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The regularized 13 moment (R13) equations are a macroscopic model for the description of rarefied
gas flows in the transition regime. The equations have been shown to give meaningful results for
Knudsen numbers up to about 0.5. Here, their range of applicability is extended by deriving and
testing boundary conditions for evaporating and condensing interfaces. The macroscopic interface
conditions are derived from the microscopic interface conditions of kinetic theory. Tests include
evaporation into a half-space and evaporation/condensation of a vapor between two liquid sur-
faces of different temperatures. Comparison indicates that overall the R13 equations agree better
with microscopic solutions than classical hydrodynamics. © 2017 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4989570]

I. INTRODUCTION

The regularized 13 moment (R13) equations are a macro-
scopic model to describe rarefied gas flows for not too large
Knudsen numbers in good approximation to the Boltzmann
equation.1–5 Gas rarefaction leads to the occurrence of phe-
nomena such as velocity slip and temperature jump at bound-
aries, Knudsen layers in front of boundaries, transpiration flow,
thermal stresses, or heat transfer without temperature gradi-
ents, all of which are reproduced by solutions of the R13
equations. Proper modeling of boundary conditions (BCs) is
essential to obtain a meaningful description of rarefied flows,
and below we develop and test conditions for liquid-vapor
boundaries with condensation and evaporation. With this, the
range of application of the R13 equations is extended in par-
ticular towards micro-devices with phase change; possible
applications include, e.g., gas supply channels in micro-fuel
cells.

Indeed, it is well known that rarefied gas flows cannot
be accurately described by the Navier-Stokes-Fourier (NSF)
equations of classical hydrodynamics.3,6,7 While adding jump
and slip boundary conditions to NSF introduces some of
these effects into classical hydrodynamics, all bulk rarefaction
effects remain elusive.8 A fully accurate description of rarefied
flow behavior requires solution of the Boltzmann equation,
e.g., by the direct simulation Monte Carlo (DSMC) method9

or by direct numerical simulation,10 but typical computational
times are often significantly above those for hydrodynamics,
in particular, when the degree of rarefaction is mild. Macro-
scopic models for rarefied flows, such as the R13 equations,
extend the equations of hydrodynamics by accounting for a
small number of additional flow variables, yet describe bulk
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rarefaction phenomena in good approximation, and thus offer
an alternative tool for computation.4,5

The R13 equations are derived as approximations of the
Boltzmann by means of the order of magnitude method,11,12

which combines elements of the Chapman-Enskog6 and
Grad13,14 methods. The resulting equations avoid the problems
exhibited by the individual methods. Higher order Chapman-
Enskog expansions yield the Burnett15 and super-Burnett16

equations, which are well known to be unstable in time depen-
dent processes17,18 and to give unphysical solutions in steady
state.19 Grad’s 13 moment equations, or systems with more
moments, are stable but exhibit unphysical sub-shocks for high
speed flows.20 Moreover, the Grad equations are not linked
to the Knudsen number; hence, it is difficult to know a priori
which set of moments should be considered for a given process.
In contrast, the R13 equations are stable, have no sub-shocks,
and are derived to be of third order in the Knudsen number
(super-Burnett order).12 The method can be extended to higher
moment numbers.21,22

Details of the R13 equations depend on the molecu-
lar model, and in the following we consider only the well-
established equations for Maxwell molecules.12 Equations
for hard sphere molecules,23 polyatomic gases,24 and gas
mixtures25 are discussed elsewhere in the literature.

Just as the transport equations are derived from the Boltz-
mann equation, the corresponding macroscopic boundary and
interface conditions are derived from the microscopic bound-
ary and interface conditions for the Boltzmann equation.26

For this we use an extended Maxwell boundary model27

with a condensation/evaporation coefficient (probability that
a vapor particle condenses at impact on the liquid) and an
accommodation coefficient (probability for diffuse vs. specu-
lar reflection for a non-condensing particle).28 The derivation
follows the same line as that of the wall boundary condi-
tions for non-condensing interfaces. Naturally, for a vanishing
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condensation coefficient, the boundary conditions for solid
walls are recovered.

After deriving the full set of boundary conditions, as a first
application, we solve two simple one-dimensional evaporation
problems: a half-space problem for pressure driven evapora-
tion29,30 and condensation and evaporation of a vapor between
two liquid surfaces at different interface temperatures.31–35

For both cases, the R13 and NSF equations can be analyti-
cally solved, and their solutions are compared with DSMC
simulations. The ability of the macroscopic models to model
rarefied gas flows with evaporating or condensing interfaces
is discussed.

While we discuss only one-dimensional problems as
applications, the boundary conditions are developed for full
three-dimensional geometry, and multi-dimensional problems
will be considered in the future.

We note that in the present paper, we consider problems
that focus on transport in the vapor, with given liquid data
at the interface. The full simulation of problems involving
liquid-vapor interface requires a matching model for the trans-
port in the liquid, which for completeness is outlined in the
Appendix A.

The remainder of the paper proceeds as follows: Sec. II
will briefly review the R13 equations and their relation to
kinetic theory, as well as to classical hydrodynamics. Based
on this, the evaporation and condensation boundary con-
ditions for the R13 equations will be derived in Sec. III
from the corresponding boundary conditions for the Boltz-
mann equation. The relation of the extended R13 evapo-
ration/condensation conditions to those for hydrodynamics,
such as Hertz-Knudsen-Schrage, will be discussed as well. In
Sec. IV, we solve simple one-dimensional evaporation
problems—a half-space evaporation problem and heat and
mass transfer between two liquid layers—with the R13 equa-
tions and compare results to kinetic theory simulations and
results from classical hydrodynamics. The paper ends with
our conclusions. Some preliminary results were published
before;36 the present contribution gives all required details
for the derivation of the boundary conditions, corrects several
errors, and expands on the results presented and discussed.

II. THE R13 EQUATIONS
A. Moments and moment equations

We briefly recall the origin of the R13 equations from
kinetic theory of monatomic gases. The aim of kinetic theory
is to find the velocity distribution function f (xi, t, ci) which is
defined such that f (xi, t, ci) dcdx gives the number of particles
in the phase space cell dcdx at time t; xi is the location in space
and ci is the microscopic velocity of a particle. In a micro-
scopic approach, the distribution function is the solution of
the Boltzmann equation,6,7 while in a macroscopic approach,
one derives transport equations as a set of suitable moments
of the Boltzmann equation, where the resulting moment equa-
tions are closed by means of an ansatz for the distribution. This
so-called moment method goes back to the work of Grad, and
his 13 moment equations are the best known set of macroscopic
equations.13,14 The basic 13 variables are mass density ρ,

macroscopic velocity 3i, temperature T, anisotropic stress ten-
sor σij (with σii = 0), and heat flux vector qi, which are
moments of the distribution function as

ρ = m
∫

fdc,

ρvi = m
∫

ci fdc,

ρu =
3
2
ρθ =

m
2

∫
C2fdc,

σij = m
∫

C〈iCj〉 fdc,

qi =
m
2

∫
C2Ci fdc.

(1)

Here, u = 3
2 RT = 3

2 θ is the specific internal energy, θ = RT
is temperature in specific energy units with the gas constant
R, and Ci = ci � 3i is the peculiar velocity. Indices in angu-
lar brackets denote the symmetric and trace-free part of a
tensor.3

The corresponding moment equations are the conserva-
tion laws for mass, momentum, and energy, which can be
written as ( D

Dt =
∂
∂t + vk

∂
∂xk

is the material time derivative)

Dρ
Dt

+ ρ
∂vk

∂xk
= 0,

ρ
Dvi

Dt
+ ρ

∂θ

∂xi
+ θ

∂ρ

∂xi
+
∂σik

∂xk
= 0,

3
2
ρ

Dθ
Dt

+ ρθ
∂vk

∂xk
+
∂qk

∂xk
+ σkl

∂vk

∂xl
= 0,

(2)

and the balance equations for stress and heat flux

Dσij

Dt
+ σij

∂vk

∂xk
+ 2σk〈i

∂vj〉

∂xk
+

4
5

∂q〈i
∂xj〉

+
∂mijk

∂xk

= −ρθ

[
σij

µ
+ 2

∂v〈i

∂xj〉

]
, (3)

Dqi

Dt
+

5
2
σik

∂θ

∂xk
− σikθ

∂ ln ρ
∂xk

+ θ
∂σik

∂xk
+

7
5

qi
∂vk

∂xk
+

7
5

qk
∂vi

∂xk

+
2
5

qk
∂vk

∂xi
+

1
2
∂Rik

∂xk
+

1
6
∂∆

∂xi
+ mikl

∂vk

∂xl
−
σik

ρ

∂σkl

∂xl

= −
5
2
ρθ

[
qi

κ
+
∂θ

∂xi

]
. (4)

The collision terms of the above equations were determined
for Maxwell molecules, µ is the shear viscosity and κ = 15

4 µ

is the heat conductivity.3

For small Knudsen numbers, the Chapman-Enskog
method3,6 can be used to reduce the equations for stress and
heat flux to the Navier-Stokes and Fourier laws,

σij = −2µ
∂v〈i

∂xj〉
, qi = −κ

∂θ

∂xi
. (5)

B. Constitutive equations

In addition to the 13 variables introduced above, the 13
moment equations (2)–(4) contain the higher moments,
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mijk = m
∫

C〈iCjCk〉 fdc,

∆ = m
∫

C4fdc−15ρθ2,

Rij = m
∫

C2C〈iCj〉 fdc−7θσij.

