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Recent compilers o�er a vast number of multilayered optimizations, capable of targeting di�erent code
segments of an application. Choosing among these optimizations can signi�cantly impact the performance
of the code being optimized. The selection of the right set of compiler optimizations for a particular code
segment is a very hard problem, but �nding the best ordering of these optimizations adds further complexity.
. The traditional approach of constructing compiler heuristics to solve this problem simply can not cope
with the enormous complexity of choosing the right ordering of optimizations for every code segment in an
application.

The predictive model uses (i) a platform-independent dynamic features, (ii) an encoded version of the
compiler sequence and (iii) an exploration heuristic to tackle the problem.

Experimental results using the LLVM compiler framework and the Cbench suite show the e�ectiveness of
the clustering and encoding techniques to application-based reordering of passes while using a number of
predictive models. We perform statistical analysis on the prediction space and compare against (i) standard
optimization levels O2 and O3, (ii) random iterative compilation, and (iii) two recent non-iterative approaches.
We demonstrate that our proposed methodology outperforms the performance of -O1, -O2, and -O3 optimiza-
tion levels in just a few iterations, reaching an average performance speedup of 1.31 (up to 1.51) on the Cbench
benchmark suite.
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1 INTRODUCTION
Compiler developers typically design optimization passes in order to transform each code segment
of a program to produce an optimized version of an application. The optimizations can be applied
at di�erent stages of the compilation process. Optimizing source code by hand is a tedious task
and therefore compiler optimizations are provided to automatically transform code. However,
these code optimizations are programming language, application, and architecture dependent.
Additionally, the word optimization is a misnomer and there is no guarantee the transformed code
will perform better than the original version. Understanding the behavior of the optimizations
and the actual e�ect on the source-code and the interaction of the optimizations with each other
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are complex modeling problems. The problem is particularly di�cult because compiler developers
have to deal with hundreds of di�erent optimizations that can be applied during the di�erent
compilation phases and this creates the phase-ordering problem. The phase-ordering problem has
been an open-problem in the �eld of compiler research for many decades [25, 42]. The inability of
researchers to solve the phase-ordering problem has led to advances in the more simple problem of
selecting the right set of optimizations, but even this problem has yet to be solved [9, 12].

This process of selecting the right optimizations for each code segment is typically done manually,
and the sequence of optimizations is constructed with little insight into the interaction between the
preceding compiler optimizations in the sequence. The task of manually constructing heuristics to
select the right sequence of compiler optimizations is infeasible given the ever growing number of
compiler optimizations being integrated into compiler frameworks. As an example, GCC has more
than 200 compiler passes, and LLVM-clang and LLVM-opt each have more than 100 transformations.
Additionally, these optimizations are applied at very di�erent phases of the compilation, including
analysis passes and loop-nest passes. Most optimization �ags are turned o� by default, and compiler
developers rely on software developers to know which optimizations will bene�t their code.
Compiler developers provide standard optimization levels, e.g. -O1, -O2, -Os, etc. to introduce a
�xed-sequence of compiler optimizations that, on average, bring good performance on a set of
benchmarks the compiler developers tested. Finding the best ordering of compiler optimizations
can have substantial bene�ts for performance metrics such as execution time, power consumption,
and code-size. To this end, using prede�ned optimizations usually is not good enough to bring
the best achievable application-speci�c performance. In this paper, we propose a framework in
order to mitigate the complexity of the phase-ordering problem. So far, there are two potential
techniques we could use to predict good optimization orders for code being optimized:

• (i) Intermediate Sequence Prediction: This technique uses a model to predict the current
best optimization (from a given set of optimizations) that should be applied based on the
characteristics of code in its present state. [5, 24].
• (ii) Complete Sequence Prediction: This technique uses a model to predict the complete se-

quence of optimizations that needs to be applied to the code just by looking at characteristics
of the code in its original state [10, 34–36].

The framework proposed in this paper, MiCOMP, falls under the second category. It uses pre-
dictive models on complete optimization sequences rather than individual optimizations. We
characterize applications as a vector of dynamic features that are independent from the target
architecture. Predicting the complete optimization sequence to apply to a piece of code, i.e. complete
sequence prediction, has the bene�t of only requiring a single-round of feature collection of the code
before any optimizations are applied to it. In order to use classic machine learning algorithms with
the phase-ordering problem, we adapt an encoding scheme to transform variable-length vectors
of optimizations into �xed-length vectors. Our prediction models are trained o�ine and program
features and di�erent compiler con�gurations are fed as inputs. As outputs, a prediction model
produces a speedup number without the need to actually run the code on the target architecture.
The dynamic characterization is independent from the architecture the code is running; thus, it can
bring portability among di�erent architectures. Additionally, we de�ne exploration heuristics to
�nd the best models in the shortest time. Our metric of time is de�ned as the minimum number of
predictions from the model to obtain the best version of the code being optimized. The heuristic is
based on Adjusted Cosine Similarity [38] to correlate di�erent con�gurations of optimizations with
their corresponding predicted speedups across all the training data. A recommendation algorithm
enables us to explore only a fraction of the con�guration space to reach the best speedups rather
than a state-of-the-art sorting/ranking [10, 34–36]. In our experimental results, we show that our
technique can outperform LLVM’s highest optimization level of -O3 by just a few predictions
(up to 3 in the worst observed case). . We selected the full set of applications from the Ctuning
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Cbench benchmark [14] to assess and evaluate the bene�ts of the proposed approach and to prove
its feasibility. The main contributions of the proposed approach are as follows:

• An independent predictive-modeling framework, capable of capturing the correlation
between di�erent compiler optimizations and their predicted speedup without having to
run optimized code variants on the target platform. Our autotuning framework can be
paired with any desired predictive models.
• . We have clustered di�erent compiler optimizations, all taken from LLVM’s O3 into 5

di�erent groups. The order of optimizations within a group is internally �xed but the
ordering of the groups can be altered. In this work, these groups are called sub-sequences
and we exploit the phase-ordering by using these sub-sequences rather than the individual
optimizations. By starting from no optimizations (as the baseline) and exploring di�er-
ent orderings of the sub-sequences using the same optimizations available to -O3, we
outperformed -O3.
• Adapting a simple mapping technique to encode an optimization sequence into a bit string.

The proposed technique transforms a variable-length representation to a �xed-length
feature vector representation. It allows us to apply traditional machine learning algorithms
since they are mostly designed to cope with �xed-length feature vectors.
• Adapting a Recommender System (RS) approach on the prediction space to use dynamic

information.
The rest of the paper organized as follows: Section 2 presents related work. Section 3 introduces

our proposed methodology including all its components. In Section 4, we present our experimental
results and evaluate the results by means of several comparisons in the Section 5. We conclude the
paper with future work and the conclusion.

2 RELATEDWORK
Literature on the phase-ordering problem is closely related to the problem of selecting the best
set of compiler optimizations in a �xed ordering. Recent literature can be classi�ed into two main
classes: (i) autotuning and iterative compilation approaches and (ii) applying machine learning to
the problem of optimization selection.

Autotuning addresses automatic code-generation and optimization by using di�erent scenarios
and architectures. It involves building techniques for automatic optimization of di�erent parame-
ters in order to maximize or minimize the satisfaction of an objective function. One strategy in
autotuning consists of coupling the approach with random generation of code-variants at each run.
This technique can generally improve application performance in reference to static-handcrafted
compiler optimization sequences [1]. Given the complexity of the iterative compilation problem
[9], it has been shown that applying compiler optimization sequences at random can be as good
as using other algorithms such as Genetic algorithms or Simulated Annealing to choose which
optimizations to apply [1, 10, 12]. Other authors [3, 8] explored compiler Design Space Exploration
(DSE) techniques jointly with architectural DSE for VLIW architectures.

