brought to you by T CORE

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

0.2

0.3

91

TFRS

naure climate change

PUBLISHED ONLINE: XX MONTH XXXX | DOI: 10.1038/NCLIMATE3208

COP21 climate negotiators' responses to climate model forecasts

Valentina Bosetti^{1,2*}, Elke Weber³, Loïc Berger^{2,4}, David Budescu⁵, Ning Liu^{1,2} and Massimo Tavoni^{2,6}

Policymakers involved in climate change negotiations are key users of climate science. It is therefore vital to understand how to communicate scientific information most effectively to this group¹. We tested how a unique sample of policymakers and negotiators at the Paris COP21 conference update their beliefs on year 2100 global mean temperature increases in response to a statistical summary of climate models' forecasts. We randomized the way information was provided across participants using three different formats similar to those used in Intergovernmental Panel on Climate Change 10 reports^{2,3}. In spite of having received all available relevant 11 scientific information, policymakers adopted such information 12 very conservatively, assigning it less weight than their own 13 prior beliefs. However, providing individual model estimates 14 in addition to the statistical range was more effective in 15 mitigating such inertia. The experiment was repeated with a 16 population of European MBA students who, despite starting 17 from similar priors, reported conditional probabilities closer to 18 the provided models' forecasts than policymakers. There was 19 also no effect of presentation format in the MBA sample. These 20 results highlight the importance of testing visualization tools 21 directly on the population of interest. 22

Climate change policy whether at a local, national or 23 international scale requires dealing with the presence of uncertainty 24 on many dimensions⁴. These uncertainties may be grouped into 25 two broad categories: those associated with socio-economic, 26 demographic, geo-political and technological drivers; and those 27 associated with the science of climate itself and, in particular, the 28 response of the climate system to increases in CO₂ concentration 29 in the atmosphere. Scientists and advisory bodies such as the 30 Intergovernmental Panel on Climate Change (IPCC) handle and 31 report these uncertainties in different ways. Uncertainties about 32 both categories are typically dealt with by means of multi-model 33 ensembles, either of integrated assessment models⁵ or of climate 34 models⁶. These comparison exercises generate distributions of 35 variables of interest, which incorporate model and parametric 36 uncertainty. They are routinely represented and summarized in 37 reports such as the ones produced by the IPCC (see Supplementary 38 Fig. 4 for examples of formats used to represent these uncertainties). 39 Studies that examine people's response to, and use of, probabilis-40 tic information suggest that individuals may treat uncertainty from 41 distinct sources differently⁷, and that the communication format 42 can affect how they use this information^{1,8}. Concerns have been 43 raised about the implications of uncertainty and its presentation 44 format on their use in climate change decisions^{1,3,9–11}. However, little 45 is known about the way policymakers, directly involved in climate 46 negotiations, process and react to the data and projections presented 47

in written discussions and graphical displays (as, for example, in the IPCC summaries for policymakers).

Our goal in this experiment is to investigate climate negotiators' reactions to climate scientific uncertainty and the way it is presented. We address this problem by centring the experiment on a central issue in climate change policymaking: global climate models' projections of global temperatures increase by the year 2100 as a result of current and future greenhouse gas emissions. To make our experiment relevant to the policy debate, we use an emission scenario that builds on the pledged 'nationally determined contribution' (NDC). Our respondents are a unique sample of 217 policymakers attending the Paris COP21 conference, more than half of them being active negotiators (including eight heads of delegations). To investigate the specificities of this population, we compare policymakers' responses with those of 140 European MBA students, trained to play a country role in a climate negotiation simulation.

Our results provide insights into climate negotiators' expectations of future global warming and their reaction to scientific forecasts. Specifically, our experiment enables us to answer four research questions in a real world setting: What are climate policymakers' expectations of future temperature increases? How do climate models' predictions change their expectations? How is the effectiveness of climate models' predictions affected by the way model information and its associated uncertainty is presented? Are climate policymakers different (in their beliefs and use of model predictions) from informed members of the general public?

