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Abstract. Multispectral imaging in laparoscopy can provide tissue
reflectance measurements for each point in the image at multiple wave-
lengths of light. These reflectances encode information on important
physiological parameters not visible to the naked eye. Fast decoding of
the data during surgery, however, remains challenging. While model-
based methods suffer from inaccurate base assumptions, a major bottle-
neck related to competing machine learning-based solutions is the lack
of labelled training data. In this paper, we address this issue with the
first transfer learning-based method to physiological parameter estima-
tion from multispectral images. It relies on a highly generic tissue model
that aims to capture the full range of optical tissue parameters that can
potentially be observed in vivo. Adaptation of the model to a specific
clinical application based on unlabelled in vivo data is achieved using a
new concept of domain adaptation that explicitly addresses the high vari-
ance often introduced by conventional covariance-shift correction meth-
ods. According to comprehensive in silico and in vivo experiments our
approach enables accurate parameter estimation for various tissue types
without the need for incorporating specific prior knowledge on optical
properties and could thus pave the way for many exciting applications
in multispectral laparoscopy.

1 Introduction

Multispectral images (MSI) offer great potential in a large variety of medical
procedures. The encoded information about tissue parameters such as oxygena-
tion and blood volume fraction has motivated a considerable body of research
related to early cancer detection [1] as well as image-guided therapy involving
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Fig. 1. Overview on our approach. First we create masses of generic, labelled,
tissue-reflectance samples (θi, ri)

n
1 . The desired physiological parameter yi and the

reflectances adapted to the camera xi are used for training a base regressor f̂base.
Weights (βi)

n
1 are calculated to fit the simulated data to the measurements. These

weights adapt the base regressor to the in vivo measurements. Applying the adapted
regressor f̂DR to new images yields their parameter estimates ŷ.

bowel anastomosis [2] and transplantation evaluation. However, decoding the
reflectance measurements during a medical intervention is not straightforward.
Model-based approaches that are sufficiently fast for online execution typically
suffer from incorrect base assumptions such as constant scattering or low tissue
absorption [2]. Machine learning-based alternatives [3,4] need accurate informa-
tion about the composition of the underlying tissue for the training phase to
account for the lack of annotated real data. This knowledge about optical tissue
properties is hard to obtain and is dependent on experimental conditions [5].

To address this bottleneck, we present a novel machine learning-based app-
roach to physiological parameter estimation (Sect. 2) that neither requires real
labelled data nor specific prior knowledge on the optical properties of the tissue
of interest. The method relies on a broadly applicable model of abdominal tissue
that aims to capture a large range of physiological parameters observed in vivo.
Adaptation of the model to a specific clinical application is achieved by means
of domain adaptation (DA) using samples of unlabelled in vivo data.

In a comprehensive study (Sect. 3) with seven pigs we show that (1) our
model captures a large amount of the variation in real tissue and (2) our transfer
learning-based approach enables highly accurate physiological parameter estima-
tion.

2 Methods

Our approach to physiological parameter estimation, which is illustrated in
Fig. 1, aims to compensate for the lack of detailed prior knowledge related to
optical tissue properties by applying DA. More specifically, we hypothesise that
(1) we can use a highly generic tissue model to generate a data set of spec-
tral reflectances that covers the whole range of multispectral measurements that
may possibly be observed in vivo and that (2) samples of real (unlabelled) mea-
surements can be used to adapt the data to a new target domain. Section 2.1
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describes how the generic data set is generated and used for physiological para-
meter estimation while Sect. 2.2 introduces our approach to DA.

2.1 Generic Approach to Physiological Parameter Estimation
in Multispectral Imaging

Our method is built around a single comprehensive data set, which can be used
for various camera setups and target structures. Its generation and usage is as
described below.

Dataset Generation Using a Generic Tissue Model. A generalization of
the layered tissue model developed in [3] was used to create our data set con-
sisting of camera independent tissue-reflectance pairs (θi, ri), i ∈ {1...n}. The
(physiological) parameters are varied within the ranges shown in Table 1 for each
of the three layers. Each layer is described by its value for blood volume fraction
vhb, scattering coefficient amie, scattering power bmie, anisotropy g, refractive
index n and layer thickness d. Oxygenation s is kept constant across layers [3].
Following the values in [5] and in contrast to [3], bmie is varied, covering all
soft, fatty and fibrous tissues. We increase the ranges of vhb by a factor of three
to potentially model pathologies. In conjunction with values for haemoglobin
extinction coefficients εHb and εHbO2 from the literature, absorption and scat-
tering coefficients μa and μs can be determined for usage in the Monte Carlo
simulation framework. The simulated range of wavelengths λ is large enough for
adapting the simulations to cameras operating in the visible and near infrared.

To account for a specific camera setup, ri can be transformed to camera
reflectances (ci,j) at the jth spectral band, using the method described in [4].
Zero mean Gaussian noise w was added to model camera noise.

