
Automatic GPU Code Generation of Modelica Functions

Hilding Elmqvist1, Hans Olsson1, Axel Goteman1,2, Vilhelm Roxling1,2,

Dirk Zimmer3, Alexander Pollok3

1
Dassault Systemes, Lund, Sweden, {Hilding.Elmqvist, Hans.Olsson}@3ds.com

2
Lund Institute of Technology, Lund, Sweden, {axel.goteman, vilhelm.roxling}@gmail.com

3
Institute of System Dynamics and Control, DLR, Germany, {Dirk.Zimmer, Alexander.Pollok}@dlr.de

Abstract

Modelica users can and want to build more realistic
and complex models. This typically means slower

simulations. In the past, the speed of single CPUs has

increased significantly to partly compensate, but more
recently, there has been a shift to multi-core

architectures. This is taken to the extreme in Graphics
Processing Units (GPUs).

This paper discusses code generation for GPU cores.

This is important when the model has regular structure,
for example, discretization of PDEs. The behavior of

each cell can then be partly described by a function

call. The evaluation of such calls can then be made in
parallel on the GPU cores. The same function is thus

executed on every GPU core, but operates on different
data; the data of its cell.

Our GPU code generator automatically generates

code for Modelica functions, i.e. no additional
language constructs are needed. The function is just

annotated as suitable for execution on a GPU.

Keywords: Modelica functions, Multi-core, GPU, CFD

1 Introduction

Modelica users can and want to build more realistic

and complex models. This typically means slower

simulations. The speed of CPUs has of course
increased enormously to partly compensate. But now

it’s important to utilize the many cores available in
modern computer architectures.

The paper (Elmqvist, et al., 2014) presents an

algorithm for automatic partitioning of model
equations onto CPU cores. This technique is now

available in Dymola 2016 (Dassault Systemes, 2015).
This paper discusses code generation for GPU

(Graphics Processing Unit) cores. This is important

when the model has regular structure, for example,
discretization of PDEs. The behavior of each cell can

then be partly described by a function call. The

evaluation of such calls can then be made in parallel on
the GPU cores. The same function is thus executed on

every GPU core, but operates on different data; the

data of its cell.
We believe GPU code generation should be

transparent for the user. The user only needs to give a

hint that a certain function is suitable for GPU
execution. In addition to the simplification for the user,

it enables better portability of Modelica code, since if a
tool does not support GPU code generation, it can

simply ignore the annotation. The drawback might be

that the user does not have full control of how the GPU
and its memory are utilized; i.e. might not be able to

get optimal speed.

Another important advantage with automatic GPU
code generation is that built-in operators such as matrix

multiplication and overloaded operators can also
benefit. In addition, it allows reuse of normal Modelica

library functions and automatically generating GPU

code for them.
(Gebremedhin, et al., 2012) proposes an extension to

Modelica called ParModelica, which introduces special
kernel function and parallel function declarations

and special variable declaration prefixes to indicate

what memory to use for the variables: parglobal,

parlocal, etc.

The outline of this paper is as follows. First a

general introduction to GPU architecture and
programming is given. Then follows principles of

automatic GPU code generation from Modelica
functions. Finally several examples are presented.

The speed-up factor varies for the different problem

formulations. The best speed-up so far for this early
Dymola prototype is about 5 times. It should be noted

that this was achieved on a laptop with NVIDIA’s
Quadro K2100M GPU chip and an Intel Core i7-4800

MQ processor.

2 GPU Architectures and Programming

Models

In this section, a short introduction to GPU

architectures is made, bringing up some of the
fundamentals and the aspects that are considered most

important for this paper, concerning performance.

DOI
10.3384/ecp15118235

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

235

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/93751711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

After that follows a short introduction to CUDA, the
programming model used in this project, where some

more performance considerations are brought up,

ending with a hands-on example and some practical
details for the code generation. Some of the aspects are

directed to the user, to get an idea of the kind of code

that could be accelerated by the GPU, and some
aspects are rather for the auto generation.

A thorough introduction to the topics is made by
(Kirk, 2013) and (Goteman, et al., 2015).

