow for the formulation of a fast and ro-
bust explicit solver based on a Particle Finite Element
Method. Newtonian and Non-Newtonian Bingham laws
are considered. A barotropic equation of state com-

pletes the model relating pressure and density fields.
The approach has been validated through comparison
with experimental tests and numerical simulations of

free surface fluid problems involving water and water-
soil mixtures.

Keywords Particle Finite Element Method · volume
conservation · alpha shape · remeshing

1 Introduction

Weakly compressible flows are frequent in nature as a
small amount of compressibility exists in all the cases
idealized as incompressible. In many practical circum-

stances, weakly compressible solvers can be conveniently
used in problems that would be classified as of incom-
pressible flow.

The physical difference between incompressible and
compressible fluids is in the propagation of dilatational
waves. In a quasi-incompressible medium, the speed
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of dilatational waves tends to infinity, while in com-
pressible bodies the wave speed has a finite value. This

is reflected also in the nature of the system of equa-
tions: hyperbolic-parabolic for the compressible case
and elliptic-parabolic for the incompressible one [26].

Compressibility effects can be characterized by the
Mach number defined as the ratio between the speed
of the fluid and the speed of sound in the same fluid.

The incompressible limit is obtained for a Mach num-
ber equal to zero. For Mach numbers much smaller than
one, the weakly compressible equations asymptotically

approach the incompressible Navier-Stokes equations.
Consequently, for suitable small Mach numbers, the
weakly compressible model well approximates the in-
compressible limit. This justifies the fact that a com-

pressible solver is used to solve boundary value prob-
lems with quasi-incompressible fluids [1].

The real benefit of compressible solvers versus in-
compressible ones is the possibility to avoid the use of
a Poisson solver. In fact, in the incompressible formu-
lation, the continuity equation represents a constraint

on velocity and combined with momentum conservation
equation leads to a Poisson-like equation for pressure.
Moreover, in the compressible framework, with a suit-
able equation of state for the pressure, it is possible to
use an explicit time integration that has proved to be
robust and very fast for complex hydrodynamic prob-
lems [36,13]. Furthermore, in the compressible regime,

the density is adjusted to strongly respect the mass
conservation equation and the typical mass variations
due to the stabilization of incompressible solvers are
avoided.

In the compressible framework, an equation of state
is necessary to link pressure and density. Following [5,
15], in this work a modified Tait’s equation is used.
When a fluid is modeled with a Tait’s equation, the en-
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ergy equation becomes decoupled from mass and mo-

mentum conservations [15], and, considering an isother-

mal flow, can be neglected.

Depending on the framework in which the balance

equations for the compressible fluid are written, numer-

ical methods can be classified in three categories: Eu-

lerian, Lagrangian and Arbitrary Lagrangian Eulerian

(ALE). In the Eulerian approach, the problem is solved

on a fixed mesh through which the fluid moves; on the

contrary Lagrangian methods are based on meshes that

move with the fluid velocity. In the ALE approach, the

velocity of the mesh is computed independently of the

fluid velocity. The three approaches have been exten-

sively used in the solution of compressible and weakly

compressible problems. For example, [6,4] propose an

Eulerian finite volume for multi-material fluid flows,

while in [36,12] a Lagrangian finite element method

is used to solve compressible flow problems. A discus-

sion of the advantages and disadvantages of the La-

grangian and Eulerian approaches can be found in [3].

ALE methods try to combine the advantages of Eule-

rian and Lagrangian approaches (see for example [2,17,

40]). In this work, we concentrate on Lagrangian ap-

proaches because they are particularly suited for free

surface fluid flows.

With Smoothed-Particle Hydrodynamics (SPH) meth-

ods, weakly compressible formulations have often been

proposed to model the incompressible limit. [8] presents

a comparative study of the incompressible and weakly

compressible solvers for SPH applications to free sur-

face flows. Other SPH applications can be found, for

example, in [38,41].