Applying machine learning to the problem of selecting the best compiler optimizations has
been extensively investigated by many researchers in the past. Proposed methodologies [11, 13, 22,
28, 29, 41] were among the �rst notable works introducing the use of machine learning to solve
compilation problems. Recent related work [4, 6, 7, 34, 35] also tackled the problem of selecting
the best compiler optimizations to apply by utilizing Bayesian Networks with an application-
independent characterization technique, predictive modeling with dynamic characterization, and
predictive modeling with compiler representations (Intermediate Representation (IR)) . There
have been di�erent objective functions used with machine learning on the problem: i) A speedup
predictor takes as input both the characterization of the program being compiled and an optimization
sequence, and it predicts as output the speedup when applying that optimization sequence relative
to a default optimization setting. [10, 34, 35] ii) A sequence predictor characterizes a program being
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compiled and uses it as input to a model, and the model predicts a probability distribution of
optimizations to apply to that program. [1, 4, 6, 37]. iii) A tournament predictor [36]) takes as input
a triple corresponding to the characterization of the program and two optimization sequences. This
model predicts whether the speedup after applying the the �rst optimization sequence will be more
or less than speedup if applying the second optimization sequence.

. However, there are a few notable published studies that attempted to solve the problem.
Kulkarni and Cavazos [24] have applied Neuro-Evolution for Augmenting Topologies (NEAT) in

the Java JikesRVM compiler to phase-ordering by using intermediate sequence prediction. They
built prediction models that use as input features of the current state of the transformed source-
code and de�ne certain stop-condition rules to complete the �nal predicted sequence at each
iteration. They used source-code features and the Java JikesRVM JIT compiler to experimentally
evaluate their approach. In contrast, we tackle the problem using predictive modeling and dynamic
independent-characterization of the applications and our proposed methodology enables us to
predict the full-sequence in one-shot.

Matrins et al. [27] tackled the problem of phase-ordering by a DSE approach that uses a clustering-
based selection method for grouping functions with similarities and exploration of a reduced search
space resulting from the combination of optimizations previously suggested for the functions
in each group. Authors used DNA encoding where program elements (e.g., operators and loops
in function granularity) are encoded in a sequence of symbols, and followed by calculating the
distance matrix and a tree construction of the optimization set. Consequently, they applied the
compiler optimization passes already included in the DSE to measure the reduction in the total
exploration time of the search space such as Genetic algorithm. Our proposed approach on the
other hand is mainly di�erent, as we mitigate the phase-ordering problem by inducing a prediction
model rather than a design space exploration scheme. Once our model is trained, it can be further
used for any number of applications under analysis to induce a prediction inexpensively and we
believe it will bring scalability in autotuning compilers.

Other related work has approached the problem by exhaustively exploring the optimization
ordering space at the granularity of functions [23]. The exhaustive enumeration these authors
proposed, constructs probabilities of enabling/disabling interactions between di�erent optimization
sequences, but these probabilities are not speci�c to any program. Jantz et al. [19] proposed two
pruning techniques to downsample the optimization space. As a result the authors could employ
faster exhaustive phase-ordering searches on the new space. Ashouri et al. introduced an approach
that uses predictive modeling to construct an intermediate sequence of optimizations for code being
compiled [5]. Other related work used iterative Design Space Exploration (DSE) and clustering-
based approaches to down-sample and cluster the available optimizations targeting performance
gain and power reduction [30–32].

Our approach, MiCOMP, is signi�cantly di�erent compared with those mentioned in the literature.
Our work mostly resembles the approach of Park et al. [35, 36]. However, our techniques tackle
the signi�cantly harder problem of the phase-ordering. We introduce a mapping function that
encodes an optimization sequence into a bit string. It preserves the ordering and the repetition of
the optimizations. At the same time, the proposed work is able to predict the complete optimization
sequence to apply to the unoptimized code, rather than predicting the best optimization to apply to
the current state of the optimized code [5, 24]. . We use dynamic architecture independent features
to feed into our model. Moreover, we used clustering over all passes in LLVM’s -O3, that tended to
perform well, to signi�cantly outperform the single optimization sequence performed by -O3 itself.
We do that by re-ordering these sub-sequences automatically based on the type of the application
under optimization. To summarize, the presented work is the �rst approach that uses machine-
learning based techniques on the phase-ordering problem to predict the complete sequence of
optimizations. In Section 4, we improve the machine-learning model through Recommender System
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techniques and assess the experimental results we obtain against the state-of-the-art phase-ordering
approaches.

3 THE PROPOSED METHODOLOGY
Compilers typically ship with standard optimization levels (e.g. -O2, -O3 and -Ofast) each
tuned during compiler development to obtain a certain level of performance on a standard set
of benchmarks. These optimization levels do not always translate to good performance on other
applications. The main objective of the proposed methodology is to introduce a compiler autotuning
framework, which is able to dynamically reorder the compiler passes within LLVM’s optimization
level -O3 , to achieve the maximum speedup for the applications being optimized. We found that if
we could reorder sub-sequences of optimizations that tended to perform well, we could signi�cantly
outperform the single optimization sequence performed by -O3. This process should be customized
based on the features of the application under analysis. To mitigate the phase-ordering problem, a
model has to be constructed in such a way that it can correlate the e�ect of using di�erent compiler
sequences and the corresponding achievable speedup. MiCOMP uses such a model, and it can (i)
recommend good sequences of optimizations that maximize an application’s performance (ii) with
very few predictions.

Phase-ordering is also complicated by allowing the possibility of variable-length compiler se-
quences. State-of-the-art approaches for selecting the right set of optimizations used �xed length
feature-vectors [6, 10, 35, 36] to induce a prediction model. During the prediction phase, MiCOMP
proposes an iterative process in which di�erent solutions are explored by evaluating di�erent
optimization sequences with the potential of leading to higher speedups. We predict optimization
sequences that will perform well against using state-of-the-art ranking [35, 36] techniques.

Figure 1 illustrates the two main phases of MiCOMP: (i) o�ine training and (ii) online prediction.
The o�ine training phase is used to learn about the e�ects of compiler optimizations when

compiling an application. In particular, this phase is used to induce a prediction model considering
application features and applied optimizations (including order and repetitions). This phase is
performed once for each compiler and the model is built on a set of representative applications.
In this phase, each application is passed through a single round of feature collection to extract
an application’s characteristics. A dynamic pro�ler is used to generate a representation of the
program in terms of its features. Since a very large set of features is extracted for each application,
we apply a dimension-reduction technique to reduce the number of features that is fed as input
to the prediction model (e.g. PCA âĂŞ Principal Component Analysis [21]). This speeds up the
learning during the model construction process. Application-pro�ling and dimension-reduction
techniques are extensively described in Section 3.1. Next, an application is compiled with di�erent
con�gurations of compiler optimizations, executed and pro�led in terms of speedup with respect
to LLVM ’s -O3. The speedup values together with the reduced program features and an encoded
version of the used compiler optimizations (characterized by a �xed-length binary output, see
Section 3.3) are fed to a machine learning algorithm to induce the speedup predictor (see Section
3.4). This model can then used during the online phase.

