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Abstract—Nowadays many companies have available large
amounts of raw, unstructured data. Among Big Data enabling
technologies, a central place is held by the MapReduce frame-
work and, in particular, by its open source implementation,
Apache Hadoop. For cost effectiveness considerations, a common
approach entails sharing server clusters among multiple users.
The underlying infrastructure should provide every user with a
fair share of computational resources, ensuring that service level
agreements (SLAs) are met and avoiding wastes.

In this paper we consider mathematical models for the optimal
allocation of computational resources in a Hadoop 2.x cluster
with the aim to develop new capacity allocation techniques that
guarantee better performance in shared data centers. Our goal
is to get a substantial reduction of power consumption while
respecting the deadlines stated in the SLAs and avoiding penalties
associated with job rejections. The core of this approach is a
distributed algorithm for runtime capacity allocation, based on
Game Theory models and techniques, that mimics the Map-
Reduce dynamics by means of interacting players, namely the
central Resource Manager and Class Managers.

Index Terms—Hadoop; Capacity Allocation; Admission Con-
trol; Generalized Nash Equilibrium Problem.

I. INTRODUCTION

A large number of enterprises currently commits to the ex-
traction of information from huge data sets as part of their core
business activities. Applications range from fraud detection
to one-to-one marketing, encompassing business analytics and
support to decision making in both private and public sectors.
In order to cope with the unprecedented amount of data and
the need to process them in a timely fashion, new technologies
are increasingly adopted in the industry, following the Big
Data paradigm. Among such technologies, Apache Hadoop is
already widespread and predictions suggest a further increase
in its future adoption. IDC estimates that, by 2020, nearly 40%
of Big Data analyses will be supported by public Clouds [1].

Apache Hadoop is an open source software suite that
enables the elaboration of vast amounts of data on clusters
of commodity hardware. Hadoop implements the MapReduce
paradigm, automatically ensuring parallelization, distribution,
fault-tolerance, reliability, and monitoring. In order to obtain
a high level of scalability, Hadoop 2.x overcomes previous
versions drawbacks by implementing a distributed resource
management system, with a central Resource Manager (RM)

that provides resources for computation to Application Masters
(AMs) entitled to manage the submitted jobs.

Despite the convenience of this paradigm and the undeni-
ably widespread adoption of Hadoop within the IT industry,
still there are no tools that support developers and operators
in achieving optimal capacity planning of MapReduce appli-
cations. In this context the main issue [2], [3] is that the
execution time of a MapReduce job is generally unknown in
advance: for some systems, capacity allocation can become a
critical aspect. Moreover, resource allocation policies need to
decide job execution and rejection rates in a way that users’
workloads can meet their service level agreements (SLAs) and
the overall cost is minimized.

This paper investigates the theoretical foundations for the
optimal runtime management of cluster resources in private
Clouds. Precisely, we focus on the joint admission control
and capacity allocation problem, seeking to fulfill SLAs while
minimizing energy-related costs. Overall, ICT energy demand
sums up to 7% of the world consumption and it was expected
to rise up to 12% by 2017 [4], with a further tendency
towards a shift from devices to networks and data centers
consumption [5]. Indeed, worldwide ICT systems account for
2–4% of global CO2 emissions and it is expected that they
can reach up to 10% in 5–10 years [6].

We propose a theoretical approach in which the allocation
problem is solved periodically based on a prediction of the
forthcoming system load. In particular, we adopt Game Theory
techniques, which found successful application in the field
of Cloud computing [7]–[10], and use them to provide a
distributed, scalable solution to the joint admission control and
capacity allocation of multi-class Hadoop clusters.

This paper is organized as follows. In Section II, we state
the problem at hand and relevant assumptions. Section III
presents a preliminary, centralized mathematical programming
formulation, whilst Section IV builds on it to propose a
distributed game-theoretic model. Then we analyze our results
in Section V, whilst Section VI discusses related work. In the
end, Section VII wraps up and draws conclusions.

II. PROBLEM STATEMENT AND DESIGN ASSUMPTIONS

Figure 1 shows the reference technological system, featuring
the Hadoop 2.x framework running on a private Cloud. The
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Figure 1: Reference technology

private Cloud cluster supports several user classes competing
for resources, which are managed via the YARN Capacity
Scheduler. Each class collects similar jobs, i.e., applications
that share analogous values for parameters characterizing their
performance: they have the same job profile. Following the
advancements published in [3], [11], job profiles include the
number of tasks involved in both the Map and Reduce phase,
as well as their average and maximum duration.

The modeled cluster supports the concurrent execution of a
maximum of R virtual machines (VMs), which we assume
homogeneous for the sake of simplicity. In order to allow
for elasticity, the reference system does not store data on the
Hadoop Distributed File System (HDFS), as this could lead to
data corruption or poor performance: on the contrary, accord-
ing to the practice suggested by major Cloud providers, data
resides on external storage. With this approach, storage and
computation are completely decoupled, so that it is possible
to vary resource allocation over time without the risk of data
loss or time consuming file system rebalancing.