2.1 GPU Architectures

The most fundamental difference between CPU’s and
GPU’s, is that the CPU’s are general purpose
processors, designed to perform well on sequential
code, whereas a GPU is designed to process massively

parallel tasks, only. The large cache memories and
control logics of a CPU are not provided for the cores

of a GPU. Instead, the manufacturers focus on putting

as many cores as possible on the chip, letting the
threads share cache and control logic between them. A

GPU today may have thousands of cores. That is

possible, since GPU’s only have to work on SIMD
(singe instruction, multiple data) instructions. That

means that, when feeding the GPU a task, that task is
the same for every thread. The only difference is which

data the task is to be performed on. Now, a task is often

a sequence of instructions that, as we will come to
later, in code is expressed as a function. This function

may contain e.g. an if-statement that causes divergence

in terms of execution among the threads. The reason
that threads may take different paths at such branching

points is that the conditions may depend on thread
specific data (such as position in a grid, temperature at

that position, etc.). We’ll come back to this in a bit.
A GPU is designed to process a large amount of

threads as fast as possible, and it is important to see the

distinction between that and to process every single

thread as fast as possible. The GPU is not supposed to

work on all threads at once, which generally is not

possible, as the number of cores is too low for it. It is
designed to have multiple times more threads loaded

into registers, than it can execute. This allows for

efficient thread scheduling, which means that
whenever a thread is idle because of a long latency

operation, such as a global memory access, the cores
can switch to work on other threads that are ready and

waiting for execution.

GPU’s are good at thread scheduling, but all time
spent on long latency operations cannot be hidden. To

fully utilize a GPU, you’ll want to let the cores work
with floating point operations as much as possible. And

even if today’s chips have a bandwidth to global
memory (RAM) of more than 200 GB/s, global
memory accesses has to be considered for good

performance. A good way to analyze this is to consider

the number of floating point operations per global

memory access for a thread, often called the CGMA
(Compute to Global Memory Access) ratio. It should

obviously be kept as high as possible. If it is too low,

there is no way to keep the cores busy, independently
how the threads are scheduled. That is because, if the

limited amount of data that can be delivered to the

cores per time unit is lower than the rate at which the
operations on the data can be executed, the data

transferring has become a limiting factor. So already
on a high level, as a user, it can be advantageous to

have the CGMA ratio-thinking in mind when

considering letting a function be computed on the
GPU.

The threads are partitioned on many levels, and this
partitioning can differ between different hardware

architectures. But most architecture has a lowest

partitioning level, at which the parts are called warps.
On warp level, no divisions between threads are made.

That means that if one thread in a warp has a long

latency operation (or just any operation, for that
matter) in an if-statement, but not the others, all threads

in the warp will have to wait for that one thread. But
the waiting is at least limited to the warp, which on

most current architectures consists of 32 threads. That

means that having if-statements does not necessarily
mean a big difference in performance. The divergence

can be organized to be minimized within warps, but as
it can be hard to know how warps are arranged, and

where the divergence will appear, divergent code

should generally be avoided.
The last, and most important, aspect to bring up, is

the process of transferring data between the CPU

memory and the GPU memory. It is the main
bottleneck of a GPU. The transfer speed is relatively

low, and the transfer is often related to a lot of
overhead work. That implies that there is no point to

send work to the GPU, unless there is a lot of it. So if it

is possible to avoid memory transfers of this kind, e.g.

by not repeatedly transferring constant data, it should

be done.

2.2 The NVIDIA CUDA Programming Model

CUDA is a parallel computing platform and

programming model invented by NVIDIA. In this
project, the extension CUDA C/C++ has been used,

making it possible to program CUDA enabled GPU’s
in a C/C++ environment, with a few extensions.

In CUDA, a function that should be executed, or

launched, in parallel is called a kernel. The kernel is
launched for a number of threads, which are divided

into blocks, creating a grid of blocks. The blocks are
the level on which threads are loaded to registers for

execution, meaning that when a block is loaded, it will

not unload before all its threads are executed. Thus
threads can only be synchronized within a block.

Synchronization here means putting points in the code

where the threads should wait and synchronize with

Automatic GPU Code Generation of Modelica Functions

236 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118235

other threads before continuing execution. Recall that
all threads are not executed at once.