Finite elements have been extensively used in the

simulation of Lagrangian compressible flows. In [19] a

review of stabilized finite element methods for com-

pressible flow applications is presented. [36,37] propose

a multiscale framework for the simulation of shocks hy-

drodynamics based on finite elements. [12,13] introduce

a high-order curvilinear finite element approach to solve

the Euler equations in a Lagrangian moving frame. [25,

24] propose a Lagrangian finite element approach based

on the Particle Finite Element Method (PFEM) to sim-

ulate underwater implosion of large air bubbles. In these

works, an adaptive mesh generation based on the con-

strained Delaunay triangulation has been used to cap-

ture large distortions of the interface that appear in

multi-fluid flows. However, all these works are limited

to confined flows without free-surface, whereas in the

present approach we exploit the potential of the La-

grangian framework, to solve problems in the presence

of evolving free-surfaces.

As expected when using a pure Lagrangian approach,

the mesh can deteriorate in time. In this work, in the

spirit of the PFEM, when the mesh becomes too dis-

torted, a Delaunay triangulation is applied to redefine

element connectivities. Moreover an alpha-shape tech-

nique is used to recover the free-surface configuration

[21,34,10].

The PFEM has also been used in [33] for the dis-

cretization of quasi-incompressible flows. However, in

that work the effect of compressibility is considered in

the continuity equations, while the density is constant

in all the domain and no equation of state for the pres-

sure is necessary. In contrast, in the present approach,

the density can vary with time and position and it is

related to the pressure through an equation of state.

In this work, an explicit Lagrangian finite element

method based on the PFEM is used to solve weakly

compressible fluid problems with evolving free surfaces.

Both Newtonian and non-Newtonian fluids are consid-

ered. The paper is structured as follows. In section 2

the balance equations, the constitutive laws and the

equation of state are introduced. Section 3 and section

4 describe space and time discretizations respectively,

while section 5 briefly summarizes the key features of

the PFEM solution scheme. Finally, conclusions and fu-

ture developments of the present work are highlighted

in section 7.

2 Balance equations

Let Ωt be a domain evolving in the time interval [0, T ].

In the initial configuration Ω0 let X be the particles

position. Particles position x at time t can be expressed

as:

x = x(X, t) (1)

Defining now the velocity field u = u(x, t), the den-

sity field ρ = ρ(x, t) and the Cauchy stress tensor σ =

σ(x, t), the equations of motion for a compressible fluid

can be expressed as:

dρ

dt
+ ρ(∇x · u) = 0 in Ωt × [0, T ] (2)

ρ
du

dt
= ∇x · σ + ρb in Ωt × [0, T ] (3)

where b are the body forces in the current configu-

ration. Equation (2) expresses the mass conservation

while equation (3) defines the momentum conservation.

The Cauchy stress tensor can be decomposed into isotropic

and deviatoric parts:

σ = −pI + τ (4)

where p = p(x, t) is the pressure field, I is the identity

tensor and τ is the deviatoric stress tensor.
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A suitable set of initial and boundary conditions

must be provided to obtain a well-posed problem:

u(X, t = 0) = u0 in Ω0 (5)

u(x, t) = ũ(x, t) on ΓD × (0, T ) (6)

σ · n = h(x, t) on ΓN × (0, T ) (7)

ρ(X, t = 0) = ρ0 in Ω0 (8)

where u0, ũ,h, ρ0 are assigned functions, n is the out-

ward normal to the boundary Γt = ∂Ωt, which is di-

vided into two non-overlapping subsets ΓD and ΓN ,

such that ΓD ∪ ΓN = Γt and ΓD ∩ ΓN = ∅.

