
Shape optimization of solid-air porous phononic crystal slabs with widest full
3D bandgap for in-plane acoustic waves

Luca D’Alessandroa,d, Bichoy Bahra,1, Luca Danielb, Dana Weinsteinc, Raffaele Arditod,∗

aDept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology Cambridge (MA)
bResearch Laboratory of Electronics, Massachusetts Institute of Technology Cambridge (MA), USA

cDept. of Electric and Computer Engineering, Purdue University West Lafayette (IN), USA
dDept. of Civil and Environmental Engineering, Politecnico di Milano Milan, Italy

Abstract

The use of Phononic Crystals (PnCs) as smart materials in structures and microstructures is growing due to their
tunable dynamical properties and to the wide range of possible applications. PnCs are periodic structures that
exhibit elastic wave scattering for a certain band of frequencies (called bandgap), depending on the geometric and
material properties of the fundamental unit cell of the crystal. PnCs slabs can be represented by plane-extruded
structures composed of a single material with periodic perforations. Such a configuration is very interesting,
especially in Micro Electro-Mechanical Systems industry, due to the easy fabrication procedure. A lot of topologies
can be found in the literature for PnCs with square-symmetric unit cell that exhibit complete 2D bandgaps;
however, due to the application demand, it is desirable to find the best topologies in order to guarantee full
bandgaps referred to in-plane wave propagation in the complete 3D structure. In this work, by means of a novel
and fast implementation of the Bidirectional Evolutionary Structural Optimization technique, shape optimization
is conducted on the hole shape obtaining several topologies, also with non square-symmetric unit cell, endowed
with complete 3D full bandgaps for in-plane waves. Model order reduction technique is adopted to reduce the
computational time in the wave dispersion analysis. The 3D features of the PnC unit cell endowed with the widest
full bandgap are then completely analysed, paying attention to engineering design issues.

Keywords: Solid-Air Phononic Crystals, MEMS Resonators, 3D full bandgap, Shape optimization, BESO
algorithm

1. Introduction

PnCs are represented by periodic media that exhibit bandgaps, i.e. bounded frequency regions for which the
propagation of elastic waves through the crystal is impeded. The central frequency and the size of the bandgap
basically depend on the materials employed in PnCs and on the shape of the unit cell. The use of Phononic Crystals
(PnC) at the macro and micro scale, and specifically in the field of Micro Electro-Mechanical Systems (MEMS),
is nowadays improving in number and in technology, mainly due to the PnC versatility and easy fabrication. The
review papers [1], [2], [3], [4] and [5] contain several examples of PnC application, among which: acoustic isolation,
noise suppression, vibration attenuation, acoustic waveguides, acoustic super-lenses, negative refraction, acoustic
cloaking, energy harvesting. The successful use of PnCs is also due to their tunable mechanical properties, in the
presence of prestress [6, 7] or non-linear mechanical behavior [8].

This work is focused on PnC application in plane structures such as plates and slabs for acoustic wave con-
finement. Although the presented results are general, particular attention is given to PnC application in released
MEMS resonators [9] and unreleased MEMS resonators [10]. The former kind of resonator can highly benefit from
the presence of PnCs with the objective of reducing the wave radiation in the external support. On the other hand,
unreleased resonators have the prerogative to overcome many challenges faced by traditional MEMS resonators
such as non-linearity, power handling, residual stresses and yield [11]. In those cases, perforated slabs, i.e. solid-air
PnCs, are the most feasible and interesting for micro-scale fabrication, in order to obtain acoustic resonanting
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cavities with frequency selective confinement. The typical manufacturing techniques at the micro-scale rely on
lithographic processes. An example is represented by gallium nitride (GaN) resonators [10], that are based on
GaN-on-Si heterostructures, comprised of AlGaN(25 nm)/GaN(1.7 µm) grown on (111)-Si using Molecular Beam
Epitaxy (MBE). The solid-air PnC is obtained by means of a deep Cl2 etch of GaN layer and a final release step
with XeF2 etch of the silicon substrate. Due to technology issues, the hole shape is tipically an extrusion of a
simple planar geometry, most commonly in literature a circle. That case, depending on the radius of the circular
hole and the thickness of the PnC slab, could present full bandgap for 3D in-plane waves less than 15% (gap to
mid gap ratio, see [12]) or could not present any bandgap. It is worth mentioning that more complex 3D periodic
structures could be fabricated by means of additive manufacturing, as it is shown in [13] at the macro-scale;
additive manufacturing can be used for obtaining PnC at the micro-scale as well, e.g. by means of two-photon
lithography [14] or Robocasting technique [15].

For any application, it is highly desirable to optimize the shape of the hole in the PnC unit cell in order
to obtain the largest full 3D bandgap, while complying with manufacturability constraints. This is beneficial
for several reasons, mainly related to the efficiency and robustness of the resonator, characterized by a minimal
footprint. The present work aims to achieve the optimal shape, in terms of widest phononic bandgap, of the
solid-air PnCs and to provide a thorough examination of the achieved topology, focusing on application goals.
The optimization problem is specifically restricted to unit cells that contain a hole in the form of a contractible
space. This means that (i) multiple holes and (ii) isolated regions are excluded a priori. While (ii) is an obvious
restriction for solid-air PnCs, condition (i) represents a limitation, which differentiates our work from previous
proposals and is fully justified by manufacturability considerations. In spite of such a limitation, we show that
the proposed optimization algorithm leads to full 3D bandgap, whose width is greater than other scenarios in the
literature.