(6)

In order to close the system of moment equations, constitu-
tive equations for these must be provided. The classical Grad
closure3,13 simply leads to

mijk |G = ∆ |G = Rij |G = 0. (7)

The regularized 13 moment equations arise from an alter-
native closure,1 which accounts for parts of, but not the com-
plete, transport equations for

{
mijk ,∆, Rij

}
. The equations are

best derived by means of the order of magnitude method,11,12

which mixes elements of the Grad and Chapman-Enskog meth-
ods to find the relevant terms of the infinite moment system
that are required to have accuracy at a certain order in the

Knudsen number, which is defined as Kn = µ
√
θ

pL , where L is

the relevant macroscopic length.3 The regularized 13 moment
equations arise as the appropriate set of equations at 3rd order
in the Knudsen number (super-Burnett order) and consist of
Eqs. (2)–(4) and the constitutive equations (pressure obeys the
ideal gas law, p = ρθ),

∆ = 5
σklσkl

ρ
+

56
5

qkqk

p
− 12µθ

∂

∂xk

(
qk

p

)
,

Rij =
20
7

σk〈iσj〉k

ρ
+

64
25

q〈iqj〉

p
−

24
5
µθ

∂

∂x〈i

(
qj〉

p

)
,

mijk =
4
3

σ〈ijqk〉

p
− 2µθ

∂

∂x〈i

(
σjk〉

p

)
.

(8)

Some comments regarding the closure are in order: First,
the closure depends on the molecular model employed in the
Boltzmann equation and is performed easiest for Maxwell
molecules, which results in the coefficients as given above.
For other molecular models, the transport equations, and the
coefficients in the closure, change. This was discussed in
Ref. 23, where the linear transport equations for hard sphere
molecules were derived. Non-linear second order (i.e., Bur-
nett order) equations for hard sphere molecules were derived
before;3,11 these could be combined with the linear regulariza-
tion at third order to give a non-linear system of equations for
non-Maxwellian molecules; this will be discussed elsewhere.

Second, the order of magnitude method allows for some
ambiguity of the equations, since it aims only for the proper
terms at a given Knudsen order. Since the R13 equations are
of third order in Kn, one can modify them in a way that the
third order contributions remain unchanged, while higher order
contributions change. Over the years, this ambiguity has led
to several versions of the R13 equations presented in the liter-
ature. The first derivation1 of the R13 equations relied on the
artificial assumption that higher moments would change on
a faster time scale and a Chapman-Enskog expansion for the
fast scale; the resulting equations include some terms that con-
tribute at the fourth order in Kn, which, one can argue, should
not be present in a third order theory. The re-derivation by

means of the order of magnitude method removed these fourth
order terms.12 Even then, the number of boundary conditions
required for the solution of the equations differed between
the linear and the non-linear equations.26 For the closure pre-
sented (8), the equations were modified such that linear and
non-linear equations require the same number of boundary
conditions,37 and this is the preferred version of the R13
equations for slow flows. For non-linear processes such as
shock waves, various versions show marked differences in the
results.38

Since the full Boltzmann collision term is difficult to han-
dle, many authors base numerical simulation of rarefied gas
flows on the Bhatnagar–Gross–Krook (BGK) model,39 which
approximates the Boltzmann collision term with a rate ansatz.
Qualitatively, the BGK model gives an accurate description of
rarefied gas flows, but due to its simplicity, it does not lead
to quantitative agreement; most prominently, it gives a wrong
value for the Prandtl number.3,7 In order to be able to com-
pare our description of evaporation/condensation processes
in rarefied flows with BGK solutions, we occasionally con-
sider the R13 equations for the BGK model, where the heat
conductivity is κBGK =

5
2 µ, and the closure relations are sim-

ilar to the above but have different coefficients in almost all
terms,12

∆BGK = 4
σklσkl

ρ
+

56
5

qkqk

p
− 8µθ

∂

∂xk

(
qk

p

)
,

RBGK
ij = 4

σk〈iσj〉k

ρ
+

56
5

q〈iqj〉

p
−

28
5
µθ

∂

∂x〈i

(
qj〉

p

)
,

mBGK
ijk =

12
5

σ〈ijqk〉

p
− 3µθ

∂

∂x〈i

(
σjk〉

p

)
.

(9)

C. Distribution function in the bulk

At a physical boundary, such as a wall or a phase bound-
ary, the distribution function of incoming particles changes
due to reflection, condensation, and evaporation.26,28 To derive
boundary conditions for moments from the boundary con-
ditions for the phase density, a detailed expression for the
distribution function in terms of the moments is required. For
this we use the same distribution that is used for the closure of
the moment system, namely, the Grad distribution for the 26
moments (1, 6). The Grad-26 moment distribution is the local
equilibrium distribution f M times a suitable polynomial,3

f |G26 = fM

(
1 +

∆

8pθ

(
1 −

2
3

C2

θ
+

1
15

C4

θ2

)
+

2
5

qk

pθ
Ck

(
C2

2θ
−

5
2

)
+
σij

2pθ
C〈iCj〉

−
Rij

4pθ2
C〈iCj〉

(
1 −

1
7

C2

θ

)
+

mijk

6ρθ3
C〈iCjCk〉

)
, (10)

where the equilibrium function is the local Maxwellian

fM ( p, θ, C) =
p

mθ
1

(2πθ)3/2
exp

(
−

C2

2θ

)
. (11)

Insertion of this distribution into the definitions (1, 6) of
moments gives identities.
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III. MICROSCOPIC AND MACROSCOPIC BOUNDARY
CONDITIONS
A. Distribution function at evaporating interface

At an evaporating liquid interface, some vapor particles
that hit the interface condense, while those that do not condense
are reflected; moreover, some particles are injected into the
vapor by evaporation from the liquid. We write the distribution
function directly in front of the interface as

fint =



f −, CI ′
n ≤ 0

f +, CI
n > 0

, (12)

where f � is the distribution of incident particles (negative
velocity CI ′

n normal, and relative, to the interface) and f + is
the distribution of emitted particles (positive velocity CI

n nor-
mal to the interface). The prime at the velocity of incident
particles simplifies to distinguish between incident and emit-
ted particles. For finding boundary conditions for moments,
we shall describe the vapor by the R13 distribution function
(10), i.e., we set f � = f |G26.