According to our vision of a novel resource allocation
policy, every application class is managed by a Class Manager
(CM), which negotiates the required resources with a central
RM, entitled to split the available capacity among submitted
jobs. The set of application classes is denoted with A and
N = |A|. For all CMs i ∈ A, the RM assigns ri VMs. In other
words, in this scenario the proposed framework acts as the
YARN Capacity Scheduler [12], assigning every application
class i to a separate queue and providing a portion φi of the
total resources, where:

φi ,
ri∑N
j=1 rj

, ∀i ∈ A.

Given ρ̄, the time unit cost to run a single VM, it is possible
to obtain the total cost of execution as

∑N
i=1 ρ̄ri.

For every application class i, an SLA establishes that a
maximum of Hup

i jobs can be executed concurrently. However,
the system can autonomously decide to reject a portion of

such jobs upon payment of a penalty. Finally, the accepted hi
jobs cannot be fewer than H low

i and the system commits to
complete them within a deadline Di. We denote with Pi (hi)
the penalty functions associated to the possible rejection of
some jobs. They are assumed to be decreasing and convex:
this is reasonable as it means that penalties increase at least
linearly in the number of rejected jobs.

According to the obtained number of resources ri, a CM
may need to reject some jobs, then it proceeds to activate
a suitable number of AMs to coordinate the admitted ones.
In this scenario, the AMs have the only duty of managing the
resources obtained by the CMs so as to carry out the associated
job tasks, without directly taking part in the allocation process.

We propose to solve our problems hourly, based on a
prediction of the load Hup

i , to dynamically reallocate resources
among application classes, while also avoiding the overhead
and costs of booting and shutting down VMs too frequently.

In the Hadoop framework each computational node hosts
several slots that execute Map and Reduce tasks. In particular,
according to the YARN configuration, computational resources
are split in containers, so that every VM can be used to
concurrently run cMi Map or cRi Reduce tasks, according
to their requirements. These parameters depend only on the
job classes owing to the assumption of homogeneity made
on VMs. The total number of containers assigned to an
application class for Map and Reduce tasks is represented
by sMi and sRi , respectively. Again, these variables give a
simple representation of the workload required to complete
jobs in each class due to the homogeneity assumption on VMs.
Precisely, with sMi and sRi we represent the number of Map
and Reduce tasks that run concurrently, hence the maximum
size of each wave.

As previously stated, according to [3], it is possible to derive
from the Hadoop logs a job profile, i.e., a set of parameters that
characterize the execution of jobs in each class. In this paper
we use a more refined formulation, as in [11]. The estimated
minimum and maximum execution times are computed with



Table I: Centralized Model Parameters

A Set of job classes
N Number of CMs, or |A|
ρ̄ Time unit cost for running a VM in the cluster

Hup
i Maximum concurrency required in the SLA for job class i

Hlow
i Minimum concurrency required in the SLA for job class i

ψlowi Reciprocal of Hup
i

ψupi Reciprocal of Hlow
i

R Total capacity of the cluster in number of VMs
Ai Coefficient associated to Map tasks in job profile i, [11]
Bi Coefficient associated to Reduce tasks in job profile i, [11]
Ei Constant term in job profile i, [11]
cMi Map containers supported on one VM for job class i
cRi Reduce containers supported on one VM for job class i
αi Slope of the penalty term Pi (ψi) for job class i
βi Constant term of the penalty term Pi (ψi) for job class i

Table II: Centralized Model Decision Variables

ri Number of VMs assigned for the execution of job class i
hi Number of jobs concurrently executed in job class i
ψi Reciprocal of the concurrency degree hi
sMi Number of Map slots assigned for the execution of job class i
sRi Number of Reduce slots assigned for the execution of job class i

formulae similar to the following:

Ti = Ai
hi

sMi
+Bi

hi

sRi
+ Ci. (1)

The coefficients Ai, Bi, and Ci properly aggregate the job
profile parameters, which are measured directly by Hadoop
and easily obtainable from its logs. These formulae are used
to predict job execution times, given the amount of allocated
resources and the concurrency level. As shown in [11], the
relative error of such predictions is between 10 and 19%.
Equation (1) can be used to derive deadline constraints, which
can be formulated as:

Ti = Ai
hi

sMi
+Bi

hi

sRi
+ Ci ≤ Di, ∀i ∈ A. (2)

where Di are the deadlines. In the following, we adopt the
parameter Ei = Ci − Di. Notice that, by definition, it holds
Ei < 0, as nonnegative values would mean that jobs of class i
cannot be completed on time.

In light of the above, we can say that the ultimate goal
of the proposed approach is to determine the optimal values
of hi, sMi , sRi , and ri so that the sum of costs and rejection
penalties is minimized, while the deadlines set by SLAs are
met. In Table I are reported all the parameters used in the
models discussed in the subsequent sections, while in Table II
we summarize the decision variables.

