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Abstract 

Although somatic mutations and overexpression of the tyrosine kinase Fibroblast Growth 

Factor Receptor 3 (FGFR3) are strongly associated with bladder cancer, evidence for their 

functional involvement in the pathogenesis remains elusive. Previously we showed that 

activation of Fgfr3 alone is not sufficient to initiate urothelial tumourigenesis in mice. Here 

we hypothesise that cooperating mutations are required for Fgfr3-dependent tumourigenesis 

in the urothelium and analyse a mouse model in which an inhibitor of Pi3k-Akt signalling, 

Pten, is deleted in concert with Fgfr3 activation (UroIICreFgfr3+/K644EPtenflox/flox). Two main 

phonotypical characteristics observed in the urothelium were increased urothelial thickness 

and abnormal cellular histopathology, including vacuolisation, condensed cellular appearance, 

enlargement of cells and nuclei, and loss of polarity. These changes were not observed when 

either mutation was present individually. Expression patterns of known urothelial proteins 

indicated the abnormal cellular differentiation. Furthermore, quantitative analysis showed 

that Fgfr3 and Pten mutations cooperatively caused cellular enlargement, while Pten 

contributed to an increased cell proliferation. Finally, FGFR3 overexpression was analysed 

along the level of phosphorylated mTOR in sixty-six T1 urothelial tumours in tissue 

microarray, which supported the occurrence of functional association of these two signalling 

pathways in urothelial pathogenesis. Taken together, this study provides evidence supporting 

a functional role of FGFR3 in the process of pathogenesis in urothelial neoplasm. Given the 

wide availability of inhibitors specific to FGF signalling pathways, our model may open the 

avenue for FGFR3-targeted translation in urothelial disease.   

 

Keywords: transitional cell carcinoma, transgenic mouse model, Fibroblast Growth Factors, 

prognostic marker, personalised therapy, comparative pathology 
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Introduction 

 

The majority of bladder cancers are urothelial carcinomas (UC) that occur in the urothelial 

lining and present as either non-muscle invasive (NMIBC) or muscle-invasive bladder 

cancers (MIBC). Clinically operable MIBC are treated with radical cystectomy or 

radiotherapy, however up to 50% of the patients relapse [1]. NMIBC tends to recur frequently 

and it is estimated that 10-20% of NMIBC potentially progress MIBC [2,3]. A number of 

genetic and epigenetic alterations have been identified in MIBC, including amplification of 

ERBB2 and loss of TP53, Retinoblastoma (RB) and the phosphatase and tensin homolog 

(PTEN) [4]. NMIBC is strongly associated with activating mutations in FGFR3 with a 

frequency between 60-80% [5-8], followed by chromosome 9 deletion (36-66%) and 

mutations in RAS family genes and in Phosphatidylinositol-4,5-Bisphosphate 3-Kinase 

Catalytic Subunit Alpha (PIK3CA) [4]. FGFR3 protein is also overexpressed in 42% of 

bladder tumours without FGFR3 mutations [49]. 

 

FGFR3 is a tyrosine kinase receptor that mediates the effects of Fibroblast Growth Factors 

(FGFs) [9]. FGFR3 mainly stimulates the RAS-Mitogen-Activated Protein Kinase (MAPK) 

and Phosphatidylinositide-3 Kinase (PI3K)-AKT pathway and triggers a range of cellular 

processes such as cell proliferation and differentiation. When activating mutations occur in 

the germ line, FGFR3 causes several forms of dwarfism: hypochondroplasia, achondroplasia 

and thanatophoric dysplasia, and malformation of the cerebral cortex [10-13]. FGFR3 

mutations are identified also in several cancer types, including multiple myeloma, cervical, 

prostate cancer and spermatocytic seminomas [14]. The functional role of FGFR3 mutation 

in tumour formation was first demonstrated in multiple myeloma [15], skin hyperplasia in 

transgenic mice overexpressing mutant FGFR3 [16] and in xenograft models [17]. However 
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the mechanistic role of FGFR3 activation caused by mutations and overexpression in bladder 

tumourigenesis remains to be elucidated.  