Related to the first question, Fig. 1 depicts policymakers' ex ante beliefs (or priors) about the effects of NDCs on longterm global temperature increase, elicited for four (mutually 76 exclusive and exhaustive) temperature increase intervals. (Only 77 18% of respondents reported probabilities for the four ranges of 78 temperature increases that summed up to 100%. For the purpose of 79 our analyses we normalized the four subjective probabilities given 80 by each individual to add up to 100% (ref. 12)). The respondents 81 were not given any information about the emission pathway in the 82 period 2030-2100. Thus, they were free to report probabilities that 83 reflected both their beliefs about future emissions and about the 84 resulting evolution of the temperature. The future deemed most 85 likely is that of 2100 temperature increases of 2-3°C, followed 86 closely by the 3-4°C scenario. These scenarios are in line with 87 the debate preceding the Paris conference, with estimates ranging 88 between 2.7 °C and 3.5 °C, as provided by the United Nations 89 Framework Convention on Climate Change (UNFCCC)¹³ and 90 Climate Interactive¹⁴ respectively. The median judged probability of 2100 temperature increase below 2°C is 8%. Although the 92 distribution of probability assigned to this scenario is wide, most 93 respondents did not assign more than a 20% probability to this 94

Q.1

¹Bocconi University, Italy. ²Fondazione Eni Enrico Mattei, Italy. ³Princeton University, New Jersey, USA. ⁴IESEG School of Management (LEM-CNRS), France. ⁵Fordham University, New Jersey, USA. ⁶Politecnico di Milano, Italy. *e-mail: valentina.bosetti@unibocconi.it

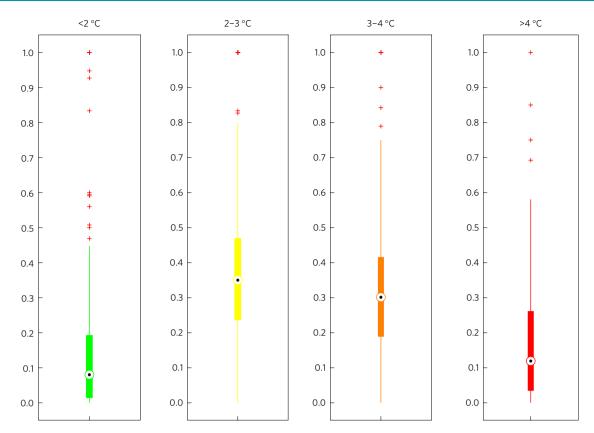


Figure 1 | Distribution of prior probabilities across temperature bins. The box line shows the median, and the edges are the 25th and 75th percentiles of the sample. Whiskers are 1.5 times the interquartile range away from the top or bottom of the box (covering 99% of the data if normally distributed). Outliers are displayed with a red plus sign. See Supplementary Fig. 5 for the same figure for the student sample.

event. This low probability assigned to the <2 °C scenario is in stark contrast with the stated goal of the Paris agreement that emphasized 2 the need to limit temperature increases to be 'well below 2 °C'. MBA 3 students reported similar prior distributions (Supplementary Fig. 5). 4 The prior beliefs do not differ for climate negotiators directly involved in the negotiation process versus non-negotiator policymakers present at the Paris conference, and are not associated 7 with other individual characteristics such as age or gender. However, 8 there is evidence of regional differences. We classified respondents 9 into five groups of countries (not mutually exclusive) that are 10 relevant to climate negotiations: vulnerable (countries/regions 11 vulnerable to consequences of climate changes); emerging economy 12

(countries/regions experiencing economy booming); energy 13 14 exporter (countries/regions that are major exporters of fossil fuels); high emitters (seven highest greenhouse gas emitters); and OECD 15 (Organisation for Economic Co-operation and Development) 16 members (see Supplementary Information 2 for a detailed 17 description of country clusters). Representatives of vulnerable and 18 19 emerging economies assign a lower probability to the 2-3 °C bin, and a higher one to the high temperature outcome of $>4^{\circ}$ (see 20 Supplementary Table 1). 21

To answer our second question, we assess how COP21 22 policymakers use climate models' predictions when being asked 23 for the probability distribution of 2100 global temperature increase 24 based on a specific emission pathway. Before providing their 25 estimates, policymakers received the range of predictions made 26 by major climate models associated with this specific emission 27 pathway. The projected temperature was shown by means of 28 boxplot, displayed in three different formats (see Fig. 3 hereafter). **0.5** 29 Reported conditional probabilities move clearly in the direction of 30 the climate models' forecasts (19% of the COP21 sample adopt the 31 provided forecasts, almost exactly, while 61% move in the direction 32

of that information). However, policymakers' probability estimates of temperature increases conditional on the specific emission 34 pathway adhere more closely to their unconditional priors than to the forecasts provided (see Supplementary Information 3).

