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Abstract: We assess the performance of a CMOS camera for the

measurement of particle position within optical tweezers and the associ-

ated autocorrelation function and power spectrum. Measurement of the

displacement of the particle from the trap center can also be related to the

applied force. By considering the Allan variance of these measurements,

we show that such cameras are capable of reaching the thermal limits of

nanometer and femtonewton accuracies, and hence are suitable for many of

the applications that traditionally use quadrant photodiodes. As an example

of a multi-particle measurement we show the hydrodynamic coupling

between two particles.
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OCIS codes: (140.7010) Laser trapping; (170.4520) Optical confinement and manipulation;

(350.4855) Optical tweezers or optical manipulation.
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1. Introduction

For 20 years, optical tweezers[1] have found numerous applications in biology ranging from

the manipulation of live bacteria and viruses to measuring the forces between micrometer sized

particles or even cells[2]. Forces acting on the trapped particle are measured in one of two ways.

Firstly, the trap position is fixed and the observed displacement of the particle is related to a

force by the stiffness of the trap. Secondly, the trap position is constantly updated such that the

particle does not move, and the force is deduced from the required displacement of the trap.

Both techniques require a precise, accurate and high-bandwidth measurement of the trapped

particle position. In this work we concentrate on the first technique - simply demonstrating the

potential of high-speed CMOS cameras.

In many biological applications, transparent beads are attached to a particle under study, thus

acting as “handles”, that can be used to manipulate the particle. Precise determination of the

position of the trapped particle, typically to nanometer resolution, is required to measure the

forces in many biological systems at the sub-piconewton scale[3].

The position of trapped particles has traditionally been measured using either a quadrant pho-

todiode (QPD)[4] or standard video camera with particle tracking software[5]. QPDs are the

common choice for measuring force since they offer precise, high-bandwidth measurements,

typically several kHz, whereas standard video cameras are limited by acquisition rates of only

10’s of Hz. Standard video frame rates are thus too slow compared to the characteristic fre-

quency of the optical trap. However, video cameras are convenient and allow multiple particles

to be tracked simultaneously, over large fields of view. High-speed cameras offer an alternative

solution, allowing measurement rates of several kHz. Reference[6] shows similar performance

for both a high-speed, full-field, CCD camera and a QPD for displacement measurements in

optical tweezers. However, since the total data of the image sequence is large, measurement

time is usually limited to a few seconds due to the available on-board memory storage, after

which the data needs to be downloaded to the computer. A solution that looks more promising

involves the use of CMOS cameras, that can provide reduced field of view (horizontal and ver-

tical) frame rates of the order 1kHz, and the data can be managed in real time using a standard

desktop PC[7].

In this paper we investigate the precision of position and force measurements in optical

tweezers using a CMOS camera. We use the Allan variance [8] to characterize the stabilities of

the measurements and determine the optimal trapping power and measurement, or calibration,

time for a particular application. In addition we compare single and dual trapping techniques.

2. Experimental configuration

Figure 1 shows a schematic representation of the experiment. Trapping is achieved using a

CW Ti:sapphire laser system (M2, SolsTiS) which provides up to 1W at 830nm. The laser

is expanded to slightly overfill the aperture of a spatial light modulator (SLM) (Hamamatsu,

LCOS X10468-02), allowing multiple optical traps to be created, and then coupled into the

tweezers system by imaging the SLM on to the back aperture of the microscope objective lens.

The device is gamma corrected such that approximately 60% of the incident light is diffracted
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Fig. 1. The tweezers system is based around an inverted microscope. A titanium sapphire

laser provides up to 1W @ 830nm, which is expanded to fill the aperture of an SLM. SLM

control software allows the creation of multiple optical traps, coupled into the tweezers

using a polarizing beamsplitter. The motion of trapped particles in the sample is analyzed

using a CMOS camera.

into the desired trap pattern. Using our SLM control software [9, 10] we can trap one, or many,

2µm diameter silica beads and position them anywhere within the field of view. The tweezers
is based around an inverted microscope, where the same objective lens, 100x 1.3NA, (Zeiss,

Plan-Neofluor) is used to both focus the trapping beam and to image the resulting motion of the

particles. Samples containing 2µm diameter silica beads in water are mounted in a motorized
microscope stage (ASI, MS-2000). The stage allows accurate control of the sample position

and provides a known displacement of a fixed particle, or bead, for calibrating the camera.