III. MATHEMATICAL PROGRAMMING FORMULATION

Building upon the observations and assumptions previously
discussed, we formulate a preliminary mathematical program-
ming model that formalizes the problem. The model is the
following:

min
r,h,sM ,sR

N∑
i=1

ρ̄ri +

N∑
i=1

Pi (hi) (P1a)

subject to:
N∑
i=1

ri ≤ R, (P1b)

Hlow
i ≤ hi ≤ Hup

i , ∀i ∈ A, (P1c)
Aihi

sMi
+
Bihi

sRi
+ Ei ≤ 0, ∀i ∈ A, (P1d)

sMi
cMi

+
sRi
cRi
≤ ri, ∀i ∈ A, (P1e)

ri ∈ N, ∀i ∈ A, (P1f)
hi ∈ N, ∀i ∈ A, (P1g)

sMi ∈ N, ∀i ∈ A, (P1h)

sRi ∈ N, ∀i ∈ A. (P1i)

In problem (P1) the objective function (P1a) has a term
representing the cost of executing all the assigned VMs and
another for penalties. Constraint (P1b) ensures that the cluster
capacity bounds the total assigned resources. Further, the set
of constraints (P1c) imposes the minimum and maximum job
concurrency levels, according to the SLAs. Similarly, con-
straints (P1d) exploit the job profiles to ensure the deadlines
are met. Constraints (P1e) guarantee that every application
class receives enough VMs to support the number of containers
they should run concurrently. The left hand side is a conser-
vative estimate of the resources needed to support at the same
time sMi and sRi containers: this expression greatly simplifies
the analysis. Constraints (P1f)–(P1i) require all the variables
to be nonnegative integers, as expected for their interpretation.

Since the optimization problem is nonlinear due to the
constraints family (P1d) and the penalty terms Pi (hi), it is
advisable to study its continuous relaxation. Nonetheless, the
solutions to the proposed models have to be integer, as it is
only possible to instantiate a discrete number of VMs, then we
will discuss a heuristic approach to the issue in Section IV-D.

Moreover, constraints (P1d) are not convex, thus ruling out
many important results for nonlinear optimization. We address
this issue introducing a new set of variables ψi , h−1

i , so that
constraints (P1d) become convex: with this change of variables
it is possible to write a convex nonlinear problem.

Now, let us assume that the penalties are linear in the new
variables ψi, hence it is possible to write them as αiψi −
βi, ∀i ∈ A. The corresponding penalty term in the objective
function (P1a) is then Pi (hi) = αih

−1
i − βi, ∀i ∈ A. This

expression is consistent with the assumptions of convexity and
monotonicity made on Pi (hi). The formulation reads:

min
r,ψ,sM ,sR

N∑
i=1

ρ̄ri +

N∑
i=1

(αiψi − βi) (P2a)

subject to:
N∑
i=1

ri ≤ R, (P2b)

ψlowi ≤ ψi ≤ ψupi , ∀i ∈ A, (P2c)



Ai

sMi ψi
+

Bi

sRi ψi
+ Ei ≤ 0, ∀i ∈ A, (P2d)

sMi
cMi

+
sRi
cRi
≤ ri, ∀i ∈ A, (P2e)

ri ≥ 0, ∀i ∈ A, (P2f)
ψi ≥ 0, ∀i ∈ A, (P2g)

sMi ≥ 0, ∀i ∈ A, (P2h)

sRi ≥ 0, ∀i ∈ A. (P2i)

Following the proposed change of variables, con-
straints (P1c) become constraints (P2c) where ψlow

i =

(Hup
i )

−1 and ψup
i =

(
H low

i

)−1
. Further, as can be seen from

constraints (P2f)–(P2i), we take the continuous relaxation of
the otherwise mixed integer problem. Thanks to the typically
high values of sMi , sRi , and ri, it is possible to round the real
solution without affecting too much the optimal value.

Problem (P2) is convex and Slater constraint qualification
holds: the Karush-Kuhn-Tucker (KKT) conditions are, then,
necessary and sufficient for optimality. Relying on the KKT
conditions, it is possible to prove1 Proposition III.1 and
simplify the problem formulation:

Proposition III.1. The optimal values attained by sMi , sRi ,
and ψi in problem (P2) are:

sMi = ξMi ri, ∀i ∈ A, (3a)

sRi = ξRi ri, ∀i ∈ A, (3b)

ψi = Kir
−1
i , ∀i ∈ A, (3c)

where:

ξMi ,
cMi

1 +

√
Bi
Ai

cMi
cRi

, ∀i ∈ A, (4a)

ξRi ,
cRi

1 +

√
Ai
Bi

cRi
cMi

, ∀i ∈ A, (4b)

Ki , −

(√
Ai

cMi
+

√
Bi

cRi

)2

Ei
, ∀i ∈ A. (4c)

Building upon the results of Proposition III.1, it is possible
to define two new sets of parameters, rupi and rlowi , which are
the optimal number of resources needed to complete jobs of
class i on time at maximum or minimum concurrency level,
respectively:

rupi =
Ki

ψlowi
= KiH

up
i , ∀i ∈ A, (5a)

rlowi =
Ki

ψupi
= KiH

low
i , ∀i ∈ A. (5b)

However, problem (P2) forces to centralize on a single node
data characterizing different application classes. This approach
would have been natural in the first release of Hadoop where a
single Job Tracker was in charge of both assigning resources to
jobs and ensuring they were carried out. Instead, Hadoop 2.x
distributes these duties among the RM and the AMs, so a

1For the complete proof, refer to [13].