Several research groups have treated the topological optimization of PnCs unit cell for 2D models (i.e. plane
strain), mostly with two material inclusions: the pioneering work [16] tackles the problem by means of a gradient
based algorithm (method of moving asymptotes, MMA); the use of genetic algorithms has been proposed for
solid-solid PnC in [17], [18] and [19]. Recently, genetic algorithms have been also used for topology optimization of
solid-air PnCs, see [20], [21], [22] for the 2D case and [23] for the full 3D case. In the present work, we consider the
application of Bidirectional Evolutionary Structural Optimization (BESO) that has been demostrated well suited
for Photonic Crystals topology optimization [24], solid-solid PnCs topology optimization [25] and in sistematic 2D
topology optimization of solid-air [26] PnCs. In those studies, it is shown how BESO algorithm can work well in
bandgap optimization problems and can be faster than other algorithms in terms of number of iterations necessary
to find the optimal topology.

In the present work, the BESO algorithm is presented for the first time directly in full 3D shape optimization,
in a novel and fast engineering perspective. The method is based on sensitivity analysis for the acoustic wave
frequency, which is obtained through a 3D Finite Element (FE) approach that has been developed in a Matlab
environment with a great attention to computational time issues. The shape optimization procedure starts from a
simple hole extruded from a planar geometry (i.e. circle), for solid-air Gallium Nitride (GaN) PnC, and proceeds
in order to evolve this geometry into the optimal one for maximum bandgap. The optimal shapes of the hole
with respect to different bands of frequencies are found in less than 30 iterations, by adding and removing solid
elements. The air domain is not taken into account in the model: in this way numerical instability issues due
to interpolation between the two solid-air phases are not present and the number of unknowns for the FE solver
is reduced. The efficiency of the proposed algorithm is further enhanced by the application of a model order
reduction technique [27].

Several optimal topologies are presented related to different bandgaps, all of them with a single contractible
hole in order to be easily feasible by micro-fabrication. In the second part of the paper, the dynamic behaviour of
the optimal PnC (endowed with the widest bandgap) is analyzed with a 3D FE approach in order to understand
the acoustic wave propagation phenomena. Comparison with 2D approximations and full 3D model are conducted:
we specifically consider how the width of the bandgap varies at different thicknesses of the slab and what type
of modes is responsible of the change of bandgap width. Finally, other materials which are typically adopted in
MEMS industry are analyzed, such as Alluminium Nitride (AlN) and Silicon (Si).

2. Finite element problem formulation

PnC structures are periodic structures generally composed of two or more elastic material phases, solid or
fluid. The theoretical framework is wave propagation in elastic inhomogeneous media, and it is governed by the
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Figure 1: FE in-plane grid with nodes identified by type with respect to periodic boundary conditions.
Γ: boundary, T : Top, B: Bottom, L: Left, R: Right, I: Internal.

The nodes identified by the same geometric figure (or color) are related by the bc.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

following elasto-dynamic equations [28]:

ρ
∂2ux
∂t2

=
∂

∂x
(λ∇ · u) +∇ ·

(
µ

(
∇ux +

∂u

∂x

))
(1a)

ρ
∂2uy
∂t2

=
∂

∂y
(λ∇ · u) +∇ ·

(
µ

(
∇uy +

∂u

∂y

))
(1b)

ρ
∂2uz
∂t2

=
∂

∂z
(λ∇ · u) +∇ ·

(
µ

(
∇uz +

∂u

∂z

))
(1c)

where ρ is the material density, λ and µ are Lame’s coefficients, u = [ux, uy, uz] is the displacement vector and
ux, uy, uz its cartesian components.
The case study analyzed in this paper is referred to PnC slabs composed of solid-air phase materials, where the 3D
structure is the result of an extrusion from a planar geometry. Therefore it is possible to assume that the material
parameters ρ, λ and µ depend only on the x and y (in-plane) coordinates: ρ = ρ(x, y), λ = λ(x, y), µ = µ(x, y).
Suitable boundary conditions must be defined in order to define the complete dynamic problem on the unit cell:

• free boundary condition at the interface between the solid and air domain;

• periodic boundary conditions in the external boundary by means of the Floquet-Bloch theorem [29] [30]:

u = u(r,k) = ũ(r)eik·reiωt (2)

where ũ(r) is the Bloch displacement vector over the unit cell. More details on the formulations can be
found in our previous paper [31].

Referring to the unit cell domain, the weak form of Eq. (1) is discretized with FE technique choosing the
linear cubic element for 3D analysis. In order to implement easily the shape optimization algorithm the in-plane
FE mesh is a regular grid over the unit cell: each element can be treated as a “pixel” that can be assigned to solid
or air domain. The out of plane mesh is also a regular grid, with out of plane - in plane element ratio around 6
and never more than 10, depending on the slab thickness. An important aspect is that, in order to decrease the
computational cost, the air domain is not considered in the FE discretization.

The FE discretization yields the governing equation for wave propagation:

wT (k)(K− ω2M)w(k) = 0 (3)

where k = [kx, ky, 0] is the wave vector: only in-plane wave propagation is considered, in view of the specific
geometry of the PnC slabs, so the third component of the wave vector is null. For the remaining symbols,
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r = [rx, ry, rz] is the position vector, K and M are the assembled global stiffness and mass matrices , w(k) is the
global vector of unknowns containing in order the x, y and z components of each node displacement.

Due to the organization of the nodes of the mesh (as shown in Fig. 1), it is possible to define the periodic
boundary conditions in a matrix form:

w(k) = T(k)w̃ (4)

where w̃ collects the so called “independent” nodal displacements, i.e. the degrees of freedom of the nodes on ΓL,
ΓBL, ΓB , ΓBR and ΓN . The rectangular matrix T(k) contains the periodic relation between the nodes; its entries
are only zeros, ones and eik·∆r values, being ∆r the relative position vector between the nodes involved in the
periodicity condition (further details can be found in [32] and in our previous paper [31]).

