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Abstract— We consider a power capacity optimization prob-
lem where a consumer has to decide the amount of electrical
power capacity to purchase for the following year, which
includes an amount that is constant over the year (yearly capac-
ity), and an additional surplus per month (monthly capacity).
The cost per power unit of the yearly capacity is lower than that
of the monthly capacity. A high violation cost is paid when the
actual power consumption in a month exceeds the pre-allocated
capacity. Given that future power consumption is uncertain,
we propose a solution that consists in the minimization of
the average expected cost, which includes also the violation
costs. By replacing the average with its empirical mean, we
can compute an approximate solution to the original problem
with a pre-defined level of accuracy by extracting a sufficiently
large number of power consumption realizations, which is here
set via the uniform convergence of empirical means theory.
Extractions are obtained based on a stochastic model that is
built from available historical data. The effectiveness of the
approach is shown on a real case study.

I. INTRODUCTION

Many EU states have established the Capacity Remunera-
tion Mechanisms (CRMs) in their electricity markets. These
mechanisms aim to ensure that the electricity system has
sufficient capacity available to meet the electricity demand
at all times, and they depend on medium- to long-term
projections of peak demand and the long-term projection
of supply. Reducing peak electricity usage and limiting the
necessity of expensive marginal capacity plans has long been
a goal of the power sector [1], [2].
Capacity includes generation and other energy supply
sources such as storage or demand response [3]. Efforts to
try to encourage demand-side response are growing, see for
example [4]. Tariff-based economic instruments tend to be
the dominant approach to demand response in the residential
sector [5], and incentive-based approaches are used in the
commercial sector, particularly in US [3]. Further capacity
remuneration mechanisms have been devised [6].

To allow the electrical energy providers to efficiently
schedule their production – possibly keeping part of their
generation capacity (power plants) in reserve so as to com-
pensare demand peaks, if needed, and ensure stability of
the electrical system – big consumers, such as factories,
hospitals, sport facilities, shopping malls, business buildings,
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are requested to set their capacity reservation each year
for the next year. This is the so-called electrical power
capacity optimization problem. In this paper, we focus on
one particular mechanism that is used in the Czech Republic.
The capacity reservation for a customer is defined on a
monthly basis and consists of the purchase of a yearly base
capacity and a monthly extra capacity. A penalty price is
applied when such reserved maximum capacity is exceeded.
The usual practice is that the energy specialist responsible
for power capacity optimization tends to purchase a higher
reserved capacity than needed in order to avoid any penalty.
This, however, may result in a costly solution, especially
if looking at a long term horizon. The problem is that
future power consumption can only be estimated, and the
expected violation of the capacity reservation should be
appropriately accounted for when deciding the yearly and
monthly capacities.

In this work we propose a solution that consists in the
minimization of the average expected cost, which includes
the planned yearly and monthly capacity costs, as well as
the uncertain costs due to violation. Given that such an
average cost function cannot be computed exactly, we adopt
an approximate solution by replacing the average with its
empirical mean. By using results from statistical learning
theory [7] and, in particular, the uniform convergence of
empirical means, we provide an estimate N of the number
of stochastic realizations of the yearly power consumption
that are needed to get a solution with a cost that is close to
the optimal one of a certain a-priori defined amount. Since
N is large, we propose to build first a stochastic model from
historical data via a functional data analysis approach, [8],
and then extract from it the N future consumption profiles.

II. PROBLEM FORMULATION AND PROPOSED SOLUTION

We consider a scenario in which, at the end of every year,
(medium-big) customers must provide its monthly maximum
electrical power consumption profile for the next year to the
electrical grid operator (or to the electricity provider), so
that he can efficiently schedule his production plants. The
consumption profile that each customer needs to provide
is a twelve months profile composed of two contribution:
a minimum electrical power capacity xy throughout the
year and a monthly additional capacity xm, where m ∈
{1, . . . , 12} denotes the month of the year.