Table III: Distributed Model Parameters

ρupi Maximum bid CM i can place to obtain resources
ρ̂ Maximum price the RM can set, maxi ρ

up
i

rupi Optimal VMs to sustain job class i at maximum concurrency
rlowi Optimal VMs to sustain job class i at minimum concurrency
pi Virtual penalty paid for each VM short of rupi
ξMi Optimal number of Map containers to execute per VM
ξRi Optimal number of Reduce containers to execute per VM
Ki Optimal number of VMs to carry out one job of class i

Table IV: Distributed Model Decision Variables

ρai Bid placed by CM i to obtain resources
ρ Time unit price set by the RM for one VM
yi Logical variable stating whether CM i offers a high enough bid

more appealing approach would be to set them apart and solve
distinct problems. In order to address this issue, we propose
a distributed formulation where each CM and the RM solve
smaller local problems. The decision variables are split among
all these entities and the bargaining for resources becomes a
game involving N + 1 players.

IV. GAME THEORETIC FORMULATION

Given the reference scenario presented in Section II and
Figure 1, we propose a game among the RM and CMs.
Iteratively, the RM assigns VMs to the CMs, while they
determine the concurrency level and the optimal distribution
of slots for Map and Reduce tasks on the acquired resources.
If the current assignment is not satisfactory, each CM can offer
to pay a higher price for extra resources, then the RM assigns
VMs to the highest bidders.

This mechanism naturally leads to making ri decision
variables of the RM problem, whilst sMi , sRi , and ψi are
decision variables of the CM problems. Conversely, sMi , sRi ,
and ψi are parameters for the RM problem, like ri for each
CM problem.

Remarkably, the formulation that is to be laid out in this
section belongs to the category of generalized Nash equilib-
rium problems (GNEPs) [14]. These are a generalization of
classical Nash games where each player’s strategy set is not
fixed, but depends on the strategies adopted by the opponents.
Indeed, the RM affects CMs’ strategy sets by imposing an
allowance of VMs and, in turn, CMs influence the RM with
bids for resources.

In this section we introduce some more parameters and deci-
sion variables, summarized in Tables III and IV. Nonetheless,
the parameters and variables already presented in Tables I
and II are still of interest in the following models.

A. Class Managers

Class Managers are responsible for negotiating with the RM
the assignment of a suitable number of VMs to carry out
the submitted jobs. This behavior is modeled with a problem
where ri, the number of assigned VMs, are parameters, i.e.,
no CM can change their value. Therefore, the model features
only constraints (P2c), (P2d), and (P2e), while its objective



function takes into account only the penalty term of (P2a).
Conversely, the RM problem might end up not being aware
of the penalties applied to job rejections, then we introduce a
new set of variables, ρai . These have the interpretation of bids
placed by the CMs to virtually “buy” resources from the RM,
but this aspect will be clarified in Sections IV-B and IV-C. For
the time being, it is sufficient to know that ρai cannot be lower
than the cost of execution ρ̄, nor greater than some given upper
bounds ρupi . The CM problem can be formulated as follows:

min
ψi,ρ

a
i ,s

M
i ,sRi

αiψi − βi (P3a)

subject to:

ρ̄ ≤ ρai ≤ ρ
up
i , (P3b)

ψlowi ≤ ψi ≤ ψupi , (P3c)
Ai

sMi ψi
+

Bi

sRi ψi
+ Ei ≤ 0, (P3d)

sMi
cMi

+
sRi
cRi
≤ ri, (P3e)

sMi ≥ 0, (P3f)

sRi ≥ 0, (P3g)
ψi ≥ 0, (P3h)
ρai ≥ 0. (P3i)

Recall that, in this class of problems, ri play the role
of parameters, since they are not controlled by CMs. Thus,
constraint (P3e) sets a bound on the possible values attained
by sMi and sRi , which in turn affect ψi. Due to this, the set of
strategies each CM can play depends on the strategy adopted
by the RM and is indirectly influenced by other CMs strategies.

Applying the techniques discussed in Section III, it is
possible to obtain formally the same results of Proposition III.1
for Problem (P3) as well. Such formulae can be used to solve
in closed form the admission control problem.

B. Resource Manager

The Resource Manager receives from all the CMs requests
for a certain number of VMs. Its role is to allocate the available
resources, trying to satisfy all the requests to guarantee the
timely completion of the jobs. Consequently, ri are the only
decision variables. On the other hand, the model requires new
variables: ρ and yi. Notice that, in this case, we have just
one instance with variables subscripted over the whole set A,
contrasting to the formulation proposed in Section IV-A, where
the model appears in N instances separately solved by CMs.

The virtual pricing mechanism introduced to distribute the
original problem is centered on the variables ρ and yi and is
inspired by the pricing policy enforced by Amazon for the
allocation of spot VMs. These are a class of VMs that can be
acquired without previous agreements, but do not provide any
availability guarantees to customers. Indeed, it is possible to
apply for a number of such VMs offering to pay a unit price.
Based on the received offers and the current availability of
resources, Amazon sets a single spot price. Now, customers
who offered enough get their share of spot VMs paying only
the spot price, which can be lower than their bids. However,

Amazon may at any moment terminate them raising the spot
price to a value that is higher than the received bids.