2.1 Constitutive law

Considering a Newtonian fluid, the deviatoric stress

τ and deviatoric strain rate ε can be directly related

through the fluid viscosity µ:

τ = 2µε (9)

where ε is defined as:

ε =
1

2

(
∇xu +∇xuT

)
− 1

3
(∇x · u)I (10)

In many engineering applications (e.g. the simulation of

landslides) the material is described as a non-Newtonian

fluid according to Bingham law:

τ (u) = 2µε(u) + τ0
ε(u)

‖ε(u)‖
if ‖τ‖ > τ0 (11)

ε(u) = 0 otherwise (12)

where ‖ · ‖ denotes the norms:

‖ε(u)‖ =

√
1

2
ε : ε ‖τ‖ =

√
1

2
τ : τ (13)

The incrementally discontinuous behavior of equations

(11) and (12), with infinite initial viscosity, introduces

numerical difficulties which can be avoided using an

exponential smoothing approximation [35,9]:

τ (u) = 2 µ̃ ε(u) =

[
2µ+

τ0
‖ε‖

(
1− e−n‖ε‖

)]
ε(u) (14)

where the apparent viscosity µ̃ has been introduced.

When n→∞, the Bingham behaviour is recovered.

2.2 Equation of state

In the compressible framework, an equation of state

which relates pressure p and density ρ is necessary to

complete the problem definition. In particular, in the

present work barotropic flows are considered and there

is no dependence on temperature; consequently, as sug-

gested in [5,15], a modified Tait equation of state is

used. In fact, although it was originally proposed for

water, it has been proved that it is an appropriate equa-

tion to represent the behavior of a wide variety of other

fluids and of some compressible solids [29]. The Tait

equation of state expresses a direct relation between

the pressure and density fields in the form:

p(ρ) = p0 +K

[(
ρ

ρ0

)γ
− 1

]
(15)

having defined the reference pressure p0, reference den-

sity ρ0, the specific heat ratio γ and the bulk modulus

K. Following [5], γ = 7 is considered in all the examples

of section 6.

3 Space discretization

A standard Galerkin approach has been followed to dis-

cretize in space the equations (2)-(3). Let Su denote the

space of admissible values for the velocity variables and

Sρ the space of admissible values for density and pres-

sure. Moreover let Su0 and Sρ0 be the corresponding test

spaces compatible with homogeneous boundary condi-

tions.

3.1 Momentum conservation

The weak form of the momentum equation (2) is ob-

tained by using a vector test function w ∈ Su0 and in-

tegrating over the domain Ω:∫
Ωt

w · ρdu
dt
dΩ =

∫
Ωt

w · (∇x · (τ − pI) + ρb) dΩ

(16)

−
∫
ΓN

w · ((τ − pI) · n− h) dΓ ∀w ∈ Su0

Then, applying the Green formula and using the decom-

position of the stress tensor (4), the following expression

can be obtained:∫
Ωt

w · ρdu
dt
dΩ =

∫
Ωt

p(∇x ·w)dΩ (17)

−
∫
Ωt

2µ̄∇xw : ε dΩ

+

∫
Ωt

w · ρbdΩ +

∫
ΓN

w · h dΓ ∀w ∈ Su0
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where µ̄ = µ for Newtonian fluids and µ̄ = µ̃ for non-

Newtonian ones. Now introducing an isoparametric fi-

nite element discretization, velocity, pressure and den-

sity can be expanded in terms of nodal values as:

ui(x, t) =
∑
a

Nu
a (x)Uia(t) (18)

p(x, t) =
∑
a

Np
a (x)Pa(t) (19)

ρ(x, t) =
∑
a

Nρ
a (x)Ra(t) (20)

where Nu, Np and Nρ are the shape functions for ve-

locity, pressure and density, Ui is the vector of nodal

velocities in the i-th direction, P is the vector of nodal

pressures and R contains the nodal values of the den-

sity. Substituting (18)-(20) in (16), the semi-discretized

momentum equation is obtained:

Mu
dU

dt
= −Fint + Fext (21)

where the mass matrix Mu is defined as:

Mu,ab(t) =

∫
Ωt

ρNT
a (x)Nb(x) dΩ (22)

with (Na = diag[Na]) and the internal and external

forces Fint and Fext are respectively defined as:

Fint,ai(t) =

∫
Ωt

(τ (x, t)− p(x, t)I)ij
∂Nu

a (x)

∂xj
dΩ (23)