Because all the threads in a block are loaded and

unloaded into registers at once, there are limitations on
the number of threads in a block. E.g. NVIDIA Quadro

K2100M, the chip used for most experiments in this

project, has a maximum block size of 1024 threads.
The blocks are executed on Streaming Multiprocessors

(SM’s), and an SM can usually accommodate a number
of blocks. It is on the SM level that warps are

scheduled for execution, and it is therefore important to

load as many threads as possible to each SM. On
K2100M, each SM can have a maximum of 2048

threads loaded at once, and there are three SM’s,
giving a total of 6144 thread slots. So in order to fully

utilize this chip, considering the scheduling of warps,

at least 6144 threads should be launched. It may be
interesting to know that each SM has 192 cores, giving

a total of 576 cores, which equals the number of

threads that can actually execute in parallel.
If all 6144 slots for threads are loaded during an

entire kernel execution, the kernel is said to have 100
% occupancy. Of course this rarely happens since some

blocks are bound to finish sooner than others. For good

performance, the occupancy should be kept as high as
possible, to allow for as much warp scheduling as

possible. If a kernel on K2100M would be launched
with blocks of 768 threads, the SM’s would still only
have place for two whole blocks, resulting in a lower

occupancy. Or if a kernel is complex, each thread may
require more registers, forcing down the number of

threads loaded into an SM, thus decreasing the

occupancy. There are more aspects that can affect the
occupancy, and it is definitely a term that is good to

know when considering GPU performance in general.

2.2.1 Example: vector addition

It may be of interest to see how all this could look in

practice. First a few notes about CUDA C/C++:
1.) Generally, when inside a kernel, i.e. when code

is executed on the GPU, no data that is not

allocated on GPU memory can be accessed.
2.) Built-in primitives such as int and float,

pointers, and structs can be copied to the GPU

as arguments to the kernel (without deep copy).
Large sets of data, like arrays, have to be copied

using some CUDA API function.
3.) A kernel’s return type must be of type void.
4.) A kernel may call other functions on the GPU,

called device functions.
5.) Only a subset of C/C++ is supported.

6.) Thrust is a C++ STL based library for CUDA.
 Two arrays can be added on the CPU in the

following function:

void vectorAddCPU(const double *a, size_t n,

 const double *b, double *c){

 for(size_t i=0; i<n; ++i){

 c[i] = a[i]+b[i];
}

}

It is clear that this is a very parallel task. n threads

could be launched, where each thread should have an

individual variable i in some way. The simplest way to
recognize that something is parallelizable is usually

when it is placed in a for-loop, or in nested for-loops,
and it does not depend on previous iterations. Below is

a kernel for vector addition:

__global__

void vectorAddGPU_kernel(const double *a, size_t n,
 const double *b, double *c){

 size_t i=threadIdx.x+ blockIdx.x*blockDim.x;

 if(i<n){
 c[i]=a[i]+b[i];

}

}

Note the keyword __global__ needed before the return
type. First the thread is identifying itself using the

thread specific variable threadIdx, the variable

blockDim, and the block specific variable blockIdx.
Those are variables of the simple type dim3, having

three members: x, y and z. This helps to arrange threads
according to your problem in up to three dimensions.

In this case the problem is obviously one dimensional.

The if-statement is needed to prevent memory access
violations in cases where more threads are launched

than needed. That is usually the case when many

blocks are launched, since all blocks have the same
size.

 However, some operations are needed to call the
kernel:

void vectorAddGPU(const double *a, size_t n, const

double *b, double *c){

 // Allocate GPU memory.
 double *a_d, *b_d, *c_d;

 cudaMalloc(&a_d, n*sizeof(double));

 cudaMalloc(&b_d, n*sizeof(double));
 cudaMalloc(&c_d, n*sizeof(double));

 // Copy a and b to GPU.
 cudaMemcpy(a_d, a, n*sizeof(double),

 cudaMemcpyHostToDevice);
 cudaMemcpy(b_d, b, n*sizeof(double),

 cudaMemcpyHostToDevice);

 // Define grid and block dimensions

 dim3 block = dim3(1024,1,1);

 dim3 grid = dim3((n+1023)/1024,1,1);

 // Launch kernel
 vectorAddGPU_kernel

Session 3C: Modelica Language & Compiler Implementation 1

DOI
10.3384/ecp15118235

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

237

 <<<grid,block>>>(a_d, n, b_d, c_d);

 // Copy result back to the CPU.

 cudaMemcpy(c, c_d, n*sizeof(double),
 cudaMemcpyDeviceToHost);

 // Free GPU memory
 cudaFree(a_d);

 cudaFree(b_d);
 cudaFree(c_d);

}

First memory is allocated on the GPU for the three

vectors, using the CUDA API function cudaMalloc().
Then a and b are copied to the allocated memory, using

the CUDA API function cudaMemcpy(). Then the
blocks and the grid are defined, and the kernel is

launched. Note the CUDA syntax to specify the kernel

launch settings. When the addition is completed on the
GPU, the result in c has to be copied back, again using

cudaMemcpy(). Last of all the GPU memory has to be
freed with the CUDA API function cudaFree().