 

We have previously used a mouse line in which K644E, a highly activating mutation in the 

Fgfr3 kinase domain, is  conditionally expressed in the urothelium (UroIICreFgfr3+/K644E) to 

investigate the functional role of Fgfr3 activation in bladder tumourigenesis [18]. These mice 

did not show any urothelial phenotype, indicating that Fgfr3 activation alone is not sufficient 

to drive tumourigenesis in the urothelium. However, in combination with K-Ras or β-

Catenin, Fgfr3 activation caused tumours in the skin and in the lungs, respectively, 

suggesting that Fgfr3 is able to induce tumourigenesis in the presence of cooperating 

mutations [18]. We found that the Pi3k-Akt pathway was highly up-regulated in lung tumours 

which formed in the presence of Fgfr3 and β-Catenin mutations, while in the urothelium this 

up-regulation was not observed. This has led us to hypothesise that urothelial tumourigenesis 

may require increased PI3K-AKT signalling. In humans, activating PIK3CA mutations, 

including those at the hotspots (E542K, E545K in the helical domain and H1047R in the 

kinase domain), are found in 13-25% of bladder cancer [31,41-45]. Interestingly, FGFR3 and 

PIK3CA mutations are shown to co-occur [31,41-45]. Therefore it was proposed that 

activation of PI3K-AKT pathway may enhance the effects of FGFR3 mutation [30,31].  

 

In this study, we wished to test the synergistic effects of Fgfr3 and Pi3k-Akt signalling 

activation. PTEN is a well-known inhibitor of PI3K-AKT signalling and previous mouse 

models demonstrated that the loss of Pten leads to urothelial hyperplasia [19,20]. Therefore 

we used the mouse line with Pten deletion as an experimental tool to assess the effects of 

Pi3k-Akt activation in the presence of Fgfr3 mutation in the urothelium. The urothelium of 

double mutant mice was thickened and showed abnormal cellular features including enlarged 
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cells and loss of polarity. The mechanisms leading to this phenotype was further investigated 

for cell differentiation, cell proliferation and apoptosis. Finally, the synergistic effects of 

mutations in downstream signalling were characterised in the mouse urothelium, and 

evaluated along the level of FGFR3 overexpression in clinical specimens in the tissue 

microarray (TMA) platform. 

 

Materials and Methods 

 

Mice: UroIICre transgenic mice [23] were intercrossed with Fgfr3+/K644Eneo [11] and 

Ptenflox/flox mice [24] to generate UroIICreFgfr3+/K644EPtenflox/flox. Except for UroIICre 

(FVB/N), background of mice was C57Bl/6. The Z/EG reporter line is from Novak et al., 

2000 [25]. Genotype was performed by Transnetyx, USA. The Control were C57Bl/6 (n=7) 

(Charles River, UK) and mice that carries inactive 'T2/Onc3' transposon allele [26] (n=4) 

which do not lead to any phenotype. All experiments were carried out in accordance with the 

Project Licence under Home Office Animal (Scientific Procedures) Act 1986 in the UK.  

 

Histology: Bladders were gently emptied of urine and placed in formalin for overnight 

fixation. Haematoxylin and eosin (H&E) and PAS staining (Leica Microsystems staining 

solutions #3803812 and #03800E) was performed on 4 μm-thick paraffin sections. Formalin-

fixed OCT-embedded frozen sections were used in X-Gal staining (K1465-01, Invitrogen 

Life Technologies, UK).  

 

Immunohistochemistry (IHC): Antigen retrieval was performed with 0.01M citric acid (pH 

6) unless specified otherwise. Samples were incubated in 0.3% H2O2 in distilled water for 20 

min. Following the blocking, incubation with primary antibody was performed overnight at 
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4ºC, with secondary antibody for 2 hours at room temperature. Antibody binding was 

visualised by ABC Elite Standard kit (Vector Labs, PK-6100) and 3,3'-Diaminobenzidine 

(DAB; K3468, Dako), counterstained with haematoxylin. For fluorescent visualisation, 

sections were incubated with 4',6-diamidino-2-phenylindole (DAPI; 1:1000) and mounted 

with Vectashield (Vector Labs, H-1000). Pictures were taken by Axio Imager (Zeiss A1) and 

Zeiss upright confocal microscope (Zeiss 710) for light and fluorescent microscopy, 

respectively. The slides were scanned by Nanozoomer slide scanner (Hamamastu) and 

analysed by SlidePath Digital Image Hub (Leica Biosystems). IHC staining was examined in 

the minimum of n=3 per genotype. Antibodies used were: Caspase-3 (R&D Systems, AF835; 