The online prediction phase, is used every time a new application is optimized. We use the same
feature extraction and dimension reduction techniques described in the o�ine training phase. The
collected features are used to query the speedup prediction model to predict the best set of compiler
sequences to apply to an application. The goal of our method is to discover the fewest number of
predictions that will be needed to obtain the optimization sequence that gives the best speedup
possible. Thus, MiCOMP has been coupled with a heuristic derived from the �eld of Recommender
Systems (see Section 3.5). This technique is used to obtain a predicted set of optimization sequences
where each sequence is as diverse as possible to the other sequences in the set, thus guaranteeing
coverage of a large part of the optimization con�guration space, consequently obtaining a set of
optimization sequences that are robust to model inaccuracies.
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Fig. 1. Proposed framework. (i) o�line-training phase which is done once and (ii) online-prediction phase for
optimizing new unseen applications

3.1 Application Characterization
In this work, we used a PIN-based [26] dynamic instrumentation framework to analyze and charac-
terize the behavior of applications at execution-time. In particular, our framework provides a high
level Micro-architectural Independent Characterization of Applications (MICA) [17] suitable for
characterizing applications in a target architecture agnostic manner. There is no static syntactic
analysis, but the framework is solely based on dynamic MICA pro�ling. The MICA framework
reports information about instruction types, memory and register access pattern, potential in-
struction level parallelism and a dynamic control �ow analysis in terms of branch predictability.
Overall, the MICA framework characterizes an application in reference to 99 di�erent metrics
(or features). Many of these 99 features are strongly correlated (e.g. the number of memory reads
with stride smaller than 1K is bounded by the number of reads with stride smaller than 2K). To
signi�cantly improve the speed of model construction, we applied a dimension reduction by using
Principal Component Analysis (PCA) [21] to reduce the number of features used to characterize an
application. PCA is a technique to transform a set of correlated features into a set of orthogonal, i.e.,
uncorrelated principal components. The PCA transformation sorts the principal components by
descending order based on their variance [20]. For instance, the �rst principal component includes
the most input data variability, i.e., this component represents most of the information contained
in the input data. To reduce the number of input features, while keeping most of the information
contained in the input data, one simply needs to use the �rst k principal components as suggested
in previous work [17]. In particular, we set k = 5, which captures more than 98% of the overall
variance across all training data. .

3.2 Constructing Compiler Sub-sequences
In this section, we brie�y explain our novel idea behind clustering certain compiler optimizations as
sub-sequences. A phase-ordering optimization sequence represented by the vector o belongs to the n
dimensional factorial space |Ωphases | = n!, wheren represents the number of compiler optimizations
under study. However, the mentioned bound is for a simpli�ed phase-ordering problem having a
�xed length optimization sequence length and no repetitive application of optimizations. Allowing
optimizations to be repeatedly applied and a variable length sequence of optimizations will expand
the problem space to:

|Ωphases_r epetit ion | =
m∑
i=0

ni (1)

Where n is the number of optimizations under study and m is the maximum desired length
for the optimization sequence. Even for reasonable values for n andm, the entire search space is
enormous. For example, assuming n andm are both equal to 10, this leads to an optimization search
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Fig. 2. Generated directed graph for LLVM’s -O3. Each node in the graph represents an optimization pass.
The edge thickness depicts the strengths in the connection between two nodes.

space of more than 11 billion di�erent optimization sequences to select from for each piece of code
being optimized [5] 1.

3.2.1 The Optimization Dependence Graph. Mitigating the phase-ordering problem with previous
approaches is not practical due to the large number of di�erent possible optimization sequences
to select for each piece of code being optimized. MiCOMP proposes to group optimizations into
clusters of sub-sequences that are known to perform well, . There are 157 compiler passes in LLVM
optimization level -O3 (more than 60 unique compiler passes) and selecting the most promising sub-
sequences from these optimizations can positively a�ect the autotuning process. Among all these
157 compiler passes, some are analysis passes (i.e. basicaa, memdep, etc) which do not transform the
code directly, but instead provide analysis information to other compiler passes that follow them.
The rest are transformation passes, i.e., Aggressive Dead Code Elimination (adce), Loop Invariant
Code Motion (licm), loop-rotate, etc., which perform optimizations on the code 2.

In this paper, we introduce the idea of clustering sub-sequences of all the passes available to the
optimization level -O3 and adapt prediction models to order these sub-sequences in ways that
improve the performance of a particular application. We show that this technique can improve
the performance of an application over using -O3 by evaluating a few predicted orderings of the
sub-sequences of optimizations.

This graph can be represented by a Weighted Adjacency Matrix that has the size of N×N. This
matrix can be used for clustering optimizations into di�erent sub-sequences. Figure 2 shows the
constructed graph on -O3.

3.2.2 Graph and Sub-sequence Clustering. For our clustering of optimizations into sub-sequences,
we could have used any number of the numerous clustering methods proposed in the literature
related to Pattern Recognition (e.g. iterative, hierarchical, divisive, etc,) [39]. We selected agglom-
erative clustering [43] which is an iterative clustering technique that merges smaller clusters and
improves the complexity of k-mean clustering on graphs [39]. A key insight of this method is that

1The problem of phase-ordering does not have deterministic upper-bound in the case of unbounded length.
2http://llvm.org/docs/Passes.html
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it treats clusters as a dynamical system and its samples as states. The algorithm works as follows:
Agglomerative clustering, receives as input the matrix of the graph G and the number of desired
clusters (nT ) and builds (i) the graph G with k-nearest-neighbors upon computing its Weighted
Adjacency Matrix (W ). (ii) The algorithm then calculates the transition probabilities and (iii) forms
sample clusters C = {c1, ..., cnc }. (iv) It enters a loop to iteratively try to add more sub-clusters to
the already available clusters in C as long as the conditional sum of the all-path integrals within
the new sub-clusters maximizes some objective function (argmax) [43]. A path integral is a metric
to measure the stability of a dynamical system and is computed by summing the paths within
the cluster on the directed graph weighted by transition probabilities. We used the algorithm and
tentatively increased the number of max desired clusters until no clusters could be added. The �nal
�ve clusters, namely, the best optimization sub-sequences the algorithm could �nd are reported in
Section 4 Table 4.

3.2.3 Benefits of Sub-sequences. Clustering optimizations into sub-sequences makes sense.
Certain analysis algorithms typically should be done before an optimization in order for the
optimization to have any signi�cant impact. For example, we may want to run analysis that performs
basic block counts and predicts branch instruction outcomes before applying an optimization
that reorders the code blocks in an application. Additionally, it is likely that -O3 will contain
optimizations that should follow other optimizations in order to obtain the best performance. Thus,
forming a cluster of optimizations that should be applied together makes a lot of sense.

3.3 The Proposed Encoder
Constructing prediction models for the problem of selecting the right compiler optimizations with
�xed-length feature vectors has been extensively studied [10, 34–36]. However, prediction models
fall short when correlating program characterizations with the right compiler optimizations to
apply when it comes to a variable optimization sequence length [2]. Therefore, we adapt a simple
mapping technique to encode an optimization sequence into a bit string. The proposed technique
transforms a variable-length representation to a �xed-length feature vector representation.

Let A = {α1, . . . ,αN } be the set of all variables, which can be thought of as an alphabet. Every
αi is a letter. A �nite string of not necessarily distinct letters is called a word. Thus, each word is
a concatenation of the form αi1αi2 · · ·αik , where i1, i2, . . . , ik ∈ {1, . . . ,M}. The integer k is the
length of the word. We will also allow the empty word which by de�nition has length zero.

There is a simple way of encoding the spaceW of all words of length at most M using the
space described by {0, 1}N×M consisting of all binary strings of the �xed length N ×M . To see this,
consider the mapping function f : A → {0, 1}N which encodes each letter αi to the binary string
f (αi ) = b1 · · ·bM , where

bj =

{
1 if j = i
0 if j , i .