A 50W tungsten-halogen lamp and condenser is used to illuminate the sample, imaged us-

ing a CMOS camera (Prosilica, EC 1280). The camera is connected to a desktop PC using a

firewire interface such that the images can be acquired and the particle motion analyzed. The

magnification of the system corresponds to a scale of 13 pixels per micron. A polarizing beam-

splitter reflects the trapping laser beam into the microscope objective while transmitting the

white light image, allowing it to be viewed using the camera. A narrow-band filter prevents the

camera being saturated by the trapping laser. The individual images are processed using our

own LabVIEW (National Instruments) particle tracking software. Selecting a region of interest

(ROI), such that the field of view of the camera is restricted to only image the particles under

study, increases the frame rate. In the work presented here the ROI was reduced to approxi-

mately 40 square microns, allowing images to be taken at 1kHz with a corresponding shutter

speed of 1ms. Shorter shutter speeds are possible, but serve no purpose since the decrease in

image brightness results in a degraded accuracy of particle position measurement. The software

allows further regions of interest to be defined e.g. regions around each particle in a multiple

trap configuration. Each sub-ROI has an associated threshold value that can be set to reject the

background field and the resulting images are processed using a center of mass algorithm to

determine the particle position. Even with a standard desktop PC it is possible to obtain and

record the particle position in real time, i.e. 1kHz. Calibration of the system was achieved us-
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Fig. 2. Lateral displacement for a 2µm silica bead fixed to the coverslip and 2µm silica

beads trapped with low and high laser power. Weak trap (7mW, κ = 5.6E-6 N/m), strong
trap (37mW, κ = 2.3E-5 N/m).

ing the motorized microscope stage to move a fixed bead over a known distance, allowing the

camera to be calibrated in pixels / µm.
The complete optical system is mounted on an air damped optical table in order to isolate the

system from environmental sources of noise. In addition, the optical components are mounted

as close to the table as practically possible in order to reduce effects frommechanical resonance.

3. Position measurements, autocorrelations and power spectra

Fluctuations in the measurement of particle position within optical tweezers arise from two

possible sources. Firstly there is noise from the sensor, and secondly that the particle itself is

subject to random thermal motion. Since both these sources of variation are approximated by

a Gaussian distribution of measurement position, some care is required to distinguish between

them.

In principle, the motion of a trapped particle is simply that of a thermally excited, over-

damped oscillator in a harmonic potential characterized by a spring stiffness κ [2, 11]. The size
of the residual Brownian motion 〈x2〉 is given by the equipartition of energy [11],

1

2
kBT =

1

2
κ〈x2〉. (1)

Indeed, measuring 〈x2〉 is a commonmethod for deducing κ . Since the oscillator is significantly
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Fig. 3. Autocorrelation of position for a 2µm silica bead trapped with low and high laser
power.

over damped, the autocorrelation of particle position is described by a single exponential decay

of time constant τ0 = 1/2π f0, where f0 is the knee frequency above which the particle can be
considered to be free, given by [11]

f0 =
κ
2πγ (2)

where γ = 6πrη , η is the viscosity of the surrounding fluid and r is the radius of the particle.
Figure 2 shows the lateral displacement as measured from the camera image as a function

of time for a bead fixed to the coverslip and beads trapped with low and high laser power.

The apparent standard deviation of the fixed particle is of order 5nm, significantly smaller

than that of the trapped beads which have standard deviations of 29nm and 13nm for the low

(κ = 5.6E-6 N/m) and high (κ = 2.3E-5 N/m) trap strengths respectively. This shows that the
camera system is sufficient for measuring the thermal motion of the trapped particles, easily

distinguished from the sensor noise revealed by the fixed particle. Alternatively, the thermal

motion of the trapped particles is often studied by plotting the autocorrelation (Fig. 3) or power

spectrum (Fig. 4). However, although sufficient for some applications, none of these results

show how the sensor performance varies over differing averaging timescales, nor over which

timescales the sensor reaches a performance level sufficient to record the true thermal motion

of the particles.