33

35

36

61

62

63

64

Figure 2 shows the joint distributions of priors and probabilities 37 conditional on the given emission pathway. Respondents with no 38 private information on the validity of alternative climate models' 39 projections could adopt the provided model forecasts, while study 40 participants who are aware of some of the controversies over 41 the forecast could reasonably have given more weight to their 42 own views. Observations along the horizontal black line represent 43 individuals who completely adopt the provided model forecasts as 44 their conditional probabilities. Observations along the diagonal line 45 represent individuals who did not move from their priors at all 46 (respectively 28%, 20%, 24% and 30% of respondents for the four 47 temperature categories, and 18% for all four of them). These figures 48 include those respondents whose prior was right on the mark (1 in 49 the <2 °C scenario and 3 in the >4 °C scenario); hence, they had no 50 reason to change their prior. Confirming previous research¹⁵, more 51 than 80% of respondents did not treat the scientific information as a 52 posterior probability, but rather used it as additional information 53 to update their prior beliefs, mostly in a very conservative 54 fashion (see Supplementary Tables 3 and 4 in Supplementary 55 Information 4 and Supplementary Discussion). Interestingly, in the 56 follow-up experiment with MBA students conditional probabilities 57 are much less close to prior beliefs on average, 25% of the 58 sample almost exactly reporting the provided information (see 59 Supplementary Fig. 6). 60

Different mechanisms might make respondents anchor on their unconditional priors, when being asked to report the probabilities of the given emission scenario. These mechanisms might furthermore have different impacts on different individuals.

LETTERS

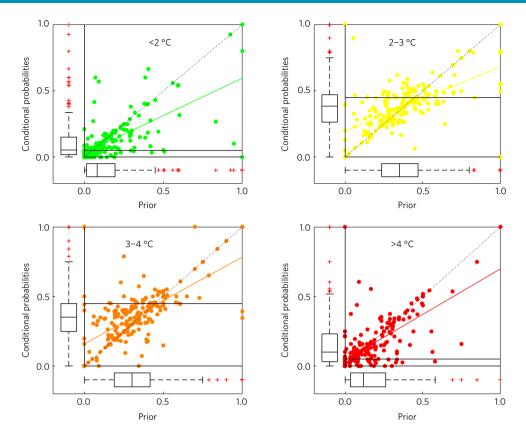


Figure 2 | Scatter plot of the prior and conditional probabilities across temperature bins. Each dot is an observation, the coloured lines represent a linear fit to the data and the black lines represent the scientific information. The bisector line is dotted. Boxplots show the distribution of the prior and conditional probabilities, as in Fig. 1. See Supplementary Fig. 6 for the same Figure for the Student sample.

The first mechanism relates to the confidence respondents have in their priors¹⁶. We find that reported confidence in the 2 prior (on a 7-point scale) for policymakers (median = 5.00, 3 iqr = 1.75) is higher (Wilcoxon p value = 0.02) than for MBA л students (median = 4.0, iqr = 2), with active negotiators and other 5 COP21 participants reporting similar levels of confidence (p = 0.82, 6 Wilcoxon test). The difference in confidence could be the result of 7 different perceptions of expertise and power, as confidence in one's 8 own judgement has been shown to negatively affect advice tak-9 ing^{17,18}. For COP21 non-negotiator policymakers, high confidence 10 in the prior is associated with large distances between their reported 11 conditional probabilities and the provided scientific information. 12 In contrast, active negotiators' and MBA students' distance between 13 conditional probabilities and scientific information is independent 14 of their confidence level (see Supplementary Fig. 1). 15

The negotiators reported conditional probabilities that were 16 more distant from the scientific information than the non-17 negotiator policymakers in Paris (this is a result robust to the 18 different tests presented in Supplementary Information 4) as well 19 as than the MBA students (Supplementary Table 8). A second 20 possibility is that negotiators (consciously and/or unconsciously) 21 may be more cautious in reporting conditional probabilities that 22 differ from their country's (or block of countries') negotiation 23 position, which is in turn possibly reflected in their priors. 24

In summary, our data show that, in answer to the second question posed, the policymakers' reported conditional probabilities failed to fully incorporate the scientific information they received. Future research is needed to identify the exact mechanism(s) at play.