By introducing Eq. (4) in Eq. (3), one finds:

w̃TTH(k)(K− ω2M)T(k)w̃ = 0 (5)

where H stands for Hermitian transpose.
The following problem matrices are Hermitian and depend on the wave vector k:

K̃(k) = TH(k) K T(k) (6a)

M̃(k) = TH(k) M T(k) (6b)

Introducing Eq. (6) in Eq. (5):
w̃T (K̃− ω2M̃)w̃ = 0 (7)

Eq. (7) must be solved in order to find eigenvalues ω2
n, eigenvectors w̃n(r) and the associated dispersion rela-

tion at varying k. It is important to notice that, since the governing matrices are Hermitian, all the eigenvalues
are real. The description of the dynamic behavior of the PnC for all the possible vectors in the plane can be
obtained by choosing a limited number of vectors, discretizing the boundary of the first Irreducible Brillouin Zone
(IBZ) [33]. In Fig. 2, the bold square in k-space is the Brilluin zone. Due to the symmetries of the unit cell,
it is possible to focus the attention on some particular regions of the k-space called first IBZ, as illustrated in
Fig. 2: for x-y symmetry it is possible to reduce the k-space to the colored square, for square symmetry to the
colored triangle. Many authors (see e.g. [29, 32]) claim that from the engineering point of view the maximum and
minimum points of the bandgap can be determined focusing the attention on the k vectors along the boundary of
the first IBZ, following the paths indicated in Fig. 3.

Material space Reciprocal k-space
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(a) k-space for x-y symmetry.
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(b) k-space for square symmetry.

Figure 2: Material and reciprocal space with the indication of the First Irreducible Brillouin Zone in the k-space.

One important point, which deserves a discussion here, is the possible inclusion of air in the FE model. The
question does not seem to have a unique answer: for instance, in the case of application of genetic algorithms, the
Authors in [20] and [21] do not include the air portion in the model (which is limited to plane strain); conversely,
the Authors in [23], who consider a full 3D model, prefer to take into account the void sections of porous PnC by
introducing some very compliant material, but they finally point out some numerical drawbacks of that choice. In
the application of BESO algorithm, see [26], the introduction of air in the model seems unaivoidable, if one wants
to implement the standard optimization procedure that relies on the material switch in some specific elements.
Nevertheless, the robustness and the computational burden are highly affected by the fictitious modeling of the
void sections. For this reasons, we prefer to consider a FE model which encompasses the solid part only, so that
the dispersion diagram can be obtained in a shorter time without any numerical issue. Clearly, this choice entails
some peculiar modification of the BESO optimization algorithm, which will be discussed in the next section.
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Figure 3: Dispersion diagram for k-vector along the boundary of the First Irreducible Brillouin Zone for different
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3. Shape optimization problem formulation

3.1. Objective function

The aim of this work is to find the shape of the single hole in solid-air PnCs that maximizes the bandgap
between two adiacent eigenvalues.

The objective function of the optimization procedure is therefore the bandgap width normalized with respect
to the central eigenvalue of the bandgap:

max
ρ

{
∆ω2

ω2
cen

= 2
mink ω

2
n+1(k,ρ)−maxk ω

2
n(k,ρ)

mink ω2
n+1(k,ρ) + maxk ω2

n(k,ρ)

}
(8)

where ρ is a vector that contains the material density of each element and n is the number of the bottom
eigenvalue that define the bandgap analyzed. The densities of the elements can only assume the values of 0 or
1, no interpolation between the two values is adopted: the element can be active and consequently it is taken
into account in the FE calculations, or can be de-activated and consequently it is not taken into account in the
calculations since it belongs to the air domain.

Some proper filters are introduced in the algorithm in order to avoid the creation of suspended regions of
material and the so-called checkerboard effect, which is a common issues in optimization procedures [34]. As
explained in the introduction, the algorithm is specifically studied in order to obtain holes in the form of a
contractible space.

3.2. Constraints

A careful analysis must be conducted in order to define constraints for the shape optimization procedure,
paying attention to micro-fabrication technology issues and to some specific troubles for solid-air PnC. The case
of porous PnC may suffer some mesh dependency problems, which have been overlooked in some previous papers
(e.g. [20]). Mesh dependency means that the finer the adopted FE mesh, the higher the bandgap, since the
optimization algorithm tends to “erode” the material and to make as thin as possible the links between solid
parts. That behaviour is connected to another important issue of porous PnC, namely the structural worthiness,
in terms of stiffness and/or resistance to external loads.

The former issue, i.e. mesh sensitivity, can be solved by applying cumbersome techniques, such as the BESO
method with perimeter control [35]; in other cases, e.g. [21] and [22], a by far simpler solution has been found:
the algorithm entail an additional constraint so that the geometrical width of each link between solid parts is
larger than a certain threshold. That solution is effective to solve the mesh dependency, but, on the other hand,
it does not ensure the satisfaction of stiffness limits and, most importantly, it may degrade the optimality of the
bandgap. For instance, the constraint on each link impedes the creation of internal compliant parts, which do not
alter the overall stiffness of the unit cell but may increase the bandgap by inducing some local resonance: two of
the optimal shapes that we obtain, for higher modes, are endowed with that feature.

The introduction of explicit constraints on the stiffness parameters seems the ideal provision to avoid any
trouble. Such an operation has been carried out in the literature by introducing complicate modifications of the
optimization algorithm. The Authors in [23] propose the application of a multi-objective optimization process, with
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the achievement of Pareto frontiers between the two conflicting objectives of maximum bandgap and maximum
stiffness. Conversely, the Authors in [26] introduce additional constraints for imposing that the stiffness parameters
are larger than some pre-defined thresholds: the objective function is then modified via the Lagrange multiplier
technique and the optimization algorithm is modified in order to account for the additional unknowns.