Fext,ai(t) =

∫
Ωt

Nu
a (x)ρ bi(x, t) dΩ+ (24)∫

ΓN

Nu
a (x)hi(x, t) dΓ

3.2 Mass conservation

Mass conservation (2) is enforced starting from the strong

form [36,13]:

ρ(x, t)J(x, t) = ρ(X, 0) = ρ0(X) (25)

where J(x, t) = det F(x, t) is the determinant of the

deformation gradient F. Multiplying equation (25) by

a test function q ∈ Sρ0 and integrating over the domain

Ω(t), the following expression is obtained:∫
Ω0

ρ(x, t)J(x, t)q dΩ0 =

∫
Ω0

ρ0(X)q dΩ0 (26)

∀ q ∈ Sρ0

Introducing the finite element approximation (18)-

(20), the discretized problem reads:

Mρ(t)R = R0 (27)

where Mρ and R0 are defined as:

Mρ,ab(t) =

∫
Ωt

Na(x)Nb(x) dΩ (28)

R0,b =

∫
Ω0

ρ0(X)Nb(X) dΩ0 (29)

From mass conservation equation (25), derives that,

velocity mass matrix can be written in the reference

configuration as:

Mu,ab(x, t) =

∫
Ωt

ρNT
a (x)Nb(x) dΩ = (30)∫

Ω0

ρ0N
T
a (X)Nb(X) dΩ0

Finally, the equation of state (15) can be enforced

pointwise for the pressure nodal degrees of freedom:

Pa = P0a +K

[(
Ra
R0a

)γ
− 1

]
(31)

where P0 and R0 are the reference nodal values of pres-

sure and density, respectively.

4 Time discretization

Let us consider a generic subdivision of the time inter-

val [0, T ] in N time steps ∆ti such that T =
∑N
i=1∆t

i.

Applying a first order Euler’s forward scheme, the ac-

celeration an at time tn can be written as:

an =
un+1 − un

∆tn
(32)

and the fully-discretized momentum conservation (21)

at time tn reads:

Mn+1
u Un+1 = Mn

uUn +∆tn (−Fnint + Fnext) (33)

Analogously, the mass conservation equation (25) be-

comes:

Mn+1
ρ Rn+1 = R0 (34)

Finally, time integration of the equation of state (15) is

straightforward:

Pn+1
a = P0a +K

[(
Rn+1
a

R0a

)γ
− 1

]
(35)
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4.1 Explicit solution scheme

From eq. (30) it can be noted that the mass matrix is

defined on the reference configuration Ω0 and therefore

it needs to be computed only when the reference con-

figuration changes, as in the case of remeshing. If the

same reference configuration Ω0 is used throughout the

analysis, the mass matrix Mu needs to be computed

only once at the beginning and then can be used for

the rest of the analysis; if the reference configuration

changes (for example due to a remeshing), the mass ma-

trix should be recomputed. Consequently, within a time

step the mass matrix is always constant Mn+1
u = Mn

u,

so that the unknown velocity field Un+1, in (33) is ex-

pressed in terms of quantities referred to the previous

time step and is given by:

Un+1 = Un + (Mn
u)−1 (−Fnint + Fnext)∆t

n (36)

Moreover, matrix Mu can be lumped, leading to a di-

agonal system which can be solved node by node.

Similar considerations can be repeated also for the

mass conservation equation. In fact, vector R0 is de-

fined in the reference configuration (see eq. 29) and

needs to be computed only when this configuration changes.

Moreover, if also matrix Mρ is lumped, a diagonal sys-

tem is obtained also for equation (27).

An adaptive time step is used during the analysis.

To respect the Courant Friedrichs Lewy (CFL) stability

condition, a new stable ∆t is computed at every time

step as:

∆t = βmin
e

(
he
ce

)
(37)

where he is a characteristic element size computed run-

time over the deformed element, β a safety parameter

and ce is the speed of sound defined as:

ce =

√
d p

d ρ

∣∣∣∣
e

=

√
γK

ρe
(38)

In (38) ρe is the density on the element e computed as

the average of its nodal values. It must be noted that

using a Tait’s equation of state (15), density variations

are usually limited (less than 1%), practically leading

to a constant value of the sound speed.

