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Abstract 

Modelica users can and want to build more realistic 
and complex models. This typically means slower 

simulations. In the past, the speed of single CPUs has 

increased significantly to partly compensate, but more 
recently, there has been a shift to multi-core 

architectures. This is taken to the extreme in Graphics 
Processing Units (GPUs). 

This paper discusses code generation for GPU cores. 

This is important when the model has regular structure, 
for example, discretization of PDEs. The behavior of 

each cell can then be partly described by a function 

call. The evaluation of such calls can then be made in 
parallel on the GPU cores. The same function is thus 

executed on every GPU core, but operates on different 
data; the data of its cell. 

Our GPU code generator automatically generates 

code for Modelica functions, i.e. no additional 
language constructs are needed. The function is just 

annotated as suitable for execution on a GPU. 
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1 Introduction 

Modelica users can and want to build more realistic 

and complex models. This typically means slower 

simulations. The speed of CPUs has of course 
increased enormously to partly compensate. But now 

it’s important to utilize the many cores available in 
modern computer architectures.  

The paper (Elmqvist, et al., 2014) presents an 

algorithm for automatic partitioning of model 
equations onto CPU cores. This technique is now 

available in Dymola 2016 (Dassault Systemes, 2015). 
This paper discusses code generation for GPU 

(Graphics Processing Unit) cores. This is important 

when the model has regular structure, for example, 
discretization of PDEs. The behavior of each cell can 

then be partly described by a function call. The 

evaluation of such calls can then be made in parallel on 
the GPU cores. The same function is thus executed on 

every GPU core, but operates on different data; the 

data of its cell. 
We believe GPU code generation should be 

transparent for the user. The user only needs to give a 

hint that a certain function is suitable for GPU 
execution. In addition to the simplification for the user, 

it enables better portability of Modelica code, since if a 
tool does not support GPU code generation, it can 

simply ignore the annotation. The drawback might be 

that the user does not have full control of how the GPU 
and its memory are utilized; i.e. might not be able to 

get optimal speed. 

Another important advantage with automatic GPU 
code generation is that built-in operators such as matrix 

multiplication and overloaded operators can also 
benefit. In addition, it allows reuse of normal Modelica 

library functions and automatically generating GPU 

code for them. 
(Gebremedhin, et al., 2012) proposes an extension to 

Modelica called ParModelica, which introduces special 
kernel function and parallel function declarations 

and special variable declaration prefixes to indicate 

what memory to use for the variables: parglobal, 

parlocal, etc.  

The outline of this paper is as follows. First a 

general introduction to GPU architecture and 
programming is given. Then follows principles of 

automatic GPU code generation from Modelica 
functions. Finally several examples are presented. 

The speed-up factor varies for the different problem 

formulations. The best speed-up so far for this early 
Dymola prototype is about 5 times. It should be noted 

that this was achieved on a laptop with NVIDIA’s 
Quadro K2100M GPU chip and an Intel Core i7-4800 

MQ processor.  

2 GPU Architectures and Programming 

Models 

In this section, a short introduction to GPU 

architectures is made, bringing up some of the 
fundamentals and the aspects that are considered most 

important for this paper, concerning performance. 
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After that follows a short introduction to CUDA, the 
programming model used in this project, where some 

more performance considerations are brought up, 

ending with a hands-on example and some practical 
details for the code generation. Some of the aspects are 

directed to the user, to get an idea of the kind of code 

that could be accelerated by the GPU, and some 
aspects are rather for the auto generation. 

A thorough introduction to the topics is made by 
(Kirk, 2013) and (Goteman, et al., 2015). 

2.1 GPU Architectures 

The most fundamental difference between CPU’s and 
GPU’s, is that the CPU’s are general purpose 
processors, designed to perform well on sequential 
code, whereas a GPU is designed to process massively 

parallel tasks, only. The large cache memories and 
control logics of a CPU are not provided for the cores 

of a GPU. Instead, the manufacturers focus on putting 

as many cores as possible on the chip, letting the 
threads share cache and control logic between them. A 