In our setting, the spot price is ρ and is set by the RM.
Every time the RM solves its problem, it determines the price
based on the bids ρai placed by the CMs. Every CM that offers
more than ρ is allowed to receive VMs up to the optimal
upper bound rupi . On the other hand, CMs placing a bid lower
than ρ will receive exactly their minimum resource share, i.e.,
rlowi . The parameters obtained in equations (5) define for ri a
range where job starvation and waste of resources are avoided.
The variables yi play their role in determining, through proper
constraints, whether CM i placed a bid greater than ρ or not.
In any case, the VMs unit price is ρ, for both overbidding and
underbidding CMs.

Clearly, to implement this behavior, it is necessary to use
as objective function the total “revenue” and maximize it.
However, in this way the model has no information about
penalties. As long as the cluster capacity is not saturated, this
is not much of an issue, since the tendency is to assign as many
VMs as possible up to a value that cannot exceed rupi . A more
appealing objective function should have a term related to the
job rejection penalties in addition to the one expressing the
virtual revenue. A similar penalty term should discourage the
assignment of less resources than needed, but at the same time
should not foster an uncontrolled growth of ri when there is
no need to add more VMs. With these issues in mind, we
introduce a new set of parameters, pi, which are an equivalent
penalty coefficient normalized on the lacking resources.

The complete model for the RM is the following:

max
r,y,ρ

N∑
i=1

(ρ− ρ̄) ri −
N∑
i=1

pi
(
rupi − ri

)
(P4a)

subject to:
N∑
i=1

ri ≤ R, (P4b)

ri ≥ rlowi , ∀i ∈ A, (P4c)

ri ≤
(
rupi − r

low
i

)
yi + rlowi , ∀i ∈ A, (P4d)

ρ̄ ≤ ρ ≤ ρ̂, (P4e)
ρ− ρai ≤M (1− yi) , ∀i ∈ A, (P4f)

ρai − ρ ≤Myi, ∀i ∈ A, (P4g)
ri ≥ 0, ∀i ∈ A, (P4h)

yi ∈ {0, 1}, ∀i ∈ A, (P4i)
ρ ≥ 0. (P4j)

In the objective function (P4a), the first term quantifies
the virtual gain obtained by the RM for the resources it
assigns to CMs. Instead, the second term expresses the penalty
contribution. Constraints (P4c) and (P4d) are the lower and
upper bounds on the resources assigned to each CM. In
particular, the upper bound is rupi when CM i offers more
than the price set by the RM, otherwise it is rlowi , thus forcing
ri = rlowi . This behavior is obtained through constraints (P4f)
and (P4g), which are examples of the so called “big M”
constraints; they make sure that yi has value 1 when CM i
offers enough, 0 otherwise. Constraints (P4e) ensure that the



Algorithm IV.1 Best Reply

1: ri ← rlowi , ∀i ∈ A
2: sMi ← sM, lowi , ∀i ∈ A
3: sRi ← sR, lowi , ∀i ∈ A
4: ψi ← ψupi , ∀i ∈ A
5: ρai ← ρ̄, ∀i ∈ A
6: repeat
7: roldi ← ri, ∀i ∈ A
8: RM solves problem (P4)
9: for all i ∈ A do

10: CM i solves problem (P3)
11: if ψi > ψlowi then
12: ρai ← max

{
ρai , ρ

}
+ λρupi

13: end if
14: end for

15: ε←
∑N
i=1

∣∣∣ri−roldi

∣∣∣
roldi

16: until ε < ε̄

price set by the RM is not less than the unit cost for running
a VM in the cluster. Further, they avoid unrealistic solutions
where the RM sets a price several orders of magnitude greater
than the bids without assigning any extra resources, basically
ignoring penalties. The parameter enforcing this behavior is ρ̂,
defined as ρ̂ , maxi ρ

up
i .

As in problem (P2) variables ri are taken as real nonnega-
tive. However, in this case we are not solving the continuous
relaxation of the problem, as variables yi are binary and they
are treated as such. This means that model (P4) is a mixed
integer nonlinear problem. In fact, even if constraint (P2d) is
not part of this problem, the objective function involves the
product ρri.

C. Iterative Approach

According to the considerations presented in Section IV-A,
in this game all the CMs have strategy sets that are functions
of the strategy adopted by the RM. Similarly, the strategy set
of the RM depends on the bids, ρai , offered by the CMs.
As previously stated, this makes the game an example of
GNEP. In order to have the system converge to an equilibrium,
problems (P3) and (P4) are solved iteratively until a stopping
criterion is fulfilled.

Algorithm IV.1 starts assigning the initial values to all the
decision variables. Then it starts a loop performing the actual
iterative procedure to solve the game. First of all, the current
configuration is saved in a set of auxiliary variables, since
we propose to stop the computation when the total relative
increment is below a given tolerance. At line 8 the RM
solves its problem, setting new values for ri and making them
available to every CM. In the following nested loop, each CM
solves its instance of problem (P3) and, possibly, places a
higher bid for extra resources. Condition ψi > ψlow

i at line 11
checks whether CM i is rejecting any jobs: in this case, it
places a higher bid trying to obtain a greater share of resources,
so as to reduce the penalty-related expenditure. The parameter
λ ∈ (0, 1) is required to step up the bid when a CM needs
more resources.