The cost of buying the total electrical power capacity xy+
xm for month m is given by cyxy+cmxm, where cm > cy >
0 for all m = 1, . . . , 12 (note that cm′ is not necessarily
equal to cm for m′ 6= m). If the customer maximum power
consumption Qm is higher than the allocated power capacity
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xy + xm, then the customer will incur an additional cost

v(xy, xm, Qm) = γ[Qm − xy − xm]+, (1)

in the bill of month m, where [ · ]+ = max{0, ·} and γ is the
unitary cost for the non-allotted power consumption, which
satisfies γ � cm > cy for all m = 1, . . . , 12. The customer
overall power capacity allocation cost is then given by

12∑
m=1

(
cyxy + cmxm + v(xy, xm, Qm)

)
. (2)

If the monthly maximum power consumption Qm is known
in advance, then, the power allocation problem that each
customer needs to solve consists in choosing xy and xm,
m = 1, . . . , 12, so as to minimize the overall cost (2), i.e.:

min
xy,{xm}12m=1

12∑
m=1

(
cyxy + cmxm + v(xy, xm, Qm)

)
(3)

subject to: xy, xm ≥ 0, m = 1, . . . , 12.

Substituting (1) in (2), one can see that the cost function
(2) is non-linear but still convex, which means that problem
(3) can be efficiently solved. Furthermore, by introducing
additional variables hm, m = 1, . . . , 12, problem (3) can be
reformulated as

min
xy,{xm,hm}12m=1

12∑
m=1

(
cyxy + cmxm

)
+ γ

12∑
m=1

hm (4)

subject to: Qm − xy − xm ≤ hm
xy, xm, hm ≥ 0

m = 1, . . . , 12

which is a linear program.
Taking a closer look at problem (4), one can notice that

xm ≥ and hm ≥ 0 have the same role in the constraint
Qm−xy−xm ≤ hm. However, hm has a higher contribution
than xm in the cost function since γ > cm. Therefore, hm,
m = 1, . . . , 12, will be set to zero when solving problem
(4), that is then equivalent to

min
xy,{xm}12m=1

12∑
m=1

(cyxy + cmxm) (5)

subject to: Qm − xy − xm ≤ 0

xy, xm ≥ 0

m = 1, . . . , 12.

Figure 1 represents a solution to (5) obtained by setting
Qm equal to the maximum power consumption experienced
by some customer in month m of year 2014, and then solving
problem (5) to compute xy and xm for the forthcoming year.

Although this seems a sensible solution, it completely fails
to capture the uncertain nature of the power consumptions
Qm, m = 1, . . . , 12, and therefore it cannot provide any
guarantees about how much will the customer actually pay
for the electricity the next year.

Indeed, Qm appearing in problem (3) is an uncertain quan-
tity and hence problem (3) is ill-posed. If we now suppose
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Fig. 1. Power consumption profile experienced during the year 2014 by
some costumer (blue line) and optimal values of xy (dashed line) and xm
(colored solid lines) for problem (5) when Qm is set equal to the maximum
of the blue line within month m. Data are sampled every 15 minutes.

that the power consumption profiles are stochastic, we can
take into account the uncertainty on Qm by considering the
average of the cost in (3), which leads to the following
optimization program

min
xy,{xm}12m=1

C +

12∑
m=1

E[v(xy, xm, Qm)] (6)

subject to: xy, xm ≥ 0, m = 1, . . . , 12,

where we set C =
∑12
m=1

(
cyxy + cmxm

)
.

Problem (6) cannot be solved exactly when the probability
distribution of Qm is not known. And even in the case
when it is known, obtaining an analytical description of
E[v(xy, xm, Qm)] as a function of xy and xm is generally
not trivial. In this paper we propose to use extractions of
Qm to approximate E[v(xy, xm, Qm)] up to a desired level
of accuracy. Specifically, we consider the following sample
program

min
xy,{xm}12m=1

C +

12∑
m=1

1

N

N∑
i=1

v(xy, xm, Q
(i)
m ) (7)

subject to: xy, xm ≥ 0, m = 1, . . . , 12,

where Q(1)
m , . . . , Q

(N)
m are N independent samples of Qm,

m = 1, . . . , 12.
Let J(x) with x = [xy x1 · · · x12]> denote the cost

function of (6) and let x? and x̂? be the solutions to (6) and
(7), respectively.