5 PFEM solution scheme

The system of fully discretized governing equations (33),

(34), (35) is solved using a Lagrangian finite element

approach based on the Particle Finite Element Method

(PFEM). The PFEM has been extensively used to simu-

late not only free surface flows [21,34] and fluid-structure

interaction problems [22,10] but also problems domi-

nated by interfaces between different phases or mate-

rials [20], tunneling [7], forming processes [31], melting

of polymers [32], transport erosion and sedimentation

in fluids [30]

The key features of the PFEM is the mesh adapta-

tion. Adopting a Lagrangian scheme, nodes are moved

following the fluid velocity and consequently the mesh

soon becomes too distorted. Therefore, when a qual-

ity indicator shows that the mesh is deteriorated, a

new mesh is generated using a Delaunay Triangula-

tion based on the current node positions (only elements

connectivities are modified). To respect internal and

external boundaries and to identify the free surfaces,

an alpha shape technique is adopted [14]. The solution

scheme is sketched in Algorithm 1.

Linear shape functions are used for space discretiza-

tion of both velocity and density. In fact, linear inter-

polation is based on nodal values of the unknowns only.

Hence, since vertex nodes are not touched by the De-

launay triangulation, no mapping is necessary from the

old mesh to the new one (see e.g. [21,10]). Higher order

interpolations with additional nodes along the edges,

which are not preserved by the triangulation, though

possible in principle, would imply mapping the corre-

sponding nodal quantities to new nodes.

Algorithm 1 Solution scheme

for n = 1, ..., Nsteps do
check mesh distortion
if mesh too distorted then

generate new mesh
identify boundaries
compute Mu and R0

end if
estimate the new stable ∆t from eq. (37)
compute velocity Un+1 from eq.(33)
update position xn+1 = xn +∆tUn+1

compute density Rn+1 through eq.(34)
compute pressure Pn+1 from eq.(35)

end for

In standard implicit PFEM schemes, large part of

the computing time is spent in the solution of the lin-

ear systems. On the contrary, in the proposed explicit

approach no linear systems have to be solved, but ob-

viously a smaller time step is necessary. As the compu-

tational burden for the solution of the linear systems

but obviously, a smaller time step is necessary. As the

computational burden for the solution of linear systems

of the type involved in these analyses is usually propor-

tional to n(log n), n being the number of degrees of free-

dom, it is expected that explicit schemes in large scale

problems of short duration, where the computational
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cost increases approximately linearly with n, become

more efficient. Moreover, the explicit scheme is partic-

ularly suited for parallelization. These aspects will be

investigated in future works with particular emphasis

on 3D cases. In the following section, some 2D small

scale problems are considered to validate the proposed

approach. For these small problems, an implicit scheme

is however expected to be computationally more effi-

cient.

6 Numerical examples

6.1 Sloshing of water in a prismatic tank

In the first test, the sloshing of a Newtonian fluid is pre-

sented. The geometry and the initial prescribed free sur-

face proposed in [33] are considered (see Figure 1). The

Fig. 1: Sloshing of water. Geometry of the problem. Dimen-
sions in meters.

tank is filled with water whose constitutive parameters

are: density ρ0 = 1000 kg/m3, viscosity µ = 10−3Pa s

and bulk modulus K = 2, 2 109 Pa. A mesh with 6008

nodes is considered. The stable time step size has to

be recomputed whenever a re-triangulation is carried

out and the used time step is therefore changing during

the analysis. For this reason, only the average value of

the time step will be reported for each example. In the

present case, an average time step size of 2.16 · 10−5 s

has been used in the simulation. Figure 2 shows snap-

shots of the simulation at different time instants. The

free surface profiles are practically coincident with the

implicit incompressible formulation of [33], as can be

appreciated in Figure 3.

(a) (b)

(c) (d)

Fig. 2: Sloshing of water. Evolution of the free surface profile:
(a) t = 5.7 s; (b) t = 7.4 s; (c) t = 13.3 s; (d) t = 18.6 s.

