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Abstract 

The ultimate goal of prognostics within Through-life Engineering Services (TES) is to accurately predict the remaining useful life (RUL) of 
components. Prognostic frameworks inherently presume that there is predictability in the failure rate of the system, i.e. a system experiencing 
exclusively stochastic failure events cannot, by definition, be predictable. Prediction model uncertainties must be bound in some logical way. 
Therefore, to achieve an accurate prognostic model, uncertainty must first be reduced through the identification and elimination of the root 
causes of random failure events. This research investigates human error in maintenance activities as a major cause of random failure events, 
using a case study from the biopharmaceutical industry. Elastomer failures remain the number one contamination risk in this industry and data 
shows unexplained variability in the lifetime of real components when compared to accelerated lifetime testing in the lab environment. 
Technician error during installation and maintenance activities of elastomers is one possible cause for this and this research explores how these 
errors can be eliminated, reduced, or accounted for within the reliability modeling process. The initial approach followed was to improve 
technician training in order to reduce errors and thereby reduce the variability of random failure events. Subsequent data has shown an 
improvement in key metrics with failures now more closely matching data from lab testing. However, there is scope for further improvements 
and future research will explore the role of performance influencing factors in the maintenance task to identify additional causes of variation. 
These factors may then be incorporated as a process variable in a prognostics and health management (PHM) model developed for the system. 
The paper will present these data fusion approaches accounting for human factors as a roadmap to improving PHM model reliability. 
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1. Introduction 

Until recently, the concept of condition based 
maintenance (CBM) has been primarily fault diagnosis, which 
involves fault detection, identification, and isolation [1]. A 
major shift in the CBM philosophy was observed with the 
introduction of expert systems within the CBM framework. 
This significantly improved the state of the art over previous 
systems [1]. However, most of these systems use only  
quantitative information available from sensors to automate 
the diagnosis task, while qualitative information is rarely 
exploited [2 – 4]. In contrast, some systems only consider 
qualitative information and ignore sensor measurements [5], 
[6]. Little evidence can be found in the literature where both 
quantitative and qualitative information is concurrently 
utilised. The difficulty in building a common platform to 

process both quantitative and qualitative data has hindered the 
use of such a hybrid system. The integration of these 
information sources would lead to improved system 
availability and reliability by increasing interaction via 
information sharing and coordination for timely preventive 
maintenance [1].  This work aims to incorporate quantitative 
probabilistic approaches from the prognostics and health 
management (PHM) domain with qualitative human factors 
approaches in order to optimise a predictive framework for 
the failure probabilities of components used in the 
biopharmaceutical industry. 

1.1. Prognostic Health Management 

PHM represents a paradigm shift from legacy condition 
based maintenance (CBM) frameworks by expanding the 
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potentials to accurately and robustly detect and diagnose 
incipient system faults. The ultimate goal of PHM is reliably 
predicting system failure times to allow for efficient 
maintenance scheduling [7]. Recent developments in PHM 
are encouraging high risk industries in particular, such as the 
military, nuclear, petrochemical, automotive, pharmaceutical, 
and aerospace, to adopt PHM systems for increasing system 
availability, minimizing unscheduled shutdowns, reducing 
maintenance costs, and increasing safety [8]. In these high 
risk industries detecting and isolating faults and subsequently 
predicting the remaining useful life (RUL) of critical 
components is a crucial task.  

 
A typical PHM scheme consists of three main facets, Fault 

Detection (D), Fault Diagnosis (FD), and Fault Prediction 
(FP). Fault detection normally includes fault isolation, which 
is a task to locate the specific component that is faulty. Fault 
detection in a broader sense indicates whether something is 
going wrong in the monitored system, and fault diagnosis 
determines the nature of the fault after it has been detected. 
Prognostics deals with fault prediction, and is a task to 
determine whether a fault is impending and estimate how 
soon and how likely that fault is to occur. Diagnostics 
therefore can be defined as posterior event analysis and 
prognostics as prior event analysis. Prognostics is 
considerably more efficient than diagnostics in achieving 
zero-downtime performance. Diagnostics, however, is 
required when fault prediction of prognostics fails and a fault 
occurs, and is important from a root cause analysis (RCA) 
perspective to avoid future failures of a similar nature [9]. 