Notice that Algorithm IV.1 is meant to be solved in a
distributed fashion, with the loop at line 9 executed in parallel,

Algorithm IV.2 Solution Rounding
1: sort A according to increasing αi
2: ri ← dr̂ie , ∀i ∈ A
3: for all j ∈ A do
4: if

∑N
i=1 ri > R then

5: rj ← rj − 1
6: end if
7: end for
8: sMi ←

⌈
ŝMi
⌉
, ∀i ∈ A

9: sRi ←
⌈
ŝRi
⌉
, ∀i ∈ A

10: for all j ∈ A do
11: while sMj /c

M
j + sRj /c

R
j > rj do

12: sRj ← sRj − 1

13: if sMj /c
M
j + sRj /c

R
j > rj then

14: sMj ← sMj − 1
15: end if
16: end while
17: end for

one iteration per CM. The algorithm execution requires that the
RM sends ri to each CM and the latter sends back the updated
bids ρai . In this way, the RM does not need any sensitive
knowledge on the SLAs.

D. Integer Solution Heuristic

We have previously observed that, since the continuous
relaxations of the proposed models are considered for per-
formance reasons, we need to enforce the integrality of the
variables ri, sMi , and sRi to obtain a solution useful in practice.
In order to fulfill this necessity, we adopt a heuristic approach,
which is presented in this section. We propose a heuristic that
does not depend on how the continuous solution is obtained,
hence this approach applies both to the centralized and the
distributed formulations previously discussed. Algorithm IV.2
shows pseudo-code for the proposed rounding heuristic.

Constraints (P3d) are approximate formulae, hence can be
relaxed when looking for nearly optimal integer solutions.
Building upon this observation, in Algorithm IV.2 we propose
a viable heuristic to obtain, given an optimal real solution, an
integer solution that is feasible with respect to all constraints
but (P3d). In the following, we denote with

(
r̂, ψ̂, ŝM , ŝR

)
either the optimal solution of the continuous relaxation of
our centralized resource allocation problem (P2), or the game
equilibrium obtained through Algorithm IV.1.

We can easily prove that the loop starting at line 3 is
enough to find a set of values of the ri variables satisfying
the following constraint:

N∑
i=1

ri ≤ R. (6)

Moreover, the nested loop at line 11 has complexity O (1)
in the worst case.2 Given that both the main loops are linear
in N , the complexity of Algorithm IV.2 is dominated by the
adopted sorting algorithm, i.e., it is O (N logN). In order to
shrink solution times, it is also possible to cache the sorted A,
as the αi are fixed. Furthermore, notice that Algorithm IV.2

2Both proofs can be found in [13].



can be easily parallelized: in the distributed scenario, from
line 8 on every CMs can separately round their variables at
the same time.

V. RESULTS

In this section, we present and examine experimental results
obtained by applying the solution methods proposed in Sec-
tions III and IV. We implemented and evaluated problem (P2),
named centralized in the following, and Algorithm IV.1 where
problem (P3) is solved using the results of Proposition III.1,
from now on distributed. Both, after completing, provide their
results as input for Algorithm IV.2.

Since problem (P2) is the natural extension of the model
studied and validated in [11] to a new setting with capacity
constraints, the centralized algorithm is used as base case.
Further, building upon the results shown in [15], we assume
the validity of the underlying performance model.

The models have been implemented using the mathemat-
ical programming language AMPL [16] and solved using
Knitro 9.0.1 [17]. All the analyses have been run on an
Ubuntu 14.04 VM featuring 14 GB RAM hosted on an Intel
Xeon E5530 2.40 GHz CPU.

A. Design of Experiments

The analyses in this section intend to be representative of
real Hadoop clusters. In order to do so, the experiments have
been performed considering realistic job profiles extracted
from MapReduce execution logs, as in [18], where the authors
report profiles obtained for batch jobs. Our instances have been
randomly generate with uniform distributions over the same
ranges. Accordingly, the associated deadlines are extracted
within the range from 15 to 25 minutes. Further, we consider
for each class a maximum concurrency level ranging from 5
to 20 users and a maximum rejection rate of 20%, hence
H low

i = 0.8Hup
i .

The parameter ρ̄ takes into account three main contributions:
the energy cost related to the operation of the physical servers
hosting the VMs, the overhead related to server rooms cooling,
and the price of physical servers. All these contributions are
normalized to obtain the time unit cost for VMs. For more
details on the derivation of the value of ρ̄, refer to [13].