In the present paper, a simple, though effective, condition is introduced. The procedure of shape optimization
gradually modifies the hole shape and can possibly end up near to the boundary of the unit cell: thus, we impose
that a certain amount of lines of elements on the boundary square frame of the unit cell cannot be modified by
the optimization algorithm. Therefore, the elements that belongs to this sort of “picture frame” are and remain
in the solid domain throughout the optimization process (see Fig. 4). In that way, the mesh dependency issue is
avoided in a global sense on the unit cell, without impeding the creation of internal weak links. Moreover, the
bulk and shear stiffness parameters are always larger than the ones that are obtained for the configuration in
Fig. 4: the number of lines that are not involved in the optimization process can be suitably tuned in order to
fulfill some pre-defined requirements in terms of homogenized stiffness. A similar concept can be applied to overall
strengths, which is dominated by local buckling in the case of membrane loads. The procedure is implemented in a
straigthforward way and the optimization process maintains its outstanding performances in terms of convergence
speed.

Figure 4: Square frame in the unit cell boundary (in-plane): elements in the outer region (light or yellow) are not involved
in the shape optimization procedure in order to avoid mesh dependency and to impose some specific requirements on the

structural worthiness.

3.3. Sensitivity analysis

The formulated optimization problem is a well suited candidate for the Evolutionary Structural Optimization
(ESO) technique framework [36]. The eigenvalus, that define the objective function in Eq. (8), are given by:

ω2
n =

kn
mn

, kn = w̃T
n K̃w̃n, mn = w̃T

nM̃w̃n (9)

where kn is the modal stiffness, mn is the modal mass and wn = Tw̃n is the eigenvector.

The main assumption is that modifying the density of only few elements the shape of the eigenvector will not
change significantly. The assumption that the mode shape does not change significantly in between design cycles
has been commonly used in frequency optimization [37]:

δ(w̃n) ≈ 0 (10)

It is worth underlining that, according to the original formulation of ESO algorithm for solid-air problems,
the calculation of sensitivity is always referred to the removal of an element from the present configuration. By
removing one single element e, the eigenvalue will change as follows:

δ(ω2
n) =

1

mn
δkn −

kn
m2

n

δmn (11)

where the variation of kn and mn can be easily obtained by extrapolating the entries referred to element e from
the eigenvectors and from the governing matrices:

δkn = w̃T
n δK̃w̃n = −w̃eT

n K̃ew̃e
n (12)
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δmn = w̃T
n δM̃w̃n = −w̃eT

n M̃ew̃e
n (13)

The sensitivity parameter αe
n expresses how the eigenvalue increases by removing one single element:

αe
n = δ(ω2

n) =
1

mn
w̃eT

n

(
ω2
nM̃e − K̃e

)
w̃e

n (14)

The sensitivity of the bandgap width is therefore calculated as follows:

αe
bg(n,n+1) = αe

n+1 − αe
n (15)

Referring to Eq. (15), it is possible to implement two strategies in order to increase the bandgap width, namely:

(a) ρe = 0 for element e that presents αe
bg(n,n+1) > 0;

(b) ρe = 1 for element e that presents αe
bg(n,n+1) < 0.

The most obvious procedure is represented by strategy (a) (typical of the standard ESO), since the possibility (b)
is actually trivial due to the fact that it suggests to activate elements that are already active.

The novelty introduced below defines the shape optimization procedure of the air hole:

(A) ρe = 0 for element e nearby the hole that presents αe
bg(n,n+1) > 0;

(B) ρE = 1 for element E not yet active -in the hole- that presents αnear e
bg(n,n+1) < 0.

The proposed algorithm, which includes both conditions (A) and (B), is bidirectional since new elements can be
activated in the hole. It is worth noting that the topological condition near e is introduced, because the air domain
is not modelled in our case and, as a consequence, there is no sensitivity connected to such elements. The elements
in the hole are activated if the sensitivity condition is fulfilled on the closest element on the hole’s edge.

The optimization procedure in 3D must face the fact that the fabrication technology is such that the hole must
be an extrusion of a 2D shape: in general, it is not possible to have modifications of the hole shape along the hole
thickness. It is hence necessary to define a procedure that takes into account the different layers of elements in the
thickness and the optimization algorithm must remove or add all elements column by column. Consequently, two
alternatives arise: (i) a proper combination of the αbg(n,n+1) values in the different planes along the same column
is considered (e.g. the mean values along the thickness); (ii) reference is made to one particular layer of element.
Since the basic difference with respect to a 2D optimization procedure (focused on in-plane and/or out-of-plane
modes) is the presence of flexural and torsional modes that propagates as in-plane waves, it is necessary to choose
a strategy that takes into account the αbg(n,n+1) for those 3D modes in the sensitivity analysis. By considering the
mechanical behavior of thin slabs subject to bending or torsion, one easily realizes that the upper or lower skins
of the unit cell represent a good choice. In fact, 2D modes do not vary in the thickness and therefore choosing one
specific plane for the sensitivity extraction does not alterate the final outcome; moreover, torsional and flexural
modes present significant displacement magnitudes far from the neutral axis (top/bottom of the unit cell). We
choose the upper skin as the reference plane, so from now on αbg(n,n+1) values are referred to this plane.

3.4. Shape optimization algorithm

Following the path of reasoning introduced in the previous section, the core of the algorithm is:

ρe = 0 for e(nearby hole)|αe
bg(n,n+1) > 0 (16a)

ρe = 1 for E(nearby solid - in the hole)|αnear e
bg(n,n+1) < 0 (16b)

Eq. (16a) defines the elements to be de-activated and Eq. (16b) defines the elements to be activated at each
iteration.