4. Allan variance of position measurements

When accessing the performance of a generic measurement system, it is convenient to consider

the Allan variance of the, nominally constant, sensor output. The Allan variance indicates the

timescales over which the system is dominated by Gaussian noise or drift. At short timescales

the variation in output is dominated by the noise in the sensor, or the true fluctuations in the

system. Both of these fluctuations are Gaussian distributed and hence averaging the data over

longer time-windows gives an improvement in the reproducibility of the average value, which

improves in proportion to the square root of the number of measurements. At longer timescales,

the measurement system is usually subject to drift and averaging the output over these longer

time windows ceases to yield any improvement in the reproducibility of the mean value. This

transition between the two regimes indicates the useful time over which the system can be said
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Fig. 4. Power Spectra of position for a 2µm silica bead trapped with low and high laser

power.

to be stable.

Using the particle tracking method described above we recorded the xy positions of trapped

silica beads over a duration of 5 minutes (300,000 data points). From the xy data we calculated

the Allan variance of position given by

σ2x (τ) =
1

2
〈(xn+1− xn)2〉 (3)

where xn is the average position over the sample period n, and τ is the time per sample period.
When averaged over multiple measurements, the standard error of the average position of the

trapped particle is dependent upon 〈x2〉 and the number of independent measurements, N. In a
time ∆t, the number of independent measurements is given by

N ≈ ∆t√
2τ0

=
κ∆t√
2γ

(4)

giving the standard error of the particle position, SE 〈x〉, to be

SE〈x〉 =

√
〈x2〉
N

≈

√√
2kBT γ
κ2∆t . (5)

This limit cannot be bettered by any measurement system, it is a limit inherent in the random

nature of Brownian motion. Averaging for longer times should, in principle, give ever better es-

timates of average particle position. However, it is difficult to completely isolate the trap from

environmental sources of noise such as laser pointing stability and thermal drift of the micro-

scope alignment. Various methods have been implemented to reduce such noise and include the

development of dual trap techniques[12, 13, 14] where a second trapped particle is measured

simultaneously. Since the drift affects both particles it can be eliminated from the data.

The plots in Fig. 5 show the Allan variance of the measured position, σ 2
x (τ), of a 2µm silica

bead for different values of optical trap stiffness. Also shown is the Allan variance for the dif-

ferential position between two beads trapped 10µm apart. For comparison the stronger trapped
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Fig. 5. Stability of position measurements. Increasing the trap power results in a higher

measurement precision. For the case of a single bead measurement, the optimum averaging

time is in the range 1-10 seconds. The blue lines correspond to the single and differential

measurements of two 2µm silica beads that were fixed to the microscope coverglass, having
a separation comparable to the trapped beads. The thermal limit is estimated for the strongly

trapped bead. Weak trap (7mW, κ = 5.6E-6 N/m), strong trap (37mW, κ = 2.3E-5 N/m).

bead is plotted in relation to the estimate for the thermally limited precision given by Eq. 5.

At timescales short compared to the autocorrelation time of the trap, the bead is moving with a

uniform velocity and hence the Allan variance increases with time. At timescales above the au-

tocorrelation time, the bead positions are randomly distributed within the trap and the accuracy

of the mean improves with the square root of the averaging time. We see that for a single trap

the minimum error is of order of 1nm obtained for an averaging time of order 1s. Above this

time we see that the Allan variance increases, which is a result of drift within the system. The

longer term stability of the system can be improved by making measurements on the differen-

tial position of two beads, which effectively drift together. However, this improvement in long

term stability is only at the expense of a
√
2 increase in noise since the Brownian motion of

the two beads add in quadrature. Shown also on the graph is the Allan variance of the position

measurement of beads fixed to the cover slip. At short timescales the Allan variance is limited

only by the inherent measurement noise of the camera technique, but at longer timescales it

increases above that of the trapped bead. This increase at long timescales is indicates that the

thermal, or other, stability of the sample stage is worse than the pointing stability of the laser.