Other relevant parameters are those governing the penal-
ties for job rejection, αi and βi. Running the centralized
model (P2) with ψup

i = ψlow
i , so that rejection is not

possible, one can determine an average job cost. Penalties can
reasonably be a couple of orders of magnitude greater than
the job cost, hence we take mi, the penalty associated to the
rejection of one job in class i, as 100 times the average job
cost. Now it is possible to set the penalty terms appearing
in the objective functions (P2a) and (P3a) equal to zero at
maximum concurrency level, when no penalties are paid, and
to the value computed with the above mentioned parameters
at minimum concurrency. For convenience we write ψup

i and
ψlow
i in terms of H low

i and Hup
i , thus getting the systems:

αi

H
up
i
− βi = 0

αi

Hlow
i

− βi = mi
(
Hup
i −H

low
i

) , ∀i ∈ A, (7)

that yield:

αi = miH
up
i Hlow

i , ∀i ∈ A, (8a)

βi = miH
low
i , ∀i ∈ A. (8b)

Owing to the interpretation of parameters Ki, discussed in
Proposition III.1, it is easy to obtain the penalty term normal-
ized on lacking resources, pi. Hence, we get the formulae:

pi =
mi

Ki
, ∀i ∈ A. (9)

In the end, we experimentally set the tolerance on the
relative increment of ri, appearing as stopping criterion in
Algorithm IV.1, ε̄ = 3%. A sensitivity analysis, omitted
for space considerations, showed that the tolerance for the
stopping criterion does not affect the equilibrium found with
our method. Differently, we set in all the experiments λ = 5%
as fraction of the maximum possible offer to add when raising
the bid.

B. Scenario-Based Analysis

In this section we discuss some preliminary analyses per-
formed to verify whether our formulations exhibit behaviors
we intuitively expect from the modeled applications. Analyses
have been run with both the previously mentioned solution
approaches, considering 100 and 1,000 CMs.

In order to compare the outcomes of the solution methods,
in this section we do not present results averaged on a
number of random instances. Instead, we randomly generated
a dataset of size 1,000, then we shrank it as needed for smaller
instances, adapting capacity to the different scale.

In the MapReduce paradigm we have two main dimensions
governing performance: namely, resource capacity and dead-
lines. Isolating each of them allows to understand how the
system will react to changes in one single aspect.

1) Decreasing Capacity: To begin with, we fix the dead-
lines Di and we vary the cluster capacity R. Now, starting
with excess capacity, we expect to see constant running costs
until the aggregate resources requirement for execution at
the maximum concurrency level and the cluster capacity are
comparable. If capacity keeps decreasing, at first some jobs are
rejected, leading to penalties, then it falls below the minimum
aggregate requirement and the problem becomes infeasible.

Notice that in this experiment we initially compute the
optimal cluster size summing up all the rupi and we set
Ro =

∑N
i=1 r

up
i . Then we apply our models to instances

with decreasing capacity, starting from R = 1.1Ro. Figure 2
shows a slight shift away from the optimal solution of the
centralized problem, concentrated in proximity of the lowest
feasible capacity levels.

2) Decreasing Deadlines: Alternatively, it is possible to fix
the cluster capacity, R, decreasing deadlines and making them
tighter. In this case, the parameters Di act in nonlinear con-
straints, so we can predict an overall behavior, but the precise
relation governing costs is not obvious. In the beginning, the
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Figure 2: Decreasing capacity, 100 CMs
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Figure 3: Decreasing deadlines, 1000 CMs

deadline reduction leads to increased running costs, due to
the allocation of more VMs to reduce execution times and
meet tighter constraints. Then we expect a phase where the
increment of costs accelerates, as jobs start to be rejected and
penalties to be paid. In the end, the deadlines become so strict
to not allow even minimal operation, hence the problem turns
out to be infeasible.

In this experiment, we initially set the starting values for
the parameters Di and compute the corresponding optimal
capacity, Ro =

∑N
i=1 r

up
i . Then we set R = 1.1Ro to start

with excess capacity and gradually reduce Di by a percentage.
Figure 3 highlights a great accordance with the expected
behavior.

C. Scalability Analysis

After verifying that our models satisfy some basic properties
we intuitively expect, and in line with the results published
in [11], we proceed with a scalability analysis. Our goal is to
verify that the proposed approach allows for solving the joint
admission control and capacity allocation problem at runtime,
to support cluster management.
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Figure 4: Solving time, scalability analysis

We progressively increase the number of CMs from 20 to
500 with step 20, performing at every step ten runs with
different extractions of the randomly generated parameters,
then we compute the average results. Concerning total costs
and penalties, we compare objective function (P2a), obtained
with the centralized, baseline approach, with the sum of all the
objectives (P3a) and the aggregate cost of energy,

∑N
i=1 ρ̄ri, of

the solutions determined with Algorithm IV.1. In this way we
obtain from both the alternative solution methods the same
information summarizing running costs and penalties. The
solutions obtained via the alternative methods are basically
equivalent, with the overall costs and penalties settling within
2% of one another.