1.1.1. Fault Prognosis 
 
Upon fault detection and diagnosis, prognostics becomes a 

fundamental task of a PHM system which aims to reliably and 
accurately forecast the RUL of the equipment/system [7] so 
that it may function for as long as its design intended [10].  
RUL is typically a time, cycle, or some other specific context 
driven expression. The RUL is the prediction of a component 
or systems functional/operational usage expectancy based on 
measured, detected, modelled, and/or predicted health state. 
The RUL is dependent on the intended set of operating 
conditions or mission to be performed [7]. 

1.1.2. Uncertainty in PHM 
 
The importance of uncertainty quantification in the PHM 

context should not be understated. Monitoring the health state 
of systems, subsystems, and components, the classification of 
the different types of faults that may occur in these 
components, and estimating the RUL  is critical to support 
decision makers in assessing whether maintenance 
intervention is necessary or not. Without quantifying the 
associated uncertainties, remaining life projections have little 
practical value within PHM systems [11]. It is the 
comprehension of the corresponding uncertainties that enables 
the development of a business case that addresses prognostic 
requirements. The assumption of data monitoring without 
uncertainty is particularly problematic, as this forces 
maintenance planning to become an exercise in decision 
making under uncertainty with sparse data [12]. In practice, 
the possible sources of uncertainty that may arise in a PHM 

system are: 
 

 Uncertainty in the signal measurements 
 Uncertainty in the models adopted at each data 

management stage 
 Selected model parameters 
 Uncertainty due to the inherent stochasticity of the 

physical processes 
 Variability in human decisions relating to the PHM 

system output 
 

Essentially, the inherent uncertainties which propagate 
through PHM systems mean that the PHM output can never 
be perfectly reliable [9]. We argue that another source of 
uncertainty in any PHM model is the uncertainty associated 
with the human interactions with the system, e.g. maintenance 
or installation work completed. We argue that the effect of 
incorrect maintenance or installation has sufficient impact for 
it to be regarded as a separate source of uncertainty in its own 
right. Most PHM models assume that the work done by a 
maintenance technician has been completed to a requisite 
standard, thereby allowing predictive analytics a consistent 
operational performance benchmark from which to operate. 
However, in practice this is often not the case, with a large 
variability in numerous aspects related to the ability of a 
maintenance technician to effectively carry out their work. In 
an attempt to address this issue there have been systematic 
methods developed to improve the performance of human-
machine systems, such as Human Error Probability (HEP) 
assessments [13]. Incorporating such HEPs in the 
development of operational procedures can significantly 
improve the overall reliability of the system [14] and this 
work explores the benefits of similarly accounting for human 
variability in the context of PHM. 

1.2. Human Performance 

Natural variation in human performance, occasionally 
resulting in errors, is a potential source of uncertainty in 
predicting remaining useful life of components. Human error 
is defined by Reason [15] as ‘a generic term to encompass all 
those occasions in which a planned sequence of mental or 
physical activities fails to achieve its intended outcome, and 
when these failures cannot be attributed to the intervention of 
some chance agency’. The variation giving rise to errors may 
be influenced by the conditions in which tasks are undertaken, 
such as environmental conditions, quality of procedures, level 
of training provided, etc. Human error is an important 
consideration in the process industry, as it is well established 
that a significant proportion of human errors occur during 
maintenance activities [13]. Human error is cited as a major 
cause of pharmaceutical manufacturing failures, with human 
error being attributed to approximately 50% of recorded 
incidents [16], a significant proportion of these occur during 
maintenance activities [13], costing the industry significant 
amounts of time and money. 

 
Human Factors, the discipline that aims to optimize human 

well-being and overall system performance [17] provides 
some possible approaches to accounting for these variations 



86   Darren McDonnell et al.  /  Procedia CIRP   38  ( 2015 )  84 – 89 

thereby improving the accuracy of the prediction. Foremost 
among the relevant Human Factors approaches, in addition to 
HEP, is Human Reliability Analysis (HRA) [18], which aims 
to identify and quantify possible human errors in a system. 
HRA tools, such as THERP [19], HEART [20], SPAR-H [21], 
and TRACER [22] start by identifying possible human errors 
within a task or system and subsequently use databases to 
assign an expected error rate. This error rate can be modified 
by performance shaping factors (PSFs), or error producing 
conditions, which increase the probability of an error during a 
task. Performance shaping factors include factors external to 
the individual such as the environment in which the task is 
conducted, the work hours, the organisational structure, job 
and task instructions, equipment characteristics, and task 
characteristics. More individually, psychological (e.g. time 
pressure, distractions, etc.) and physiological (e.g. fatigue, 
hunger, radiation etc.) stressors can also influence task 
performance and error rates. The base error rate for a 
particular task, such as valve installation, will remain constant 
for that task regardless of the individual valve. However, the 
PSFs vary according to the specifics relating to each 
individual valve and may influence the likelihood of correct 
maintenance actions. 