Now we de�ne the mapping function F :W → {0, 1}N×M by encoding each word αi1αi2 · · ·αik to the binary
string

F (αi1αi2 · · ·αik ) = f (αi1 )f (αi2 ) · · · f (αik ) 0 · · · 0︸︷︷︸
N−k times

,

where 0 = 0 · · · 0 is the zero string of length N . Evidently the map F is one-to-one. The image F (W) is much
smaller than the target space {0, 1}N×M , as these sets have

∑M
k=0 N

k and 2N×M elements, respectively.
If we identify each element of {0, 1}N×M with a concatenation s1 · · · sN of N elements of {0, 1}N , the image

F (W) can be simply characterized by the following two requirements:
1. Each si has at most one non-zero binary digit.
2. If si = 0 and sj , 0, then i > j.
Given the proposed encoding, there exists a one-to-one (1:1) mapping, F , for every instance of A =

{α1, . . . ,αN } with the binary size of N × M that has the same characteristics of the original presentation
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10000	 00010	 00010	 00001	 01000	 00100	

Fig. 3. An example of the proposed encoding scheme on the example where we have repetitions and {N =
5,M = 6}: Each le�er represents a compiler sub-sequences containing di�erent compiler optimizations.

with the bene�t of having a �xed N × M length. An example of the proposed encoding scheme is shown
on the Figure 3. Our adapted mapping function uses a one-hot encoding approach [33] for N=5 and M=6
to assign a single high (1) for each subsequences while other bits are turned o� (0). This technique can
inexpensively preserve the order and the repetitions of optimizations in a sequence, at the same time it assures
the transformed feature vector has �xed-length size.

3.4 Predictive Modeling
To this end, the proposed methodology in Figure 1 illustrates the use of predictive modeling in both the o�ine
(training) and online (testing) phases of the process. We used the predictive modeling in the o�ine training
phase to (i) construct the model and in (ii) the online prediction phase we exploit the constructed model on
the target application to predict the speedup of a complete optimization sequence without the need to actually
apply the sequence of optimizations to the code.

3.4.1 Constructing the Prediction Model. Predictive modeling is the process of constructing, testing, and
validating a model to predict an unobserved outcome based on characterization of a state from which to
predict the outcome. In this paper, the state being characterized is the code being optimized, and the predicted
outcome corresponds to the speedup metric calculated by normalizing the execution time of the current
optimization sequence by the execution time of the baseline optimization sequence. The general formulation
of the optimization problem is to construct a function that takes as input the features of the unoptimized
program being compiled. In other words, this model takes as an input a tuple (F ,T ) where F is the feature
vector of the collected instrumentation of the program being optimized; and T is one of the several possible
compiler optimization sequences predicted to perform well on this program. Its output is a prediction of the
speedup T should achieve when applied to the original code.

3.4.2 Analysis of Selecting the Compilation Baseline. As explained in Section 3.2, we do not use any of the
default compilation optimization levels as a baseline to start from since we used all compiler optimizations
passes that are used in -O3 for our clustering purposes (see Section 3.2.2). Additionally, we found that using a
baseline compiler optimization level to start from ultimately reduces the speedup achievable from the sequence
we construct with predictive modeling.

Results suggests that using the MiCOMP optimization sequence without an optimization level as a baseline
can lead to substantial bene�ts compared with using any of -OX optimization levels as a baseline. . Note
that using a baseline of -O1, -O2, or -O3 each converge to a sub-optimal speedup. Thus, applying certain
sequences causes a degradation in performance as can be seen by using these standard optimization levels as
a baseline. The better option is to not use a baseline sequence at all and to allow MICOMP to predict the best
sequence to apply on its own.

The insights of this experiment are threefold: (i) The clustering technique is bene�cial; �rst, to gain better
speedup values and second, . (ii) The sub-sequences can be coupled with machine-learning techniques so
they can be reordered based on the applications being optimized while outperforming the highest standard
optimizations levels. (iii) Phase-ordering does matter in the �eld of compilers; i.e., using the same set of
optimization �ags available to -O3, MiCOMP can signi�cantly outperform -O3 itself.

3.4.3 Application-specific Prediction. Our machine-learning constructed models can be used for unseen
target applications to predict the speedup when applying compiler sequences to them. The predicted speedup
values correspond to the optimization sequence applied to the program. For a given input program, �rst a
feature vector containing dynamic instrumentation is collected. Then our prediction model is fed the features
of the program being compiled to predict the expected speedup if an optimization sequence T was applied to
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Fig. 4. Empirical analysis of having di�erent compilation baseline across all CBench applications (Harmonic
mean). Region of interest is depicted where MiCOMP sub-sequences outperformed other compiler sequences
having a fixed standard compilation baseline.

it. By predicting the performance of each possible optimization sequence that can be applied, it is possible to
rank the optimization sequences according to their expected speedup and only select the sequences to actually
apply that are predicted to give the highest speedups.

A state-of-the-art ranking approach [34, 36] was used to rank optimization sequences in descending order,
and we only select the top N optimization sequences to evaluate their actual optimization quality. In this
work, we propose an iterative process in which di�erent solutions are explored to �nd those leading to higher
speedups. In other words, our proposed exploration technique uses the output of our prediction model to
generate an initial exploration strategy, and the exploration strategy dynamically updates itself in order to
reach the highest speedup values in the least number of predictions.

3.5 Recommender System Heuristic
In the initial steps taken by [5, 24], the authors de�ned iterative exploration heuristics, based on the current
optimized state of the target application being compiled, to select the next best optimization to apply, which will
bring the eventual best speedup. As the current state of the optimized application depends on the optimizations
that were already applied, this previous approach required several rounds of feature collection. In this paper,
we propose a predictive approach that generates the complete optimization sequence for a program that has
not been optimized, thus it needs to collect features only once before any optimizations are applied.

3.5.1 Adjusted Cosine Similarity. Many of the aforementioned state-of-the-art approaches, tackling both
the selection and the phase-ordering problem, de�ne exploration strategies on the optimizations design space.
Yet, to the best of the authors’ knowledge, none of them make use of information in order to dynamically
improve the strategy itself. Dynamic information, in our particular case, is the predicted speedup on the
sequences already explored and evaluated. The knowledge can be e�ectively used to improve the initial
exploration. The technique we propose, leverages the similarity between the unexplored and the explored
optimization sequences. In particular, our proposed technique prioritizes the evaluation of solutions less
similar to the ones already explored. This is especially important for the phase-ordering problem where there
are a plethora of optimization sequences that need to be explored. The similarity measure is based on how
close the achieved speedup is for predicted solutions across all the training data. As an example, let Sp,i and
Sp, j be the predicted speedups of the sequences i and j when applied to program p in the set of programs P.
We de�ne an iterative process to look for predicted similarities in i and j when they were applied to di�erent
programs in P.

In recommender system (RS), an algorithm called Basic Cosine Similarity is used to correlate users and
items. However, computing the similarity using this algorithm has one important drawback: the di�erence in
rating scale are not taken into account. The Adjusted Cosine Similarity o�sets this drawback by subtracting
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the corresponding user-average from each co-rated pair and is shown to have the lowest error-rate amongst
the di�erent similarity measurement techniques [38]. . Using this method, we can compute the Adjusted
Cosine Similarity between optimization sequence i and j as:

sim(i, j) =
∑
p∈P (Sp,i − S̄p )(Sp, j − S̄p )√∑

p∈P (Sp,i − S̄p )2
√∑

p∈P (Sp, j − S̄p )2
(2)

where Sp,i is the speedup achieved by sequence i when applied to program p of all set of programs P, and
S̄p is the average speedup on program p. We use the computed measure to evaluate the correlation between a
pair of optimization sequences to bias our exploration strategy.