The distribution of particles leaving the interface is due
to evaporating particles and the reflection of non-condensing
particles back into the vapor. For the latter we follow the
classical Maxwell model, which assumes that particles are
either specularly reflected or thermalized and leave in a
Maxwellian.27,28

The distribution of evaporating particles is obtained from
the assumption that the liquid side of the interface is in local
equilibrium,33,40,41 and thus evaporating particles leave in a
Maxwellian distribution fM

(
psat (θL) , θL, CI

)
, where psat (θL)

is the saturation pressure corresponding to the temperature θL

of the liquid at the interface (see Appendix A). For thermal
equilibrium, the outgoing distribution reduces to f +

|E = f |G26,E

= fM (psat (θL) , θL, C).
The emitted distribution function consists of three terms

describing evaporating particles, specularly reflected particles,
and thermalized reflecting particles, respectively,

f + = ϑfM
(
psat (θL) , θL, CI

)
+ (1 − ϑ) (1 − χ) f |G26

(
CI

i − 2CI
nni

)
+ (1 − ϑ) χfM

(
p̄, θL, CI

)
. (13)

Here, ϑ is the evaporation/condensation probability and χ is
the accommodation coefficient, defined as the probability that
a reflected particle is thermalized. Note that in thermal equilib-
rium, where all distributions are equal to fM

(
psat (θL) , θL, CI

)
,

the distribution f + must also be equal to the Maxwellian.
Hence, the factors in Eq. (13) must add to unity. The velocity
CI

i is the velocity of a vapor particle as seen from an observer
resting with the liquid at the interface; CI

n = CI
j nj is the

velocity normal to the interface; CI
i − 2CI

nni is the specular
reflection velocity (flipping of normal part) and the notation is
such that f |G26

(
CI

i − 2CI
nni

)
denotes the distribution of spec-

ularly reflected particles. The pressure p̄ in the Maxwellian
for thermalized particles is determined from the condition
that non-condensing particles must return to the vapor, which
gives

p̄

m
√

2πθL
=

∫
CI

n>0
f |G26CI

ndc. (14)

Since the Maxwellian is linear in pressure, and both
Maxwellians in Eq. (13) depend on the liquid temperature,
we can introduce the abbreviation

P∗ = ϑpsat (θL) + (1 − ϑ) χp̄ (15)

and rewrite the outgoing distribution in a more compact
notation,

f + = fM
(
P∗, θL, CI

)
+ (1 − ϑ) (1 − χ) f |G26

(
CI

i − 2CI
nni

)
.

(16)

Continuity conditions for fluxes of moments are used to
find the boundary conditions for the moments.4,5,14,26 For a
general description, we write the moments as

uA =

∫
ΨA fdc, (17)

where ΨA (ck) denotes the moment generating tensor polyno-
mials in ck with a suitable multi-index A, and the flux of the
moment uA then is

FAk =

∫
ΨAck f dc. (18)

Only some of the fluxes must be continuous at the interface,
as will be discussed further below.

B. Frames of reference

For the evaluation of interface conditions, we found it best
to consider the fluxes from the viewpoint of an observer who
slips with the gas along the liquid-vapor interface. For proper
bookkeeping, we have to deal with three different particle
velocities, which differ by the chosen frame of reference:

(a) the velocity relative to the liquid-vapor interface, which
moves with velocity v I

i (index n refers to the interface
normal and indices tα with α = 1, 2 indicate the two
tangential directions),

CI
i =

{
CI

n, CI
tα

}
i
= ci − v

I
i , (19)

(b) the usual peculiar velocity of kinetic theory,3 which is
the velocity relative to the motion of the gas, which
moves with velocity vi, and

Ci =
{
Cn, Ctα

}
i = ci − vi, (20)

(c) the velocity for the slipping observer

Ĉi =
{
CI

n, Ctα

}
i
. (21)

Evaporation velocity Vn and slip velocity Vtα are defined
as the relative macroscopic velocities between interface and
gas,

Vi =
{
Vn, Vtα

}
i = vi − v

I
i . (22)

With the interface normal ni pointing into the gas, positive Vn

= V ini implies evaporation and negative Vn implies conden-
sation. Here, we chose the tangential velocity of the interface
as the velocity of the liquid. Note, however, that in evapora-
tion the normal velocity of the liquid differs from the normal
velocity of the interface (see Appendix A).
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The various particle velocities are related as

CI
i =

{
CI

n, CI
tα

}
i
=
{
CI

n, Ctα + Vtα

}
i
=
{
Ĉn, Ĉtα + Vtα

}
i
,

Ci =
{
Cn, Ctα

}
i =

{
CI

n − Vn, Ctα

}
i
=
{
Ĉn − Vn, Ĉtα

}
i
,

Ĉi =
{
Ĉn, Ĉtα

}
i
=
{
CI

n, Ctα

}
i
=
{
CI

n, CI
tα − Vtα

}
i
.

(23)

C. Macroscopic boundary conditions

For an observer slipping with the gas along the liquid-
vapor interface, who observes the particle velocity Ĉi, the
normal flux FAknk (18) of a moment computed with the dis-
tribution function directly at the interface, i.e., the distribution
fint of Eq. (12), must be equal to the normal flux computed
with the distribution function f |R13 of the gas just in front of
the interface,3 that is,∫

Ψ̂AĈn fint dc =
∫
Ψ̂AĈn f |G26 dc (24)

or, since in Eq. (12) we substitute f � = f |G26,∫
Ĉn>0

Ψ̂AĈn f + dc =
∫

Ĉn>0
Ψ̂AĈn f |G26 dc. (25)

Here, following the work of Grad,14 we have to use continuity
only of those fluxes that are odd in Ĉn, which implies functions
Ψ̂A which are even in Ĉn. The 13 variables of the R13 equations
are moments based on the weights,

φA = m
{
1, ci, c2, cicj, c2ci

}
A

, (26)

and of these the following tensor components are even in the
normal velocity cn:

φA,even = m
{
1, ctα , c2, c2

n, ctαctβ , c2ctα

}
A

. (27)

For the observer slipping at the liquid interface, this translates
into

Ψ̂A = m
{
1, Ĉtα , Ĉ2, Ĉ2

n , Ĉtα Ĉtβ , Ĉ2Ĉtα

}
A

, (28)

which must be inserted into Eq. (25). We also insert f + from
Eq. (13) and substitute (Ĉn 7→ −Ĉn) in the second integral
to find after some straightforward manipulations the interface
conditions read (recall that Ψ̂A is even in Ĉn),

∫
Ĉn>0

Ψ̂AĈn fM
(
P∗, θL, CL

)
dc −

[
χ + ϑ (1 − χ)

] ∫
Ĉn>0

Ψ̂AĈn f |G26dc = (1 − ϑ) (1 − χ)
∫
Ψ̂AĈn f |G26dc, (29)

where P∗ is given by Eqs. (14) and (15).
Since all distributions are Gaussians time polynomials, the actual evaluation of the boundary conditions is straightforward,

but somewhat cumbersome. Some care has to be taken to use the proper velocities for evaluation. For instance, the Maxwellian
of evaporating and thermalizing particles is centered in the restframe of the liquid-vapor interface. For the evaluation, we have
to consider that Ĉn = CI

n and Ĉtα = CI
tα − Vtα so that

Ψ̂A = m




1, CI
tα − Vtα ,

(
CI

)2
− 2CI

tαVtα + V2
tα , Ĉ2

n ,(
CI

tα − Vtα

) (
CI

tβ − Vtβ

)
,
((

CI
)2
− 2CI

tαVtα + VtαVtα

) (
CI

tα − Vtα

) 
A

. (30)

To proceed, we collect results for the relevant integrals. For the Maxwellian half-space integrals, we find

∫
CI

n>0
Ψ̂AĈn fM

(
P∗, θL, CL

)
dc =



1
2 P∗

√
2
πθL

− 1
2 P∗

√
2
πθL

Vtα

1
2 P∗

√
2
πθL

(
4θL + V2

t

)
1
2 P∗

√
2
πθL

2θL

1
2 P∗

√
2
πθL

(
θLδαβ + VtαVtβ

)
− 1

2 P∗
√

2
πθL

Vtα

(
6θL + Vtβ Vtβ

)

A

. (31)

For the other integrals in Eq. (29), we have to re-write the distribution function f |R13 (10) for the slipping observer, i.e.,
with the velocity Ĉi. To make the procedure manageable, we consider only linear effects in non-equilibrium. For this we insert
Ci =

{
Ĉn − Vn, Ĉtα

}
i

into Eq. (10) and expand to linear terms in all non-equilibrium quantities
{
Vn,∆, qk ,σij, Rij, mijk

}
. In

particular, this restricts the results to evaporation velocities Vn well below the speed of sound. With this restriction, we find

f |G26

(
Ĉi

)
=
ρ

m
1

(2πθ)3/2
exp

(
−

Ĉ2

2θ

) (
1 +

Vn

θ
Ĉn +

∆

120ρθ4

(
15θ2 − 10θĈ2 + Ĉ4

)
+

1
5

qk

ρθ3
Ĉk

(
Ĉ2 − 5θ

)
+

σij

2ρθ2
Ĉ〈iĈj〉 −

Rij

28ρθ4
Ĉ〈iĈj〉

(
7θ − Ĉ2

)
+

mijk

6ρθ3
Ĉ〈iĈjĈk〉

)
. (32)
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From this, the full fluxes of f |G26 are calculated as