This test is used also to check the mass conservation

properties of the proposed approach. It must be noted

that in the standard PFEM for incompressible fluid,

there are two different sources of mass variation: the in-

accuracy of the solver in the solution of the mass conser-
vation equation and the remeshing technique. In partic-

ular, numerical techniques used to stabilize equal order

interpolation for pressure and velocity can increase the

mass variation due to the unavoidable relaxation of the

incompressibility constraint and the consequent error in

the mass conservation equation. On the contrary, mass

variations due to the remeshing are intrinsically con-

nected to the PFEM. In general, they are unavoidable,

but controllable by reducing the mesh size. A detailed

description of these aspect can be found in [16]. The so-

lution scheme proposed in this work does not produce

any mass variation of the first type, since the density is

computed at each step, so that the total mass is con-

served exactly.

Figure 4 shows a comparison between numerical mass

variation obtained with the present approach and ob-

tained for the same problem with the optimized pro-

cedures proposed in [33]. While an excellent mass con-

servation is exhibited by the implicit approach in [33]

(less than 2%), zero mass variation is obtained with the
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(a) t=5.7 s
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(b) t=7.4 s

Fig. 3: Sloshing of water. Profile comparison at t = 5.7 s and
t = 7.4 s
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Fig. 4: Sloshing of water. mass variation due to the numerical
approach; comparison with [33].

present approach. In should be noted that this latter re-

sult is independent of the time step size.

6.2 Dam collapse on a rigid obstacle

The simulation of the experimental dam break pre-

sented in [28] is here addressed. The experimental set-

ting is depicted in figure 5: on the left side of the do-

main, a column of water is sustained by a rigid wall

which simulates the presence of a dam. As the exper-

iment starts, the wall is quickly removed, leaving the

water able to flow in the tank under the effect of gravity.

The flow impacts a rigid obstacle located in the middle

of the box, with the formation of a long wave hitting

the right wall. The constitutive parameters of the wa-

ter used in the simulation are density ρ0 = 1000 kg/m3,

viscosity µ = 10−3Pa s and bulk modulusK = 2, 2 109 Pa.

The problem is solved with a mesh of 12862 nodes and

an average time step size of 6.25 · 10−7 s.

Fig. 5: Dam collapse on a rigid obstacle. Geometry of the
problem. Dimensions in centimeters.

Figure 6 shows snapshots of the simulation at dif-

ferent time instants showing a good agreement both in

terms of wave profile and timing with the experimental

results of [28] and the simulations of [5].

In Figure 7 results are compared with the experi-

mental test of [28] and the numerical results of [5] in

terms of the free-surface profiles. In particular, [5] uses

an ALE finite volume scheme in which the equations

are solved in a Lagrangian form and then the solutions

are mapped back on the original mesh. In the same

graphs the results are also compared with the implicit

incompressible formulation of the PFEM proposed in

[23]. First of all, a higher level of the left part of the

experimental water column can be noted in all the nu-

merical results. That difference can be explained by the

initial raise of the gate at the beginning of the prob-
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(a) t=0 s (b) t=0.13 s

(c) t=0.26 s (d) t=0.39 s

(e) t=0.40 s (f) t=0.50 s

Fig. 6: Dam collapse on a rigid obstacle. Snapshots at dif-
ferent instants.

lem (as noted in [5]). This procedure is modeled as a

boundary condition on the fluid velocity that is instan-

taneously released, while in the experiment it takes a

short but finite interval of time, delaying the fall of the

water column. Consequently, this difference affects the

first stages of the simulation for all the numerical ap-

proaches, which indeed show a lower profile with respect

to the experimental one.

Figure 7(a) shows that the present approach cap-

tures very accurately the real wave profile; in figure 7(b)

the numerical results show a slightly lower wave profile

with respect to the real one but considering the high

level of complexity of the phenomenon after the impact

with the rigid obstacle, the comparison can be consid-

ered satisfactory. This may be due to the fact that in the

physical test air is entrapped below the wave, whereas

the air phase is not included in the present simulation.