GPU today may have thousands of cores. That is 

possible, since GPU’s only have to work on SIMD 
(singe instruction, multiple data) instructions. That 

means that, when feeding the GPU a task, that task is 
the same for every thread. The only difference is which 

data the task is to be performed on. Now, a task is often 

a sequence of instructions that, as we will come to 
later, in code is expressed as a function. This function 

may contain e.g. an if-statement that causes divergence 

in terms of execution among the threads. The reason 
that threads may take different paths at such branching 

points is that the conditions may depend on thread 
specific data (such as position in a grid, temperature at 

that position, etc.). We’ll come back to this in a bit. 
A GPU is designed to process a large amount of 

threads as fast as possible, and it is important to see the 

distinction between that and to process every single 

thread as fast as possible. The GPU is not supposed to 

work on all threads at once, which generally is not 

possible, as the number of cores is too low for it. It is 
designed to have multiple times more threads loaded 

into registers, than it can execute. This allows for 

efficient thread scheduling, which means that 
whenever a thread is idle because of a long latency 

operation, such as a global memory access, the cores 
can switch to work on other threads that are ready and 

waiting for execution. 

GPU’s are good at thread scheduling, but all time 
spent on long latency operations cannot be hidden. To 

fully utilize a GPU, you’ll want to let the cores work 
with floating point operations as much as possible. And 

even if today’s chips have a bandwidth to global 
memory (RAM) of more than 200 GB/s, global 
memory accesses has to be considered for good 

performance. A good way to analyze this is to consider 

the number of floating point operations per global 

memory access for a thread, often called the CGMA 
(Compute to Global Memory Access) ratio. It should 

obviously be kept as high as possible. If it is too low, 

there is no way to keep the cores busy, independently 
how the threads are scheduled. That is because, if the 

limited amount of data that can be delivered to the 

cores per time unit is lower than the rate at which the 
operations on the data can be executed, the data 

transferring has become a limiting factor. So already 
on a high level, as a user, it can be advantageous to 

have the CGMA ratio-thinking in mind when 

considering letting a function be computed on the 
GPU.   

The threads are partitioned on many levels, and this 
partitioning can differ between different hardware 

architectures. But most architecture has a lowest 

partitioning level, at which the parts are called warps. 
On warp level, no divisions between threads are made. 

That means that if one thread in a warp has a long 

latency operation (or just any operation, for that 
matter) in an if-statement, but not the others, all threads 

in the warp will have to wait for that one thread. But 
the waiting is at least limited to the warp, which on 

most current architectures consists of 32 threads. That 

means that having if-statements does not necessarily 
mean a big difference in performance. The divergence 

can be organized to be minimized within warps, but as 
it can be hard to know how warps are arranged, and 

where the divergence will appear, divergent code 

should generally be avoided. 
The last, and most important, aspect to bring up, is 

the process of transferring data between the CPU 

memory and the GPU memory. It is the main 
bottleneck of a GPU. The transfer speed is relatively 

low, and the transfer is often related to a lot of 
overhead work. That implies that there is no point to 

send work to the GPU, unless there is a lot of it. So if it 

is possible to avoid memory transfers of this kind, e.g. 

by not repeatedly transferring constant data, it should 

be done. 

2.2 The NVIDIA CUDA Programming Model 

CUDA is a parallel computing platform and 

programming model invented by NVIDIA. In this 
project, the extension CUDA C/C++ has been used, 

making it possible to program CUDA enabled GPU’s 
in a C/C++ environment, with a few extensions. 

In CUDA, a function that should be executed, or 

launched, in parallel is called a kernel. The kernel is 
launched for a number of threads, which are divided 

into blocks, creating a grid of blocks. The blocks are 
the level on which threads are loaded to registers for 

execution, meaning that when a block is loaded, it will 

not unload before all its threads are executed. Thus 
threads can only be synchronized within a block. 

Synchronization here means putting points in the code 

where the threads should wait and synchronize with 
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other threads before continuing execution. Recall that 
all threads are not executed at once.  