The value n is chosen at the beginning of the optimization procedure corresponding to the bottom eigenvalue
of the bandgap that will be optimized. The constraint is that the procedure can not involve the element in the
first b∗ lines of the border of the unit cell. The optimization scheme is described in Fig. 5.

The parameters governing each BESO iteration (see Fig. 5) are:

• nlinesd max number of lines of solid-elements near to the hole to be de-activated ;
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Figure 5: Block scheme of the optimization algorithm.

• nlinesa max number of lines of hole-elements near to the solid to be activated ;

• nelemd max number of elements in nlinesd to be de-activated ;

• nemela max number of elements in nlinesa to be activated ;

• thrd threshold for elements to be de-activated, 0 < thrd < 1;

• thra for elements to be activated, −1 < thra < 0.

The absolute values of the thresholds are limited to unity because the sensitivity values are normalized: the
sensitivities for elements to be de-activated are divided by the maximum value attained in the specific set; con-
versely, for the elements that can be added, the normalization is carried out with respect to the minimum value,
keeping the original sign. The normalized sensitivity are denoted by ᾱe

bg(n,n+1). At each iteration, elements to be
de-activated are:

ed = {e | ᾱe
bg(n,n+1) > thrd, e ∈ nlinesd} (17)

At each iteration, elements to be activated are:

ea = {E |E near e, e | ᾱe
bg(n,n+1) < thra, E ∈ Γhole, E ∈ nlinesa} (18)

where Γhole identifies the boundary of the solid domain near by the air domain (i.e. hole). The two alternatives
at point 5 in Fig. 5 are referred to the fact that the absolute value of the thresholds can not be larger than or
equal to unity and that the number of lines should be larger than zero.

4. Model order reduction

The application of model order reduction is extremely advantageous in optimization problems: the first appli-
cation can be found in [38], that studied the structural optimization of a micro-accelerometer including transient
dynamic effects. In the present case, a model order reduction technique is adopted in order to decrease the com-
putational time in the calculation of the wave dispersion diagram. The problem to be solved per each iteration of
the optimization procedure is composed of several eigenvalue problems (one per each k-vector considered in the
first IBZ): it is possible to solve the problem by referring only to a few k-vectors, called basis of the model order
reduction technique, namely the ones corresponding to the symmetry points of the lattice [27] (see Fig. 6). The
m eigenvectors computed by solving Eq. 7 for the chosen k-basis are collected in the Ψ matrix, which at the end
of the procedure has dimensions n x m with m� n.
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Figure 6: The dots represents the lattice symmetry points in k-space chosen as basis for model order reduction.

The displacement vector w̃ in Eq. 7 can be expressed in terms of the reduced basis as follows:

w̃ = Ψṽ (19)

where ṽ is the reduced eigenvector with dimensions m x 1. The eigenvalue problem for the k-vectors in the
symmetry points is rewritten as:

ṽT ( ˜̃K− ω2 ˜̃M)ṽ = 0 (20)

where ˜̃K = ΨT K̃Ψ and ˜̃M = ΨTM̃Ψ are the new governing matrices which have the reduced dimensions m x m.
To recover the full solution one can use Eq. 19.

Fig. 7 contains the comparison between dispersion relations calculated with reduced order model and without
the reduced order model: the two diagrams are almost undistinguished, thus confirming the validity of the proposed
approach. Similar results are obtained also for the final shape, after the completion of the optimization procedure.

The model order reduction is crucial for tackling fully 3D problems, which are large scale problems by their
very nature. In terms of computational time: to solve 31 FE eigenvalue problems (one per each k-vector) with
around 138000 unknowns each, a computer characterized by 2 processors 2.40 GHz each and 64 Gb RAM, without
parallel computing, takes approximately 20 min for reduced order model solution and 130 min for full model
solution. The huge computational saving is essential for keeping a reasonable overall execution time.
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(a) Dispersion diagrams obtained by means of reduced 3D model (solid
green line) and full 3D model (dashed red line), x-y symmetry,

ellipsoidal hole’s view from the top.
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circular hole’s view from the top.

Figure 7: Comparison between reduced 3D model (solid green line) and full 3D model (dashed red line) for both x-y
symmetry and square symmetry.
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5. Numerical examples for shape optimization

In this Section, several optimization results are presented, corrisponding to different bandgaps. The procedure
starts from a circular hole, of radius R = 0.4a, in a parallalepiped volume with square base of dimension a and
thickness a/2 ; the starting topology is not endowed with a full 3D bandgap as shown in Fig. 8. It is worth
reminding that, from this point on, the dispersion diagrams are given in terms of non-dimensional frequency, i.e.
the frequency times the unit cell size divided by the wave propagation velocity. This representation is useful in
order to execute some comparison with previous results. Accordingly, the relative bandgap width will be referred
to frequency, instead of eigenvalues. After few interations, always less than 30, the shape optimization procedure
ends with the optimized hole shape with respect to the band of frequencies chosen.

The material considered in these analyses is GaN, which is transversely isotropic, with isotropic properties in
the x-y plane (for material properties, please refer to Tab. 1).
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Figure 8: Starting topology with corresponding dispersion relation: no full bandgap.

f = ωn/2π is the frequency, a is the square unit cell dimension, vP =
√

λ+2µ
ρ

Table 1: Materials parameters for 3D analyses. Cij is the stiffness or elasticity matrix.