∫
Ψ̂AĈn f |G26 dc =



ρVn

σtαn

2

(
qn +

5
2
ρθVn

)
mnnn +

6
5

(
qn +

5
2
ρθVn

)
mtα tβn +

2
5

(
qn +

5
2
ρθVn

)
δaβ

Rtαn + 7θσtαn

A

(33)

and the corresponding half fluxes as

∫
Ĉn>0

Ψ̂AĈn f |G26 dc =



1
2
ρVn +

1
2

√
2
πθ
Π

σtαn

2
+

√
2
πθ

(
1
4

mtαnn +
1

10
qtα

)
qn +

5
2
ρθVn +

√
2
πθ

(
2Πθ +

1
2
θσnn +

∆

15
+

5
28

Rnn

)
1
2

mnnn +
3
5

(
qn +

5
2
ρθVn

)
+

√
2
πθ

(
Πθ + θσnn +

1
7

Rnn +
1

30
∆

)


1
2

mtα tβn +
1
5

(
qn +

5
2
ρθVn

)
δαβ

+

√
2
πθ

(
θ

2
σtα tβ +

Rtα tβ

28
+

(
1
2
Πθ +

∆

60
+

Rnn

28

)
δαβ

)


1
2

(
Rtαn + 7θσtαn

)
+

√
2
πθ

(
2θmtαnn +

9
5
θqtα

)



. (34)

Here, we have introduced the effective pressure Π as

Π = ρθ +
1
2
σnn −

1
120

∆

θ
−

1
28

Rnn

θ
. (35)

D. Evaporation boundary conditions for R13

The integrals of Sec. III C are all that is required
to find the boundary conditions for the R13 equations at
evaporating and condensing interfaces by the evaluation of
Eq. (29). Before we list the results, we point out the deficiency
of the R13 equations to fully resolve Knudsen layers, which
was discussed, e.g., in Ref. 42. Indeed, full resolution of the
Knudsen layer requires a larger number of moments, which
is not feasible in practice.22,43 However, solutions of the R13
equations between solid walls, i.e., no evaporation or conden-
sation, have shown that their ability not only to describe jump
and slip at the boundaries but also to approximate Knudsen
layers leads to a marked improvement of the overall simulation.

The usual way to improve the boundary conditions is
to introduce correction coefficients for jump and slip into
the interface conditions, which is usually done in jump and
slip hydrodynamics.7,26 A more careful approach to correct
the boundary conditions for R13 equations uses the ideas
of thermodynamics of irreversible processes44,45 to derive
interface conditions with tunable Onsager coefficients from
the entropy generation at the interface, based on the R13

approximation of the entropy flux.42 A similar approach could
be useful for the evaporation case, but this is deferred to future
work.

The expression for the evaporation mass flux results for
Ψ̂A = 1 as

ρVn =
ϑ

2 − ϑ

√
2
π

(
psat (θL)
√
θL

−
Π
√
θ

)
. (36)

Hence, the evaporation flux is determined through the differ-
ence between the saturation pressure psat (θL) of the liquid at

the interface (weighted with the factor
√

θ
θL

) and the effective

pressure Π. This expression is a generalization of the clas-
sical Hertz-Knudsen-Schrage law46–49 to the R13 equations.
For non-evaporating surfaces, where ϑ = 0, this reduces to
the statement that there is no flow through the surface, Vn = 0.
The classical Hertz-Knudsen law replacesΠ with the pressure
p of the vapor and replaces the factor

√
2/π by 1/

√
2π. The

correction of the latter factor due to Schrage accounts for the
fact that the vapor is in a non-equilibrium state, as it is in the
R13 equations.

The other conditions are generalizations of the estab-
lished wall boundary conditions for the R13 equations,26 to
which they reduce for non-evaporating interfaces (ϑ = 0).
Due to the evaporation and condensation processes, there are
additional contributions with the evaporation flux ρVn, and
the evaporation coefficient appears in the overall slip and
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jump coefficients ϑ+χ(1−ϑ)
2−ϑ−χ(1−ϑ) (which for ϑ = 0 reduces to

the familiar form χ
2−χ ). The conditions for mtα tβn and Rtαn are

extensions to two-tangential directions, which were not stated
in the literature before so that the interface conditions below
allow us to formulate three dimensional problems.

In summary, we find the following interface relations:
Generalized velocity slip condition,

σtαn = −
ϑ + χ (1 − ϑ)

2 − ϑ − χ (1 − ϑ)

√
2
πθ

×

(
ΠVtα +

1
5

qtα +
1
2

mtαnn

)
− ρVnVtα , (37)

generalized temperature jump condition,

qn = −
ϑ + χ (1 − ϑ)

2 − ϑ − χ (1 − ϑ)

√
2
πθ

×

(
2Π (θ − θL) −

Π

2
V2

t +
1
2
θσnn +

∆

15
+

5
28

Rnn

)
+

[
1
2

(
V2

t − θL

)
−

5
2

(θ − θL)

]
ρVn, (38)

generalized interface conditions for higher moments,

mnnn =
ϑ + χ (1 − ϑ)

2 − ϑ − χ (1 − ϑ)

√
2
πθ

×

[
2
5
Π (θ − θL) −

3
5
ΠV2

t −
7
5
θσnn

+
∆

75
−

1
14

Rnn

]
−

2
5

[
θL +

3
2

V2
t

]
ρVn, (39)

mtα tβn = −
ϑ + χ (1 − ϑ)

2 − ϑ − χ (1 − ϑ)

√
2
πθ

×

[
θσtα tβ − ΠVtαVtβ +

Rtα tβ

14

+

(
1
5
Π (θ − θL) +

1
5
ΠV2

t −
1
5
θσnn +

∆

150

)
δαβ

]

+ ρVn

[
VtαVtβ +

1
5

(
θL − V2

t

)
δαβ

]
, (40)

Rtαn =
ϑ + χ (1 − ϑ)

2 − ϑ − χ (1 − ϑ)

√
2
πθ

×

[
ΠθVtα −

11
5
θqtα −

1
2
θmtαnn

− ΠVtαVtβ Vtβ + 6ΠVtα (θ − θL)
]

+
[
7 (θ − θL) + θL − Vtβ Vtβ

]
ρVtαVn. (41)

In Sec. IV, we shall proceed with the evaluation of the
above interface conditions and study applications to some
simple evaporation problems.

E. Interface conditions for hydrodynamics

In the hydrodynamic limit, only first order contributions
in the Knudsen number are retained in the equations. Analysis
of the bulk transport equations by means of the order of mag-
nitude method12 reveals that stress σij and heat flux qn are of

first order in Kn and are given by the Navier-Stokes-Fourier
equations (5), while mijk , ∆, and Rij are of second order. The
evaporation mass flux ρVn is not linked to the Knudsen num-
ber, but we have already considered it to be small of first order
in all equations. Thus, for the hydrodynamic limit, we con-
sider only terms linear in Vn, Vtα , σij, and qi in the above, to
obtain the interface conditions for hydrodynamics which are
as follows:

(a) evaporation/condensation mass flow,

[
ρVn

]
|NSF =

ϑ

2 − ϑ

√
2
π

(
psat (θL)
√
θL

−
p
√
θ
−
σnn

2
√
θ

)
,

(42)

(b) slip condition, and

[
σtαn

]
|NSF = −

ϑ + χ(1− ϑ)
2− ϑ− χ(1− ϑ)

√
2
πθ

(
pVtα +

1
5

qtα

)
,

(43)

(c) evaporation/condensation heat transfer,

[
qn

]
|NSF = −

ϑ + χ(1 − ϑ)
2 − ϑ − χ(1 − ϑ)

√
2
πθ

×

(
2Π (θ − θL) −

ρθ

2
V2

t +
1
2
θσnn

)
+

[
1
2

(
V2

t − θL

)
−

5
2

(θ − θL)

]
ρVn.

(44)

The subscript NSF indicates that these are the appropriate
boundary conditions for classical hydrodynamics. It is implied,
of course, that in the above, stress tensor and heat flux are given
by the laws of Navier-Stokes and Fourier (5). The mass flux
condition (42) is known as the Hertz-Knudsen-Schrage law,
which is an improvement of the classical Hertz-Knudsen law
to account for the effect of flow in the vapor.46–49 The slip
condition (43) is the typical slip condition for a gas,7 only that
the overall slip coefficient now depends on the evaporation
coefficient ϑ as well. Typically, the contribution with σnn in
Eq. (42) does not appear in the literature, since it vanishes
for NSF in planar geometry, as, e.g., in the problems below. It
should be included, however, since it will contribute for curved
phase interfaces, such as in droplets and bubbles.