Because all the threads in a block are loaded and 

unloaded into registers at once, there are limitations on 
the number of threads in a block. E.g. NVIDIA Quadro 

K2100M, the chip used for most experiments in this 

project, has a maximum block size of 1024 threads. 
The blocks are executed on Streaming Multiprocessors 

(SM’s), and an SM can usually accommodate a number 
of blocks. It is on the SM level that warps are 

scheduled for execution, and it is therefore important to 

load as many threads as possible to each SM. On 
K2100M, each SM can have a maximum of 2048 

threads loaded at once, and there are three SM’s, 
giving a total of 6144 thread slots. So in order to fully 

utilize this chip, considering the scheduling of warps, 

at least 6144 threads should be launched. It may be 
interesting to know that each SM has 192 cores, giving 

a total of 576 cores, which equals the number of 

threads that can actually execute in parallel. 
If all 6144 slots for threads are loaded during an 

entire kernel execution, the kernel is said to have 100 
% occupancy. Of course this rarely happens since some 

blocks are bound to finish sooner than others. For good 

performance, the occupancy should be kept as high as 
possible, to allow for as much warp scheduling as 

possible. If a kernel on K2100M would be launched 
with blocks of 768 threads, the SM’s would still only 
have place for two whole blocks, resulting in a lower 

occupancy. Or if a kernel is complex, each thread may 
require more registers, forcing down the number of 

threads loaded into an SM, thus decreasing the 

occupancy. There are more aspects that can affect the 
occupancy, and it is definitely a term that is good to 

know when considering GPU performance in general. 

2.2.1 Example: vector addition 

It may be of interest to see how all this could look in 

practice. First a few notes about CUDA C/C++: 
1.) Generally, when inside a kernel, i.e. when code 

is executed on the GPU, no data that is not 

allocated on GPU memory can be accessed. 
2.) Built-in primitives such as int and float, 

pointers, and structs can be copied to the GPU 

as arguments to the kernel (without deep copy). 
Large sets of data, like arrays, have to be copied 

using some CUDA API function. 
3.) A kernel’s return type must be of type void. 
4.) A kernel may call other functions on the GPU, 

called device functions. 
5.) Only a subset of C/C++ is supported. 

6.) Thrust is a C++ STL based library for CUDA. 
    Two arrays can be added on the CPU in the 

following function: 

 
void vectorAddCPU(const double *a, size_t n,  

   const double *b, double *c){ 

 for(size_t i=0; i<n; ++i){ 

  c[i] = a[i]+b[i]; 
} 

} 

 
It is clear that this is a very parallel task. n threads 

could be launched, where each thread should have an 

individual variable i in some way. The simplest way to 
recognize that something is parallelizable is usually 

when it is placed in a for-loop, or in nested for-loops, 
and it does not depend on previous iterations. Below is 

a kernel for vector addition: 

 
__global__  

void vectorAddGPU_kernel(const double *a, size_t n, 
    const double *b, double *c){ 

 size_t i=threadIdx.x+ blockIdx.x*blockDim.x; 

 if(i<n){ 
  c[i]=a[i]+b[i]; 

} 

} 
 

Note the keyword __global__ needed before the return 
type. First the thread is identifying itself using the 

thread specific variable threadIdx, the variable 

blockDim, and the block specific variable blockIdx. 
Those are variables of the simple type dim3, having 

three members: x, y and z. This helps to arrange threads 
according to your problem in up to three dimensions. 

In this case the problem is obviously one dimensional. 

The if-statement is needed to prevent memory access 
violations in cases where more threads are launched 

than needed. That is usually the case when many 

blocks are launched, since all blocks have the same 
size. 

     However, some operations are needed to call the 
kernel: 

 

void vectorAddGPU(const double *a, size_t n, const 

double *b, double *c){ 

  // Allocate GPU memory. 
  double *a_d, *b_d, *c_d; 

  cudaMalloc(&a_d, n*sizeof(double)); 

  cudaMalloc(&b_d, n*sizeof(double)); 
  cudaMalloc(&c_d, n*sizeof(double)); 

 

  // Copy a and b to GPU. 
  cudaMemcpy(a_d, a, n*sizeof(double),  

    cudaMemcpyHostToDevice); 
  cudaMemcpy(b_d, b, n*sizeof(double),  

    cudaMemcpyHostToDevice); 

  
  // Define grid and block dimensions 

  dim3 block = dim3(1024,1,1); 

  dim3 grid = dim3((n+1023)/1024,1,1); 
 

  // Launch kernel 
  vectorAddGPU_kernel 
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    <<<grid,block>>>(a_d, n, b_d, c_d); 
 

  // Copy result back to the CPU. 

  cudaMemcpy(c, c_d, n*sizeof(double), 
    cudaMemcpyDeviceToHost); 