Our third question addresses the way uncertain forecasts extracted from scientific models are interpreted as a function of the presentation format. Figure 3 shows different ways of communicating the uncertainty in predictions across climate models (these formats are commonly used in the IPCC 5th Assessment Report and 33 examples are provided in Supplementary Information). Participants 34 were randomly assigned one of the three formats. Format 1 presents 35 the mean and the central 90% of the predictions across scientific 36 models. Formats 2 and 3 provide additional information about 37 model uncertainty, that is, the fact that different models generate dif-38 ferent estimates. Format 2 highlights those models whose estimates 39 fall outside the 90% uncertainty range, while Format 3 presents 40 all models' estimates. These formats thus provide information on 41 similarities between models, clustering of predictions, and outliers. 42

Since the three formats provide increasing details about the 43 underlying scientific uncertainty, we are interested in their relative 44 effectiveness in influencing reported conditional probabilities. 45 Figure 4 shows the proportion of respondents whose conditional 46 probability is closer to scientific information across the four 47 temperature bins for each of the three presentation formats. 18 Providing policymakers with the individual model estimates in 19 addition to the statistical range (Format 3) increases the likelihood 50 of reporting conditional probabilities closer to the scientific 51 information (further analysis is provided in Supplementary Table 7). 52 The >4°C scenario is the only one where Format 3 is not 53 outperforming the other formats. The respondents judged the 54 three formats to be equally credible (on average 4.6 on a 55 1-7 scale). However, scientific information provided using Format 56 3 was perceived as marginally more informative than Format 1 57 (see Supplementary Table 6 for details). Interestingly, the effect 58 of format is not significant in the MBA student sample (see 59 Supplementary Table 8). These results highlight the importance of 60 testing visualization tools directly on the population of interest. 61

Although the scientific understanding of the response of the $_{62}$ climate system to increases in CO₂ concentration will improve over time, significant uncertainty and disagreements across climate and $_{64}$

Predicted 2100 temperature increase over pre-industrial level

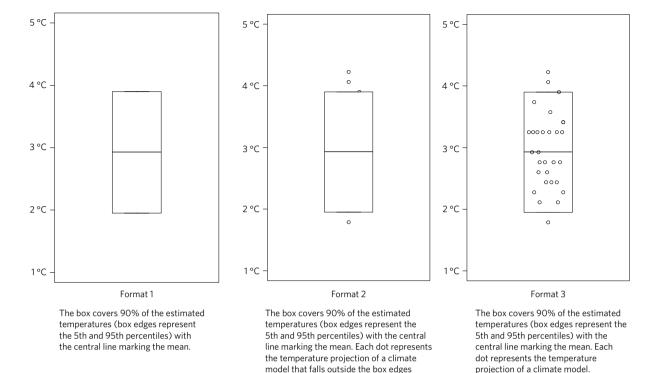


Figure 3 | Different formats employed across subjects in the presentation of model forecasts.

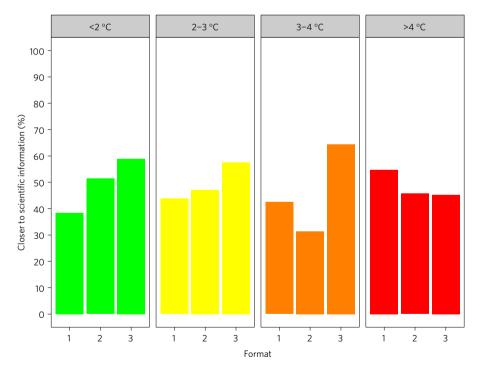


Figure 4 | Proportion of respondents whose conditional probability is closer to scientific information. See Supplementary Fig. 7 for the same figure for the student sample.

economic models are likely to persist¹⁹. Science communication
 (and particularly uncertainty communication) will be increasingly
 relevant in climate change and science-based policymaking. Our
 results point to the importance of testing behavioural effects
 targeting the population of interest. Greater efforts need to be
 devoted to the understanding of how policymakers perceive and
 react to scientific uncertainty in light of the multiplicity of goals and

constituencies and how they are affected by the way it is presented²⁰ to tailor the communications to the specific problem at hand and the relevant target populations.

Our study provides a unique glimpse at COP21 policymakers' 11 beliefs and responses to climate models' forecasts. The comparison between their responses and those of a climate-educated MBA student population answers our fourth question and reveals two 14

NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE3208

LETTERS

striking behavioural phenomena. The first is a notable anchoring effect²¹ of prior beliefs, which is much more pronounced for poli-2 cymakers. Policymakers, though not distinguishable in their priors З 4 from the student sample, were less likely to revise their conditional probabilities in the direction of the model's forecasts (Sup-5 plementary Fig. 5 and Supplementary Table 8). The second result, 6 particularly important for future communication of uncertainty to key users, is that the gap between initial beliefs and scientific 8 evidence can be partially reduced by using an adequate presentation 9 format (see Supplementary Table 7). Our results reinforce recent 10 calls for the incorporation of behavioural (in addition to normative) 11 models of judgement and choice into public policy²² and suggest a 12 more effective, and relatively easy to implement, format to visually 13 communicate scientific information to policymakers. In that sense, 14 application of our results could naturally take place for example in 15 the next assessment report of the IPCC. 16

17 Methods

- ¹⁸ Methods, including statements of data availability and any
- associated accession codes and references, are available in the
- 20 online version of this paper.