Quite often in the discussion of evaporation mass flows, a
condition for energy flux (44) is not given. It is clear, however,
that the simulation of an evaporation experiment requires the
full set of transport equations with the appropriate boundary
conditions; hence, an interface condition for energy flux (and
possibly higher moments) is necessary. We point to our earlier
work49 where an evaporation experiment was evaluated with
a variant of the Schrage model, and it became clear that the
evaporation flow was mainly determined by the amount of
heat transferred to the interface through the liquid, while the
mass flow condition determined the liquid temperature, and the
heat flux condition determined the temperature jump between
liquid and vapor at the interface.

For one-dimensional processes in planar geometry, with
transport only normal to the interface, and for only small
deviations from equilibrium, Eqs. (42) and (44) reduce to
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[
ρVn

]
|NSF =

2ϑ
2 − ϑ

(
psat (θL) − p
√

2πθL
−

1
2

p
√

2πθL

θL − θ

θL

)
,

(45)[
qn

]
|NSF

θL
= 4

ϑ + χ (1 − ϑ)
2 − ϑ − χ (1 − ϑ)

p
√

2πθL

(θL − θ)
θL

−
1
2
ρVn.

(46)

The above can be rewritten as



[
ρVn

]
|NSF[

qn
]

NSF

θL


=



2ϑ
2 − ϑ

−
ϑ

2 − ϑ

−
ϑ

2 − ϑ

[
4ϑ + 4χ (1 − ϑ)

2 − ϑ − χ (1 − ϑ)
+

1
2

ϑ

2 − ϑ

]


×



psat (θL) − p
√

2πθL
p

√
2πθL

θL − θ

θL



, (47)

which is the natural form in the theory of linear irreversible
thermodynamics28,50 with a symmetric matrix of Onsager
coefficients.

Further reduction by assuming full accommodation (χ
= 1) and inversion of the matrix gives



psat (θL) − p
√

2πθL
p

√
2πθL

θL − θ

θL



=



r̂11 r̂12

r̂12 r̂22





[
ρVn

]
|NSF[

qn
]

NSF

θL


(48)

with the symmetric matrix of resistivities28

r̂αβ =



(
1
ϑ
−

1
2

)
+

1
16

1
8

1
8

1
4

αβ

. (49)

Exact calculations based on kinetic theory (with full accom-
modation, χ = 1) yield explicit corrections to account for
Knudsen layer effects33,50 with the resistivities

r̂αβ |corr =



1
ϑ

+
1
π
−

23
32

1
16

+
1

5π
1
16

+
1

5π
1
8

+
13

25π

αβ

=



1
ϑ
− 0.400 44 0.126

0.126 0.291

αβ
. (50)

We shall examine both sets of resistivities in the examples
below.

IV. 1-D HEAT AND MASS TRANSFER PROBLEMS
A. One-dimensional equations

To put the R13 equations with evaporation/condensation
to test, we now consider flows in simple one-dimensional
geometry and steady state. For simplicity, we ignore all details
of mass and heat transfer through the liquid and consider the
temperature of the liquid at the interface as given. The normal
of the interface points into the x1 = x direction, and all flow
properties are functions only of this coordinate.

For these first tests, we consider small deviations from a
rest state where vapor and liquid are in equilibrium at temper-
ature θ0, hence the reference pressure is p0 = psat (θ0) = ρ0θ0.
We use the rest state data and the length scale L to make the
variables dimensionless. With all flows only in the x-direction,
the variable space is reduced to

ρ̂ (x̂) =
ρ (Lx̂)
ρ0

, θ̂ (x̂) =
θ (Lx̂)
θ0

,

v̂k (x̂) =

{
v (Lx̂)
√
θ0

, 0, 0

}
, q̂k (x̂) =

{
q (Lx̂)

p0
√
θ0

, 0, 0

}
,

σ̂ij (x̂) = diag

[
σ (Lx̂)

p0
,−

1
2
σ (Lx̂)

p0
,−

1
2
σ (Lx̂)

p0

]

ij
.

(51)

We simplify the R13 equations (2)–(4) and (8) for geometry,
keeping only first order terms in the velocity. The linearized
dimensionless conservation laws (2) become (for a simpler
notation, we omit the circumflexes that indicate dimensionless
quantities)

∂

∂x
(ρv) =

∂

∂x
(p + σ) =

∂

∂x

(
5
2
ρvθ + q

)
= 0, (52)

which are easily integrated to give constant mass flow
J0, constant normal stress P0, and constant overall energy
flux Q0,

ρv = J0 = const., p + σ = P0 = const.,

5
2

J0θ + q = Q0 = const. (53)

With this, the (linearized, dimensionless, one-dimensional)
R13 constitutive equations for Maxwell molecules (8) or the
BGK model (9) reduce to

∆ = −
12
β

Kn
∂q
∂x
=

30
β

KnJ0
∂θ

∂x
' 0,

R = −
16
5
γKn

∂q
∂x
= 8γKnJ0

∂q
∂x
' 0,

m = −
6β
5

Kn
∂σ

∂x
,

(54)

where the coefficients β, γ distinguish between Maxwell
molecules (βMM = γMM = 1) and the BGK model (βBGK =

3
2 ,

γBGK =
7
6 ). Note that, due to linearization, products such as

J0
∂θ
∂x and J0

∂σ
∂x can be ignored.

The linearized balance equations for the xx-component of
stress (3) and the x-component of heat flux (4) reduce to (with
q0 = Q0 −

5
2 J0)

6β
5

Kn
∂2σ

∂x2
=

σ

Kn
,

∂θ

∂x
= −

4βq0

15Kn
−

2
5
∂σ

∂x
. (55)

These can be integrated easily to give

θ = K −
4βq0x
15Kn

−
2
5
σ,

σ = A sinh



√
5

6β
x

Kn


+ B cosh



√
5

6β
x

Kn


,

(56)

where K, A, B are constants of integration. We note that σ is of
the Knudsen layer type, i.e., it decays exponentially away from
the interface on the scale of the mean free path. We also note



092004-9 Struchtrup et al. Phys. Fluids 29, 092004 (2017)

that classical hydrodynamics gives σ = 0, and θ = K − 4q0x
15Kn ,

which is the case for A = B = 0.
For the full solution, we have to find the 6 constants

of integration {J0, P0, q0, K , A, B}, which requires 6 boundary
conditions in total, that is, 3 boundary conditions on either side
of the domain.

When a boundary is a liquid-vapor interface, we will use
the appropriate boundary conditions from (36)–(41) which in
linearized and dimensionless form reduce to (no tangential
components)

J0,n =
ϑ

2 − ϑ

√
2
π

(
psat (θL) − P0 −

1
2

(θL − θ) +
1
2
σ

)
,

q0,n =
ϑ + χ (1 − ϑ)

2 − ϑ − χ (1 − ϑ)

√
2
π

(
2 (θL − θ) −

1
2
σ

)
−

1
2

J0,n,

6β
5

Kn

[
∂σ

∂x

]

n
=

ϑ + χ (1 − ϑ)
2 − ϑ − χ (1 − ϑ)

√
2
π

×

[
2
5

(θL − θ) +
7
5
σ

]
+

2
5

J0,n. (57)

Here it is assumed that all dimensionless pressures psat (θL),
P0, and all dimensionless temperatures θL, θ, are close to unity.
J0,n, q0,n are the products of the flows J0, q0 with the normal
at the respective boundary.

For NSF, we consider the interface conditions (48), either
with the simple resistivities (49) or with the corrected resistiv-
ities (50), which we write for easy comparison with the above
as

J0,n =
r̂22/2

r̂11r̂22 − r̂12r̂12

√
2
π

(
psat (θL) − P0 −

r̂12

r̂22
(θL − θ)

)
,

q0,n =
1

4r̂22

√
2
π

(2 (θL − θ)) −
r̂12

r̂22
Vn. (58)

Since we only consider the temperature of the liquid at
the interface, but not the detailed transport processes through
the liquid layers, the relations for these given in Appendix A
are not required.

B. Half-space problem

We first consider the classical problem of the steady evap-
oration into a half-space, consisting of an evaporating interface
at temperature θL with evaporation pressure psat (θL) where
evaporation is forced by prescribing the pressure p∞ = P0 at a
large distance of the interface. Dimensionless temperature θ∞
and velocity v∞ = J0 are controlled such that the vapor at a
large distance is in a drifting equilibrium state.