 

  // Free GPU memory 
  cudaFree(a_d); 

  cudaFree(b_d); 
  cudaFree(c_d); 

} 

 

First memory is allocated on the GPU for the three 

vectors, using the CUDA API function cudaMalloc(). 
Then a and b are copied to the allocated memory, using 

the CUDA API function cudaMemcpy(). Then the 
blocks and the grid are defined, and the kernel is 

launched. Note the CUDA syntax to specify the kernel 

launch settings. When the addition is completed on the 
GPU, the result in c has to be copied back, again using 

cudaMemcpy(). Last of all the GPU memory has to be 
freed with the CUDA API function cudaFree(). 

3 GPU Code Generation 

The basis for our code generator for Modelica 

functions is that we recognize that specially marked 

functions (annotation(gpuFunction=true)) satisfy 
certain for-loop patterns, and for those functions 

automatically generate GPU-code. The GPU-code 
consist of a wrapper that allocates variables, copies 

default values, executes the main body (automatically 

calling generated CUDA kernel-functions), and then 
copy back outputs. Any functions called in a kernel 

function are mapped to device functions. 

3.1 Variable allocations 

All array variables of the function must either have 

unknown size (only allowed for inputs), or a size given 
as a simple arithmetic function of other sizes and 

integer literals. The unknown array sizes are also 
propagated to the kernel function. (For performance 

reasons – and to catch errors – it is good to have as few 

unknown sizes as possible.) The arrays are allocated on 
the GPU and existing values copied to the GPU; this 

allows non-input variables to be assigned a default 

value in a binding expression. Protected arrays are 
treated as outputs of the kernel function. 

3.2 Loop patterns 

The first pattern for the algorithm is that the entire 

algorithm is a (possibly nested) for-loop with range 
1:size(array, literal) and inside the loop any algorithmic 

code satisfying certain assumptions. The code inside 

the for loop(s) is mapped to a kernel function; and the 
(nested) for-loop(s) are replaced by a parallel launch of 

the kernel function – and checking the index in the 
kernel function. As an example, consider the function: 

 
function vectorAdd 

  input Real a[:]; 

  input Real b[size(a,1)]; 

  output Real c[size(a,1)]; 

algorithm 

    for i in 1:size(a,1) loop  

        // Kernel part 

        c[i]:=a[i]+b[i]; 

    end for; 

  annotation(gpuFunction=true); 

end vectorAdd; 

 

This Modelica function is translated to the previously 

given vectorAddGPU and vectorAddGPU_kernel code. 

3.3 Time integration on the GPU 

The second pattern (intended to handle time-integration 

on the GPU) is a for-loop (with arbitrary index) that 
contains one or more instances of the first pattern. Each 

instance of the first pattern is then mapped to a kernel 
function and called at the appropriate place. The rest of 

the body may contain assignments; and any array 

assignment is mapped to a device-to-device copy. The 
main benefit of this pattern is that we do not need to 

copy back outputs from the GPU until the end of the 

function, and device-to-device copy is normally a lot 
faster.  

As an example, consider the following partial 
differential equation with v(0,0)=0: 

 ��ሺ�, �ሻ�� = �(�ሺ�, �ሻ)��ሺ�, �ሻ�� = �ሺ�, �ሻ  

 

One way of solving such PDEs is to discretize in the x 
direction and use an ODE solver for the resulting 

equations. However, fine grained spatial discretization 
requires short time increments and it might then be 

better to use a fixed step size Euler method for time 

integration.  
The function IntegrateF below implements such a 

solution. 
 

function IntegrateF 

  input Real v[:]; 

  output Real next_v[size(v,1)]:=v; 

  input Real dt; 

  input Integer nSteps; 

protected   

   Real temp_v[size(v,1)]; 

algorithm 

    // Loop in wrapper-code 

    for step in 1:nSteps loop  

   // Handled using device-to-device copy: 

   temp_v:=next_v; 

       for i in 1:size(v, 1) loop  
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         // Kernel part 

     next_v[i]:=temp_v[i]+dt*(if i>1 then 

       F(temp_v[i-1]) else 0); 

  end for; 

end for; 

end IntegrateF; 