3 GPU Code Generation

The basis for our code generator for Modelica

functions is that we recognize that specially marked

functions (annotation(gpuFunction=true)) satisfy
certain for-loop patterns, and for those functions

automatically generate GPU-code. The GPU-code
consist of a wrapper that allocates variables, copies

default values, executes the main body (automatically

calling generated CUDA kernel-functions), and then
copy back outputs. Any functions called in a kernel

function are mapped to device functions.

3.1 Variable allocations

All array variables of the function must either have

unknown size (only allowed for inputs), or a size given
as a simple arithmetic function of other sizes and

integer literals. The unknown array sizes are also
propagated to the kernel function. (For performance

reasons – and to catch errors – it is good to have as few

unknown sizes as possible.) The arrays are allocated on
the GPU and existing values copied to the GPU; this

allows non-input variables to be assigned a default

value in a binding expression. Protected arrays are
treated as outputs of the kernel function.

3.2 Loop patterns

The first pattern for the algorithm is that the entire

algorithm is a (possibly nested) for-loop with range
1:size(array, literal) and inside the loop any algorithmic

code satisfying certain assumptions. The code inside

the for loop(s) is mapped to a kernel function; and the
(nested) for-loop(s) are replaced by a parallel launch of

the kernel function – and checking the index in the
kernel function. As an example, consider the function:

function vectorAdd

 input Real a[:];

 input Real b[size(a,1)];

 output Real c[size(a,1)];

algorithm

 for i in 1:size(a,1) loop

 // Kernel part

 c[i]:=a[i]+b[i];

 end for;

 annotation(gpuFunction=true);

end vectorAdd;

This Modelica function is translated to the previously

given vectorAddGPU and vectorAddGPU_kernel code.

3.3 Time integration on the GPU

The second pattern (intended to handle time-integration

on the GPU) is a for-loop (with arbitrary index) that
contains one or more instances of the first pattern. Each

instance of the first pattern is then mapped to a kernel
function and called at the appropriate place. The rest of

the body may contain assignments; and any array

assignment is mapped to a device-to-device copy. The
main benefit of this pattern is that we do not need to

copy back outputs from the GPU until the end of the

function, and device-to-device copy is normally a lot
faster.

As an example, consider the following partial
differential equation with v(0,0)=0:

 ��ሺ�, �ሻ�� = �(�ሺ�, �ሻ)��ሺ�, �ሻ�� = �ሺ�, �ሻ

One way of solving such PDEs is to discretize in the x
direction and use an ODE solver for the resulting

equations. However, fine grained spatial discretization
requires short time increments and it might then be

better to use a fixed step size Euler method for time

integration.
The function IntegrateF below implements such a

solution.

function IntegrateF

 input Real v[:];

 output Real next_v[size(v,1)]:=v;

 input Real dt;

 input Integer nSteps;

protected

 Real temp_v[size(v,1)];

algorithm

 // Loop in wrapper-code

 for step in 1:nSteps loop

 // Handled using device-to-device copy:

 temp_v:=next_v;

 for i in 1:size(v, 1) loop

Automatic GPU Code Generation of Modelica Functions

238 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118235

 // Kernel part

 next_v[i]:=temp_v[i]+dt*(if i>1 then

 F(temp_v[i-1]) else 0);

 end for;

end for;

end IntegrateF;

For the function IntegrateF the main code is similar to

vectorAddGPU. The difference is that the called GPU

function part is replaced by a loop as follows:

dim3 block0=dim3(1024, 1, 1);
dim3 grid0=dim3((x0_0dim0+1023)/1024,1,1);
 {
 int st;
 for(st=1; st<=nSteps; st+=1) {
 cudaMemcpy(tem_vGPU, next_vGPU,
 temp_vGPUs*sizeof(double),
 cudaMemcpyDeviceToDevice);
 IntegrateFcuda<<<grid0,block0>>>(
 vGPU, vdim0,next_vGPU,
 dt,nSteps, temp_vGPU);
 }
 }