21 Received 11 July 2016; accepted 22 December 2016;

22 published online XX Month XXXX

23 References

Q.7

0.8

- Budescu, D. V., Por, H.-H., Broomell, S. B. & Smithson, M. The interpretation of IPCC probabilistic statements around the world. *Nat. Clim. Change* 4, 508–512 (2014).
- Pachauri, R.K. & Meyer, L.A. Climate Change 2014: Synthesis Report (IPCC, 2014).
- Rosemarie McMahon, M. S. The unseen uncertainties in climate change: reviewing comprehension of an IPCC scenario graph. *Climatic Change* 13 (2015).
- Patt, A. G. & Weber, E. U. Perceptions and communication strategies for the many uncertainties relevant for climate policy. *Wiley Interdiscip. Rev. Clim. Change* 5, 219–232 (2014).
- Riahi, K. *et al.* The shared socioeconomic pathways and their energy, land use,
 and greenhouse gas emissions implications: an overview. *Glob. Environ. Change* (2016).
- Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the
 experiment design. *Bull. Am. Meteorol. Soc.* 93, 485–498 (2011).
- Abdellaoui, M., Baillon, A., Placido, L. & Wakker, P. P. The rich domain of
 uncertainty: source functions and their experimental implementation.
 Am. Econ. Rev. 101, 695–723 (2011).
- B. Dieckmann, N. F., Peters, E. & Gregory, R. Seeing what you want to see: how
 imprecise uncertainty ranges enhance motivated cognition. *Risk Anal.* (2014).
- 45 9. Cooke, R. M. Messaging climate change uncertainty. Nat. Clim. Change 5,
- 46 8-10 (2015).
- 47 10. Pidgeon, N. & Fischhoff, B. The role of social and decision sciences in
- 48 communicating uncertain climate risks. *Nat. Clim. Change* **1**, 35–41 (2011).

11.	Fischhoff, B. & Davis, A. L. Communicating scientific uncertainty. Proc. Natl	49	
	Acad. Sci. USA 111, 13664–13671 (2014).	50	
12.	Feller, W. An Introduction to Probability Theory and its Applications	51	
	(John Wiley, 1968).	52	
13.	FCCC/CP/2015/7. Synthesis report on the aggregate effect of the intended	53	
	nationally determined contributions (2015).	54	Q.9
14.	Climate Interactive (Accessed 12 December 2016);	55	
	https://www.climateinteractive.org/programs/scoreboard	56	Q.10
15.	Budescu, D. V., Por, HH. & Broomell, S. B. Effective communication of	57	
	uncertainty in the IPCC reports. Climatic Change 113, 181-200 (2011).	58	
16.	Bonaccio, S. & Dalal, R. S. Advice taking and decision-making: an integrative	59	
	literature review, and implications for the organizational sciences. Organ.	60	
	Behav. Hum. Decis. Process. 101, 127-151 (2006).	61	
17.	See, K. E., Morrison, E. W., Rothman, N. B. & Soll, J. B. The detrimental effects	62	
	of power on confidence, advice taking, and accuracy. Organ. Behav. Hum.	63	
	Decis. Process. 116, 272-285 (2011).	64	
18.	Tost, L. P., Gino, F. & Larrick, R. P. Power, competitiveness, and advice taking:	65	
	Why the powerful don't listen. Organ. Behav. Hum. Decis. Process. 117,	66	
	53–65 (2012).	67	
19.	Reto Knutti, R. F. Challenges in combining projections from multiple climate	68	
	models. J. Clim. 23, 2739-2758 (2010).	69	
20.	Prewitt, K. et al. Using Science as Evidence in Public Policy	70	
	(National Academies, 2012).	71	
21.	Epley, N. & Gilovich, T. Putting adjustment back in the anchoring and	72	
	adjustment heuristic: differential processing of self-generated and	73	
	experimenter-provided anchors. Psychol. Sci. 12, 391-396 (2001).	74	
22.	Kunreuther, H. et al. in Climate Change 2014: Mitigation of Climate Change	75	
	(eds Edenhofer, O. et al.) (IPCC, Cambridge Univ. Press, 2014).	76	

Acknowledgements

The research leading to these results received funding from the European Research Council under the European Community's Programme 'Ideas'—Call identifier: ERC-2013-StG / ERC grant agreement no. 336703– project RISICO 'RISK and uncertainty in developing and Implementing Climate change pOlicies' and from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 336155—project COBHAM 'The role of consumer behaviour and heterogeneity in the integrated assessment of energy and climate policies'. We thank all respondents who took the time and effort to undertake the survey both at COP21 in Paris and at the Climate Change Strategy Role Play held through CEMS—The Global Alliance in Management Education.