2. Approach 

A case study in the biopharmaceutical industry was 
followed in order to study the reduction of uncertainty and the 
role of human interactions in component reliability. This 
applied research centres around the RUL prediction of 
elastomeric soft parts, and subsequently optimising a decision 
support system for the timely maintenance of these parts. The 
aim is to accurately predict both the progressive degradation 
of the elastomers and their sudden failure via cracking in situ. 
The relationship between these two failure modes has been 
defined within a Markov Chain framework, as shown in 
Figure 1. T is defined as time between degradation states. 

 

The elastomer in question, ethylene propylene diene 
monomer (EPDM), is a rubber widely used as the sealing 
element in flow control valves in the biopharmaceutical and 
petrochemical sectors. In its valve application use in 
biopharmaceuticals, EDPM is a product contact material, used 
partly to maintain the integrity of the hermetically sealed 
environments within production bioreactors. As such there is 
a significant risk associated with the sudden failure of the 
rubber in situ, from both a safety and commercial perspective. 

There is currently no known way to monitor the health state of 
the elastomer in situ, therefore robust predictions must be 
established in order to set the maintenance windows at an 
appropriate frequency.  Elastomer failures pose a major risk in 
the biopharmaceutical industry as a whole. Next to 
calibrations, valve diaphragm maintenance is the most cost 
intensive part of maintenance in biopharmaceutical 
operations. A survey of BioPhorum member companies in 
2012 demonstrated that for a typical biotech plant, soft parts 
[23]: 

 
 maintenance programs account for over 50% of all 

planned maintenance activities 
 drive 20% of all equipment related deviations 
 account for approximately 10% of all corrective 

maintenance actions 
 present the number one contamination risk 

 
There are two identified failure modes of the EPDM 

components identified in this work. The first failure mode, 
and the most common, is the gradual degradation of the 
EPDM as it is subjected to numerous harsh environmental 
conditions, such as high temperature saturated steam, cleaning 
agents and chemical detergents, sparge gases, multiple 
product mediums, and final purified product. The progressive 
degradation of the material has been defined qualitatively 
within three states; state 1 degradation is characterised by 
mild discolouration, melting, and weir markings, state 2 
degradation shows signs of more severe melting, material 
flow, and surface creasing, while state 3 is characterised as 
severe degradation such that significant melting, material 
flow, and material creasing is evident. The second failure 
mode, the focus of this work, is the sudden cracking of the 
diaphragm regardless of its degradation state.  These 
categories are shown in Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

2.1. Role of Competence 

The organisation involved in this research has previously 
identified technician competence as a key area for 
improvement in order to improve elastomer reliability and a 

Figure 1: Markov Chain structure of the components two failure modes 

Figure 2: (a) State 1 material degradation, (b) State 2 material degradation, 
(c) State 3 material degradation, (d) Surface cracking of EPDM 

(a) 

(d) 

(b) (c) 

Surface 
cracking 



87 Darren McDonnell et al.  /  Procedia CIRP   38  ( 2015 )  84 – 89 

new training scheme was introduced in an attempt to reduce 
errors and thereby reduce the variability of random failure 
events. In order to bridge the gap between laboratory 
accelerated lifetime testing results and those encountered in 
service, and to address specific issues seen in the field 
believed to be responsible for a high infant mortality rates, an 
optimised maintenance technician training program was 
designed and implemented. The multiple root causes for 
leaking valves were identified as elastomer failures from 
actuator, fastener, and installation issues. The previous 
training had not been revised for several years prior. The 
revised training focused on the following: 

 
 inappropriate tooling and maintenance practices, 

specifying in detail all components and auxiliary 
equipment to be used  

 revised and detailed flow diagrams of the work to be 
carried out in a step-wise fashion 