Sampling methods for estimating the mean of a function
of a random quantity are very well-known and popular in
the engineering practice. Note that E[v(xy, xm, Qm)] that
we are estimating depends on the variables xy and xm that
we want to optimize. We then need a uniformly convergent
approximation of E[v(xy, xm, Qm)] to obtain a solution x̂?

whose cost J(x̂?) is close to the optimal cost J(x?).
Resorting on the notion of uniform convergence of empir-

ical mean we can state the following result.
Theorem 1: Select ε ∈ (0, e/(2 log2 e)) and a confidence

parameter δ ∈ (0, 1). If N is set so as to satisfy

N ≥ 4608

ε2

[
ln

96

δ
+ d ln

192e

ε
+ d ln ln

192e

ε

]
(8)



with d = 4 log2(4e), then

P
{
{Q(i)

m }
Nm
i=1 : J(x̂?) < J(x?) + 2εγQ

}
≥ 1− δ, (9)

where Q ∈ R is such that Qm ≤ Q for all m = 1, . . . , 12.

Theorem 1 ensures that, if the number of realization is
appropriate, then the average cost that the customer will pay
applying x̂? will not exceed the optimal one by more than
a 2εγQ amount, with a certain confidence 1 − δ. Note that
both the quality of the results and the confidence level are
design parameters that can be arbitrarily set. The higher is the
required accuracy and confidence (low ε and δ), the larger
will be N . In particular, N scales logarithmically with δ
which can be set small enough (say δ = 10−6) so as to
make the statement on the accuracy practically deterministic
without increasing too much N .

III. PROOF OF THEOREM 1

Knowing that Qm ≤ Q and by the positivity constraints
in (6), we can safely assume (xy, xm) ∈ X = [0,Q]2 for all
m = 1, . . . , 12. Denote as

Fm =

{
fm : fm(Qm) =

v(xy, xm, Qm)

γQ

}
(xy,xm)∈X

(10)

the family of functions for which we want to construct an
approximation of E[fm(Qm)] by sampling. Note that, by
definition, fm : [0,Q] → [0, 1]. Let Q(i)

m , i = 1, . . . , Nm be
independent samples extracted from the distribution of Qm
and define

ÊNm
[fm] =

1

Nm

Nm∑
i=1

fm(Q(i)
m ) (11)

the sample counterpart of E[fm(Qm)]. The family Fm is said
to have the property of Uniform Convergence of Empirical
Means (UCEM) to their true values if, for any ε > 0,

P

{
{Q(i)

m }
Nm
i=1 : sup

fm∈Fm

∣∣∣ÊNm
[fm]− E[fm(Qm)]

∣∣∣ > ε

}
(12)

tends to 0 as Nm →∞. This is indeed the case if the family
of functions Fm has finite Pollard-dimension, [7]. In fact,
for any ε < e/(2 log2 e), (12) can be upper bounded by

8

(
16e

ε
ln

16e

ε

)d
e−Nmε

2/32, (13)

where d is the Pollard-dimension of Fm, [7]. Note that the
result holds irrespectively of the distribution of Qm. The
problem then boils down to find the Pollard-dimension of
Fm. To this purpose, we need to associate to Fm a collection
Gm of indicator functions. Let c ∈ [0, 1] and define the
function

τm(Qm, c, xy, xm) =
Qm − xy − xm

Q
− c, (14)

the set

Am = {(Qm, c, xy, xm) : τm(Qm, c, xy, xm) ≥ 0}, (15)

and the family

Gm = {IAm
(Qm, c, xy, xm)}(xy,xm)∈X , (16)

IAm
(·) being the indicator function on the set Am. Moreover,

Gm can be equivalently described as

Gm = {H(fm(Qm)− c)}fm∈Fm
, (17)

H(z) being the Heaviside function, i.e. H(z) = 1 when
z ≥ 0 and H(z) = 0 otherwise. To see the equivalence
between (16) and (17) it suffice to notice that

H(fm(Qm)− c) = 1 ⇐⇒ fm(Qm) ≥ c

⇐⇒ [Qm − xy − xm]+
Q

≥ c

⇐⇒ Qm − xy − xm
Q

≥ c

⇐⇒ τm(Qm, c, xy, xm) ≥ 0

⇐⇒ IAm(Qm, c, xy, xm) = 1,

where the second implication is due to the definitions of
fm(Qm) and v(Qm, xy, xm) in (10) and (1), respectively, the
third implication is due to the fact that c ≥ 0, and the fourth
and fifth implications come from (14) and (15), respectively.