1:200), CK5 (Abcam, ab24647, 1:500), CK18 (Progen, #61028, 1:10), GFP (Abgent, 

AM1009a; 1:25), E-cadherin (BD Transduction Laboratories Clone 36; 1:1000), pERK1/2 

(Cell Signaling, #9101 and #4370; 1:100), FGFR3 (Santa Cruz Biotechnology, C-15; 1:40, 

no antigen retrieval), Ki67 (Vector Labs Burlingame USA, VP-RM04; 1:100), Pten (Cell 

Signaling, #9559; 1:100), UroII (Santa Cruz, #sc15178, 1:50), pAkt1/2 (Ser473) (Cell 

Signalling, #3787; 1:50), p21 (Santa Cruz, M19; 1:500), p63 (Santa Cruz, sc-8431, 1:100). 

Biotinylated goat secondary antibodies from Vector Labs, Anti-Rabbit IgG (BA-1000), Anti-

Rat IgG (BA-9401), and Anti-Mouse IgG (BA-9200) were used for chromatogenic signals, 

Alexa Fluor 488 Goat Anti-Mouse IgG1 (Invitrogen, A-21121) and Alexa Fluor 594 Goat 

Anti-Rabbit IgG (Invitrogen, A-11012) were used for fluorescent. 

 

Quantitative analysis; Three representative photos were taken for each H&E stained section 

at 40x magnification. Urothelial thickness was measured in 25-30 µm intervals at random 

fashion using ImageJ software (NIH, Bethesda, USA). Each picture contained 20-50 

measurements. The mean value of the thickness was initially calculated for each sample, and 

subsequently the mean value in each genotype was determined as presented in the results. For 
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cell size, each cell was marked around the cell membrane in E-cadherin stained sections and 

the areas were quantified using ImageJ. The sizes of fifteen cells each layer were measured 

per sample. For quantitative analysis, the umbrella layer was defined as the outermost single 

layer, basal layer the innermost, and the intermediate cell layer between those two in the 

urothelium. Cells positive with Ki67 or Caspase-3 staining, as well as total cell number in the 

urothelium were counted. The percentage of Ki67 or Caspase-3-positive cells within the total 

cell number was calculated per sample and the mean value was determined in each genotype. 

Statistics were performed using the Mann-Whitney test for non-parametric distribution of 

data (SPSS Version 19, IBM). 

 

Tissue microarray (TMA) analysis of clinical specimens: With the ethical approval under 

the medical-ethical committee of the University Health Network, Toronto, T1 urothelial 

tumours on TMA were stained with FGFR3 (Santa Cruz, B-9; 1:300, overnight incubation) 

and p-mTOR(S2448) (Cell Signaling, #2976; 1:30). Positive and negative controls were 

included in each run. Slides were assessed by the pathologists. Both protein levels were 

scored based on membrane staining according to the 4-point scale (0=negative, 1=faint, 

2=intermediate, 3=strong) (Figure S5). Correlation was statistically evaluated by Pearson 

Chi-square statistics (SPSS). 

 

Results 

 

Together with Pten loss, the activating Fgfr3 mutation increases the thickness of the 

urothelium in mice. 

In order to see whether Fgfr3 activation is able to form UC in the absence of Pten, we 

generated a cohort of UroIICreFgfr3+/K644EPtenflox/flox mice. In these mice, the heterozygous 
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Fgfr3 K644E knock-in mutation [11] and deletion of both Pten alleles [24] occurs 

concomitantly in the urothelium [27]. Cohorts of UroIICreFgfr3+/K644E, UroIICrePtenflox/flox 

and UroIICreFgfr3+/K644EPtenflox/flox were examined at 5-18 months (Table 1). Cre-dependent 

recombination in the urothelium was assessed using Z/EG reporter mice. In the presence of 

the UroIICre allele, cells with a GFP-positive nucleus were observed in the majority of 

urothelial cells (Figure S1h) while little X-gal staining remained in the urothelium (Figure 

S1i), confirming successful recombination. We detected similar levels and patterns of Fgfr3 

protein expression in the urothelium of Control and UroIICreFgfr3+/K644E (Figure S1a, b) as 

we reported previously [18], and in UroIICrePtenflox/flox and UroIICreFgfr3+/K644EPtenflox/flox 