6.3 Fall of a water drop

In this example, the free fall of a disk of water and

its impact into a water basin at rest is considered. The

geometry of the problem is sketched in Figure 8. Consti-

tutive parameters are the same of the previous example,
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Fig. 7: Dam collapse with rigid obstacle. Profile comparison
at t = 0.26 s and t = 0.39 s

Fig. 8: Fall of a water drop. Geometry of the problem. Di-
mensions in centimeters.

a mesh of 13811 nodes has been used and the average

time step size is ∆t = 6.73 · 10−7 s.
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In Figure 9 the free surface profiles at synchronized

instants are compared with the numerical results pre-

sented in [5]. Despite the completely different numerical

approach, a very good agreement is observed.
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Fig. 9: Fall of a water drop. Free surface comparison at dif-
ferent time instants.

Figure 10 shows snapshots of the simulation at dif-

ferent time instants.

6.4 Dam break of a Bingham fluid

In this example, the dam break of a water-clay mixture

presented in [27] is considered. Results obtained with

the present numerical approach are compared with the

experiment of [27] and the SPH results presented in

[39]. The experimental setup is shown in Figure 11. The

column of water-clay mixture has an initial length of

L = 2 m and a height of H = 0, 1 m. It slides on a

steep channel with a slope of 0, 1%.

The rheological properties used to model the ma-

terial as a Bingham fluid are set as described in [39]:

(a) t=0.177 s (b) t=0.194 s

(c) t=0.229 s (d) t=0.290 s

(e) t=0.349 s (f) t=0.545 s

(g) t=0.618 s (h) t=0.859 s

Fig. 10: Fall of a water drop. Snapshots at different time
instants.

yield stress τ0 = 25 Pa, viscosity µ = 0.07Pa s , den-

sity ρ = 1200 kg and bulk modulus is K = 2, 5 107 Pa.

The problem is solved with a mesh of 10261 nodes and

an average time step size of 2.56 · 10−6 s. Snapshots at

different time instants are shown in Figure 12.

The time evolution of the front distance obtained

with the present approach is compared with the exper-

imental test of [27] and the SPH results of [39]. The

comparison shows a good agreement. The curve ob-

tained with the present approach is slightly closer to

the experimental one than the SPH curve of [39].
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Fig. 11: Dam break of a Bingham fluid. Geometry of the
problem. Dimensions in meters.

(a) t=0.10 s

(b) t=0.30 s

(c) t=0.60 s

(d) t=1.00 s

Fig. 12: Dam break of a Bingham fluid. Snapshots at differ-
ent time instants.

Moreover, Figure 14 shows a comparison of the free-

surface profiles between the present approach and the

SPH results of [39].

6.5 Debris flow on a water reservoir

In this example, an experimental test performed at the

Laboratory of Hydraulics, Hydrology and Glaciology

(VAW) of the Swiss Institute of Technology (ETH) [18]
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Fig. 13: Dam break of a Bingham fluid. Position of the mass
front during time. Comparison between PFEM simulation,
SPH simulation of [39] and experimental results [27]
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Fig. 14: Dam break of a Bingham fluid. Free surface com-
parison at different time instants.

is considered. In this test, a fast landslide impinges in

a water reservoir. The reservoir consists of a rectangu-

lar prismatic water channel 11 m long, 0, 5 m wide and

1 m high; a wave absorber at the end of the channel re-

duces wave reflections. The 3 m long ramp has a slide

impact angle of θ = 45◦. At the top of the ramp a box

filled with granular material is endowed with a pneu-

matic generator mechanism, which can accelerate the

landslide box. The geometry is sketched in Figure 15.

As the experiment starts, the front flap of the box

is opened and the granular material leaves the box with

zero initial velocity, accelerates down the ramp due to

gravity, and finally reaches the water basin generating
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Fig. 15: Debris flow on a water reservoir.Geometry of the
problem and position of the probes. Dimensions in meters.

an impulse wave in the channel. In the addressed exper-

imental test, the entire volume of the box is filled with

granular material, i.e. a rectangular prism whose dimen-

sions are 0.6 m long, 0, 236 m high and 0, 472 m wide,

with a total volume of landslide material of 0, 0668 m3.