 valve and elastomer design issues, previously resulting 
in valve failures, addressed via the introduction of new 
designs in conjunction with the valve suppliers 

 fastener replacement initiated site-wide 
 
The responsibility of updating training material on a bi-

annual basis and communication of any changes made was 
handed over to technicians ensuring the ownership of the 
training material. Subsequent data has shown an improvement 
in key metrics with failures now more closely matching data 
from laboratory-based testing, specifically: 

 
 a reduction of corrective maintenance actions per batch 

by ~25% 
 a ~35% reduction in investigations related to damaged 

diaphragms and leaking valves 
 a ~270% increase in the number of successful batches 

with no quality investigations needed 
 the maintenance of a 95% batch success rate even at 

increased production rates 
 a reduced maintenance cost per batch 
 a 12% decrease in potential contamination issues 

 
There is however scope for further improvements due to 

the continued observance of sudden early stage failures of the 
components in service. This research explored the PSFs that 
may influence accurate and reliable completion of the 
installation procedure. The first step in the study was to 
identify the PSFs that may influence the task. A review of 
PSFs in one of the main HRA tools, THERP [20], was 
undertaken and the contextually relevant PSFs were 
identified. These were then used to develop a semi-structured 
interview format. The interviews were designed to identify the 
factors that increase the difficulty of valve installation, and to 
develop an installation difficulty metric which could be 
applied to each component in the study.  

 
It was critical to assess the difficulty of valve installation, 

as incorrect assembly and tightening of the actuator, 
diaphragm, and valve body is one of the main reasons for 
failure and leakage of diaphragm valves [24]. The valve 

assembly requires four bolts to be tightened to specific values, 
depending on valve size, in a crisscross pattern over three 
passes. If one or more bolts are torqued higher than the others, 
the clamping force will be unevenly distributed over the 
diaphragm. Critically, this can lead to the uneven forces on 
the diaphragm leading to premature and unforeseen cracking 
of the diaphragm [24], most likely due to uneven stress 
distributions within the EPDM. 

Table 1: Sample failure states as retrieved from service 

Presence of Crack 

Degradation State 

No Yes Total 

1 72 6 78 

2 19 4 23 

3 1 3 4 

Total 92 13 105 

 
The breakdown of the samples retrieved from service after 

industrial usage of between 6 and 24 months in this case study 
is shown in Table 1. As shown, there are examples of 
cracking in each of the three degradation states, validating the 
need to treat the cracking failure mode as a separate special 
cause deviation. 

3. Results 

3.1. Review of PSFs 

A review of external PSFs in THERP was undertaken to 
identify those PSFs that may be relevant to the valve 
installation task. THERP [19] was used as it contains the most 
comprehensive set of performance shaping factors. The 
following PSFs were identified: 

 
 Quality of the environment (e.g. temperature, humidity, 

lighting, noise) 
 Work hours / work breaks 
 Availability / adequacy of special equipment, tools, 

supplies 
 Frequency and repetitiveness 
 Task speed 
 Task load 
 Distractions 
 Fatigue 
 Movement constriction 
 State of current practice or skill 

 
Some of these PSFs had to be disregarded, as it was not 

possible in this study to identify individual technicians or 
collect data on their individual state while installing specific 
valves. Therefore, work hours, task load, distractions, and 
fatigue were not further investigated. The remaining PSFs 
were investigated in more detail in a set of interviews with the 
technicians responsible for the installation task.  
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3.2. Technician Interviews 

The basic structure of the interview centred on the 
following questions, however the interview was structured in 
a semi-formal manner to help elicit a more natural response 
from the interviewee: 

 
 What makes maintenance process more difficult from a 

technician’s perspective? 
 Could any of the valve components become damaged 

during installation or maintenance? 
 In what ways can a valve be installed incorrectly? 
 How much does each of the following factors increase 

the risk of incorrect installation, if at all? 
o Valve complexity 
o Valve size 
o Procedure information for the valve 
o Accessibility of the installation location 
o Lighting in the installation location 
o Noise in the installation location 
o Distractions in the installation location 
o Technician experience level 
o Time available to perform the task 
o Time of day or night 