(Figure S1c, d), indicating that Fgfr3 expression was neither influenced by the Fgfr3 

mutation nor Pten deletion. An increased FGFR3 protein level observed in 85% of bladder 

tumours with FGFR3 mutations in humans [49] was not apparent. Lack of Pten expression 

was confirmed in UroIICrePtenflox/flox urothelium (Figure S1g). Levels of Pten protein were 

similarly low in Control and UroIICreFgfr3+/K644E (Figure S1e, f), indicating that Pten 

expression is unaltered in the presence of Fgfr3 mutation.  

 

We observed a severe increase in thickness of the urothelium in 

UroIICreFgfr3+/K644EPtenflox/flox  mice compared to Control (Table 1, Figure 1). A mild 

increase was also observed in 60% of UroIICrePtenflox/flox, while the thickness of 

UroIICreFgfr3+/K644E urothelium was normal. The urothelium of mice with homozygous 

Fgfr3 mutation (UroIICreFgfr3K644E/K644E) showed a mild thickening (Table 1, Figure S1k, l). 

In contrast, mice with homozygous mutations in both Fgfr3 and Pten 

(UroIICreFgfr3K644E/K644EPtenflox/flox) revealed a similar phenotype to that of 

UroIICreFgfr3+/K644EPtenflox/flox (Figure S1m, n).  
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We have quantified these changes in mice aged between 11-18 months. Consistent with our 

previous observations [18,21], urothelial thickness of UroIICreFgfr3+/K644E and 

UroIICrePtenflox/flox were similar to Control (Figure 1i). However, thickness was significantly 

increased when both mutations were present in UroIICreFgfr3+/K644EPtenflox/flox compared to 

either UroIICreFgfr3+/K644E (p=0.00005) or UroIICrePtenflox/flox (p=0.00049), suggesting that 

this increase is generated by the cooperation of Fgfr3 and Pten mutations.  

 

Abnormal histopathology of the UroIICreFgfr3+/K644EPtenflox/flox urothelium  

In addition to increased urothelial thickness, several abnormal cellular morphologies were 

observed in UroIICreFgfr3+/K644EPtenflox/flox, including vacuolisation, condensed cellular 

appearance, enlargement of cells and nuclei, and loss of polarity (Figure 2A). High glycogen 

levels were detected in vacuoles by Periodic acid-Schiff (PAS) staining (n=3) (Figure 2Ag). 

At least one of these cellular features were observed in the majority of 

UroIICreFgfr3+/K644EPtenflox/flox (83%), while none of these abnormal features were present in 

Control (Figure 2Aa, d), UroIICreFgfr3+/K644E or UroIICrePtenflox/flox urothelium (Table 1).  

 

In order to see whether these abnormal cellular appearances are caused by a change in 

urothelial cell identities, staining was performed with urothelial markers well-established in 

mice, UroII (umbrella and some intermediate cells [28]), Cytokeratin 5 (CK5) (basal cells 

[29]) and p63 (basal and intermediate cells [30]) (Figure 2Ba-c). In 

UroIICreFgfr3+/K644EPtenflox/flox, UroII-positive cells were present in deeper layers close to the 

submucosa, while CK5 expression was absent in some parts of the innermost layers of the 

urothelium, showing an inverse expression pattern (Figure 2Be, f, i, j). Furthermore, p63 

showed a disorganised expression pattern (Figure 2Bg, k). Double staining of CK18, an 

alternative marker of umbrella cells in mice [30], together with CK5 clearly showed the 
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abnormal localisation of CK18-positive cells deep in the urothelium of 

UroIICreFgfr3+/K644EPtenflox/flox (Figure 2Bh, l). Taken together, the results indicated 

abnormal differentiation of urothelial cells in UroIICreFgfr3+/K644EPtenflox/flox.  