i.e. the time integration loop is executed on the CPU.
There is synchronization between each iteration, i.e. all

launched kernel calls must have completed. Note that
the statement temp_v:=next_v is translated to a copy

call on the GPU memory.
The copying can be avoided by swapping arguments

to the kernel calls. It is possible to manually avoid it

(note: next_v is initialized to v) – assuming an even
number of steps:

algorithm

 // Loop in wrapper-code

 for step in 1:2:nSteps loop

 for i in 1:size(v, 1) loop

 // Kernel part: first kernel function

 temp_v[i]:=next_v[i]+dt*(if i>1 then

 F(next_v[i-1]) else 0);

 end for;

 for i in 1:size(v, 1) loop

 // Kernel part: second kernel function

 next_v[i]:=temp_v[i]+dt*(if i>1 then

 F(temp_v[i-1]) else 0);

 end for;

end for;

Automating the entire generation of time integration
code from the model code would be a possibility for

the future, by using synchronous partitions and
specifying a solver method associated with the clock.

3.4 For-expressions

An alternative pattern to nested for-loops would be
arrays assigned in for-expressions; it would simplify

some of the assumptions below, but for performance

reasons we would likely need to fuse the loops from
multiple for-expressions.

3.5 Assumptions for kernel code

The assumptions on the inner code are (these could be

automatically verified, but this is not yet included in

the prototype):

 All array indices are valid; based on the array

sizes.

 Any right-hand-side variable is not assigned in

the inner code. (An exception can be made for
scalar temporaries that are initialized in the

inner code.) This explains why we need two

arrays next_v and temp_v in the example
above.

 Each left-hand-side array element is only

assigned once.

 Currently only access to scalar variables, and

scalar element of arrays in the right hand side,

i.e. slices are not supported.

4 Application examples

4.1 Matrix Operations

(Gebremedhin, et al., 2012) uses matrix multiplication
as one bench mark example for an extension to

Modelica called ParModelica which introduces special

kernel function and parallel function declarations
and special variable declaration prefixes to indicate

what memory to use for the variables: parglobal,

parlocal, etc.
In our approach, such a matrix multiplication

function can be coded in Modelica as follows. Note
that the only new element compared to Modelica

version 3.3 (Modelica, 2014) is the annotation.

function Multiply

 input Real A[:,:];

 input Real B[size(A,2),:];

 output Real C[size(A,1),size(B,2)];

protected

 Real temp;

algorithm

 for i in 1:size(A,1) loop

 for j in 1:size(B,2) loop

 temp := 0;

 for k in 1:size(A,2) loop

 temp := temp + A[i, k]*B[k, j];

 end for;

 C[i, j] := temp;

 end for;

 end for;

 annotation(gpuFunction=true);

end Multiply;

It is translated to two functions. The kernel function
which runs on the GPU is shown below:

Session 3C: Modelica Language & Compiler Implementation 1

DOI
10.3384/ecp15118235

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

239

#include <stddef.h>
__global__
void Multiply_cuda(
 double const * A, size_t Adim0,
 size_t Adim1,
 double const * B, size_t Bdim1,
 double * C)
{
 double temp;
 temp=0;
 int i = 1+threadIdx.x +
 blockDim.x*blockIdx.x;
 int j = 1+threadIdx.y +
 blockDim.y*blockIdx.y;
 if ((i<=Adim0) && (j<=Bdim1)) {
 temp = 0;
 {
 int end_ = Adim1;
 int k;
 for(k = 1; k <= end_; k += 1) {
 temp = temp +
 A[(i-1)*Adim1+(k-1)] *
 B[(k-1)*Bdim1+(j-1)];
 }
 }
 C[(i-1)*Bdim1+(j-1)] = temp;
 }
 return;
}

The other function runs on the CPU to allocate
memory for the GPU, copy data to and from the GPU

and to invoke the kernel function:

extern "C"
void Multiply(
 double const * A, size_t Adim0,
 size_t Adim1,
 double const * B, size_t Bdim1,
 double * C)
{
 /* GPU Memory declaration */
 static double * AGPU=0;
 static size_t AGPUS=0;
 size_t AGPUs;
 static double * BGPU=0;
 static size_t BGPUS=0;
 size_t BGPUs;
 static double * CGPU=0;
 static size_t CGPUS=0;
 size_t CGPUs;
 /* GPU Memory size */
 AGPUs=Adim0*Adim1;
 BGPUs=Adim1*Bdim1;
 CGPUs=Adim0*Bdim1;