We de�ne the exploration strategy inspired by ACS as follows:
(1) Sort predicted speedup solutions in decreasing order in a list.
(2) Test solutions in order. If the solution to test is too similar to one already tested in the current list iteration, skip it.
(3) If the end of the list has been reached and there are still optimization sequences to test, go to 2. Start from the head of the list

and exclude already tested solutions.

High values of ACS for a pair of optimization sequences are the consequence of achieving pairwise similar
speedups across all training data. We employ this measure to hint exploration priority to the solutions that
are less similar to the ones already tested. .

4 EXPERIMENTAL RESULTS
In this section we evaluate our proposed methodology on an Intel Xeon architecture. We adapted our in-
strumentation and architecture-independent tool (Section 3.1) to extract characteristics from a large set of
benchmarks from the Ctuning CBench suite [14]. We have used LLVM compilation framework v3.8 (Clang for
the frontend/backend and Opt for the optimization passes). The training set consists of di�erent applications
ranging from automotive, security, o�ce, and telecom. The list of applications we evaluated is reported
in Table 3. Table 4 illustrates the list of di�erent compiler optimizations that are clustered into 5 di�erent
sub-sequences (refer to Section 3.2.2) that are derived from LLVM’s -O3. We used the sub-sequences with no
baseline in MiCOMP and generate the design space enabling orderings and repetitions of these sub-sequences.
The optimizations are �xed within a sub-sequence, but sub-sequences are allowed to appear in any order in
the full optimization sequence.

The application execution time has been estimated by using the Linux Perf tool. . The execution time is
done by averaging three loop-wraps of the speci�c compiled binary with 1s of sleep in between three di�erent
executions of those loop-wraps. Therefore, in total, each individual transformed application binary has been
executed 9 times as three packages of three loop-wraps to ensure better accuracy of estimations and fairness
among the generation of executions. This technique is used both in the training and inference phases. In order
to implement a dimension reduction technique we applied PCA.

This analysis reveals that by using a 5-D vector of features (a single-dimensional vector of length 5) we
can capture 98% of the variance available in the training set. The Principal Components (PCs) have been
computed using the MICA features collected from application executions (it is required only once), normalized
by standard deviation across all data sets.

The proposed methodology is prediction model independent, and we report the results using three di�erent
models described in Table 5. To this end, we used (i) a Linear Regression (LR) classi�er using the M5 attribute
selection method with default ridge parameter, (ii) a Multilayer Perceptron using the default con�guration,
and the (iii) K* algorithm using default settings. In this work, the WEKA machine learning tool [15] has been
integrated in our framework. We trained di�erent speedup predictors, each one by excluding from the training
application set, one of the applications. This technique is called Leave-One-Out-Cross Validation (LOOCV)
and ensures a fair evaluation of our trained models. Validation data is used on the application excluded from
the training set for prediction purpose.

4.1 Analysis of the variability of the distributions
4.2 Analysis of the MiCOMP’s training data dependency
4.3 Analysis of the MiCOMP’s timing breakdown
An application characterization phase takes between 15 to 40 seconds depending on the type of the application.
We noticed a small factor of slowdown when we perform the feature collection phase versus measuring the
pure application’s execution time. The overhead is negligible �rst, as it is required once and second, the
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Table 1. Analysis of paucity of data when di�erent categories are used

Scenario Speedup w.r.t. MiCOMP’s default
Training Testing

Automotive Security 0.9443
Automotive Telcom 0.9743
Automotive Consumer 0.9432
Automotive Network 0.9896
Automotive O�ce 0.9896

Table 2. MiCOMP timing breakdown for o�line training and online inference

Phase Category Time

O�ine Training (A) O�ine Data-collection (32 App) 5 days
(B) Model Construction (MLP) 120 sec

Online Prediction

(C) Susan-c Feature Collection 17.4 sec
(D) Susan-c Compilation 4.5 sec
(E) Susan-c Execution 9.7 sec
(F) Prediction (MLP) 2 sec
(G) Recommendation (ACS) 12 sec
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Fig. 5. Empirical analysis of having di�erent compiler sequence lengths on 5 candidate applications: telecom_adpcm_d,
jpeg_d, bzipd, network_dijkstra, automotive_bitcount. Note that X axis is in logarithmic scale.

speedup gained by using MiCOMP is far higher. In MiCOMP, cross validation is done in a few minutes for
each application under analysis. Model construction is heavily correlated with the type of machine learning
algorithm we use. We observed LR to be the fastest and MLP to be slowest for our data.

4.4 Analysis of Longer Sequence Length
As described in Section 3, MiCOMP requires having upper bound on the sequence length for using the encoding
scheme. To this end, we evaluate MiCOMP by having di�erent maximum values for the sequence length. A
speedup prediction model requires a one time expensive training be done in order to construct an accurate
model. We believe that the longer the sequence length, the better the chance of �nding higher speedup values.
We have tested our proposed sub-sequences with di�erent maximum sequence lengths to empirically �nd the
most e�ective length across all the training applications. This is done also with the goal of scalability and
ultimately speeding up the training phase.
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Table 3. Full Cbench Applications under analysis (CTuning CBench suite v1.1 [14])

No. cBench list Description
1 automotive_bitcount Bit counter
2 automotive_qsort1 Quick sort
3 automotive_susan_c Smallest Univalue Segment Assimilating Nucleus Corners
4 automotive_susan_e Smallest Univalue Segment Assimilating Nucleus Edges
5 automotive_susan_s Smallest Univalue Segment Assimilating Nucleus Smoothing
6 security_blow�sh_d Symmetric-key block cipher Decoder
7 security_blow�sh_e Symmetric-key block cipher Encoder
8 security_rijndael_d AES algorithm Rijndael Decoder
9 security_rijndael_e AES algorithm Rijndael Encoder
10 security_sha NIST Secure Hash Algorithm
11 security_pgp_d public key cryptography for the masses
12 security_pgp_e public key cryptography for the masses
13 telecom_adpcm_c Intel/dvi adpcm coder/decoder Coder
14 telecom_adpcm_d Intel/dvi adpcm coder/decoder Decoder
15 telecom_gsm gsm encoder/decoder
16 telecom_CRC32 32 BIT ANSI X3.66 CRC checksum �les
17 consumer_jpeg_c JPEG kernel
18 consumer_jpeg_d JPEG kernel
19 consumer_lame MP3 encoding engine
20 consumer_mad MPEG audio decoder
21 consumer_ti�2bw convert a color TIFF image to grey scale
22 consumer_ti�2rgba convert a TIFF image to RGBA color space
23 consumer_ti�dither convert a TIFF image to dither noisespace
24 consumer_ti�median convert a color TIFF image to create a TIFF palette �le
25 network_dijkstra Dijkstra’s algorithm
26 network_patricia Patricia Trie data structure
27 o�ce_stringsearch1 Boyer-Moore-Horspool pattern match
28 o�ce_ghostscript Aladdin Ghostscript
29 o�ce_ispell An interactive spelling corrector
30 o�ce_rsynth Klatt synthesizer
31 bzip2d BurrowsâĂŞWheeler compression algorithm
32 bzip2e BurrowsâĂŞWheeler compression algorithm

Table 4. Candidate clusters of compiler optimizations into sub-sequences (all derived from LLVM -O3)

sub-
seq

Compiler Passes

A -alignment-from-assumptions -argpromotion -barrier -bdce -block-freq -branch-prob -constmerge -deadargelim -demanded-
bits -dse �oat2int -forceattrs -functionattrs -globaldce -globalopt -globals-aa -gvn -indvars -inferattrs -inline -ipsccp -jump-
threading -lcssa -loop-accesses -loop-deletion -loop-idiom -loop-unroll -loop-unswitch -loop-vectorize -mldst-motion -prune-
eh -reassociate -rpo-functionattrs -sccp -simplyfycfg -sroa -strip-dead-prototypes