A Newtonian constitutive law is used to describe the

water in the channel, whereas a non-Newtonian regular-

ized Bingham fluid behavior is assumed for the sliding

mass. All the materials properties are summarized in

Table 1; an average time step size of 4.04 · 10−6 s is

used in the simulation.

water density 1000 kg/m3

water viscosity 0.001Pa s
average grain density ' 2650 kg/m3

mixture density (soil and water) ' 1500 kg/m3

viscosity of the debris flow 75Pa s
yield stress of the debris flow 35Pa

bulk modulus of the debris flow 2.5 107 Pa

Table 1: Debris flow on a water reservoir. Materials param-
eters.

The experimental and numerical results have been

compared in terms of wave profiles. The data reported

for the experimental test in [18] were recorded with

seven Capacitance Wave Gages (CWG) disposed along

the channel. The presence of the wave absorber in the

physical model avoids phenomena of wave reflection,

but it leads to numerical difficulties to simulate the fluid

motion in the ending part of the channel. Therefore, it

has been decided to focus on the wave profile recorded

just by the first three probes. Figures 16(a),(b),(c) show

the comparison between the evolutions of wave heights

of the numerical and experimental results. The numeri-

cal results shown in [11] using an incompressible PFEM

approach are also present in Figure 16. From the com-

parison, it can be noted that the results of the numerical

approach are in good agreement in terms of the shape

of the wave, of its maximum height and of the starting

and stopping time.
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Fig. 16: Debris flow on a water reservoir. Comparisons of
the wave height at the different probes.

Figure 17 shows snapshots of the simulation at dif-

ferent time instants.

7 Conclusions

This work proposes an explicit Langrangian finite ele-

ment approach for the simulation of weakly compress-

ible fluids in the presence of free surfaces. The com-

pressible Navier-Stokes equations have been discretized

with linear triangular finite elements using velocity and

density as nodal unknowns. The Particle Finite Element

Method has been used to update the configuration and

to track the free surface evolution.
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(a) t = 0.5 s

(b) t = 0.7 s

(c) t = 0.9 s

(d) t = 1.0 s

(e) t = 2.2 s

Fig. 17: Debris flow on a water reservoir. Snapshots of the
simulation at different time instants.

The proposed weakly compressible formulation does

not produce any mass variation due to the numerical

technique, since the density is computed at each step,

so that the total mass is conserved exactly. Mass varia-

tions, decreasing with mesh refinement, are however ex-

pected due to the PFEM based boundary identification.

An explicit time integration allows for a fast solution of

the balance equations. Moreover, the explicit integra-

tion is particularly suited for a future parallelization of

the code.

Different two dimensional numerical tests have been

considered. The first examples are performed using wa-

ter, while in the last two, a Bingham fluid is considered.

Results have been compared with experimental data

and with different numerical approaches, including im-

plicit versions of the PFEM, showing a good agreement

in all cases.

The considered two-dimensional tests imply only a

limited computational cost. For this type of academic

problems, an implicit approach is in general more com-

petitive. The simulation of real scale engineering prob-

lems requires a general 3D framework that is currently

under development. For large scale 3D problems, a sig-

nificant computational gain is usually achieved by an

explicit approach. This aspect, though, is to be verified

in a forthcoming work.
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fluid flows with the particle finite element method. Com-
puter methods in applied mechanics and engineering,
198:2750–2767, 2009.
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30. E. Oñate, M. A. Celigueta, S. R. Idelsohn, F. Salazar,
and B. Suarez. Possibilities of the particle finite ele-
ment method for fluid–soil–structure interaction prob-
lems. Computation mechanics, 48:307–318, 2011.
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32. E. Oñate, R. Rossi, S. R. Idelsohn, and K. Butler. Melting
and spread of polymers in fire with the particle finite ele-
ment method. International Journal of Numerical Meth-
ods in Engineering, 81 (8):1046–1072, 2010.
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