Author contributions

All authors were involved in planning the research and designing the experiments. V.B., E.W., L.B. and M.T. carried out the experiment. V.B., M.T. and N.L. analysed the results. All authors contributed to the writing of the paper.

Additional information

Supplementary information is available in the online version of the paper. Reprints and permissions information is available online at www.nature.com/reprints. Correspondence and requests for materials should be addressed to V.B.

Competing financial interests

The authors declare no competing financial interests.

77

78 0.11

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE3208

LETTERS

1 Methods

2

3

4

5

6

8

0

10

11

12

13

We conducted a framed field experiment²³ at the 2015 United Nations Climate Change Conference, COP21, held in Paris. We recruited 217 participants, representing more than 100 countries (the sample composition is described in Supplementary Table 9) and elicited their expectations for global temperature increases by 2100 before testing their responses to climate models' projections. More than half of our respondents were climate negotiators, including eight heads of delegations. The others were non-negotiator policymakers from different communities. In individual in-person interviews, we prompted policymakers for their prior probability distribution of four different intervals of year 2100 global temperature increases ($<2^{\circ}C$, $2-3^{\circ}C$, $3-4^{\circ}C$, $>4^{\circ}C$), following implementation of current NDCs. We provided policymakers with response scales using the IPCC

14 numeric-verbal format (see Supplementary Information 8).

After eliciting policymakers' prior distributions, we presented them with a 15 16 specific extrapolation of the NDCs beyond 2030, where global emissions remained 17 roughly constant throughout the century. We then presented policymakers with predicted 2100 temperature increases given that specific emission trajectory that 18 19 were based on the transient climate response of all 30 climate models included in the 5th Assessment Report of the IPCC, WGI (Table 9.5)²⁴. We presented 20 policymakers with the results, shown in either one of the three boxplot formats in 21 Fig. 3. These were introduced as follows: 'the projections (in °C) as estimated by all 22 climate models whose results on transient climate response are reported in the 23 IPCC latest assessment report'. We then elicited the policymakers' projections of 24 25 long-term temperature conditional on the specified emission scenario ('Based on the projections we have just shown you, and for each of the 4 ranges presented in 26 27 the table below, could you please indicate the probability (or probabilities) that the temperature will be in that range.'). For this second round, we used again the 28 response template shown in Supplementary Information 1 (in Supplementary 29 Information 8 we report the full questionnaire used in the survey). 30

Figure 3 shows different ways of communicating the uncertainty in predictions 31 32 across climate models. Subjects were randomly assigned to one of the three 33 formats. This provides greater accuracy but lower treatment effects than a 34 within-subjects design. When we asked policymakers for the second round of estimates of the probability distribution over possible 2100 temperature increases, 35 we instructed them to consider the specified emission pathway as given, to isolate 36 the impact of climate uncertainty alone. In both rounds of probability elicitation, 37 we asked policymakers to report their level of confidence in their estimates. 38

In May 2016, a two-day simulation of a post-COP21 climate change negotiation 39 40 (Climate Change Strategy Role Play held through CEMS - The Global Alliance in Management Education) took place in Erasmus University Rotterdam. This event 41 involved MBA students from seven major European business schools who had 42 43 received briefings in climate change science and UNFCCC climate negotiations. MBA students were playing the role of delegates to the COP21 process for a 44 representative set of countries. These students had been preparing for this event for 45 several months with documents including detailed background papers. We 46 replicated the key portions of the experiment with a sample of 113 respondents. 47 48 This MBA student sample is far more knowledgeable, in the content matter of the study, than any usual sample of students, or online survey subjects (because of their 49 50 selection and preparation for the meeting). However, the students are less 51 driven/influenced in their beliefs by national needs/agendas than actual climate negotiators, as they only play/act or simulate national roles. 52

For both the Rotterdam and Paris experiments, informed consent was obtained
 from participants, consistent with procedures of a protocol approved by the
 Institutional Review Board at Columbia University.