Material C11 C12 C13 C33 C44 C66 ρ
[GPa] [GPa] [GPa] [GPa] [GPa] [GPa] [kg/m3]

GaN 390.00 145.00 106.00 398.00 105.00 122.50 6150
AlN 396.00 132.00 132.00 396.00 132.00 132.00 3255
Si 217.33 84.52 84.52 217.33 66.41 66.41 2329

In Fig. 9 the optimal shapes for different chosen badgaps are presented. The optimization algorithm is applied
sistematically in order to obtain the optimal bandgap for increasing eigenvalue number. It is worth noting that no
bandgap can be found below the 6th eigenvalue, thus confirming the results presented in [23]. The widest relative
bandgap, for the specific t/a ratio, is equal to 64% and corresponds to the lowest eigenmodes. A similar value
is obtained between the 12th and 13th eigenvalues: that case corresponds to a similar topology, with a different
disposition of the links between the solid portions. When examining the higher eigenmodes, e.g. Fig. 9d, one
finds the appareance of internal resonating portions, connected to the main frame by means of weak links: such
an optimal shape could not be obtained if the overall constraint in [21] had been implemented. Same thing for the
shape in Fig. 9f: in that specific case, the optimal shape is obtained by introducing the x-y symmetry condition.
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(c) Unit cell and full bandgap (60%) between 12th and 13th eigenvalues.

Figure 9: Unit cells with corresponding hole topologies and associated 3D full bandgaps for in-plane waves propagation at
different eigenvalues (cont.).
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(f) Unit cell and full bandgap (20%) between 28th and 29th eigenvalues.

Figure 9: Unit cells with corresponding hole topologies and associated 3D full bandgaps for in-plane waves propagation at
different eigenvalues.

13



6. Analysis of the widest-bandgap unit cell

The unit cell of Fig. 9a presents the widest full bandgap for 3D in-plane wave propagation. That configuration
is now examined with reference to several aspects. First, we consider the comparison of 3D analysis with 2D
approximations, in order to understand which one may fit better in this kind of problem. Then, it is necessary
to analiyze how the bandgap width varies with respect to the thickness of the slab (it must be noticed that the
optimal shape found in the previous section is referred to a particular thickness). Finally, attention will be focussed
on the basic features of the of modal shapes that correspond to the eigenvalues that define the bandgap.

6.1. Comparison with 2D approximations.

In this section the results of 3D analyses for PnC slabs are compared with the 2D approximations (plane strain
and plane stress), that are commonly used in the literature for this kind of problems.

The comparison is conducted for four ratios t/a (where t is the slab thickness and a is the in plane dimension
of the unit cell), that identify the typical range of the MEMS resonators’ applications (see Fig. 10). The results of
2D analyses, which are plotted in red dotted lines, are obviously the same for all the t/a ratios. At a first glance,
one can easily realize the importance of 3D analyses, since many different eigenmodes show up when this kind of
model is considered. In all the cases, the 3D eigenmodes have a strong effect on the bandgap: for t/a = 0.0417
the bandgap is completely destroyed, whereas for the other cases a bandgap still exists, but its width is greatly
reduced. Clearly, the fully 3D analyses encompass also the 2D modes: by comparing the dispersion diagrams
for the red dotted lines and the green line, one finds that, for the range of thicknesses analysed, the plane stress
approximation presents the best fit to 3D results.
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(a) Comparison between 2D plane strain (red
dashed) and 3D (green full) models for

t/a = 0.0417.
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(b) Comparison between 2D plane stress (red
dashed) and 3D (green full) models for

t/a = 0.0417.
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(c) Comparison between 2D plane strain (red
dashed) and 3D (green full) models for

t/a = 0.5000.
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(d) Comparison between 2D plane stress (red
dashed) and 3D (green full) models for

t/a = 0.5000.

Figure 10: Comparison between 2D plane strain (red dashed) and 3D (gren full) models for different t/a values (cont.).
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(e) Comparison between 2D plane strain (red
dashed) and 3D (green full) models for

t/a = 1.0000.
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(f) Comparison between 2D plane stress (red
dashed) and 3D (green full) models for

t/a = 1.0000.
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(g) Comparison between 2D plane strain (red
dashed) and 3D (green full) models for

t/a = 1.5000.
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(h) Comparison between 2D plane stress (red
dashed) and 3D (green full) models for

t/a = 1.5000.

Figure 10: Comparison between 2D plane strain (red dashed) and 3D (gren full) models for different t/a values.

6.2. Bandgap at varying thickness

The examination of Fig. 10 shows that 3D bandgap for in-plane waves is highly influenced by the ratio t/a.
Therefore, we carried out a set of analyses in order to understand how the bandgap width changes at varying
thickness: the results are summarized in Fig. 11, that contains the plots of the 6th and 7th eigenfrequencies for
different aspect ratios of the unit cell. The maximum bandgap width for the optimal shape is attained when
t/a = 0.583: at that value, the relative bandgap width between 6th and 7th eigenvalues is equal to 76%.

In Fig. 12 the dispersion relations at different thickness are shown in order to understand which modes are the
main characters of the bandgap width variation. One finds that for low t/a values no bandgap exists (Fig. 12a);
then, the bandgap width gradually increases because a couple of modes start to move towards the high frequency
region (Fig. 12b-d); in correspondence of the best aspect ratio, a different mode enters the bandgap (Fig. 12e)
and then gradually moves towards the low frequency region (Fig. 12f-g). For higher thickness, different modes
come into play.
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Figure 11: 6th and 7th bandgap width at different ratios between thickness t and unit cell in-plane dimension a.
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(a) Dispersion relation at t/a = 0.1250.
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(b) Dispersion relation at t/a = 0.2500.
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(c) Dispersion relation at t/a = 0.4167.
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(d) Dispersion relation at t/a = 0.5000.
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(e) Dispersion relation at t/a = 0.6667.
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(f) Dispersion relation at t/a = 0.8333.
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(g) Dispersion relation at t/a = 1.0000.
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(h) Dispersion relation at t/a = 1.1667.
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(i) Dispersion relation at t/a = 1.3333.