 
For the function IntegrateF the main code is similar to 

vectorAddGPU. The difference is that the called GPU 

function part is replaced by a loop as follows: 
 
dim3 block0=dim3(1024, 1, 1); 
dim3 grid0=dim3((x0_0dim0+1023)/1024,1,1); 
  { 
    int st; 
    for(st=1; st<=nSteps; st+=1) { 
      cudaMemcpy(tem_vGPU, next_vGPU,  
        temp_vGPUs*sizeof(double), 
        cudaMemcpyDeviceToDevice); 
      IntegrateFcuda<<<grid0,block0>>>( 
        vGPU, vdim0,next_vGPU, 
        dt,nSteps, temp_vGPU); 
    } 
  } 

 

i.e. the time integration loop is executed on the CPU. 
There is synchronization between each iteration, i.e. all 

launched kernel calls must have completed.  Note that 
the statement temp_v:=next_v is translated to a copy 

call on the GPU memory. 
The copying can be avoided by swapping arguments 

to the kernel calls. It is possible to manually avoid it 

(note: next_v is initialized to v) – assuming an even 
number of steps: 

 
algorithm 

    // Loop in wrapper-code 

    for step in 1:2:nSteps loop  

      for i in 1:size(v, 1) loop  

         // Kernel  part: first kernel function 

    temp_v[i]:=next_v[i]+dt*(if i>1 then  

      F(next_v[i-1]) else 0); 

  end for; 

       for i in 1:size(v, 1) loop  

         // Kernel  part: second kernel function 

    next_v[i]:=temp_v[i]+dt*(if i>1 then  

      F(temp_v[i-1]) else 0); 

  end for; 

end for; 

 

Automating the entire generation of time integration 
code from the model code would be a possibility for 

the future, by using synchronous partitions and 
specifying a solver method associated with the clock.  

3.4 For-expressions 

An alternative pattern to nested for-loops would be 
arrays assigned in for-expressions; it would simplify 

some of the assumptions below, but for performance 

reasons we would likely need to fuse the loops from 
multiple for-expressions. 

3.5 Assumptions for kernel code 

The assumptions on the inner code are (these could be 

automatically verified, but this is not yet included in 

the prototype): 

 All array indices are valid; based on the array 

sizes. 

 Any right-hand-side variable is not assigned in 

the inner code. (An exception can be made for 
scalar temporaries that are initialized in the 

inner code.) This explains why we need two 

arrays next_v and temp_v in the example 
above. 

 Each left-hand-side array element is only 

assigned once. 

 Currently only access to scalar variables, and 

scalar element of arrays in the right hand side, 

i.e. slices are not supported. 

4 Application examples 

4.1 Matrix Operations 

(Gebremedhin, et al., 2012) uses matrix multiplication 
as one bench mark example for an extension to 

Modelica called ParModelica which introduces special 

kernel function and parallel function declarations 
and special variable declaration prefixes to indicate 

what memory to use for the variables: parglobal, 

parlocal, etc. 
In our approach, such a matrix multiplication 

function can be coded in Modelica as follows. Note 
that the only new element compared to Modelica 

version 3.3 (Modelica, 2014) is the annotation. 

 
function Multiply 

  input Real A[:,:]; 

  input Real B[size(A,2),:]; 

  output Real C[size(A,1),size(B,2)]; 

protected  

  Real temp; 

algorithm  

  for i in 1:size(A,1) loop 

    for j in 1:size(B,2) loop 

      temp := 0; 

      for k in 1:size(A,2) loop 

        temp := temp + A[i, k]*B[k, j]; 

      end for; 

      C[i, j] := temp; 

    end for; 

  end for; 

  annotation(gpuFunction=true); 

end Multiply; 
 

It is translated to two functions. The kernel function 
which runs on the GPU is shown below: 
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#include <stddef.h> 
__global__ 
void Multiply_cuda( 
  double const * A, size_t Adim0,  
    size_t Adim1,  
  double const * B, size_t Bdim1,  
  double * C) 
{ 
  double temp; 
  temp=0; 
  int i = 1+threadIdx.x + 
    blockDim.x*blockIdx.x; 
  int j = 1+threadIdx.y + 
    blockDim.y*blockIdx.y; 
  if ((i<=Adim0) && (j<=Bdim1)) { 
    temp = 0; 
    { 
      int end_ = Adim1; 
      int k; 
      for(k = 1; k <= end_; k += 1) { 
        temp = temp +  
          A[(i-1)*Adim1+(k-1)] *  
          B[(k-1)*Bdim1+(j-1)]; 
      } 
    } 
    C[(i-1)*Bdim1+(j-1)] = temp; 
  } 
  return; 
} 
 