Analysis of priors. We used the STATA command 'sureg' to perform the seemingly
 unrelated regression²⁵. Demographic controls in the regressions are gender, age,
 number of children, and education (dummy for each category), as responses to
 questions 1, 2, 3 and 7 in the questionnaire (see Supplementary Information 8).

Description of regional coding. The coding of country/region clusters is based,
 primarily, on self-reported country represented. Of the 217 subjects, 84 did not
 provide enough information to allow us to code the country they represent,
 reporting 'None', 'UN', 'University' or simply nothing. We coded those who did not
 fill in information according to their reported nationality. In this way, we coded the
 country/region cluster for 21 more observations.

The sample size is smaller than the total sample as some respondents did not fill
 either the country they represented or their demographic information.
 Vulnerable countries (regions in our cample are African end)

Vulnerable countries/regions in our sample are: Afghanistan, Antigua and
 Barbuda, Bangladesh, Barbados, Bhutan, Burkina Faso, Central African Republic,
 Chad, Comoros, Congo RDC, Equatorial Guinea, Ethiopia, Fiji, Gabon, Ghana,
 Guatemala, Kenya, Latvia, Lebanon, Maldives, Marshall Islands, Mongolia,
 Morocco, Mozambique, Myanmar, Nepal, Pakistan, Palau, Panama, Papua New
 Guinea, Philippines, Somali, Salvador, Sudan, Swaziland, Tunisia, Togo, Tonga,

74 Uganda, Vanuatu, Vietnam and Zambia.

Emerging economy countries/regions in our sample are: Argentina, Bangladesh, Brazil, Chile, China, Colombia, Hungary, India, Indonesian, Malaysia, Mexico, Pakistan, Panama, Peru, Philippines and Poland.

Energy exporter countries/regions in our sample are: Algeria, Australia, Brazil, Canada, China, Colombia, Georgia, Iraq, Latvia, Lebanon, Mongolia, Norway, Netherlands, Qatar, Russia, South Africa, Vietnam and United States of America. High-emitter countries/regions in our sample are: Brazil, China, European

High-emitter countries/regions in our sample are: Brazil, China, European Union, India, Japan, Russia and United States of America.

OECD members in our sample are: Australia, Austria, Belgium, Canada, Chile, Denmark, Finland, France, Germany, Hungary, Ireland, Israel, Italy, Japan, Korea, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Switzerland, United Kingdom and United States of America.

Analysis of conditional probabilities. We consider four metrics to quantify the difference between reported conditional probabilities and the scientific information. The metrics used in the analyses performed are based on two factors: whether they are based on the differences bin-by-bin or aggregated across the four temperature bins (Overall); and whether they measure the magnitude of change (Continuous) or its direction (Dichotomous).

The following are the four metrics we used as dependent variables in the regressions, the first two continuous, the last two dichotomous.

Overall_dis (continuous, overall): Euclidean distance between overall probability distributions.

Bin_dis (continuous, bin-by-bin): Bin-by-bin absolute distance between probabilities.

Overall_closer (dichotomous, overall): Dummy variable indicating whether the Euclidean distance between the overall distribution of conditional probability and information is smaller (or greater) than the Euclidean distance between the overall distribution of prior and information.

Bin_closer (dichotomous, bin-by-bin): Bin-by-bin dummy variable indicating whether the absolute distance between conditional probability and information is smaller (or greater) than that between prior and information.

Raw versus normalized probabilities. Only 18% of respondents reported probabilities for the four ranges of temperature increases that summed up to 100%.

A large literature has studied 'binary additivity', that is, testing whether P(Event)+P(Not Event) = 1. In most cases, and on average, this condition is satisfied. However, studies that have looked at partitions of discrete distributions with more than two outcomes, as in our case, all find a different behaviour. Indeed, results from Tversky and Koehler²⁶ show that additivity in such cases is much harder to achieve and in fact quite rare, while subadditivity is more common. Redelmeier *et al.*²⁷ find evidence of subadditivity in judgements made by doctors. Fox and Birke²⁸ showed it on lawyers. Fox, Rogers and Tversky²⁹, on option traders. Finding that n > 2 events sum to a probability > 1 may be driven by a bias toward the 'case partition' ignorance prior of 1/2 for each event (see Fox and Rottenstreich³⁰).

We found no significant differences between the COP21 and MBA students' samples in terms of the additivity of their probability estimates of either distributions (priors and conditional probabilities).