Thanks to [7, Lemma 10.1] we can link the Pollard-
dimension of Fm with the Vapnik Chervonenskis (VC)-
dimension of Gm as expressed in (17). Moreover, from [9],
[10] we know that the VC-dimension of Gm as expressed in
(16) is upper bounded by 4 log2(4e). Therefore (12) can be
upper bounded as

8

(
16e

ε
ln

16e

ε

)4 log2(4e)

e−Nmε
2/32. (18)

Equation (18) ensures that (12) tends to 0 as Nm → ∞
for one month m. To get a relative error smaller than ε for
E
[∑12

m=1 v(xy, xm, Qm)
]
, which is the quantity appearing

in our cost function in (6), we need to consider the following
chain of inequalities

P

 sup
fm∈Fm
m=1,...,12

∣∣∣∣∣
12∑
m=1

ÊNm
[fm]− E[fm(Qm)]

∣∣∣∣∣ > ε


≤ P

{
12∑
m=1

sup
fm∈Fm

∣∣∣ÊNm
[fm]− E[fm(Qm)]

∣∣∣ > ε

}

≤
12∑
m=1

P

{
sup

fm∈Fm

∣∣∣ÊNm
[fm]− E[fm(Qm)]

∣∣∣ > ε

12

}

≤
12∑
m=1

8

(
192e

ε
ln

192e

ε

)4 log2(4e)

e−Nmε
2/4608. (19)

Setting Nm = N for all m = 1, . . . , 12, (19) can be easily
inverted to find N . In fact, if we choose N so as to satisfy
(8), then

P

 sup
fm∈Fm
m=1,...,12

∣∣∣∣∣
12∑
m=1

ÊN [fm]− E[fm(Qm)]

∣∣∣∣∣ > ε

 ≤ δ.
(20)



Multiplying by γQ both sides inside the probability in
(20), adding and subtracting C inside the absolute value, and
considering the complementary event, we get

P
{

sup
x

∣∣∣Ĵ(x)− J(x)
∣∣∣ ≤ εγQ} ≥ 1− δ, (21)

where Ĵ(x) denote the cost function of (7). By definition of
minimizer, x̂? satisfies

Ĵ(x̂?) ≤ Ĵ(x?) = Ĵ(x?)− J(x?) + J(x?), (22)

and, by (21), we have

P
{
J(x̂?)− Ĵ(x̂?) ≤ εγQ∧ Ĵ(x?)− J(x?) ≤ εγQ

}
≥ 1−δ.

(23)
Using (22) in (23), (9) follows, thus concluding the proof.

IV. STATISTICAL MODELING

The approach introduced in Section III makes use of
a certain number of realization of the maximum power
consumption Qm, which may exceed the number of available
power consumption profile historical data. We then need to
be able to generate extractions of the power consumption
from its probability distribution.

In the common practice, uncertainty on power consump-
tion is often characterized by means of some probability
distribution with fixed parameters, which are assumed to be
known. However, this assumption is restrictive and unreal-
istic since the monthly power consumption of a building
is determined by several factors and its behavior would
be hardly captured by a known distribution. Alternatively,
one could model the building and the disturbances affecting
its power consumption as in [11], where real consumption
processes in office buildings are modeled by composing
three modules of occupancy in office rooms, the usage of
electric appliances, the operation of the Heating, Ventilation
and Air Conditioning (HVAC) system and their mutual
interrelationship. This however, requires a strong effort for
modeling the system and then identifying its parameters.

We then suggest to adopt a data-based black-box ap-
proach to determine a stochastic power consumption model.
Specifically, we introduce a statistical tool for building a
stochastic model of the random variables Qm starting from
historical power consumption data only. This way, one does
not need any expertise for modeling the power consumption
mechanisms and can extract realizations of Qm without any
explicit characterization of its distribution.

Functional Data Analysis (FDA) is a (fairly recent) branch
of statistics that extends the tools of multivariate statistics
to random experiments whose outcomes are functions of
a continuous variable, [8]. The typical example of sample
element in FDA is the height of a person as a function of its
age. In this paper we denote a sample element as qm(t) and
it represents the daily power consumption profile in month
m as a function of the time of the day t ∈ [0, T ], with
T = 24 hours. Clearly qm(t) is a random quantity that
depends on a continuous variable: time t. If we create a
model for qm(t), then a sample Q(i)

m of the random quantity

Qm we are interested in can be obtained by extracting Dm

realizations of daily profiles q(d,i)m (t), d = 1, . . . , Dm, and
computing

Q(i)
m = max

d=1,...,Dm

max
t∈[0,T ]

q(d,i)m (t), (24)

where Dm denotes the number of days in month m.
Our goal is therefore to get a compact representation

of qm(t) based on historical data so that we can sample
realizations of Qm based on (24). To this end, we employ
the Functional Principal Component Analysis (FPCA) tech-
nique, [8, Chapter 8]. FPCA is the functional counterpart of
the well-known principal component analysis (PCA) in the
multivariate statistics literature.