B -licm -mem2reg
C -instcombine -loop-rotate -loop-simplyfy
D -memcpyopt
E -adce -loop-unswitch -slp-vectorize -tailcallelim

Figure 5 gives the Harmonic mean (as suggested by [16] 3) values of the actual speedups using �ve selected
applications each having di�erent upper bound sequence lengths. We randomly selected an application from
each of CBench categories (automotive, compression, telecom, consumer, o�ce and network) since it was
impractical to do this analysis with all applications. Having the upper bounds set to 3, 4, 5, 6 and 7 respectively,
gives search spaces of 156, 781, 3909, 19k and 97k distinct permutations of sub-sequences with repetitions
enabled (refer to Equation 1 for the optimization space). The �ve speedup lines show the trend of reaching a
higher speedup value by iteratively exploring larger fraction of the optimization space. The maximum speedup
found against -O3 using sequence lengths of 3, 4, 5, 6, and 7, respectively, are 1.23, 1.34, 1.38, 1.44 and 1.45.
These results suggest to set the maximum length to 6 as this ensures achieving good speedups while avoiding
a potential exploration of 100K sequences per each application in the training set.

3We provide harmonic mean rather than geometric mean as we are dealing with averaging speedups. Note that harmonic-
mean is always less than or equal to geometric mean.
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Table 5. List of the predictive models used in our experiments. Note that the proposed methodology is
independent from any specific machine-learning algorithm (classifier) and it can be paired with any algorithm
desired.

Predictive Model Description
MultilayerPerceptron (MLP) A feedforward arti�cial neural network model that maps sets of input data onto a set of appropri-

ate outputs. A MLP consists of multiple layers of nodes in a directed graph, with each layer fully
connected to the next one

LinearRegression (LR) An approach for modeling the relationship between a scalar dependent variable y and one or more
explanatory variables (or independent variables) denoted X. In linear regression, the relationships
are modeled using linear predictor functions whose unknown model parameters are estimated from
the data.

KStar It is an instance-based classi�er, that is the class of a test instance is based upon the class of those train-
ing instances similar to it, as determined by some similarity function. It di�ers from other instance-
based learners in that it uses an entropy-based distance function.

Table 6. Average error rate for the proposed encoding function versus an arbitrary encoding

M.L MiCOMP Encoding Arbitrary Encoding Improvement Factor
MAE AE MAE AE MAE AE

MLP 0.06778 0.05439 0.10826 0.11838 1.59× 2.16×
LR 0.07515 0.07795 0.12879 0.13974 1.71× 1.79×
KStar 0.05129 0.05078 0.09188 0.10866 1.77× 2.13×

4.5 MiCOMP’s Prediction Accuracy
Unlike sequence prediction models [1, 6, 36] in speedup prediction approaches, prediction quality is measured
by means of prediction error. This metric demonstrates how close the prediction values were to the actual
speedups given the same sequence. We use the following di�erent error measurement techniques.

Mean Absolute Error. In statistics, the Mean Absolute Error (MAE) [18] is a quantity used to measure how
close predictions are to the eventual outcomes. The mean absolute error is given by:

MAE =
1
n

n∑
i=1
| fi − yi | (3)

where we de�ne ei as | fi − yi | given fi as the prediction values and yi the actual values. Consequently, the
value ei is inverse proportional to the accuracy of the prediction.

Approximation Error. Complementary to MAE, Approximation Error (AE) [40] is a common error mea-
surement whereas in some data there is some discrepancy between an exact value and the approximation.
An approximation error can occur because (i) certain measurements of the data are not precise (which we
consider it can be the case for any computer scienti�c measurement) and (ii) approximated values are used
instead of the real values (the iterative prediction way keeps using the predicted values). It is calculated as:

δ =
|ϵ |
|v | =

|v −vapprox |
|v | (4)

where the absolute error is the magnitude of the di�erence between the exact value and the approximation.
These de�nitions can be extended to the case when v and vapproximate are n-dimensional vectors, then by
replacing the absolute error with an n-norm error.

4.5.1 Prediction Accuracy. We provide the prediction’s error rate in Table 6. We observe that the arbitrary
encoding leads to higher error rates in the prediction values. . Table 6 shows that the KStar model does slightly
better in terms of accuracy compared with other models, it achieves around 5% error rate on average. In
general, having a smaller error rate does not always guarantee higher performance gain but rather showcases
the accuracy of the prediction model to capture the correlation between di�erent compiler sub-sequences and
the speedup values. 4

4We are aware of the many other encoding possibilities that are more e�cient (currently having N ×M length). However,
we believe that extending the current encoding scheme to a more sophisticated version is out of scope of the work. Moreover,
the proposed clustering technique can e�ectively reduce the number of N , thus the encoding scheme is scalable for higher
orders.
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Table 7. Best compiler optimization sub-sequences found using an exhaustive iterative compilation and their
related speedups

Application Best sub-sequence Speedup w.r.t. -O3 Kruskal-wallis p-value
telecom_adpcm_c ECDDCC 1.35 0.9999
security_sha ACCACE 1.06 0.9934
security_blow�sh_e.csv BCCEEA 1.13 0.9909
automotive_susan_e.csv AABACA 1.15 0.9981
consumer_ti�dither DCEDCD 1.20 0.9999
security_rijndael_e CAEEC 1.10 0.9999
consumer_ti�2bw CCDCD 1.30 0.9999
bzip2e CBADCA 1.30 0.9944
automotive_susan_s ECCCDE 1.22 0.9999
o�ce_stringsearch1 ABCBAC 1.07 0.9999
telecom_adpcm_d DCAACA 1.13 0.9939
consumer_jpeg_c DDC 1.41 0.9932
network_patricia CECBAA 1.18 0.9954
automotive_susan_c BDBCCB 1.32 0.9999
consumer_ti�2rgba DEDDC 1.32 0.9999
automotive_qsort1 CBAAAC 1.04 0.9969
security_blow�sh_d DACECA 1.09 0.9949
network_dijkstra EECBBE 1.51 0.9991
security_rijndael_d ECEACD 1.09 0.9992
bzip2d CBDACA 1.29 0.9994
automotive_bitcount BEACCA 1.19 0.9999
consumer_jpeg_d CCED 1.18 0.9999
consumer_ti�median BCBACB 1.15 0.9929
telecom_CRC32 DCAACA 1.26 0.9999
telecom_pgp_d DCAACA 1.21 0.9999
telecom_pgp_e DCA 1.22 0.9949
o�ce_ispell ABEBAE 1.09 0.9999
o�ce_ghostscript ABCBAC 1.08 0.9999
o�ce_rsynth ABCBA 1.10 0.9969
consumer_mad DDCA 1.17 0.9999
consumer_lame DDCAB 1.15 0.9999

Harmonic mean 1.31 0.9976

4.5.2 Iterative Compilation Max Speedups. Iterative compilation is known to be able to achieve good
performance results when compiling applications [9]. However, the approach is expensive and should be
combined with more intelligent search algorithms [1, 6]. Table 7 reports the maximum speedups found by
an iterative compilation approach using our proposed clustering while exploring the full optimization space
exhaustively. This experiment empirically con�rms that the proposed clustering is useful on the phase-ordering
space since we show that we can achieve on average a 31% speedup versus -O3. Figure 4 illustrates the trend
when using MiCOMP sub-sequences with no baseline compared with having a baseline (e.g.: -O1, -O2 or
-O3). The best optimization sequence for each of applications under-analysis and its speedup value are reported
in the second and the third columns of Table 7. Readers can refer to Table 4 to �nd the exact set of compiler
optimizations clustered in each sub-sequence.