For the purpose of our analyses we normalized the four subjective probabilities given by each individual to add up to 100%. Our main findings are robust to the exclusion of subadditive observations for either priors or conditional probabilities. For more information, see Supplementary Table 5, where we test the robustness of results presented to the use of raw data rather than normalized data.

Difference across formats. Figure 4 and Supplementary Fig. 7 report for each temperature bin the proportion of respondents whose reported conditional probability is closer to the scientific information than the corresponding prior.

Respondents were asked to judge the provided information along two dimensions, credibility and informativeness. The range of scales for both variables credibility and informativeness associated with each format is from 1 to 7. There is no difference in credibility across formats (Kruskal–Wallis $\chi^2 = 2.99$, df = 2, p value = 0.22). Informativeness, however, is marginally different across the formats (Kruskal–Wallis $\chi^2 = 5.00$, df = 2, p value = 0.08).

Post hoc Dunn's test with Bonferroni correction for two tests reveals that Format 3 is marginally more informative than Format 1 (p=0.08) but there is no difference between Format 1 and Format 2 (p=1.00) or between Format 2 and Format 3 (p=0.16). Note that credibility and informativeness are measured in a between-subject design, so the identified difference in perceptions across formats could be bigger had the subjects been able to see multiple formats. Results are presented in the Supplementary Information (Supplementary Table 6).

Data availability. The authors declare that data supporting the findings of this study are available online. Further information regarding the code used and the data produced are available from the corresponding author on request.

138

139

140

141

142

143

144

145

146

75

76

77

78

79

80

81

82

ETTERS

References

2

4

5

- 23. Harrison, G. W. & List, J. A. Field experiments. J. Econ. Lit. 42,
- з 1009–1055 (2004).
 - Fifth Assessment Report—Climate Change 2013 (Accessed 11 March 2016); http://www.ipcc.ch/report/ar5/wg1
- 6 25. Zellner, A. An efficient method of estimating seemingly unrelated
- 7 regressions and tests for aggregation bias. J. Am. Stat. Assoc. 57,
- 8 348-368 (1962).
- 9 26. Tversky, A. & Koehler, D. J. Support theory: a nonextensional representation of
- **Q.13** 10 subjective probability. *Psychol. Rev.* **101**, 547 (1994).

- Redelmeier, D. A., Koehler, D. J., Liberman, V. & Tversky, A. Probability judgment in medicine discounting unspecified possibilities. *Med. Decis. Mak.* 15, 227–230 (1995).
- Fox, C. R. & Birke, R. Forecasting trial outcomes: lawyers assign higher probability to possibilities that are described in greater detail. *Law Hum. Behav.* 26, 159 (2002).
- Fox, C. R., Rogers, B. A. & Tversky, A. Options traders exhibit subadditive decision weights. J. Risk Uncertain. 13, 5–17 (1996).
- Fox, C. R. & Rottenstreich, Y. Partition priming in judgment under uncertainty. *Psychol. Sci.* 14, 195–200 (2003).

Queries for NPG paper nclimate3208

Page 1

Query 1:

Please provide more details, including the postcode for all affiliations.

Query 2:

'to' inserted before 'add up' here, and the same change made in the Methods; OK?

Query 3:

Please note that reference numbers are formatted according to style in the text, so that any reference numbers following a symbol or acronym are given as 'ref. XX' on the line, whereas all other reference numbers are given as superscripts.

Page 2

Query 4:

Differences were found between the two versions of figure 1 supplied (in the coloured lines). Please check that the correct version has been followed.

Query 5:

According to style, wherever possible figures should be cited in the text in numerical order. Figure 3 is cited here before figure 2. Please check/advise.

Page 4

Query 6:

'a climate models' changed to 'a climate model' in the text at the bottom of the middle panel in figure 3. OK?

Page 5

Query 7:

Please provide page range for ref. 3.

Query 8:

Please provide volume and page range for refs 5 and 8.

Query 9:

Please provide more details for ref. 13.

Query 10:

Please provide publisher for refs 2, 14 and 24.

Query 11:

Can the first sentence of the Acknowledgements be amended for clarity/readability?

Page 6

Query 12:

According to style, author names should be avoided in the text, unless the significance of an author's contribution must be emphasized, or (for readability) where the results of more than one author are being compared. Please check/amend this paragraph (and if the names are to be retained, please note 'Koehelr' changed to 'Koehler' here, to match the reference list. OK?

Page 7

Query 13:

Please provide final page number of the range for refs 26 and 28 (if the numbers already provided are article numbers, no action is required).