Let {q(i)m (t), i = 1, . . . , Nm, t ∈ [0;T ]} be our collection
of historical daily profiles in the m-th month. We neglect the
day index because days of the same month are considered
as different realizations of the same random quantity that is
the daily power consumption in month m. If, for example,
m = 1, then we have 31 daily profiles for each year in
the dataset. Denote with 〈f, g〉 =

∫ T
0
f(s)g(s)ds the inner

product of two functions f(·) and g(·) on [0, T ] and with
L2([0, T ]) the space of functions f(·) on [0, T ] satisfying
‖f‖22 = 〈f, f〉 < ∞. Let q̄m(t) = 1

Nm

∑Nm

i=1 q
(i)
m (t) be the

average daily power consumption profile during month m
and S : L2([0, T ])→ L2([0, T ])

Sξ(t)=
1

Nm

Nm∑
i=1

[
(q(i)m (t)−q̄m(t))

∫ T

0

(q(i)m (s)−q̄m(s))ξ(s)ds

]
the sample variance operator.

The k-th (functional) principal component for the daily
profile of the m-th month ξm,k(t) is defined as the solution
of the following optimization program

max
ξ 6=0

〈ξ, Sξ〉
〈ξ, ξ〉

(25)

subject to: 〈ξm,s, ξ〉 = 0, s = 1, . . . , k − 1.

Solving (25) amounts to find the eigenfunction associated
with the k-th largest eigenvalue of the S operator. Note that
in (25) the dependence of all quantities from t has been
omitted for ease of notation.

Note that in (25) the k-th principal component is required
to be orthogonal to the previous k−1 ones. This ensures that
ξm,1(t), . . . , ξm,k(t) is an orthonormal basis of a subspace
of the L2([0, T ]) space. We can therefore approximately
represent our data points as a linear combination of such
basis functions, i.e.

q(i)m (t) ≈ q̄m(t) +

K∑
k=1

ϑ
(i)
m,kξm,k(t), (26)

where the number K ∈ {1, . . . , Nm−1} of basis function is
a design parameter and is selected so as to describe a certain
percentage of the total variance of the dataset.

From (26) it is clear that every datum q
(i)
m (t) is asso-

ciated to a set of coefficients ϑ(i)
m = [ϑ

(i)
m,1, . . . , ϑ

(i)
m,K ]>.

An important aspect of the (F)PCA is that it chooses the
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Fig. 2. January daily profiles: historical (top) and artificial (bottom).

basis functions so as to make ϑ(i)
m as close as possible to

samples extracted to a K-variate Gaussian distribution with
independent components. This latter point can be exploited
to generate a lot more realizations of Qm. Specifically,
letting µm and Σm be respectively the sample mean and
covariance matrix estimated from ϑ(i)

m , i = 1, . . . , Nm, we
can draw new samples ϑ(j)

m from N (µm,Σm), N (µm,Σm)
denoting the K-variate Gaussian distribution with mean µm
and covariance matrix Σm, then use (26) to get a sample
from qm(t) and, finally, a sample from Qm using (24).

Note that the dependence of ξ from t in (25) makes (25) an
infinite dimensional program. To actually solve (25) one can
either approximate each datum q

(i)
m (t), i = 1, . . . , Nm, with a

linear combination of basis functions, e.g. B-spline, Fourier,
Wavelet, etc. or suitably discretize the continuous variable t.
In this paper we adopt this latter approach to compute the
first K principal components ξm,1(tj), . . . , ξm,K(tj) for all
m = 1, . . . , 12, where tj = (1/4)j denotes the sampling
instants within the interval [0, T ], with j = 0, . . . , 96 (i.e.,
the power consumption is sampled every quarter hour).

In Figure 2 we report some historical daily profiles for
January from our dataset (top), and some profiles generated
using the FPCA procedure for the same month (bottom). As
it can be seen from the picture the FPCA procedure is able
to generate realistic profiles of the daily power consumption.

V. NUMERICAL RESULTS

The proposed approach has been applied to a real case
study of a building in Prague.