The other function runs on the CPU to allocate 
memory for the GPU, copy data to and from the GPU 

and to invoke the kernel function: 
 

extern "C"  
void Multiply( 
  double const * A, size_t Adim0,  
    size_t Adim1, 
  double const * B, size_t Bdim1,  
  double * C) 
{ 
  /* GPU Memory declaration */ 
  static double  * AGPU=0; 
  static size_t AGPUS=0; 
  size_t AGPUs; 
  static double  * BGPU=0; 
  static size_t BGPUS=0; 
  size_t BGPUs; 
  static double  * CGPU=0; 
  static size_t CGPUS=0; 
  size_t CGPUs; 
  /* GPU Memory size */ 
  AGPUs=Adim0*Adim1; 
  BGPUs=Adim1*Bdim1; 
  CGPUs=Adim0*Bdim1; 
 
  /* GPU Memory allocation */ 
  if (AGPU&&(AGPUS<AGPUs)) 
    {AGPUS=0; cudaFree(AGPU); AGPU=0;} 
  if (!AGPU)  
    {AGPUS=AGPUs;cudaMalloc((void**)&AGPU, 
      AGPUS*sizeof(double));} 
 
  if (BGPU&&(BGPUS<BGPUs)) 
    {BGPUS=0; cudaFree(BGPU); BGPU=0;} 
  if (!BGPU)  
    {BGPUS=BGPUs;cudaMalloc((void**)&BGPU, 

       BGPUS*sizeof(double));} 
 
  if (CGPU&&(CGPUS<CGPUs)) 
    {CGPUS=0;cudaFree(CGPU);CGPU=0;} 
  if (!CGPU) 
    {CGPUS=CGPUs;cudaMalloc((void**)&CGPU, 
      CGPUS*sizeof(double));} 
 
  /* GPU Memory copy to */ 
  cudaMemcpy(AGPU, A,AGPUs*sizeof(double), 
    cudaMemcpyHostToDevice); 
  cudaMemcpy(BGPU, B,BGPUs*sizeof(double), 
    cudaMemcpyHostToDevice); 
  cudaMemcpy(CGPU, C,CGPUs*sizeof(double), 
    cudaMemcpyHostToDevice); 
  /* Call GPU function */ 
  dim3 block=dim3(32, 32, 1); 
  dim3 grid=dim3((Adim0+31)/32, 
    (Bdim1+31)/32, 1); 
  GPUfunction_cuda<<<grid,block>>>(AGPU, 
    Adim0, Adim1,BGPU, Bdim1,CGPU); 
  /* GPU Memory copy from */ 
  cudaMemcpy(C, CGPU,CGPUs*sizeof(double), 
    cudaMemcpyDeviceToHost); 

} 

4.1.1 Timing 

Timing of the function Multiply for matrix 

multiplication was done for different sizes (n) of square 
matrices. Table 1 summarizes the execution times on 

CPU and on GPU and the speedup factor. 

 

Table 1: GPU Speed-up for matrix multiplication. The 

speedup values show the CPU/GPU time ratio. 

 

N CPU[s] GPU[s] Speedup 

50 0.000453 0.000438 1.03 

100 0.00362 0.0018 2.01 

200 0.0275 0.00996 2.76 

500 0.506 0.142 3.56 

1000 6.37 1.11 5.74 

 

Note that the CPU-performance for large matrices is 

sensitive to caches; which for n being a power of 2 can 
increase the CPU time by up to a factor of 3; the 

chosen dimensions avoid that effect. 

4.2 Cold Plate 

As a second application example, a cold-plate is 

modeled. These are, for instance, used to cool power-
electronics. The dissipated heat is transported away 

from the source by conduction and convection. In this 
two-dimensional example, a single fluid pipe is 

surrounded by two rectangular conducting plates. For 

the sake of clarity, we created a simple monolithic 
model that can mentally be split up into three kinds of 

cells: thermal conduction cells, fluid volume cells, and 
fluid flow cells. This is illustrated in Figure 1. 
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Figure 1: Illustration of a simple cold plate model, split 

up into thermal (T), fluid volume (V), and fluid flow (f)-

cells. 