Figure 12: Evolution of dispersion relations for different ratios t/a.
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6.3. Typical features of the eigenmodes

It is interesting to investigate which type of modes are involved in order to understand completely the bandgap
variation: Figs. 13, 15 and 17 are used in order to highlight the stresses contents per each mode that define the
bandgap at different t/a values. In each of those figures there is one picture for each stress component in which
2D plane stress and 3D dispersion relations are superimposed. The 3D dispersion relation is plotted point by
point with circles that have the diameter dimension proportional to the relative importance of the specific stress
component in that mode. To calculate such a relative importance the sum of the absolute values of each of the six
3D stress components is calculated all over the mesh, eigenvalue by eigenvalue. From these six sums the percentage
of each stress component in the mode is extracted. This is a rough but effective indicator for the problem, because
the considered modes are characterized by a global wave shape and there are no local vibrations that conversely
would have affected these indicators.

By examining Fig. 13, that is referred to the case t/a = 0.4, one finds that the 7th mode is characterized
mainly by τxy stress component, and 8th mode mainly by σxx and σyy stress components. Those two modes are
overlooked by the 2D plane stress approximation, since they are dominated by torsional and flexural deformation,
respectively. For a better comprehension of this fact, Fig. 14 shows contour plots of the τxy stress components for
the 7th mode and of the σyy component for the 8th mode in a significant k-point: by considering that opposite
values are obytained on the upper and lower skins, we may infer that some torsional deformation is present in the
7th mode and some bending deformation is present in the 8th mode.

From Fig. 15, that is referred to the case t/a = 0.8333, it is possile to see that the new (with respect to
Fig. 13) 7th mode is characterized mainly by τyz and τxz stress components, whereas the two modes commented
before (Fig. 14) are now at upper frequencies. In Fig. 16, the contour plots of shear stresses for the 7th mode in a
significant k-point is plotted. The presence of significant shear stress on the plan orthogonal to the z axis suggests
that the mode is dominated by a “drilling” deformation of the disk (i.e. relative rotation of the upper skin with
respect to the lower skin, around the z axis). For compatibility reasons, the mode contains also the beam-like
torsional deformation of the links between the disks.

For higher t/a ratios, the 3D effects increase and other 3D modes (in this case dominated by σzz) occupy the
bandgap (see Fig. 17).
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0.3

0.0

0.6

Γ X M Γ

N
o

n
 d

im
. f

re
q

u
en

cy
 ν
=f
a/
v P
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(e) Stress τxz .
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(f) Stress τxy .

Figure 13: Dispersion relations with comparison between 2D plane stress (green full) and 3D (red dotted) for t/a = 0.5000.
The dot dimension represents the percentage of the stress in the selected mode (each dot must be compared to the others in

the same position in the other stresses graphs).

(a) Stress τxy, 7th eigenvalue, bottom
plane.

(b) Stress τxy, 7th eigenvalue, top
plane.

(c) Stress σyy, 8th eigenvalue, bottom
plane.

(d) Stress σyy, 8th eigenvalue, top
plane.

Figure 14: Plot of the stresses for the widest bandgap unit cell with t/a = 0.5000: τxy for one k-point for 7th eigenvalue
(bottom and upper plane) and σyy for one k-point for 8th eigenvalue (bottom and upper plane).

The 7th contains some torsional strain, the 8th mode contains some bending strain.

18



0.3

0.0

0.6

Γ X M Γ

N
o

n
d

im
. f

re
q

u
en

cy
 ν
=f
a/
v P

(a) Stress σxx.

0.3

0.0

0.6

Γ X M Γ

N
o

n
 d

im
. f

re
q

u
en

cy
 ν
=f
a/
v P

(b) Stress σyy .

0.3

0.0

0.6

Γ X M Γ

N
o

n
 d

im
. f

re
q

u
en

cy
 ν
=f
a/
v P
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(d) Stress τyz .
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Figure 15: Dispersion relation with comparison between 2D plane stress (green full) and 3D (red dotted) for t/a = 0.8333.
The dot dimension represents the percentage of the stress in the selected mode (each dot must be compared to the others in

the same position in the other stresses graphs).

(a) Stress τxz, 7th eigenvalue, bottom
plane.

(b) Stress τxz, 7th eigenvalue, middle
plane.

(c) Stress τxz, 7th eigenvalue, top
plane.

(d) Stress τyz, 7th eigenvalue, bottom
plane.

(e) Stress τyz, 7th eigenvalue, middle
plane.

(f) Stress τyz, 7th eigenvalue, top
plane.

Figure 16: Plot of the stresses for the widest bandgap unit cell with t/a = 0.8333: τxz for one k-point for 7th eigenvalue
(bottom, middle and upper plane) and τyz for one k-point for the same eigenvalue (bottom, middle and upper plane).

The 7th mode is characterized by the drilling deformation of the central disk.
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Figure 17: Dispersion relation with comparison between 2D plane stress (green full) and 3D (red dotted) for t/a = 1.1667.
The dot dimension represents the percentage of the stress in the selected mode (each dot must be compared to the others in

the same position in the other stresses graphs).

7. Comparative analysis of the achieved results

7.1. Analysis with different materials typical of MEMS industry

In the previous Sections we considered a specific material in our computations, namely GaN, in view of the
possible application of optimal phononic crystals in MEMS unreleased resonators [10]. For comparative purposes,
it is now interesting to see how the optimal topology found in the previous Sections works for different materials
of common use in MEMS industry, i.e. aluminium nitride (AlN) and epitaxial silicon (Si), whose mechanical
properties are summarizaed in Table 1. Reference is made to the optimal shape of the first useful bandgap,
between the 6th and 7th eigenmodes: Fig. 18 describes the achieved results for the three materials, in the case of
thickness-to-width ratio equal to 0.500.
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(c) Si.