One possible concern on using a pixellated imaging sensor for precise position measurement

is that the underlying pixellation may result in a systematic noise source that may mask sub-

pixel information. In our system each pixel in the imaging sensor corresponds to approximately

77nm. One challenging application for position measurements within optical tweezers is the

study of hydrodynamic coupling, which leads to subtle features in the position cross-correlation

between trapped particles, corresponding to nanometer displacements [15]. The Allan variance

results from Fig. 5 indicate that, for data collection times below a few seconds, the drift of
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the system can be ignored. We therefore calculate the autocorrelation and cross-correlation of

trapped particles from 2 seconds of continuous data, which we average over many sequential

data sets to improve the overall signal to noise. Figure 6 shows autocorrelation and cross-

correlation functions for two 2µm beads trapped 3µm apart, the traces are averaged over 30,
2 second data sets. We see that the functions are smoothly varying, showing no evidence of

underlying “digitization” even at length scales < 20nm2.

5. Allan variance of force measurements

Given that the position of the trapped particle can be precisely measured then an applied aver-

age force, 〈F〉, can be inferred from observation of the particle displacement from trap center,
〈F〉 = κ(〈x〉− x0), where both κ and x0 can be determined from the positional data prior to the
application of the force. Using the same data as for the standard error in the particle position,

the equivalent standard error in the applied force is given as

SE〈F〉 = SE〈x〉κ ≈

√√
2kBTγ
∆t

. (6)

Note that although increasing κ increases the precision to which the particle position can be
determined, it reduces the displacement for a given force. The result is a precision of thermally

limited force measurement that is independent of κ .
The Allan variance of the measurements of force is given by σ 2

F(τ) = σ2x (τ)κ2. The plots in
Fig. 7 show the Allan variance of measurements of force acting on a 2µm silica bead for differ-
ent values of κ . Also shown is the Allan variance for the differential force between two beads.
For comparison these are plotted in relation to the estimate for the thermally limited precision

given by Eq. 6. As discussed above, we see that for timescales longer than the autocorrelation

time of the trap the precision of force measurement is independent of κ . At longer timescales
the precision is compromised by the drift in the system. One sees that a force measurement

precision of 10fN can be obtained for an averaging time of a few seconds.
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Fig. 7. Stability of force measurements. In contrast to the measurement of position, it is

the weaker trap that results in a more precise measurement of force. As in the case of

position measurement, the optimum measurement time is in the range 1-10 seconds. Weak

trap (7mW, κ = 5.6E-6 N/m), strong trap (37mW, κ = 2.3E-5 N/m).

6. Discussion and conclusions

Irrespective of the precise sensor technology the Allan variance of the measurements is a useful

indicator as to the stability and noise performance of the system. For our apparatus, built from

conventional components and housed within a standard air-conditioned laboratory, it seems

that a time scale of a few seconds represents the optimum compromise between averaging the

Brownian motion whilst remaining insensitive to system drift. If greater precision is required

then employing a differential system allows averaging over longer timescales, albeit a corre-

sponding reduction in measurement bandwidth.

We have shown that CMOS imaging technology is capable of measuring the particle position

and inferring the applied force with a precision limited only by the inherent thermal motion of

the particle within an overdamped trap. Frame rates of 1kHz means that the overdamped mo-

tion is sampled sufficiently quickly that autocorrelation and cross-correlation measurements

between multiple particles can be measured. Averaging position or force data over a few sec-

onds gives standard errors in the mean of order 1nm and 10fN respectively. These values are

also comparable with those reported for systems based on QPDs.

The nature of CMOS devices is that the maximumdata transfer rate sets a limit on the product

of frame-rate and field of view. For current commercial technology and interfaces, a frame

rate of 1kHz is only possible for fields of view of several 10’s of square microns. However,

high-speed “smart cameras” have recently been developed with integrated signal processing,

where a programmable logic array measures the position of each particle[16] and only these

positions, rather than the whole image, is passed to the data logging computer. Such systems

can simultaneously measure the positions of several trapped particles[17] even when they are

positioned far apart in the sample. Progress in both the commercial and research CMOS imagers

is set to continue creating new opportunities for their use in optical tweezers.
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