A comprehensive account of the kinetic theory treatment
of the problem is given in Ref. 30. Here, we compare the R13
solution with Pao’s results from the linearized BGK model31

and with the linearized form of non-linear jump formulas
derived by Ytrehus by a moment method solution of the Boltz-
mann equation for Maxwell molecules.29 Both formulations
assume perfect evaporation (ϑ = 1).

The conditions for this problem require q0 = σ∞ = 0 and
hence the solution of the problem follows from Eq. (56) as

θ (x) = θ∞ −
2
5
σ (x) , σ (x) = A exp


−

√
5

6β
x

Kn


. (59)

With the pressure p∞ prescribed, the unknowns of the problem
are temperature θ∞, evaporation speed v∞, and the constant A
for the normal stress. These follow from the boundary con-
ditions at the interface (57), which for this problem can be
brought into the form

v∞ =
ϑ

2 − ϑ

√
2
π

(
psat (θL) − p∞ −

1
2

(θL − θ∞) +
3

10
A

)
,

v∞ =
ϑ + χ (1 − ϑ)

2 − ϑ − χ (1 − ϑ)

√
2
π

(
4 (θL − θ∞) +

3
5

A

)
,

v∞ = −
ϑ + χ (1 − ϑ)

2 − ϑ − χ (1 − ϑ)

√
2
π

[
θL − θ∞ +

39
10

A

]
−

√
15β

2
A.

(60)

For hydrodynamics, the corresponding equations based
on (58) must be used, with the resistivities (49) or (50); after
linearization,

v∞ =
psat (θL) − p∞
√

2πr̂11

, v∞ =
1
√

2π

θL − θ

r̂21
. (61)

For comparison of the various models, we follow the work
of Ytrehus and consider the dimensionless ratios

αp =
psat

(
θ0

L

)
− p∞

v∞/
√

2
, αθ =

θL − θ∞

v∞/
√

2
, (62)

which are just the resistivities r̂11 and r̂12 of Eq. (48) multiplied
by 2
√
π. We compare results from R13, Ytrehus (Y), Pao (P),

and hydrodynamics [NSF and corr.NSF, with the coefficients
(49) or (50), respectively], for which we find

αp |NSF = αp |P = 2
√
πr̂11 =

9
8

√
π = 1.994 01,

αp |Y = αp |corr.NSF =
9

16

√
π +

2
√
π
= 2.125 38,

αp |R13 =
75
√
π + 9π

√
15β

60 + 8
√

15π β
=




2.109 69 (β = 1)

2.098 47 (β = 3/2)

(63)

and

αθ |Y = αθ |P =

√
π

4
= 0.443 113,

αθ |NSF = 2
√
πr̂12 =

√
π

4
= 0.443 113,

αθ |corr.NSF = 2
√
πr̂12 = 2

√
π

(
1

16
+

1
5π

)
= 0.447 23,

αθ |R13 =

√
π

(
9 +

√
15π β

)
30 + 4

√
15π β

=




0.489 385 (β = 1)

0.484 897 (β = 3/2)
.

(64)

The corrected NSF values (corr.NSF) agree with the exact
data, since they were fitted to similar results. Pao’s results agree
with our NSF results (49), that is, without any Knudsen layer
correction.
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For this problem, the R13 equations for Maxwell
molecules (β = 1) and the BGK model (β = 3/2) give almost
identical results. The coefficient αp agrees well with Ytrehus’
result (relative error 0.7%), which in turn agrees well with our
own numerical solution for the BGK model. For the temper-
ature coefficient αθ , however, the R13 equations differ from
the accurate value (also confirmed by numerical solution of
BGK) by about 10%. This deviation is similar to the deviation
of temperature jump and slip for the R13 equation in half-space
problems which was pointed out in Ref. 51 and discussed in
detail in Ref. 42.

The results presented next will show that for larger Knud-
sen numbers, all macroscopic models cannot accurately model
heat flux and temperature profile simultaneously. The coeffi-
cient αθ is extracted from the temperature profile, that is, its
deviation is related to this conflict.

To close this section, we point out that in this particular
half-space problem, the non-convective heat flux, q, vanishes,
which implies that the boundary conditions cannot be fully
explored. This is evident from the observation that the resis-
tivity r̂22 of Eq. (48) does not occur in the solution for the NSF
problem.

C. Heat and mass transfer between two reservoirs

Next we study heat and mass transfer between two liquid
reservoirs (see Fig. 1), comparing predictions of macroscopic
equations (NSF, R13) with Direct Simulation Monte Carlo
(DSMC) results. This problem is richer than the previous
one, in that it has a non-vanishing heat flux. Also, we will
look at detailed profiles, including resolved Knudsen layers,
of temperature and normal stress.

To be specific, we consider one-dimensional transport
between two liquid layers identified with sub- or super-scripts
0, 1 located at (dimensionless) locations x0,1 = ∓

1
2 . For the

solution, we have to consider boundary conditions on both
sides of the domain. The interface normal points into the vapor,
i.e., into the positive direction at x0 = −

1
2 and into the negative

direction at x1 =
1
2 ; accordingly Vn (x1) = −Vn (x0) = −J0,

etc. We need to consider the boundary conditions (57) at
both boundaries. The three pairs (57) of boundary conditions
for Vn, qn, mnnn are best applied by taking their pairwise
sums and differences, respectively. After some calculation,
the solution of the linear problems (53) and (56) assumes the
form

FIG. 1. Setup for heat and mass transfer between two reservoirs.

P0 =
psat

(
θ0

L

)
+ psat

(
θ1

L

)
2

,

θ =
θ0

L + θ1
L

2
−

4βq0

15Kn
x −

2
5

A sinh



√
5

6β
x

Kn


,

σ = A sinh



√
5

4β
x

Kn


.

(65)

Two of the pairwise sums of the BC give
(
θ0

L − θ
0
)

+
(
θ1

L − θ
1
)
= 0, which was used to simplify the above.

The evaporation fluxes J0, the heat flux q0, and the ampli-
tude of the Knudsen layer A are obtained from a linear system
which results from subtracting the interface conditions at both
sides,

J0 =
ϑ

2 − ϑ

√
2
π

1
2

(
psat

(
θ0

L

)
− psat

(
θ1

L

)
+

1
2

(
4βq0

15Kn
+ θ1

L − θ
0
L

)
−

3
5

A sinh



√
5

6β
1

2Kn



+/
-

,

q0 = −
ϑ + χ (1 − ϑ)

2 − ϑ − χ (1 − ϑ)

√
2
π

(
4βq0

15Kn
+ θ1

L − θ
0
L

+
3

10
A sinh



√
5

6β
1

2Kn



+/
-
−

J0

2
, (66)

√
30βA cosh



√
5

6β
1

2K n


= −

ϑ + χ (1 − ϑ)
2 − ϑ − χ (1 − ϑ)

√
2
π

×

[
4βq0

15Kn
+ θ1

L − θ
0
L

+
39
5

A sinh



√
5

6β
1

2K n




+2J0.

Inversion of this system yields the integration constants
{J0, q0, A} and insertion of these into (65) gives detailed
profiles of temperature and stress.

The NSF solution is obtained by setting A = 0 in Eq. (65),
which impliesσ = 0 so that p = P0 is the homogenous pressure
in the vapor. Subtraction of the interface conditions (48) on
both sides yields two equations for mass and heat flux that,
for comparison with the corresponding R13 expressions from
above, are best written as

J0 =
1
2

r̂22

r̂11r̂22 − r̂12r̂21

√
2
π

1
2

[
p̂sat

(
θ0

L

)
− p̂sat

(
θ1

L

)
+

r̂12

r̂22

(
4βq0

15Kn
+ θ̂1

L − θ̂
0
L

)]
,

q0 = −
1

4r̂22

√
2
π

(
4βq0

15Kn
+ θ̂1

L − θ̂
0
L

)
−

r̂21

r̂22
J0.

(67)

The final solution of the problem is obtained by solving (67)
for J0 and q0 and inserting the results (with A = 0) into
Eq. (65).

R13 and NSF results will now be compared to DSMC
simulations (for β = 1), for which we set the evaporation
coefficient ϑ to unity so that ϑ

2−ϑ =
ϑ+χ(1−ϑ)

2−ϑ−χ(1−ϑ) = 1. For NSF,
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we will use the classical result (50), and also the simple result
(49), which does not account for Knudsen layer corrections.