 

Urothelial cell size and proliferation is differently regulated by Fgfr3 and Pten 

mutations 

The increase in urothelial thickness can be caused by deregulation of cell size and/or cell 

number. No significant difference in cell size was observed in the innermost basal and 

outermost umbrella layers among the cohorts (Figure 3a, c). In contrast, in the intermediate 

(between the inner and outermost) urothelial layers, while Fgfr3 mutation alone did not 

influence the cell size, Pten loss alone increased the cell size compared to Control (p=0.017) 

(Figure 3b). Furthermore, the presence of both Fgfr3 and Pten mutations further increased the 

cell size comparing to Fgfr3 mutation alone (p=0.001), as well as to Pten alone (p=0.016), 

suggesting that the Fgfr3 mutation cooperates with the Pten loss to further increase the cell 

size.  

 

Albeit in a relatively small number of cells, Ki67 positivity was identified in all layers of the 

urothelium, including umbrella cells (Figure S2a, b) [30]. Taken all layers together, a 

significant increase in Ki67-positive cells was seen in the presence of both Fgfr3 and Pten 

mutations (p=0.004), as well as in the presence of Pten loss only (p=0.009), compared to 

Fgfr3 mutation only (Figure 3d). This indicates that cell proliferation was increased due to 

Pten loss. Similar effects were observed in the outermost and intermediate layers, while no 

significant changes were seen in the innermost basal layer (Figure S2). Very few apoptotic 

events were observed in all cohorts (Figure S3).   
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In summary, these results indicate that Fgfr3 and Pten mutations cooperatively caused 

urothelial hypertrophy, while Pten contributed to hyperplasia in the 

UroIICreFgfr3+/K644EPtenflox/flox urothelium.  

 

Changes in downstream signalling associates with abnormal differentiation 

We addressed how Fgfr3 and Pten mutations altered their downstream signalling cascades 

using antibodies for the phosphorylated forms of Erk1/2 (pErk1/2) and Akt(Ser473) (pAkt). 

In Controls, pErk1/2 was observed in a patchy fashion in the urothelium, not limited to a 

particular cell or cell type (n=9) (Figure 4a). Staining was similar in UroIICreFgfr3+/K644E 

(n=9) and UroIICrePtenflox/flox (n=6/9) (Figure 4d, g). In contrast, in 

UroIICreFgfr3+/K644EPtenflox/flox samples (n=9/12, 75%) pErk1/2 was seen more in a cell-

specific fashion (Figure 4j), which resembled the overall pattern of UroII and CK5 staining 

(Figure 2B). As this staining was rather unusual, an alternative pErk antibody was also used 

to confirm this pattern (Figure S4). This observation may suggest the involvement of local 

MapK signalling dysregulation in pathogenesis of the urothelium through regulation of cell 

differentiation. However this requires further investigation. The staining of pAkt was absent 

in Control (n=3), UroIICreFgfr3+/K644E (n=6) and UroIICrePtenflox/flox (n=7) (Figure 4b, e, h), 

but found to be up-regulated in 55% of UroIICreFgfr3+/K644EPtenflox/flox samples (n=6/11, 

Figure 4k). Cyclin-dependent kinase inhibitor and tumour suppressor p21 was previously 

shown to be up-regulated in the mouse urothelium in which Pten is deleted [20]. p21 was 

present most abundantly in the outermost umbrella layer in Control (n=3) (Figure 4c), and 

this remained similar in UroIICreFgfr3+/K644E (n=3) and UroIICrePtenflox/flox (n=3) in this 

study (Figure 4f, i). However, in UroIICreFgfr3+/K644EPtenflox/flox urothelium (n=4), p21 was 

expressed throughout the urothelium (Figure 4l). This p21 up-regulation appeared to have 

coincided with the overall up-regulation of Pi3k-Akt signalling (Figure 4k), which is in 
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accordance with the evidence in vitro that activation of PI3K-AKT pathway up-regulates p21 

[48]. Altogether, these results provide the evidence to support the activation of Pi3k-Akt 

pathway in the current mouse model, as a result of cooperation between Fgfr3 and Pten 

mutations together, but not when either mutation was present individually. 

 

Previous studies have investigated mutations in FGFR3 and PI3K-AKT pathway genes [31, 

41-47] and their activation, using antibodies specific to the phosphorylated form of the 

protein, such as pAKT [43-45,47]. Mammalian Target of Rapamycin (mTOR) is downstream 

of PI3K-AKT signalling, and a candidate for effective therapeutic target [21,22]. We 

evaluated the levels of FGFR3 protein and p-mTOR(S2448) in 66 T1 urothelial tumours in 

TMA (Figure 4m, Figure S5). While the decrease in strong FGFR3 was statistically not 

significant (p=0.101), an increase in intermediate FGFR3 expression was correlated with an 

increased level of p-mTOR (p=0.014), supporting the presence of functional synergy of 

FGFR3 and PI3K-AKT pathways.   