Table 1. The simulated ranges of physiological parameters, and their usage in the
simulation set-up as described in Sect. 2.1. Values used in [3] are denoted if different.
Important changes are marked in bold font.

θ vhb[%] s[%] amie[
1
cm

] bmie g n d[µm]

Layer 1–3: 0–30 0–100 5–50 .3–3 .8–.95 1.33–1.54 20–2000

In [3]: 0–10 1.3 1.36 395–1010

μa(vhb, s, λ) = vhb(sεHbO2(λ) + (1 − s)εHb(λ))ln(10)150 g L−1(64, 500 g mol−1)−1

μs(amie, b, λ) = amie
1−g

( λ
500 nm

)−bmie

Simulation framework: GPU-MCML [6], 106 photons per simulation.
Simulated samples: 500K ([3]: 10 K).
Sample wavelength range: 300–1000 nm ([3]: 450–720 nm), stepsize 2 nm.
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Physiological Parameter Regression. To train a regressor for specific phys-
iological parameters yi ∈ θi, such as oxygenation and blood volume fraction,
the corresponding reflectances have to be normalized (xi = ci∑

j ci,j
) to account

for multiplicative factors due to changes in light intensity or camera pose. The
combination of normalized camera reflectances and corresponding physiologi-
cal parameter (X,y) serve as training data for any machine learning regression
method f to obtain the regressor f̂base, which corresponds to a regressor without
DA. The physiological parameter estimates during an intervention can be deter-
mined using this baseline regressor by evaluating f̂base(x

′
) = y

′
for each recorded

multispectral image pixel x
′
. The next section describes our DA technique to

further improve the parameter estimation in a specific clinical context.

2.2 Domain Adaptation

Working with tissue samples from a simulated source domain ps(x, y) will
inevitably introduce a bias with respect to the target domain pt(x, y). We speak
of covariate shift if ps(y|x) = pt(y|x) and therefore pt(x,y)

ps(x,y) = pt(x)
ps(x) =: β(x). If pt

is contained in the support of ps, adding the weights β to the loss function of
the regressor can correct for the covariate shift [7]. The appeal of this method
is, that only recordings x

′
i and no labels y

′
i are necessary for adaptation. While

the concept of covariate shift has been applied with great success in a number of
different medical imaging applications [8,9], major challenges related to trans-
ferring it to our problem are estimation of high dimensional β, and high variance
introduced by weighting, both addressed in the next two subsections.

Finding β with Kernel Mean Matching and Random Kitchen Sinks.
Kernel mean matching (KMM) is a state-of-the-art method for determining β
[7]. KMM minimizes the mean distance of the samples of the two domains in a
reproducing kernel hilbert space H, using a possibly infinite dimensional lifting
φ : IRm → H. In its original formulation [7], the kernel trick was used to pose
KMM as a quadratic problem. In our problem domain this is not feasible, because
calculating the Gram matrix is quadratic in the (high) number of samples. To
overcome this bottleneck, we minimize the KMM objective function (see [7])
with an approximate representation of the lifting φ(xi) ≈ z(xi) determined by
the random kitchen sinks method [10]. This enables us to solve the convex KMM
objective function in its non-kernelized form using a standard optimizer.

Doubly Robust Covariate Shift Correction. Estimators trained using
weighted samples can yield worse result than estimators not accounting for the
covariate shift. The reason is that only few samples are effectively “active”,
providing the risk minimizer with less samples. On the other hand using the
unweighted training samples often leads to a reasonable, but biased, estimator
[11]. Intuitively the unweighted base regressor f̂base defined in Sect. 2.1 can be
used to obtain an initial estimate. Subsequently, another estimator aims to refine
the results with emphasis on the samples with high weight. This is the basic idea
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of doubly robust (DR) covariate shift correction [11]. Specifically, we use the
residuals δi = yi − f̂base(xi) weighted by β from the last subsection to train an
estimator f̂res on (X, δ,β). The final estimate is f̂dr(x

′
) = f̂base(x

′
) + f̂res(x

′
).

3 Experiments and Results

Based on a comprehensive in silico and in vivo MSI data set (Sect. 3.1) we vali-
date the quality of our generic tissue model (Sect. 3.2) as well as the performance
of the DA based physiological parameter estimation approach (Sect. 3.3).

3.1 Experimental Setup

Images were recorded with a custom-built, multispectral laparoscope, capturing
images at eight different wavebands [3] with the 5Mpix Pixelteq (Largo, FL,
USA) Spectrocam. We recorded MI data from seven pigs and six organs (liver,
spleen, gallbladder, bowel, diaphragm and abdominal wall) in a laparoscopic
setting. For all our experiments we used the data set described in Sect. 2.1 for
training. We used a random forest regressor with parameters as in [3]. We drew
1000 random directions from the reproducing kernel hilbert space induced by
the radial basis function (RBF) kernel with the random kitchen sink method.
We set the σ value of the RBF to the approximate median sample distance and
the B parameter of the KMM to ten for all experiments.