Since we are solving only the linearized equations,
the DSMC simulations are performed for small deviations
from equilibrium. Specifically, we prescribe the dimension-
less temperatures of the liquid layers as θ0,1 = 1 ± ∆θ. The
solutions depend strongly on the corresponding saturation
pressures and we will show results for p̂sat

(
θ0,1

L

)
= 1±∆p with

∆θ = 0.05, ∆p = 0.05 and ∆θ = 0.01, ∆p = 0.075, respec-
tively, where the second case produces the often discussed
inverted temperature profile.31 All results will be shown for a
variety of Knudsen numbers in the range Kn ∈ {0.039, 1}.

With these data for temperature and pressure, the solutions
of the linearized macroscopic equations yield profiles of tem-
perature deviation and stress that are anti-symmetric relative to
the midpoint x = 0. Although the deviations from equilibrium
are small, the DSMC results show non-symmetric profiles due
to small non-linearities. In order to have a proper comparison,
we use not the original DSMC data but symmetrized temper-
ature and stress profiles, which are obtained by appropriate
averaging of the left and right parts of the profiles.

1. Standard temperature profile

When the dimensionless saturation pressures of the liq-
uid layers are p̂sat

(
θ0,1

L

)
= 1 ± 0.05, the temperature profile

shows the expected behavior, with a jump at both boundaries

FIG. 2. Kn = 0.078: Temperature and stress profiles for ∆θ = 0.05 and ∆p
= 0.05, for DSMC simulation (symmetrized; green, dashed), corrected NSF
(blue, dashed), uncorrected NSF (black, dotted-dashed), and R13 (red).

and, since the left boundary is hotter, a decreasing tempera-
ture in the bulk. Figures 2 and 3 show the temperature curve
and the corresponding normal stress for Kn = 0.078 and Kn
= 0.235, respectively, as functions of location x. Evidently,
all macroscopic models have some difficulty in matching the
full details of the temperature curve more so at larger Kn.
Compared to DSMC, the NSF models give larger jumps at the
boundaries (recall that the dimensionless liquid temperatures
are θ0 = 1.05 and θ1 = 0.95, respectively) and a somewhat
flatter temperature profile; they cannot describe normal stress
(σ = 0). The R13 equations give jumps and temperature
slopes close those of DSMC and give the normal stress in good
approximation.

Maybe more important than the finer details of the profiles
is the description of overall mass and heat transfer, that is,
the dependence of the integration constants J0 and q0 on the
Knudsen number. Figure 4 shows J0, q0, and the boundary
stress σ (x1) for Knudsen numbers in {0, 1}, for DSMC (green
dots), corrected NSF (blue dashed), uncorrected NSF (black
dashed-dotted), and R13 (red continuous).

From the figure, we see that the corrected NSF equations
(blue, dashed) give, for this problem, a good description of
mass and heat transfer for all Knudsen numbers considered.
As seen before, they do not give any non-equilibrium stress
(σ = 0) and the temperature profiles do not match. That is,
the accuracy in mass and heat flux is offset by the inaccurate
temperature and stress profiles; it is not possible to adjust the

FIG. 3. Kn = 0.235: Temperature and stress profiles for ∆θ = 0.05 and ∆p
= 0.05, for DSMC simulation (symmetrized; green, dashed), corrected NSF
(blue, dashed), uncorrected NSF (black, dotted-dashed), and R13 (red).
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FIG. 4. Mass and heat transfer: Mass flow J0 and heat flux q0 as a function
of the Knudsen number Kn, for ∆θ = 0.05 and ∆p = 0.05: DSMC simulation
(green, dots), corrected NSF (blue, dashed), uncorrected NSF (black, dotted-
dashed), and R13 (red).

resistivities r̂αβ to fit both fluxes and temperature profile. The
uncorrected NSF equations (black, dashed-dotted), which do
not correct Knudsen layer effects, do not provide a good match
for fluxes or profiles.

The R13 equations (red, continuous) give a reasonable
description of fluxes and stresses for relatively small Knudsen
numbers (Kn ≤ 0.25), with relative errors for mass flux of less
than 2%.

The visual fit for heat flux q0 is good for all macro-
scopic systems, but it should be noted that for small Knudsen
numbers, the energy flux q0 is rather small, and there are
fluctuations in the DSMC simulations, which leads to larger
relative errors. According to (53), the total energy flux is

Q0 =
5
2 J0θ0 + q0, that is, energy transport—in particular at

smaller Knudsen numbers—is dominated by convective trans-
port. For the total energy flux Q0, the corrected R13 equations
differ from DSMC by not more than 1% for all Knudsen num-
bers considered, which is close to the accuracy of corrected
NSF, where the relative error is below 0.9%.

2. Inverted temperature profile

Increase of the saturation pressure difference ∆p for
unchanged temperature difference ∆θ implies an increase in
the enthalpy of vaporization. For the transport between two
liquid layers, this implies increased convective transport of
energy or smaller conductive contribution to transport. For
a certain range of values, and for the left liquid layer hot-
ter than the right, it is possible that the temperature gradient
in the bulk is inverted so that the vapor in front of the hot-
ter liquid on the left is colder than the vapor in front of the
colder liquid on the right.31,34,35,52 It is worth mentioning that
although a clear experimental evidence of temperature inver-
sion during evaporation/condensation has not yet been given,
inverted temperature profiles have been found in molecular
dynamics simulations,34 thus showing that their occurrence
is not an artifact of kinetic boundary conditions. Tempera-
ture inversion occurs for DSMC simulations at ∆p = 0.075
and ∆θ = 0.01, for which we show the same curves as
before.

FIG. 5. Inverted temperature profile at Kn = 0.078: Temperature and stress
profiles for ∆θ = 0.01 and ∆p = 0.075, for DSMC simulation (symmetrized;
green, dashed), corrected NSF (blue, dashed), uncorrected NSF (black, dotted-
dashed), and R13 (red, continuous). Note that the liquid temperatures at the
left and right are θ0 = 1.01 and θ1 = 0.99, respectively.
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Figure 5 shows temperature and stress for Kn = 0.078.
Note that the left and right temperatures are θ0 = 1.01 and
θ1 = 0.95, respectively, which implies that the temperature
jumps at the liquid-vapor interfaces are smaller than in the pre-
vious case (∆p = 0.05) and that the resolution of temperature
is finer. Indeed, the R13 solutions show temperature Knudsen
layer contributions due to the last term in Eq. (65)2, which are
present in Fig. 2 as well but, due to a different scale, hardly visi-
ble. As can be seen from Eq. (65), the Knudsen layer amplitude
in temperature and the normal stress σ are both determined
through the integration constant A. At a larger Knudsen num-
ber, e.g., at Kn = 0.235 as shown in Fig. 6, the amplitude A
becomes so large that R13 fails to predict the inversion of the
temperature profile, although the conductive heat flux, q0, is
inverted indeed, as can be seen in Fig. 7. NSF, on the other
hand, describes the temperature profile fairly accurately but
cannot describe the normal stress contribution.

The variation of mass flow J0 and convective heat flux
q0 with the Knudsen number is shown in Fig. 7. Compared
to Sec. IV C 1, we now have a larger mass flux and negative
heat flux, that is, mass flux J0 and total energy flux Q0 point
from the warm towards the cold liquid layer, but the conduc-
tive heat flux q0 points in the opposite direction. As the figure
shows, the boundary conditions for R13 (red) yield some devi-
ation. Looking at the relative errors, we find that for Kn ≤ 0.4,
corrected NSF predicts the mass flow with less than 0.5% devi-
ation from the DSMC solutions and the heat flux q0 with not

FIG. 6. Inverted temperature profile at Kn = 0.235: Temperature and stress
profiles for ∆θ = 0.01 and ∆p = 0.075, for DSMC simulation (symmetrized;
green, dashed), corrected NSF (blue, dashed), uncorrected NSF (black, dotted-
dashed), and R13 (red, continuous). Note that the liquid temperatures at the
left and right are θ0 = 1.01 and θ1 = 0.99, respectively.

FIG. 7. Mass and heat transfer for inverted temperature profile: Mass flow J0
and heat flux q0 as a function of the Knudsen number Kn, for ∆θ = 0.01 and
∆p = 0.075: DSMC simulation (green dots), corrected NSF (blue, dashed),
uncorrected NSF (black, dotted-dashed), and R13 (red).

more than 10% deviation. The errors are larger for R13, with
up to 2.1% for mass flux and up to 30% for heat flux; the total
energy flux Q0 =

5
2 J0 + q0, however, is predicted within 1.5%.