The following parameters have been employed in the
numerical experiments. The yearly and monthly cost
for purchasing power capacity are, respectively, cy =
159, 183 [CZK/kW ] and cm = 175, 908 [CZK/kW ], for
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Fig. 3. Historical (red circles) and generated (box plots) monthly maximum
power consumption.

all m = 1, . . . , 12, while the unitary cost for power violation
is γ = 636, 732 [CZK/kW ] (with a ratio cost/violation of
γ/cy = 4). A data-base of historical power-profiles spanning
three years (2014 to 2016) of measurement has been em-
ployed for the statistical modeling phase. K = 35 principal
components ξm,1(·), . . . , ξm,K(·) for all m = 1, . . . , 12 have
been considered in the FPCA procedure in order to generate
N new realizations {Q(i)

m }Ni=1. According to Theorem 1,
setting ε = 0.1 and δ = 10−3 in (8) gives an N = 7.3 · 107.
Unfortunately, this was beyond our memory capabilities,
hence we used a reduced number of N = 105 samples to
solve (7), and we here present the obtained results.

Statistical properties of the realizations of the maximum
power consumption drawn as discussed in Section IV are
summarized in Figure 3. Red circles represent the maxi-
mum power consumption in m-th month based on historical
measurements available in the dataset, and box plots de-
scribe the empirical distribution of corresponding generated
realizations: red horizontal bars denote the median, blue
boxes represent the 25-th and 75-th percentiles, and whiskers
represent minimum and maximum values. It is interestingly
to notice that most of historical power picks lie in the
high probable region of the identified distribution, and all
months are contained between the minimum and maximum
values. Figure 3 can be therefore considered as an empirical
evidence of the capabilities of the FPCA in characterizing
the distribution of Qm.

Based on these generated power profiles, problem (7) is
solved so as to obtain the optimal solution for the yearly and
monthly power capacity cy and cm for the next year power
capacity planning. As the reader can notice by comparing
the “average” solution in Figure 4 with the “trivial” one
in Figure 1, the uncertainty characterizing the next year
power consumption, modeled as the random variable Qm,
led to a more conservative solution than considering it as
a deterministic quantity, which cannot provide any insight
about the possible future power violation cost.

A detailed analysis on how the violation cost γ might
change the optimal solution of the problem (7) has been
conducted, and the results are showed in Figures 5 and 6 for
different values of the penalization factor γ/cy .

As long as the γ/cy increases, the optimal values of x̂?y
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Fig. 4. Historical power profile (blue line) and optimal values of x̂?y (dashed
line) and x̂?y + x̂?m (colored lines) for problem (7).

and x̂?m suggest to buy additional power capacity, since it is
better not to incur in a likely violation event which would
be associated to a very high violation cost. On the contrary,
the more the penalization factor decreases, the lesser power
capacity needs to be allocate and purchased, given that a
possible violation would not correspond to a high violation
cost. These dynamics can be clearly observed in Figure 5.

By changing the violation cost, we do not only change
the amount of purchased electrical capacity, but also the
probability of a violation event. Given a solution x̂? and a
yearly realization Q = {Qm}12m=1 of the power consumption,
let us compactly represent the violation cost when exciting
the reserved capacity as

V (x̂?, Q) =

12∑
m=1

v(x̂?y, x̂
?
m, Qm).

Then we have a violation if V (x̂?, Q) > 0. Figure 6 shows
the connection between the effective cost of purchasing the
electrical power C(x̂?) in (7) and the probability of violation
P̂N [V (x̂?, Q) > 0] estimated using N realizations of Q for
validation. This probability monotonically decreases as the
penalization factor increases, because a higher penalization
cost causes an augmented risk associated to an event of
violation, which can be only mitigated by reducing the
frequency, that is the probability, of such an event. Conse-
quently, the effective cost for power purchase increases as the
penalization factor increases, meaning that it is convenient to
buy more and more electrical power capacity (this minimizes
the event of a violation), and the value of the objective
function decreases since the cost associated to a violation
decreases.

VI. CONCLUSIONS

We addressed power capacity optimization via a data-
based approach that rests on the integration of the UCEM
theory and the FPCA technique. The approach appears
promising. However, the obtained bound on the number of
samples needed for a uniformly accurate estimate of the
mean cost function appears too conservative and alternative
solutions should be conceived.
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Fig. 5. Influence of the penalization factor γ/cy in (7) on the purchased
power capacity x̂?y + x̂?m.
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