3.2 Validity of Tissue Model

One of the prerequisites for covariate shift correction is that support of the
distribution of true in vivo measurements is contained in the support of the
simulated reflectances. To investigate this for a range of different tissue types
(cf. Sect. 3.1) we collected a total of 57 images, extracted measurements from a
100 × 100 region of interest (ROI) and corrected them by a flatfield and dark
image as in [2]. The first three principal components cover 99% = 82% + 13%
+ 4% of the simulated variance. For in vivo data, 97% = 89% + 4% + 4% of
the variance lies on the simulated data’s first three principal components.

For a qualitative assessment we projected the in vivo measurements on the
first two principal components of the simulated data. A selection can be seen
in Fig. 2. Apart from gallbladder, all of the in vivo data lie on the two dimen-
sional manifold implied by the simulated data. Figure 3 illustrates how changes
in oxygenation and perfusion influence the distribution of the measurements.

3.3 Performance of Domain Adaptation

To validate our approach to physiological parameter estimation with reliable
reference data, we performed an in silico experiment with simulated colon tis-
sue as target domain. For this purpose, we used 15,000 colon tissue samples
with corresponding ground truth oxygenation from [3] at a signal-to-noise ratio
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Fig. 2. Four organs from three pigs projected onto the first two principal components
of our simulated reflectance data plotted in brown. The images on the left show the
560 nm band recorded for the first pig. The depicted measurements are taken from the
red ROI. Except for gallbladder, all organs lie on the non-zero density estimates of the
simulated data (See also Sect. 4).

Fig. 3. Liver tissue measurements before and after sacrificing a pig. The grid indicates
how varying oxygenation (sao2) and blood volume fraction (vhb) changes the measure-
ments in the space spanned by the first two principal components of the simulations.
Note that these lines can not be directly interpretated as sao2 and vhb values for
the two points, because other factors such as scattering will cause movement on this
simplified manifold.

(SNR := ci,j
wi,j

) of 20. 10,000 reflectance samples were selected for DA while the
remaining 5,000 samples were used for testing.

We varied the number of training samples between 104 and 5∗105 to investi-
gate how the effective sample size influences results. Our DR DA method reduced
the median absolute oxygenation estimation error compared to the base estima-
tor by 25–27% and by 14–25% without the DR correction (Fig. 4a). As expected
the difference was smaller for higher effective sample sizes meff = ‖β‖2

1
‖β‖2

2
.
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(a) In silico domain adaptation (b) In vivo domain adaptation

Fig. 4. In silico boxplot results (a) and in vivo (b) validation results corresponding
to the experiments described in Sect. 3.3. (b) Shows the distribution of in vivo mea-
surements and adapted in silico reflectances in the principal component space of the
simulations. For graphical clarity the distributions are visualized as their two principal
axes in this space with lengths corresponding to the eigenvalues.

In vivo experiments were performed for each organ by calculating the Euclid-
ean distance of the weighted simulation mean 1

n

∑n
i βixi to the mean of the

images. The weighted distance was 36–92% (median 77%) smaller than the
unweighted average. See Fig. 4b for a depiction in the principal component space.

4 Discussion

To our knowledge, this paper introduced the first transfer learning-based app-
roach to physiological parameter estimation from multispectral imaging data.
As it neither requires real labelled data nor specific prior knowledge on the opti-
cal properties of the tissue of interest and is further independent of the camera
model and corresponding optics it is potentially broadly applicable to a wide
range of clinical applications.

The method is built around a generic data set that can automatically be
adapted to a given target anatomy based on samples of unlabelled in vivo data.
According to porcine experiments with six different target structures, the first
three principal components of our simulated data set capture 97% of measured
in vivo variations. Our hypothesis is that these variations represent the blood
volume fraction, oxygenation and scattering. Visual inspection of the first two
principal components showed the captured organ data lie within the simulated
data, an important prerequisite for the subsequent DA to work. Gallbladder is
the exception, most likely due to its distinctive green stain, caused by the bile
shining through. Modelling the bile as another chromophore and extending our
data set accordingly would be straightforward. In future work we plan to capture
an even higher variety of in vivo data, involving pathologies such as cancer.

Our experiments further demonstrate the potential performance boost when
adapting the generalized model to a specific task using the presented DA tech-
nique. An important methodological component in this context was the integra-
tion of the recently proposed DR correction method to address the instabilities
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when few effective training samples are selected. We also tested this method with
another recently proposed DA weighting method [9] with similar results. Both
bias and variance of the Euclidean distance of the weighted sample mean to the
mean of the in vivo images reduced when increasing the number of porcines used
for weight determination (not shown). The required training cases for a given
application is an interesting future direction of research.

In conclusion, we have addressed the important bottleneck of lack of anno-
tated MSI data, with a novel transfer learning-based method to physiological
parameter estimation. Given the highly promising experimental results presented
in this manuscript, future work will focus on evaluating the method for a variety
of clinical applications including partial nephrectomy and cancer detection.
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