 /* GPU Memory allocation */
 if (AGPU&&(AGPUS<AGPUs))
 {AGPUS=0; cudaFree(AGPU); AGPU=0;}
 if (!AGPU)
 {AGPUS=AGPUs;cudaMalloc((void**)&AGPU,
 AGPUS*sizeof(double));}

 if (BGPU&&(BGPUS<BGPUs))
 {BGPUS=0; cudaFree(BGPU); BGPU=0;}
 if (!BGPU)
 {BGPUS=BGPUs;cudaMalloc((void**)&BGPU,

 BGPUS*sizeof(double));}

 if (CGPU&&(CGPUS<CGPUs))
 {CGPUS=0;cudaFree(CGPU);CGPU=0;}
 if (!CGPU)
 {CGPUS=CGPUs;cudaMalloc((void**)&CGPU,
 CGPUS*sizeof(double));}

 /* GPU Memory copy to */
 cudaMemcpy(AGPU, A,AGPUs*sizeof(double),
 cudaMemcpyHostToDevice);
 cudaMemcpy(BGPU, B,BGPUs*sizeof(double),
 cudaMemcpyHostToDevice);
 cudaMemcpy(CGPU, C,CGPUs*sizeof(double),
 cudaMemcpyHostToDevice);
 /* Call GPU function */
 dim3 block=dim3(32, 32, 1);
 dim3 grid=dim3((Adim0+31)/32,
 (Bdim1+31)/32, 1);
 GPUfunction_cuda<<<grid,block>>>(AGPU,
 Adim0, Adim1,BGPU, Bdim1,CGPU);
 /* GPU Memory copy from */
 cudaMemcpy(C, CGPU,CGPUs*sizeof(double),
 cudaMemcpyDeviceToHost);

}

4.1.1 Timing

Timing of the function Multiply for matrix

multiplication was done for different sizes (n) of square
matrices. Table 1 summarizes the execution times on

CPU and on GPU and the speedup factor.

Table 1: GPU Speed-up for matrix multiplication. The

speedup values show the CPU/GPU time ratio.

N CPU[s] GPU[s] Speedup

50 0.000453 0.000438 1.03

100 0.00362 0.0018 2.01

200 0.0275 0.00996 2.76

500 0.506 0.142 3.56

1000 6.37 1.11 5.74

Note that the CPU-performance for large matrices is

sensitive to caches; which for n being a power of 2 can
increase the CPU time by up to a factor of 3; the

chosen dimensions avoid that effect.

4.2 Cold Plate

As a second application example, a cold-plate is

modeled. These are, for instance, used to cool power-
electronics. The dissipated heat is transported away

from the source by conduction and convection. In this
two-dimensional example, a single fluid pipe is

surrounded by two rectangular conducting plates. For

the sake of clarity, we created a simple monolithic
model that can mentally be split up into three kinds of

cells: thermal conduction cells, fluid volume cells, and
fluid flow cells. This is illustrated in Figure 1.

Automatic GPU Code Generation of Modelica Functions

240 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118235

Figure 1: Illustration of a simple cold plate model, split

up into thermal (T), fluid volume (V), and fluid flow (f)-

cells.

Overall, the behavior of the cells is similar to models in
the Modelica.Fluid and Modelica.Thermal.

HeatTransfer domains. The number of cells in both
dimensions is configurable, tuning the number of

variables and states. In the thermal conduction cells,

heat is stored and conducted to the four neighboring
thermal cells or fluid volume cells. This is a slight

simplification, as the resulting dynamic is anisotropic.
In the fluid volume cells, balance equations for mass

and energy are established.