4.6 Performance Gain of The MiCOMP Technique Against The Ranking Approach
Our approach can improve the exploration to �nd the best optimization sequences in an optimization search
space and to �nd the best speedups using a fewer number of predictions. Table 8 reports the comparison
between the best speedup found by our approach and a state-of-the-art N-shot approach [34, 36]. The results,
averaged using a Harmonic mean across all applications, show that using the same number of predictions from
both models, our exploration technique can outperform the ranking approach on every number of predicted
optimization sequences used (1, 5, 10, 15 and 20). This shows that our proposed methodology can e�ectively
predicts the best compiler sequences to use and converges faster to better solutions in the space.

5 COMPARATIVE RESULTS
In this section we evaluate the results of our model against three di�erent techniques: (i) Standard optimization
levels, (ii) Random Iterative Compilation (RIC) and, (iii) state-of-the-art prediction Models. We use our
MiCOMP exploration policy and compare the performance of predictions to a previously published ranking
approach [34, 35]. For each application under analysis, we tested the speedup gained using 1, 5 and 10
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Table 8. Prediction improvement of MiCOMP based on Adjusted Cosine Similarities against the Ranking
(N-shot approach)

Exploration Techniques Top-1 Top-5 Top-10 Top-15 Top-20
MiCOMP 1.01 1.06 1.09 1.10 1.12
Ranking 0.93 1.02 1.06 1.07 1.08

Table 9. MLP’s speedup table against LLVM’s -O3. Reported numbers are A (B% ): (A) speedup and (B) percentage
speedup w.r.t. the optimal speedup value of exhaustive exploration. Values are reported for 1 prediction, 5 predictions and
10 predictions.

Application 1 prediction 5 predictions 10 predictions
automotive_bitcount 1.04 (95.38%) 1.07 (98.12%) 1.08 (98.92%)
automotive_qsort1 1.01 (95.32%) 1.03 (96.93%) 1.03 (97.55%)
automotive_susan_c 1.04 (96.61%) 1.06 (98.53%) 1.06 (99.07%)
automotive_susan_e 1.04 (96.47%) 1.03 (98.41%) 1.04 (99.00%)
automotive_susan_s 0.99 (96.26%) 1.01 (98.42%) 1.02 (98.98%)
bzip2d 0.93 (92.77%) 0.96 (94.02%) 1.00 (94.37%)
bzip2e 1.09 (83.77%) 1.10 (86.02%) 1.12 (90.37%)
consumer_jpeg_c 1.01 (85.18%) 1.07 (90.35%) 1.10 (94.51%)
consumer_jpeg_d 1.09 (84.70%) 1.14 (88.97%) 1.17 (97.85%)
consumer_ti�2bw 0.96 (75.54%) 0.99 (80.59%) 1.02 (82.46%)
consumer_ti�2rgba 0.91 (80.61%) 0.95 (86.19%) 1.07 (88.08%)
consumer_ti�dither 1.02 (80.14%) 1.09 (85.86%) 1.11 (87.68%)
consumer_ti�median 0.94 (79.21%) 1.02 (85.72%) 1.06 (89.31%)
consumer_mad 1.02 (82.14%) 1.09 (85.86%) 1.11 (87.68%)
consumer_lame 0.99 (89.21%) 1.02 (90.72%) 1.06 (92.31%)
network_dijkstra 1.13 (60.00%) 1.29 (68.46%) 1.38 (73.00%)
network_patricia 0.91 (74.99%) 0.93 (80.79%) 0.97 (93.91%)
o�ce_ispell 0.98 (84.99%) 1.01 (90.79%) 1.03 (93.91%)
o�ce_ghostscript 0.99 (79.99%) 1.03 (82.79%) 1.03 (90.91%)
o�ce_rsynth 1.01 (84.99%) 1.02 (90.79%) 1.03 (93.91%)
o�ce_stringsearch1 0.98 (64.99%) 1.02 (70.79%) 1.01 (73.91%)
security_sha 0.93 (64.99%) 1.01 (70.79%) 1.03 (73.91%)
security_blow�sh_e 0.97 (64.99%) 1.03 (70.79%) 1.03 (73.91%)
security_blow�sh_d 0.97 (64.99%) 0.99 (70.79%) 1.02 (73.91%)
security_rijndael_e 0.99 (64.99%) 1.02 (70.79%) 1.01 (73.91%)
security_rijndael_d 1.00 (64.99%) 1.01 (70.79%) 1.04 (73.91%)
telecom_adpcm_c 0.96 (64.99%) 1.01 (70.79%) 1.02 (73.91%)
telecom_adpcm_d 0.98 (64.99%) 1.02 (70.79%) 1.01 (73.91%)
telecom_gsm_d 0.93 (64.99%) 1.03 (70.79%) 1.04 (73.91%)
telecom_CRC32 1.01 (85.18%) 1.07 (90.35%) 1.10 (94.51%)
telecom_pgp_d 1.04 (96.61%) 1.06 (98.53%) 1.06 (99.07%)
telecom_pgp_e 1.02 (80.14%) 1.09 (85.86%) 1.11 (87.68%)
Harmonic mean 1.03 (84.74%) 1.05 (87.51%) 1.09 (91.52%)

predictions and provide the Harmonic mean values. For example, one can see that for the network_dijkstra
application we can gain a higher speedup values using MiCOMP and, on average even better than -O3
from just the �rst prediction. Moreover, we can achieve a 4% performance improvement over -O3 when we
use 5 predicted optimization sequences from our model. Over all our benchmarks, using our model we can
achieve 1%, 4%, and 9% speedups over -O3 using 1, 5, and 10 predicted optimization sequences, respectively.
Consequently, our technique allows MiCOMP to outperform -O3 by high margins.

5.1 Comparison with Standard Optimization Levels
Standard optimization levels have been introduced to achieve good performance on average. However, they
come short of the customized auto-tuning frameworks per architecture/application/dataset. As we showed
in Table 9, MiCOMP can surpass the performance of -O3 with a few predictions on application bases. Here
we provide Table 10 which reports more �ne-grained speedup over all standard optimization levels. This
demonstrates how fast (�rst number in the tuple) and in what percentage of the explored space (the second
number), the framework is reaching a sequence which can outperform the speci�c standard optimization level.
Each column is reporting two values: (i) in how many predictions and (ii) in what percentage of the whole
con�guration space the propped methodology can outperform OX levels.
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Table 10. Average Speedup w.r.t LLVM -O3. Numbers are A (B%): (A) How fast (in terms of number of
predictions) in average the proposed methodology outperforms LLVM standard Optimizations. (B) The
percentage of the optimization space explored to satisfy the goal.

Predictive Modeling -O1 -O2 -O3
MultilayerPerceptron 1 (0.01%) 1 (0.01%) 2 (0.016%)
LinearRegression 1 (0.01%) 1 (0.01%) 3 (0.02%)
KStar 1 (0.01%) 1 (0.01%) 2 (0.016%)

5.2 Comparison with State-of-the-art Iterative Compilation Models
In this section, we compare MiCOMP with two state-of-the-art intermediate-sequence prediction approaches
proposed in [5, 24].