 

 

Discussion 

 

FGFR3 mutations are highly associated with NMIBC [5,32]. A series of studies have shown 

the frequent co-occurrences of FGFR3 and PIK3CA mutations and evaluated gene alterations 

in PI3K-AKT pathway in clinical cohorts of bladder cancer [31,41-47]. However functional 

cooperation between Fgfr3 and Pi3k-Akt activation has never been demonstrated before. As 

both mutations and overexpression of FGFR3 is also highly associated with bladder cancer 

[49], our approach was to address the role of Fgfr3 activation using the existing mouse line 

with Fgfr3 K644E mutation [11,18]. Although the kinase domain mutations are less common 
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in contrast to S249C in humans [5,32], this mouse line offers several advantages as an 

experimental model, namely because the Cre-Lox construct enables the expression of mutant 

Fgfr3 in the urothelium-specific fashion and the mutation is highly activating, thus 

maximising the chance of detectable phenotype. In the absence of available mouse lines with 

PI3KCA mutations, we turned to a model that enables conditional Pten deletion [19,20]. Pten 

is a well-known inhibitor of Pi3k-Akt signalling and it was shown that its deletion resulted in 

pAkt up-regulation in bladder tumours in mice [21].  

 

Significantly, while the papillary structures with fibro-vascular cores seen in human NMIBC 

were not observed, the urothelium of UroIICreFgfr3+/K644EPtenflox/flox did demonstrate several 

morphological abnormalities that may reflect pathogenesis in humans. Two main phenotypes 

were increased urothelial thickness (Figure 1) and abnormal urothelial cellular 

histopathology, including vacuolisation, condensed cellular appearance, enlargement of cells 

and nuclei, and loss of polarity (Figure 2). Fgfr3 and Pten mutations cooperatively caused 

urothelial hypertrophy through regulation of cell size, while increased cell proliferation was 

mainly an effect of Pten deletion (Figure 3). The pErk staining in the double mutant 

urothelium showed an unusual cell-specific pattern (Figure 4j) and may suggest the local 

involvement of MapK pathway in pathogenesis through regulation of cell differentiation. 

These histopathological features are comparable to hyperplasia and dysplasia, regarded as 

early stages in the putative model of bladder cancer pathogenesis in humans. To our 

knowledge, this is a unique observation that has not been reported in any other genetic 

models of urothelial abnormalities.  

 

Furthermore, up-regulation of pAkt was observed when both Fgfr3 and Pten mutations 

together, and not in single mutants (Figure 4). In humans, higher pAKT level was found in 
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50% bladder tumours independent of stage/grades and is associated with the presence of 

mutations, including PIK3CA, FGFR3, and both together [43]. Activation of PI3K-AKT 

downstream protein, mTOR, is confirmed to be strongly associated with pAKT [47]. 

Relationship between FGFR3 overexpression and p-mTOR is relatively unstudied and one 

report showed no statistical association [47]. However, in the current study, although the 

number of samples analysed was small, we were able to show association of the intermediate 

level of FGFR3 overexpression with increased p-mTOR (Figure 4m). In humans, PIK3CA 

mutations were also found in normal urothelium, indicating that it is an early event [44]. 

Altogether, this study provide functional evidence that supports that up-regulation of FGFR3 

signalling together with that of PI3K-AKT signalling plays a role in the initiation of 

urothelial tumourigenesis.  

 

In contrast, the current model with Fgfr3 and Pten mutations did not produce tumours in the 

life time of the animal models up to 18 months. This indicates that pathogenesis caused by 

FGFR3 and PI3K-AKT signalling pathway mutations are unlikely to progress unless further 

mutations occur. Our data in mice show that Fgfr3 and Pten mutations cooperatively promote 

morphological changes of the urothelium, while not when mutated individually. Previously it 

was reported that loss of Pten alone leads to urothelial hyperplasia [19,20]. However, 

hyperplasia was not observed by Pten loss in the studies by our group [21] and others [22]. In 

the current study, although mild urothelial thickening was observed in 60% of the 

UroIICrePtenflox/flox mice (Table 1), this increase was statistically not significant upon 

quantification (Figure 1i). An in vitro study using Normal Human Urothelial Cells stably 

expressing the hotspot PI3KCA mutations showed a large, vacuolated and flattened 

morphology [33]. Cell proliferation was also increased in cells with helical domain mutant. 