 

Overall, the behavior of the cells is similar to models in 
the Modelica.Fluid and Modelica.Thermal. 

HeatTransfer domains. The number of cells in both 
dimensions is configurable, tuning the number of 

variables and states. In the thermal conduction cells, 

heat is stored and conducted to the four neighboring 
thermal cells or fluid volume cells. This is a slight 

simplification, as the resulting dynamic is anisotropic. 
In the fluid volume cells, balance equations for mass 

and energy are established. 

Fluid is transported between the volume cells by 
flow-cells. These calculate the mass flow based on the 

pressure values of the neighboring volume cells by the 
function Modelica.Fluid.Pipes.BaseClasses.Wall-

Friction.Detailed.massFlowRate_dp(). This calculation 

is quite involved and is therefore done in parallel by 
the GPU as shown in the following Modelica code, i.e. 

since the kernel function calls massFlowRate_dp, 

CUDA code is generated as a device function.  
 

function WallFriction 

  input Real dp[::]; 

  input Real d[size(dp,1)-1]; 

  input Real da; 

  input Real db; 

  input Real v[size(dp,1)-1]; 

  input Real va; 

  input Real vb; 

  input Real celllength; 

  input Real diameter; 

  input Real roughness; 

  input Real m_flow_small; 

  output Real m_flow[size(dp,1)]; 

algorithm  

  for i in 1:size(dp,1) loop 

    m_flow[i] := if i == 1 then  

      massFlowRate_dp(dp[1], da, d[1], 

        va, v[1], celllength, diameter, roughness, m_flow_small) 

    else if i == size(dp,1) then  

     massFlowRate_dp(dp[i], d[i-1], db, 

        v[nX], vb, celllength, diameter, roughness, m_flow_small) 

   else  

     massFlowRate_dp(dp[i], d[i-1], d[i],  

       v[i-1], v[i], celllength, diameter, roughness, m_flow_small); 

  end for; 

  annotation(gpuFunction=true); 

end WallFriction; 

 

As initial conditions, the temperature of all cells was 
set to 295K. A constant pressure gradient of 0.01bar 

was applied and the inlet temperature was set to 

373.15K, resulting in a heating transient. Since the 
fluid transport is rather stiff, a small step-size has to be 

applied when using the RK2 method for integration. 

 

Table 2: GPU Timing [s] and speed-up for cold plate 

model 

nx ny CPU GPU CPU/GPU 

256 256 17.2 12.1 1.42 

512 512 91.7 42.9 2.13 

500 200 26.0 18.1 1.43 

1000 100 28.6 20.2 1.41 

2000 200 103.0 65.2 1.57 

 

As a result of the parallelization, a speed-up by a factor 
of 2 was achieved in one case. Note, that the step size 
and simulated time are different for the different grids.  

The presented example only showed a very simple 

model of a cold plate with a straight flow of cooling 
liquid. Nevertheless, we think that the measured 

performance gains can be roughly transferred to more 

complex designs. 

4.3 Shallow Water 

For wave power plants or off-shore constructions such 
as wind-turbines and oil-platforms, as well as for free 

floating objects such as ships, the interaction with the 
water surface is a key component for system 

simulations. For this purpose, the shallow water 

equations represent a set of partial differential 
equations (PDEs) that enable an efficient 

approximation of the surface dynamics (Vreugdenhil, 

1994). The PDE for a 2D-surface in its simplest form is 
shown below: �ℎ�� = −�⁡ ቆ����� + ݕ���� ቇ 

 ����� = ⁡−��ℎ�� 

 ����� = ⁡−��ℎ�ݕ 

 

In this model, the velocity of the water flowing within 

the 2D surface is described by �� and⁡��. A gradient 
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(i.e. a difference between inflow and outflow) then 

causes the surface height ℎ to raise or fall. Spatial 

gradients in the surface height then cause a 

counteracting acceleration of the water flow. � and � 
are parameters of the model. H is chosen as L/4, where 

L is the length of the side of the surface area, and g is 
set to 9.81 m/s

2
 to model gravity realistically. 