Uncorrected NSF exhibits the largest overall errors, up to 7.5%
for the mass flux and total energy flux.

V. DISCUSSION AND CONCLUSIONS

In summary, our results indicate that the R13 equa-
tions with evaporation boundary conditions yield a qualita-
tive description of the simple evaporation and condensation
problems discussed here. In detail, however, they do not give
perfect agreement.
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From the shown data, one might conclude that the NSF
equations with corrected boundary conditions give a more
accurate description even for larger Knudsen numbers, but this
is misleading. It must be kept in mind that flow problems in
rarefied gases show a rich array of features, such as Knudsen
layers, jump and slip, thermal stresses, thermal transpiration
flow, heat flux without temperature gradient, etc., which are not
accessible to the NSF theory, see Refs. 4 and 5 and references
therein. The rich interplay between the different rarefaction
effects comes into play in particular for multi-dimensional
problems8,37 but is mainly lost in the simple one-dimensional
problems discussed above. Since R13 includes the rarefaction
effects, and NSF does not, their predictions differ greatly in
multidimensional problems. The good predictions of NSF for
the problems discussed above are to some extent accidental,
due to simple geometry. A case in point is the normal stress
that R13 can reproduce in good accuracy but which is always
zero for NSF.

By derivation, the NSF equations are valid only for rather
small Knudsen numbers, and their good predictions for mass
and energy fluxes for the problems considered here must be
considered as circumstantial. Moreover, we note that the NSF
interface conditions include fitted resistivities rαβ , while the
R13 boundary conditions are taken directly from the derivation
of kinetic theory, without any ad hoc fitting coefficients. The
NSF equations with uncorrected resistivities (49) give signif-
icantly larger errors than R13, which must be considered as a
fitting-free improvement of the NSF equations.

Just as adjustment of interface resistivities gives a marked
improvement for NSF, it is expected that the R13 predic-
tions can be improved by adjusting the interface conditions. In
Ref. 42, we introduced an Onsager matrix in the kinetic
boundary conditions for R13 at non-absorbing walls, which
lead to reasonable improvement, see also Ref. 53. A sim-
ilar procedure is possible here and will be explored in the
future.
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APPENDIX A: LIQUID PHASE AND CONSERVATION
LAWS AT THE INTERFACE

In the bulk of the paper, we have considered only the
gas phase (vapor), while the liquid phase only appeared
in the interface conditions through its interface temperature
θL and the corresponding saturation pressure psat (θL). For
the problems that we have in mind for the future, such as
evaporation of micro-droplets in micro-channels, the liquid
phase can be assumed to be an incompressible liquid of con-
stant mass density ρL, with constant specific heat cL. The
transport equations for the liquid phase then are simply the
incompressible Navier-Stokes-Fourier equations, which read
(sub-/super-script L denotes the liquid)

∂vL
k

∂xk
= 0,

ρL
DvL

i

Dt
+
∂pL

∂xi
+
∂σL

ik

∂xk
= 0,

ρLcL
DθL

Dt
+
∂qL

k

∂xk
+ σL

kl

∂vL
k

∂xl
= 0,

(A1)

with the respective laws for stress and heat flux,

σL
ij = −2µL

∂vL
〈i

∂xj〉
, qL

i = −κL
∂θL

∂xi
. (A2)

Here, µL and κL are the liquid’s viscosity and heat conductivity,
respectively.

The conservation laws for mass, momentum, and energy
for the gas (2) and the vapor (A1) hold in the respective bulk
phases. For a complete description, we also require the conser-
vation laws at the interface. The easiest model of the interface
is a massless interface without surface tension and surface
energy. As before, we consider an interface that moves with
the velocity v I

i and is characterized by the normal vector ni that
points from the liquid towards the gas. For such an interface,
the conservation laws of mass, momentum, and energy declare
the continuity of the normal fluxes for an observer resting on
the interface. With the liquid properties on the left, and the gas
properties on the right, these can be written as54

[
ρL

(
vL

j − v
I
j

)]
nj =

[
ρ
(
vj − v

I
j

)]
nj, (A3)

[
ρLv

L
i

(
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j − v
I
j

)
+ pLδij + σL

ij

]
nj

=
[
ρvi

(
vj − v

I
j

)
+ pδij + σij

]
nj, (A4)

[
ρL

(
hL +

1
2
v2

L

) (
vL

j − v
I
j

)
+ pLv

L
j + σL

ijv
L
i + qL

j

]
nj

=

[
ρ

(
h +

1
2
v2

) (
vj − v

I
j

)
+ pvj + σijvi + qj

]
nj, (A5)

where h = u + p
ρ denotes the enthalpy. Surface tension

effects must be added for curved surfaces, such as droplets
or bubbles.54

At sufficiently low pressures, liquid enthalpy can be
approximated as

hL = cLθ − h0 (A6)

with an enthalpy constant h0 that must be carefully chosen in
order to incorporate the latent heat into the model. Indeed, in
kinetic theory, the enthalpy of the (monatomic) vapor is

h = u +
p
ρ
=

5
2
θ = cpθ (A7)

so that the heat of vaporization is

hLV (θ) = h − hL = h0 −
(
cL − cp

)
θ. (A8)

Due to the simplicity of the model, only one value of the heat of
vaporization is required to fit the constant h0. With a reference
value h0

LV = hLV (θ0), we have h0 = h0
LV +

(
cL − cp

)
θ0, hence

the enthalpy of the liquid and the enthalpy of vaporization are

hL = cL (θ − θ0) + cpθ0 − h0
LV , (A9)

hLV (θ) = h0
LV −

(
cL − cp

)
(θ − θ0) . (A10)
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In Ref. 49, it is shown that this simple model—vapor as
ideal gas and liquid as incompressible ideal liquid, both with
constant specific heats—leads to an explicit expression for
saturation pressure that in the present notation reads as

psat (θ) = psat (θ0) exp

[(
cL − cp

) (
1 −

θ0

θ
− ln

(
θ

θ0

))
+ h0

LV

(
1
θ0
−

1
θ

)]
. (A11)

Note that we have absorbed the gas constant R into temper-
ature as θ = RT , hence the specific heats cL and cp =

5
2 are

dimensionless; psat (θ0) is the saturation pressure at reference
temperature θ0.

APPENDIX B: DETAILS OF DSMC CALCULATIONS

Reference flow field profiles, both for evaporation into a
half space and for the evaporation/condensation between two
parallel plates, have been obtained by DSMC simulations of
a monatomic vapor. The code is based on a quite standard
implementation of Koura’s null-collision estimator of collision
rate.55 The presented profiles are based on hard spheres simu-
lations. A smaller number of computationally more expensive
Maxwell molecule simulations showed very little variation
with respect to hard spheres profiles, once the two model cross
sections have been tuned on the same viscosity at the reference
temperature, for the problem at hand. It should be observed that
in both problems, temperature variations are extremely small;
hence, the different viscosity temperature exponents of the two
collision models are not seen in the simulations.

Boundary conditions at evaporating/condensing liquid
surfaces have been assigned by assuming the unit evapo-
ration/condensation coefficient and Maxwellian distribution
function of evaporating molecules, characterized by the liquid
surface temperature θL and the saturated vapor density nsat(θL).
In the case of the evaporation into a half space, the boundary
condition at infinity requires some care since the asymptotic
Maxwellian state is not known but it is a result of the simula-
tion. Taking into account that the density and temperature at
infinity are determined by the downstream Mach number (or
flow speed), the correct equilibrium state can be determined
by the boundary condition formulated in Ref. 56.

In order to match the linearized R13 regime, DSMC has
been used to study small departures from equilibrium. The
one-dimensional computational domain has been divided into
a number of cells of the same size, not larger that λ0/10, λ0

being the equilibrium mean free path. Not less than 3000
particles per cell have been used, in order to capture small
deviations from equilibrium. Typically, each simulation has
been started from a given spatially uniform equilibrium state.
Sampling of macroscopic quantities has been started after the
onset of steady flow conditions, the sampling time duration
being determined by the estimated relative statistical error.
The latter does not exceed 0.01. The highest computing time
has been equal to about 26 h on a single processor in a case
in which the Knudsen number has been set equal to 1/100,
the number of particles is equal to 3 × 106, and the number
of time steps is equal to 3.2 × 105. Smaller or much smaller
computational effort is required for larger Knudsen numbers
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