Fluid is transported between the volume cells by
flow-cells. These calculate the mass flow based on the

pressure values of the neighboring volume cells by the
function Modelica.Fluid.Pipes.BaseClasses.Wall-

Friction.Detailed.massFlowRate_dp(). This calculation

is quite involved and is therefore done in parallel by
the GPU as shown in the following Modelica code, i.e.

since the kernel function calls massFlowRate_dp,

CUDA code is generated as a device function.

function WallFriction

 input Real dp[::];

 input Real d[size(dp,1)-1];

 input Real da;

 input Real db;

 input Real v[size(dp,1)-1];

 input Real va;

 input Real vb;

 input Real celllength;

 input Real diameter;

 input Real roughness;

 input Real m_flow_small;

 output Real m_flow[size(dp,1)];

algorithm

 for i in 1:size(dp,1) loop

 m_flow[i] := if i == 1 then

 massFlowRate_dp(dp[1], da, d[1],

 va, v[1], celllength, diameter, roughness, m_flow_small)

 else if i == size(dp,1) then

 massFlowRate_dp(dp[i], d[i-1], db,

 v[nX], vb, celllength, diameter, roughness, m_flow_small)

 else

 massFlowRate_dp(dp[i], d[i-1], d[i],

 v[i-1], v[i], celllength, diameter, roughness, m_flow_small);

 end for;

 annotation(gpuFunction=true);

end WallFriction;

As initial conditions, the temperature of all cells was
set to 295K. A constant pressure gradient of 0.01bar

was applied and the inlet temperature was set to

373.15K, resulting in a heating transient. Since the
fluid transport is rather stiff, a small step-size has to be

applied when using the RK2 method for integration.

Table 2: GPU Timing [s] and speed-up for cold plate

model

nx ny CPU GPU CPU/GPU

256 256 17.2 12.1 1.42

512 512 91.7 42.9 2.13

500 200 26.0 18.1 1.43

1000 100 28.6 20.2 1.41

2000 200 103.0 65.2 1.57

As a result of the parallelization, a speed-up by a factor
of 2 was achieved in one case. Note, that the step size
and simulated time are different for the different grids.

The presented example only showed a very simple

model of a cold plate with a straight flow of cooling
liquid. Nevertheless, we think that the measured

performance gains can be roughly transferred to more

complex designs.

4.3 Shallow Water

For wave power plants or off-shore constructions such
as wind-turbines and oil-platforms, as well as for free

floating objects such as ships, the interaction with the
water surface is a key component for system

simulations. For this purpose, the shallow water

equations represent a set of partial differential
equations (PDEs) that enable an efficient

approximation of the surface dynamics (Vreugdenhil,

1994). The PDE for a 2D-surface in its simplest form is
shown below: �ℎ�� = −�⁡ ቆ����� + ݕ���� ቇ

 ����� = ⁡−��ℎ��

 ����� = ⁡−��ℎ�ݕ

In this model, the velocity of the water flowing within

the 2D surface is described by �� and⁡��. A gradient

Session 3C: Modelica Language & Compiler Implementation 1

DOI
10.3384/ecp15118235

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

241

(i.e. a difference between inflow and outflow) then

causes the surface height ℎ to raise or fall. Spatial

gradients in the surface height then cause a

counteracting acceleration of the water flow. � and �
are parameters of the model. H is chosen as L/4, where

L is the length of the side of the surface area, and g is
set to 9.81 m/s

2
 to model gravity realistically.

The PDE is transformed into an ODE by discretizing

the space using finite differences and a staggered grid
for the velocity and surface height, as depicted in

Figure 2. The resolution of this grid can be set by using

the parameter n.

Figure 2: A staggered grid: black points symbolize the

height grid �. Blue represents �� and green ⁡�࢟. For a size

of n, the grid contains in total 3n
2
+2n points.

Using this discretization, the computation can be

written in form of a GPU function that performs a loop
over the staggered grid:

function ShallowWater

 input Real h[:,:];

 input Real vx[size(h, 1) + 1,size(h, 2)];

 input Real vy[size(h, 1),size(h, 2) + 1];

 input Real dx;

 input Real L;

 input Real g;

 output Real der_h[size(h, 1),size(h, 2)];

 output Real der_vx[size(vx, 1),size(vx, 2)];

 output Real der_vy[size(vy, 1),size(vy, 2)];

protected

 Real H=L/4;

algorithm

 for iy in 1:size(h, 2) loop

 for ix in 1:size(h, 1) loop

 der_h[ix, iy] := H*(vx[ix, iy] - vx[ix + 1, iy] +

 vy[ix, iy] – vy[ix, iy + 1])/dx;

 der_vx[ix, iy] := if ix > 1 then

 g*(h[ix - 1, iy] – h[ix, iy])/dx else 0;

 der_vy[ix, iy] := if iy > 1 then

 g*(h[ix, iy - 1] – h[ix, iy])/dx else 0;

 end for;

 end for;

 annotation(gpuFunction=true);

end ShallowWater;

This Modelica function is then included in a complete
Modelica model. This model also describes the

boundary conditions (closed boundary with zero

velocity) and the initial state (zero velocity with a
surface height that forms a Gaussian bell curve in the

center). In addition, the model generates data for

visualization.
The model can be simulated using, for example, a

Runge-Kutta method of second order (RK2) with fixed

step size of 40ms. Figure 3 shows the simulation result

for n=64 after the Gaussian bell has “dropped” and
created a typical circular wave front that grows until it
is reflected at the boundaries.