5.2.1 Intermediate Speedup Comparison Case. (A). Kulkarni et al., [24] used Neuro-Evolution for Augmenting
Topologies (NEAT) to predict the best compiler optimization to apply given the state of source-code being
optimized by the dynamic JIT Jikes RVM compiler. . Contrary to the technique we propose in this paper where
we obtain features of the code only once before it is optimized. Kulkarni et al. used NEAT, a machine-learning
framework based on genetic evolution, to generate many neural-networks where each network was evaluated
on the task of using static source code features to predict the next compiler optimization to apply. NEAT
can make optimization predictions to any given maximum-length to predict the most bene�cial sequence of
optimizations for the target application being compiled. In NEAT training time was reported around 10 days
while the current approach requires a few hours to construct the model. Another advantage of the current
work is the fact that it supports multiple predictions from the prediction-space while the NEAT approach can
produce one-shot results based on the stop condition for each application and neural network con�guration.
We reproduced the work by Kulkarni et al. [24] by using 100 chromosomes and 500 generations on 12 core
Xeon(R) CPU E5-1650 v2 @ 3.50GHz with 12GB running on Ubuntu and we report the result in Table 11. We
ran NEAT in parallel with average running time of 1.75 hours per model (the longest took 4 hours). . The
training and prediction is done with leave-one-out cross-validation in order to produce uniform results. .

5.2.2 Intermediate Speedup Comparison Case. (B). Ashouri et al. [5] demonstrated a predictive methodology
to predict an intermediate speedup OF an optimization from the con�guration space given the current state of
the application.

However, unlike [24], they employed dynamic features of the application under study. As mentioned in
Section 5.2.1, a major downside in an intermediate speedup approach is that application feature should be
collected on every state by means feature extraction and this makes the system impractical on large-scale data,
specially, when dynamic features are collected on every state. In addition to an e�cient feature collection
process and predicting the complete optimization sequence to apply to the unoptimized code at once, MiCOMP
brings two extensions to the aforementioned work. Second, comparison baseline in [5] was LLVM’s default
optimization, while in this work we provide a comparison against LLVM’s -O3 (we show MiCOMP can
outperform an aggressive optimization setting in LLVM, that is, -O3, in only a few predictions.). Figure 6
demonstrates the comparison. For this comparison, we used the same training data of up to the length of 4 (as
it was declared in [5]) for both models to be uniform on both comparisons. We observe that, except the �rst
two predictions, the proposed approach outperforms the intermediate speedup methodology reported in this
work and on average MiCOMP brings 11% speedup gain.
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Fig. 6. Performance of MiCOMP w.r.t the performance of intermediate speedup predictor approach [5]
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Table 11. Performance comparison of the single prediction by MiCOMP against the intermediate speedup
approach reported in previous work [24]. All values are normalized by -O3.

Application NEAT MiCOMP
Best NN Size 1 prediction 1 prediction

automotive_qsort1 1105 1.0336 1.0385
automotive_bitcount 1536 1.0923 1.0898
automotive_susan_c 607 1.0012 1.0491
automotive_susan_e 613 1.0211 1.0481
automotive_susan_s 1295 1.0135 1.0195
bzip2d 1159 1.0514 0.9898
bzip2e 1259 1.0012 0.9798
consumer_jpeg_c 1327 1.0205 1.1882
consumer_jpeg_e 596 1.0712 1.0981
consumer_ti�2bw 1038 0.9522 0.9491
consumer_ti�2rgba 1147 0.9905 0.9295
consumer_ti�dither 612 1.0222 1.0288
consumer_ti�median 1356 0.9097 0.9497
consumer_lame 1612 1.0221 1.0288
consumer_mad 1256 0.9097 0.9497
network_dijkstra 1343 1.0353 1.1382
network_patricia 622 0.7971 0.8585
o�ce_ispell 1056 0.9197 0.9897
o�ce_ghostscript 1356 0.9097 1.0997
o�ce_rsynth 1306 0.9797 1.0497
o�ce_stringsearch1 858 0.9897 1.0397
telecom_adpcm_c 958 0.9754 1.0192
telecom_adpcm_d 948 0.9897 1.0232
telecom_gsm_d 924 0.9997 1.0397
telecom_CRC32 886 0.9423 1.0012
telecom_pgp_d 843 0.9697 1.0234
telecom_pgp_e 1002 0.9891 1.0254
security_sha 1536 1.0193 1.0178
security_blow�sh_e 1221 1.0023 1.0298
security_blow�sh_d 1534 1.0923 1.0898
security_rijndael_e 1132 1.0113 1.0395
security_rijndael_d 1033 1.0123 1.0598

Harmonic Mean 0.9632 1.0295

5.3 Comparison with Random Iterative Optimization
As we illustrated in Section 4.5.2, iterative compilation can improve application performance over standard
compiler optimization sequences [1, 9]. Additionally, several published works have shown that drawing
compiler optimization sequences at random can often be as good as using other more complicated search
algorithms, such as genetic algorithms or simulated annealing [1, 10, 12]. In this section, we compare the
e�ectiveness of MiCOMP to a Random Iterative Compilation (RIC) method that samples our clustered subse-
quences from a uniform distribution. We randomized the distribution of predictions 10000 times to make sure
the obtained model is totally uniform. The purpose of this comparison is to show how e�ective the MiComp
predictive modeling works against random iterative compilation. Our results are presented in Figure 7. To
present our results, we de�ne Normalized Performance Improvement (NPI) as the ratio of the performance
improvement achieved over the potential performance improvement:

NPI =
Er ef − E

Er ef − Ebest
(5)

where E is the execution time achieved by the methodology under consideration, Er ef is the execution
time achieved with a reference compilation methodology and Ebest is the best execution time that can be
obtained through an exhaustive exploration of all possible compiler optimization sequences in the optimization
space we are exploring. As the execution time E of the iterative compilation methodology under analysis
gets closer to the reference execution time Er ef , the value of NPI gets closer to 0, where 0 indicates no
improvement was obtained. As E approaches the best execution time, Ebest , the value of NPI approaches 1.
An NPI value of 1 indicates that the optimal performance available was achieved. The goal of the evaluation
in this section is to show how e�ective MiCOMP is at exploring the optimization sequence space compared to
RIC. . The X axis pertains to the number of predicted optimization sequences used and the Y axis shows their
corresponding speedup values. We used NPI (scaled within [−∞, 1]) and the speedups are all normalized by
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Fig. 7. MiCOMP performance comparison versus random iteration compilation

-O3 performance. Thus, Y = 0 is the speedup line corresponding to -O3. We observe that the performance of
MiCOMP outperforms Random Iterative Compilation with fairly a clear margin on each number of predicted
optimization sequences used. Table 7 gives the the absolute speedup values.

Figure 7b displays another result where we compare a �xed number of predicted optimization sequences for
MiCOMP, that is 5 predicted sequences, versus di�erent number of predicted sequences from RIC. That is we
observe the prediction quality of MiCOMP compared to di�erent numbers of predicted optimization sequences
drawn from a random distribution. Figure 7b depicts this scenario using a violin plot where the Y axis pertains
to the speedup with respect to the RIC and the X axis corresponds to the di�erent predicted optimization
sequences obtained from RIC. Statistically, we observe that the quality of the 5-prediction of MiCOMP is as
good as using 35 prediction optimization sequences from RIC thus we observe that the predicted optimization
sequences derived by MiCOMP can give up to 7× exploration speedup versus the RIC method.

6 CONCLUSION
We proposed and presented a clustering technique for all the compiler optimizations in LLVM’s -O3 and
clustered them in �ve di�erent optimization sub-sequences to speedup the training and exploration phase.
This method helps us outperform LLVM’s -O3 optimization sequence. Moreover, MiCOMP has a simple
encoding function that encodes an optimization sequence into a bit string, allowing us to apply standard
machine learning techniques that require �xed length feature vectors. We incorporated analogies between
the analyzed problem and the context of Recommender Systems, and integrate similarity measures to boost
exploration e�ciency. We show that MiCOMP can outperform LLVM’s standard optimization levels with just
a few predicted of optimizations sequences and achieves top 80% of the available speedup by traversing less
than 5% of the optimization sequence space. .
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