Despite the difference that these effects were singly resulted by PIK3CA activation in vitro, 
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the findings are supportive of our observations in mice. This may reflect the complexity of 

signalling events leading to tumourigenesis in vivo in which multiple gene mutations and 

epigenetic events are likely to be required.  

 

There are several differences between the natures of our mouse model in relationship to 

human bladder cancer that may limit the direct interpretation. Firstly, although we used Pten 

loss as an experimental tool in this study, in humans, occurrence of FGFR3 mutations are 

associated with NMIBC while PTEN loss with MIBC, and therefore little overlap is expected 

[4,41]. FGFR3 mutations and loss of heterozygosity in PTEN are found together only in a 

small number of cases of TaG1, T1G2, and T2G3 (Table S5 in ([41]). Statistically, PTEN 

loss was not associated with up-regulation of pAKT in clinical bladder cancer specimens [46]. 

Secondly, a study of clinical specimens reported that 85% of tumours with FGFR3 mutations 

also overexpressed FGFR3 protein [49]. In contrast, changes in Fgfr3 protein level were not 

apparent in our model (Figure S1a-d). This could be due to the expected low level of 

endogenous protein expressed in the mouse urothelium. The mechanism of FGFR3 mutations 

leading to an increased protein level is unclear, however the in vitro studies showed that 

impaired lysosomal degradation of FGFR3 protein was caused by mutations, increasing the 

stability of FGFR3 mutant protein in the plasma membrane [40].  

 

FGF signalling inhibitors have been developed and applied in many cancer types [34]. 

Inhibition of FGFR had been suggested as a therapeutic option of UC [35]. Several novel 

drugs against FGFRs, including R3Mab [17], BGJ398 [36] and AZD4547 [37], are shown to 

be effective in cell lines and xenograft models. A recent attempt to re-classify UCs primarily 

based on molecular features has revealed that FGFR3 mutations and overexpression are 

associated with a subgroup of MIBC with significantly poor prognosis [38]. Although at a 
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low frequency (3-4%), FGFR3 and AKT1 mutations were found to occur together in high-

grade UC [43,46]. Overexpression of FGFR1 is also found in UC across all stages and grades 

[39]. Further functional studies of FGF and FGFR3 signalling pathway is therefore essential 

in both NMIBC and MIBC, firstly to allow stratification according to risk of progression 

and/or recurrence, and secondly to aid in patient selection for potential combination therapies.  
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Table 1: Summary of mouse cohorts and bladder phenotype 

Genotype Cohort 

size (n) 

Age  

at time of 

analysis 

Non-bladder 

related deaths 

(n) 

Increased 

urothelial 

thickness (n)  

Cellular 

abnormalities 

(n) 

Control  

 

11 10-18 

months 

 

None None 

 

None 

UroIICre  

Fgfr3+/K644E  

25 5-15 

months 

 

2 (8%) None 

 

None 

UroIICre  

Ptenflox/flox  

20 9-18 

months 

 

4 (20%) 

 

12 (60%)  mild 

 

None 

UroIICre  

Fgfr3+/K644E 

Ptenflox/flox  

24 11-18 

months 

 

4 (17%) 

 

4 (17%) mild,   

19 (79%) 

severe,  

23 (96%) total 

 

20 (83%)  

 

UroIICre  

Fgfr3K644E/K644E 

12 7-13 

month 

10 (83%)*  11 (92%) mild None 

 

UroIICre  

Fgfr3K644E/K644E 

Ptenflox/flox  

 

3 

 

10-12 

months 

 

 

None 

 

 

2 (66%) severe 

 

2 (66%)  
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The mouse cohorts analysed in this study are summarised. Cellular abnormalities observed 

include vacuolisation, enlarged cells, and loss of cell orientation within the urothelium. 

Causes of non-bladder related deaths include infection and lymphoma, and termination due to 

skin rash on the back owing to Cre-lox recombination occurred in the epidermis [18]. 