Figure 3: Dymola animation of a circular wave front in

the shallow water model.

Given its large number of states, the model is well-
suited for parallel computation on a GPU. On the other

side, the actual computation of an element is relatively

cheap in comparison to the required communication
overhead with its neighbor cells.

To improve performance, the time integration was

performed directly on the GPU, using the explicit Euler
method (using code similar to the previously described

function integrateF). The states could then be sampled
from the GPU memory at a desired rate. Table 3

presents the results of our performance measurements.

For larger models it becomes greater than a factor of 5.
In the table, nSteps is the number of iterations between

each sample, and the results shows how important it
can be to avoid unnecessary copying.

Table 3: GPU Speed-up for the shallow water simulation,

using inlined integration. The values show the CPU/GPU

time ratio.

nSteps\n 32 64 128 256

1 0.36 0.77 0.91 1.00

10 0.46 0.94 1.19 1.42

100 0.77 1.89 3.03 3.19

1000 1.01 3.06 5.30 5.12

1 2 n...
1

2

n

...

1 2 n n+1
1

2

n

n+1

Automatic GPU Code Generation of Modelica Functions

242 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118235

The values in the table show the CPU/GPU time ratio

of the simulations. n is the number of cells in one

dimension. The CPU simulations are made by the same
Modelica code, doing inline integration on the CPU

instead.

Using GPU parallelization, PDEs for shallow water
simulation can be better performed in combination

with classic system simulation. In this way, the
practical application range of Modelica can be

extended.

5 Conclusions

Modelica models are getting more and more complex

which means that simulations must be performed more
efficiently. This paper demonstrates a technique to

generate GPU code for Modelica functions in order to
speed-up simulations by parallel execution on many

GPU cores. No Modelica extensions are needed, only

an annotation indicating that a certain function might
be suited for execution on the GPU.

In our prototype implementation, and using the GPU
of a laptop, a speed-up of 5 could be achieved in some

cases.

Acknowledgements

This work has partly been performed as a master thesis
project at Lund Institute of Technology. The first

author served as an industrial advisor and Michael
Doggett as the formal supervisor.

This paper is partly based on research performed
within the ITEA2 project MODRIO. Partial financial

support of the Swedish VINNOVA is highly

appreciated.
Helpful discussions with Sven Erik Mattsson are

appreciated. The cold plate model originated from

input of Daniel Bender.

References

Dassault Systèmes (2015): Dymola 2016.

http://www.Dymola.com

Elmqvist H., Mattsson S.E., Olsson H. (2014): Parallel

Model Execution on Many Cores. Proceedings of the 10th

International Modelica Conference March 10-12, 2014,

Lund, Sweden.

Gebremedhin M., Hemmati Moghadam A., Fritzson F.,

Stavåker K. (2012): A Data-Parallel Algorithmic Modelica

Extension for Efficient Execution on Multi-Core

Platforms. Proceedings 9th Modelica Conference, Munich,

Germany, September 3-5, pp. 393-404. Download:

http://www.ep.liu.se/ecp/076/041/ecp12076041.pdf

Goteman A., Roxling V. (2015): GPU Usage for Parallel

Funcions and Contacts in Modelica, master’s thesis Lund
Institute of Technology, Lund, Sweden. (To be published)

Kirk D.B., Hwu W. (2013): Programming Massively Parallel

Processors, 2nd edition.

Modelica (2014): Modelica, A Unified Object-Oriented

Language for Systems Modeling.

Language Specification, Version 3.3, Revision 1, June 11,

2014.

https://www.modelica.org/documents/ModelicaSpec33Rev

ision1.pdf

Vreugdenhil C.B. (1994), Numerical Methods for Shallow-

Water Flow, Kluwer Academic Publishers, ISBN

0792331648

Session 3C: Modelica Language & Compiler Implementation 1

DOI
10.3384/ecp15118235

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

243