The PDE is transformed into an ODE by discretizing 

the space using finite differences and a staggered grid 
for the velocity and surface height, as depicted in 

Figure 2. The resolution of this grid can be set by using 

the parameter n.  
 

 

Figure 2: A staggered grid: black points symbolize the 

height grid �. Blue represents �� and green ⁡�࢟. For a size 

of n, the grid contains in total 3n
2
+2n points. 

Using this discretization, the computation can be 

written in form of a GPU function that performs a loop 
over the staggered grid: 

 
function ShallowWater 

  input Real h[:,:]; 

  input Real vx[size(h, 1) + 1,size(h, 2)]; 

  input Real vy[size(h, 1),size(h, 2) + 1]; 

  input Real dx; 

  input Real L; 

  input Real g; 

  output Real der_h[size(h, 1),size(h, 2)]; 

  output Real der_vx[size(vx, 1),size(vx, 2)]; 

  output Real der_vy[size(vy, 1),size(vy, 2)]; 

protected  

  Real H=L/4; 

algorithm  

  for iy in 1:size(h, 2) loop 

    for ix in 1:size(h, 1) loop 

      der_h[ix, iy] := H*(vx[ix, iy] - vx[ix + 1, iy] +  

        vy[ix, iy] – vy[ix, iy +  1])/dx; 

      der_vx[ix, iy] := if ix > 1 then  

        g*(h[ix - 1, iy] – h[ix, iy])/dx else 0; 

      der_vy[ix, iy] := if iy > 1 then  

        g*(h[ix, iy - 1] –  h[ix, iy])/dx else 0; 

    end for; 

  end for; 

  annotation(gpuFunction=true); 

end ShallowWater; 

 

This Modelica function is then included in a complete 
Modelica model. This model also describes the 

boundary conditions (closed boundary with zero 

velocity) and the initial state (zero velocity with a 
surface height that forms a Gaussian bell curve in the 

center). In addition, the model generates data for 

visualization.  
The model can be simulated using, for example, a 

Runge-Kutta method of second order (RK2) with fixed 

step size of 40ms. Figure 3 shows the simulation result 

for n=64 after the Gaussian bell has “dropped” and 
created a typical circular wave front that grows until it 
is reflected at the boundaries. 

 

 

Figure 3: Dymola animation of a circular wave front in 

the shallow water model. 

 

Given its large number of states, the model is well-
suited for parallel computation on a GPU. On the other 

side, the actual computation of an element is relatively 

cheap in comparison to the required communication 
overhead with its neighbor cells.   

To improve performance, the time integration was 

performed directly on the GPU, using the explicit Euler 
method (using code similar to the previously described 

function integrateF). The states could then be sampled 
from the GPU memory at a desired rate. Table 3 

presents the results of our performance measurements. 

For larger models it becomes greater than a factor of 5. 
In the table, nSteps is the number of iterations between 

each sample, and the results shows how important it 
can be to avoid unnecessary copying.  

Table 3: GPU Speed-up for the shallow water simulation, 

using inlined integration. The values show the CPU/GPU 

time ratio. 

nSteps\n 32 64 128 256 

1 0.36 0.77 0.91 1.00 

10 0.46 0.94 1.19 1.42 

100 0.77 1.89 3.03 3.19 

1000 1.01 3.06 5.30 5.12 

1 2 n...
1

2

n

...

1 2 n n+1
1

2

n

n+1

Automatic GPU Code Generation of Modelica Functions

242 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118235



 
The values in the table show the CPU/GPU time ratio 

of the simulations. n is the number of cells in one 

dimension. The CPU simulations are made by the same 
Modelica code, doing inline integration on the CPU 

instead.  

Using GPU parallelization, PDEs for shallow water 
simulation can be better performed in combination 

with classic system simulation. In this way, the 
practical application range of Modelica can be 

extended. 

5 Conclusions 

Modelica models are getting more and more complex 

which means that simulations must be performed more 
efficiently. This paper demonstrates a technique to 

generate GPU code for Modelica functions in order to 
speed-up simulations by parallel execution on many 

GPU cores. No Modelica extensions are needed, only 

an annotation indicating that a certain function might 
be suited for execution on the GPU. 

In our prototype implementation, and using the GPU 
of a laptop, a speed-up of 5 could be achieved in some 

cases. 
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