Figure 18: Comparison between dispersion relations of different materials used in MEMS industry for t/a = 0.500.

By examining the achieved results, one can infer that the dispersion relation for solid-air PnC depends strongly
on the geometry of the hole, and less on the material properties: the frequencies content in the PnCs is similar
altough the ratios of the materials constants in the three materials of Fig. 18 are not so close (see Tab. 1); the
relative bandgap for the same optimal shape is 69% for AlN, 64% for GaN and 67% for Si.
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7.2. Comparison with results in literature

A large number of interesting results have been presented in very recent works: [20], [21] and [23] perform
optimization by means of the genetic algorithm, [26] by means of a different BESO approach. All of them use Si
as reference material (see Tab. 1) and could be compared to the result of Fig. 18 (c), endowed with the gap to
mid-gap ratio for full frequencies bandgap of 67%.

First, we consider the results presented in [23], that is the only paper where the optimization procedure is
applied to fully 3D problems. In order to perform a fair comparison, full bandgap topologies (for both symmetric
and anti-symmetric modes) are considered from the previous work for ratio t/a = 0.500. The topologies indicated
in that paper as TH-1 to TH-10 are the optimal ones and they span gap to mid-gap ratio between 85% and 20%,
depending on the position along the Pareto frontier. The results of the present work can be compared to TH-3,
which has a similar in-plane stiffness with respect to our optimal topology. Therefore, the result to compare with
is around 60% for gap to mid-gap percentage, which shows that our algorithm performs slightly better. The
maximum relative bandgap presented in [23] is equal to 85% and corresponds to the first point on the Pareto
frontier, associated with the lowest relative elastic modulus: we can reach that value if we relax our constraint:
for example, if we consider that the border constraint is constituted of a single element line our optimal relative
bandgap jumps to 100%, see Fig. 19.

As a result of the comparison, we can conclude that the present approach finds equivalent or slightly better
topologies in terms of gap to mid-gap ratios, but extremely different on terms of feasibility in microfabrication due
to the contractible hole topology. Furthermore, as already stressed before, the optimization procedure is faster
and does not take into account air modelling.
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Figure 19: Comparison with previous work: (a) optimal cell for the case TH-1 in [23]; (b) optimal cell obtained with the
present approach, with border constraint of 1 element; (c) dispersion diagram for the cell (b), 3D modes in green solid line,

2D plane stress modes in red dashed line.

The Authors in [20], [21] and [26] perform the optimization on 2D PnCs with plane stress/plane strain behaviour
and therefore they do not take into account torsional and bending modes.

The optimal topology presented in [20] for both in-plane and out-of-plane waves is endowed with 63% of gap to
mid-gap bandgap percentage, which is less than the 67% found in this work (see Fig. 18 (c)) with 3-line constraint
and far from the 100% with 1-line constraint (see Fig. 19). It is worth reminding that the out-of-plane modes
considered in [20] are a small subset of the complete 3D modes, that are considered in the present approach. The
other papers, [21] and [26], present gap to mid-gap ratios slightly above 100% which is comparable to our full
3D 100%. As said before this is mainly due to the fact that they do not take into account the torsional and
flexural modes. If we consider the in-plane modes only, we find that the relative width of the first bandgap attains
120% (see red dotted lines in Fig. 19c); the analogous maximum value achieved in [21] is 121.6% and in [26] it is
108.32%. It is worth noting that their topologies present several holes within the unit cell, which, as for [23], is
not sound for microfabrication and therefore not the goal of the present work.
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8. Conclusions

The present paper represents a contribution to the optimal design of PnCs with reference to their practical
application in MEMS resonators. The problem of shape optimization for achieving the maximum relative width
of bandgap is tackled by means of an original algorithm, which has been developed in the framework of BESO
technique. The optimization procedure is applied to the case of 3D modes for the wave propagation inside PnC
slabs, whereas most of the previous works are focussed on 2D approximations. The algorithm has been specifically
tuned in order to achieve holes in the form of contractible space, so that the final design is fully compatible
with the typical features of microfabrication. A suitable constraint has been introduced in order to guarantee
the structural worthiness of the optimal PnC. The algorithm is very fast, if compared to other proposals in the
literature, and has been applied sistematically for different eigenvalues. The typical effects of 3D behaviour have
been carefully considered, with reference to the variation of the aspect ratio of the unit cell.

The performance of the algorithm has been compared with the literature on the same topic. In spite of the
aforementioned constraints, the optimal shapes obtained in the present paper compare very well to the previous
proposals: the relative bandgap widths obtained here are better than the values achieved in the only paper which
treats fully 3D problems. Similarly, a positive comparison is obtained with respect to previous works which adopt
2D approximations. The most important feature of our optimal PnC is that they can be directly implemented in
MEMS resonators, with great advantages with respect to previous proposals. For instance, a similar shape is used
in [39] for a layered material (AlN with top and bottom Pt layers). In that paper, the relative bandgap width is
equal to 27%. We replaced that shape with our optimal shape, with the same material and the same dimensions
of the unit cell: our relative bandgap is equal to 53%, which is by far better than the original proposal. The
Authors in [40] considered a different PnC with square shape of the solid portions, instead of our circular shape:
the relative bandgap in [40] is 30%, while our optimal shape reaches 50% for that material and that dimension.
We can therefore conclude that the application of the proposed algorithm may lead to a substantial improvement
of the performance of PnC in MEMS resonators.
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