Concerning solving times, instead, we instrumented our
code to measure the timings associated to the solution al-
gorithms. Further, whilst in the centralized approach this is
enough to obtain relevant execution times, we should consider
that in our testing environment Algorithm IV.1 runs on a single
machine as serial code. In order to have a first approximate
estimate of the actual execution times in a distributed en-
vironment, we divided the serially obtained timing by the
number of CMs included in the instance at hand. This is
justified as, in every iteration of Algorithm IV.1, the loop at
line 9 would be executed concurrently by all the CMs at once
in a distributed system. Moreover, we take into account the
network-related delays by adding a term proportional to the
number of iterations needed to reach convergence. Network
time has been obtained by writing a micro-benchmark that
sends through sockets two floats, in our system the parameters
ρ and ri coming from the RM, or ρai coming from the CMs.
The benchmark was run 100 times in a 100 Mb/s network. The
aggregate results are reported in Figure 4, where it is evident
that the distributed approach we propose scales better than the
centralized one.

VI. RELATED WORK

Nowadays, Hadoop is widely adopted in the ICT industry,
often supporting core business activities. Hence, it is of



paramount importance for users running MapReduce applica-
tions to know in advance the job completion time. Technical
literature focuses on two main points of interest: on one hand,
there are various works addressing methods for the estimation
of job completion times and other performance metrics; on the
other hand, several publications present novel approaches to
resource allocation and scheduling. Two main directions have
been explored: simulation-based and analytical models. The
computational effort and the time spent in running simulation-
based models make them hardly fit for the purposes of runtime
cluster management: thus, we hereby consider only analytical
models, according to the focus of our paper.

The authors of [3] propose the Automatic Resource Infer-
ence and Allocation framework for estimating the makespan of
jobs in MapReduce clusters. This approach relies on informa-
tion extracted from the logs of previous executions of similar
jobs. Adopting scheduling techniques, the authors prove lower
and upper bounds on makespans, whence they derive formulae
for performance prediction that boast a relative error below
10% in the validation against measured timings.

The same research group went on in defining a performance
model for Hadoop clusters [19]. They adopt job profiles for the
user-supplied Map and Reduce functions, whilst the common
procedures carried out by the framework are characterized via
micro-benchmarks. In comparison to the measured values on
a 66-node Hadoop cluster, the relative error on the predicted
completion times ranges between 10% and 17%.

The model presented in [20] considers the execution time
of each step in the Hadoop framework, modeling both compu-
tation and resource contention. Although this analytical model
does not perform very well in reporting the real job execution
time, the trend obtained when increasing the number of Map
and Reduce tasks is quite reliable and can help in adjusting
the number of tasks towards an optimal value.

Another performance model estimating the execution time
by considering the single costs of the various phases of a
MapReduce job is described in [21]. In this work, the authors
go down to the very low level elements that determine the
cost of single job phases, writing a 37-parameter model that
provides execution times within 10% of those measured in a
real cluster.

Vianna et al. [22] combine a precedence tree, which captures
the relations among the different stages of the same job, and a
closed queueing network (QN), to reflect resource contention
within the system. The proposed method is validated through
QN simulations and runs on an actual cluster, obtaining a
deviation from real setup of less than 15%, but without
considering multiple concurrent jobs.

The models presented before may possibly be adopted
for resource allocation and admission control purposes, for
instance exploiting game-theoretic or optimization techniques.
However, to the best of our knowledge, in literature there
exist only a few examples of papers focusing on resource
allocation, even less if we consider distributed approaches. In
the following, we show some works that investigate resource
management and scheduling issues.

In [23], the authors propose an optimized approach to
sharing clusters among MapReduce and Cloud applications.
Relying on a Nash bargaining game, the authors develop
modules for fair resource allocation and automatic VM mi-
gration, thus increasing resource utility and guaranteeing
performance. They conduct validation on an 8-node server
cluster, comparing the traditional method and the proposed
hybrid environment, which outperforms the former in all the
presented experiments.

Sandhom and Lai [24] address MapReduce optimization
highlighting how allocating resources fairly can lead to decay
in performance and efficiency: according to their proposal,
users receive a budget and the system allocates resources
according to each users’ current spending rate. The approach
is validated with experiments on a real cluster, showing
improvements upon a basic, fair share strategy.

Contrasting to the presented literature, our paper couples
performance prediction and resource allocation, thus building
a theoretical framework capable of managing cluster resources
cost-effectively, while also guaranteeing, with a certain confi-
dence, that SLAs are met.

VII. CONCLUSIONS

In this paper we investigated the problem of resource alloca-
tion of MapReduce applications running on Hadoop clusters.
In particular, we provided a scalable distributed approach for
solving the joint admission control and capacity allocation
problem based on a performance model available in technical
literature.

Building upon the outcomes of this work, it is possible to
investigate further open issues and relevant research questions.
In several frameworks, such as Apache Tez and Spark, the
workflows are not fixed anymore: these frameworks abstract
the dependency relationships among input, output, and in-
termediate data with directed acyclic graphs (DAGs). An
interesting development of this work is the extension of the
model to the execution of complex DAGs.

In the end, we should be aware that the formulae we
use to estimate performance are only approximate. A system
for reliable performance prediction can greatly benefit from
the coupling with a local search method based on accurate
simulation techniques, such as Petri nets or QNs. In this
vision, our models would provide a relevant initial guess
for an iterative procedure, in order to find out the optimal
configuration or, conversely, certify that an application design
will respect the constraints imposed on its execution due to
business considerations.
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