*UroIICreFgfr3K644E/K644E mice were sacrificed at the time when kyphosis became prevalent. 

This phenotype is due to a low-level of Fgfr3 expression in the presence of homozygous 

Fgfr3K644Eneo allele [11]. 
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Figure legends 

 

Figure 1: Increased thickness of the UroIICreFgfr3+/K644EPtenflox/flox urothelium. 

Representative images of H&E stained bladder sections of Control (a, e), 

UroIICreFgfr3+/K644E (b, f), UroIICrePtenflox/flox (c, g) and UroIICreFgfr3+/K644E Ptenflox/flox (d, 

h) at low (a-d) and high magnification (e-h). The murine urothelium consists of three layers, 

namely umbrella, intermediate, and basal cells and borders with connective tissue and the 

stroma (e, insert). Scale bar represents 200 µm in panel a-d and 100 µm in panel e-h. 

Thickness of the urothelium was quantified in Control, UroIICreFgfr3+/K644E (Fgfr3), 

UroIICrePtenflox/flox (Pten) and UroIICreFgfr3+/K644EPtenflox/flox (Fgfr3Pten) in the number of 

animals indicated (i). The error bars indicate the standard deviations. 
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Figure 2: Abnormal cellular morphology in the UroIICreFgfr3+/K644EPtenflox/flox 

urothelium. A, Representative images of H&E-stained Control (a, d) and 

UroIICreFgfr3+/K644EPtenflox/flox urothelia (b, c, e, f) at low (a-c) and high magnification (d-f). 

Vacuolisation (arrow in c), condensed cellular appearance (circled in e), enlargement of cells 

and nuclei (arrow heads in e, f), and loss of polarity were observed. Periodic acid-Schiff 

(PAS) staining marked glycogen-rich vacuoles in UroIICreFgfr3+/K644EPtenflox/flox (g). B, 

Expression of UroplakinII (a, e, i), CK5 (b, f, j and d, h, l), p63 (c, g, k), CK18 (d, h, l) was 

used to assess differentiation of umbrella (UroII and CK18), intermediate (p63) and basal 

cells  (p63 and CK5) in Control (a-d) and UroIICreFgfr3+/K644EPtenflox/flox (e-l) 

(immunohistochemistry). Double staining with CK18 (green) and CK5 (red) (d, h, l) shows 

the abnormal localisation of CK18-positive cells deeper in the urothelium of 

UroIICreFgfr3+/K644EPtenflox/flox. Scale bar represents 200 µm in A (a-c) and 100 µm in A (d-

g), B (a-l). 
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Figure 3:  Differential effects of Fgfr3 and Pten mutations in regulation of urothelial cell 

size and proliferation. The cell size of was analysed comparing cells in each layer using 

immunohistochemistry with E-cadherin. The sizes of cells in the outermost umbrella (a) and 

innermost basal (c) cell layers did not show any significant differences among the cohorts. 

However increase in cell size was observed in the intermediate (between the inner and 

outmost) layer, in particular in UroIICrePtenflox/flox and in UroIICre Fgfr3+/K644EPtenflox/flox (b). 

Ki67-positive cells were increased in the urothelium of UroIICrePtenflox/flox as well as 

UroIICreFgfr3+/K644EPtenflox/flox mice, comparing to other cohorts (d). The error bars indicate 

the standard deviations.  
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Figure 4: Deregulation of downstream signalling and cell cycle arrest in the 

UroIICreFgfr3+/K644EPtenflox/flox urothelium. Immunohistochemistry was performed in 

Control (a-c), UroIICreFgfr3+/K644E (d-f), UroIICrePtenflox/flox (g-i), and 

UroIICreFgfr3+/K644EPtenflox/flox urothelia (j-l) with antibodies against phosphorylated Erk1/2 

(pErk) (a, d, g, j), phosphorylated Akt (pAkt) (b, e, h, k) and p21 (c, f, i, l). (m) Levels of 

FGFR3 expression and p-mTOR were semi-quantitatively evaluated in TMA containing T1 

urothelial tumours using the 4-point scale (negative, faint, intermediate, strong).  Scale bar 

represents 50 µm in a, b, d, e, g, h, j, k, 100 µm in c, f, i, l, 25 µm in inserts of j-k and 50 µm 

in insert l.  
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