 
The main conclusions reached from the interview was that 

the enhanced training programs have largely eliminated many 
of the human factors issued previously encountered, such as 
procedural information errors, incorrect installation practices, 
and time pressure issues. The interviews with the technicians 
revealed two key PSF’s acting as limiting factors in the 
successful installation and maintenance of the valves. These 
were the accessibility of the valve location, and the size of the 
valves. The accessibility was important as this affected the 
technician’s ability to manoeuvre either their bodies or the 
tooling into the correct position. For example, if the valve is 
located at height, or behind a bank of pipe work, or in a tight 
crawl space, the ability of the technicians to apply the correct 
torque values to the valve bolts is diminished. Similarly, the 
size of the valves, with diaphragms ranging from 25mm to 
100mm, has the effect of making it more difficult to install if 
the valve is smaller, due to smaller parts which are more 
difficult to handle. The technicians felt however that the valve 
size would have only a minor impact in comparison to valve 
accessibility. 

4. Discussion 

Valve size and accessibility will both be included as 
covariates in a Cox Proportional Hazards modelling approach 
[25] in order to predict the two failure modes. As shown in 
Figure 1, the probability of having a crack in a diaphragm is 
contingent upon the current diaphragm state. Along with the 
diaphragm degradation state the size of the valve and an 
Accessibility Difficulty Metric (ADM) will be included in 
order to improve the prediction of cracking. 

4.1. Accessibility Difficulty Metric (ADM) 

Similar to the work of Baraldi et al [26] and Zio et al [27] a 
visual interface has been developed for maintenance 
technicians to assess the PSF’s characterising the context in 
which the maintenance and installation tasks are performed. 
The interface is intuitive and guarantees assessment 
repeatability across all systems. The proposed interface is 
based on the use of anchor points that represent particular 
conditions, which are well defined. The allocation of the 
anchor points on a numerical scale will be performed by 
interviewing maintenance technicians with considerable 
experience in valve installation and appropriately aggregating 
their conclusions. The sub PSF’s defining the anchor points of 
the ADM, defined in conjunction with technicians, are: 

 
 No Accessibility Difficulty: valve at an appropriate 

height, facing towards the technician, with no discernible 
obstructions in the area 

 Mild Accessibility Difficulty: valve at height. 
Installation or maintenance tasks require auxiliary 
equipment to reach valve location. Otherwise no 
obstruction 

 Moderate Accessibility Difficulty: valve obstructed by  
other equipment, such as pipe work, pumps, motors etc., 
or valve in physically difficult to reach location, such as 
in a crawl space 

 Severe Accessibility Difficulty: combination of two or 
more of any mild or moderate valve obstruction 
conditions 

 
The scale will be based from 0 to 100. 0 will act as the 1st 

anchor point, ‘No Accessibility Difficulty’, with 100 acting as 
the 4th Anchor point, ‘Severe Accessibility Difficulty’. The 2nd 
and 3rd anchor points lie in intermediate points along the 
scale. The scale is shown in Figure 3. 

 
 

Each system and valve in the case study will be assessed 
separately, and the results will then be aggregated onto a 
common scale. These common scales will then be further 
aggregated from multiple technicians to come up with the 
final score for each valve. Statistical relationships can then be 
determined based on the valve ADM and the presence of 
cracking in service. This relationship will become more robust 
with continued data collection from industrially used parts. 
The ADM can then be incorporated into probabilistic 
assessments of premature diaphragm cracking. This represents 
a novel data fusion approach whereby qualitative assessments 
are combined with quantitative usage history data in order to 
predict component RUL and the likelihood of infant mortality 
due to surface cracking. 

Figure 3: Accessibility Difficulty Metric scale 

No 
Accessibility 

Difficulty 

Mild 
Accessibility 

Difficulty 

Moderate 
Accessibility 

Difficulty 

Severe 
Accessibility 

Difficulty 

100 70 35 0 
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5. Conclusions 

To date this research has postulated the potential 
importance of the role of human factors in improving 
predictions of remaining useful life, and has collected 
qualitative evidence from experienced maintenance 
technicians on the performance shaping factors influencing 
the installation of elastomeric soft parts in the 
biopharmaceutical industry. Accounting for these conditions 
should reduce one source of uncertainty from the PHM 
model, and improve overall prediction of RUL for these 
components. The next phase of the research will collect 
quantitative data on the two factors identified in this study, 
accessibility and valve size, and combine this with 
quantitative data on usage history to test the accuracy of the 
model.  
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