The Assessment of Benchmarks
Executed on Bare-Metal and
Using Para-Virtualisation

Mark Baker, Garry Smith and Ahmad Hasaan
SSE, University of Reading

15/09/2010 mark.baker@computer.org

https://core.ac.uk/display/9366?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Paravirtualization

* A full assessment of paravirtualization is
important, because without knowledge about the
various overheads, users can not understand
whether using virtualization is a good idea or not.

 In this presentation we are very interested in
assessing the overheads of running various
benchmarks on bare-metal, and on
paravirtualization, and then turning on monitoring
and logging.

« The knowledge from assessing various benchmarks
on these different systems will help a range of
users understand the use of virtualization systems.

Virtualization Systems

In this pager we assess the overheads of using Xen, VMware,
KVM and Citrix.

These different virtualization systems are used extensively
by cloud-users.

We are using various Netlib benchmarks, which have been
developed by the University of Tennessee at Knoxville (UTK),
and Oak Ridge National Laboratory (ORNL).

— http.//www.netlib.org/

In order to assess these virtualization systems, we
run the benchmarks on bare-metal, then on the
paravirtualization, and finally we turn on monitoring
and logging.

The later is important as users are interested in
Service Level Agreements (SLAs) used with the Cloud
providers, and the use of Iog‘ging is a means of
assessing the services bought and used from
commercial providers.

Paravirtualization

Para-virtualization is an OS-assisted virtualization;
where some modifications are made in the guest
operating system to enable better performance.

In this kind of virtualization, the guest operating
system is aware of the fact that it is running on the
virtualized hardware and not on the bare hardware.

In Paravirtualization the device drivers in guest
operating system coordinates with the device drivers
of host operating system in reducing the performance
overhead.

The use of Para-virtualization is intended to avoid the
bottleneck associated with slow hardware interrupts
that exist when full virtualization is employed.

HPC Systems

The project will use the Thamesblue supercomputer, the Hactar
cluster and the IBM JS20 blade server available at University
of Reading for benchmarking of different Virtualization
systems.

Thamesblue are:

IBM PowerPC Blade Centre JS21 Cluster
— CPUs - 2800 2.5 GHz processors
— RAM - 20 TeraFlops of sustained performance
— DISK - 5.6 Terabytes.
— Network connectivity - Myrinet/Ethernet

The Hactar cluster consists of one head node and four worker
nodes:

— Dual-Core AMD Opteron(tm) Processor 1212

— CPUs - 2009.438 MHz

— RAM -4 Gigabytes

— Network Connectivity - Ethernet

Hardware Ring used in Virtualization

Hardware
Instructions
Privileged Rings

Ring 3: Applications

Ring 2

Ring 1

Ring 0: Most Privileged Zone
Guest Operating System
E.g. Linux or Windows

Hypervisor/Virtualization layer

Physical Hardware

Direct Instruction
execution

»

[CPU, RAM, Disk, Network & Disk controllers] ,

15/09/2010

mark.baker@computer.org

Virtualization Systems Accessed.

Type of System Name of VM Dbased | Website
systems
Open Source Systems XEN http://www.xen.org
KVM http://www.linux-kvm.org
Commercial Systems VMware http://www.vmware.com
Citrix http://www.citrix.com

15/09/2010

mark.baker@computer.org

Commsl

COMMS], is a pingpong, benchmark that measures the basic
communication properties of a message-passing MIMD computer.
— A message of variable length, n, is sent from a master node to a slave node.

The slave node receives the message into a Fortran data array,
and immediately returns it to the master.

Half the time for this message pingpong is recorded as the time,
T, to send a message of length, N,

In this case advantage can be taken of bidirectional links, and a
greater bandwidth can be obtained than is possible with COMMSI.

The COMMS1 benchmark computes all four of the above
parameters, because each emphasizes a different aspect of
performance.

In the case that there are different modes of transmission for
messages shorter or longer than a certain length, the benchmark
can read in this breakpoint and perform a separate least-squares
fit for the two regions.

PARKBench BENCHmarks

PARKBench {PARallel Kernels and BEMCHnarks?»

1.0888888E+B88 T T L T T L. T T | T T 7 T T 7 T T ™ T T T
| Logging # Honitoring OFF i
- Bare=Hetal Real tine —— .
KVH Real tine —— H
HEN Real tine ——

" ¥Huware Server Real timne 55— T

1.8888608E-81

1.088800E-02 -

1.88088BE-83

Tine per nessage {sec)

1.008008E-84 - : i

1.000800E-05 o

1.886806E-06 ! e L . L L L T L I L | L L
1 18 188 1468 18888 186888 1le+86 le+87

Hessagpe Size {Bytes}
15/09/2010 mark.baker@computer.org

PARKBench BENCHmarks

FARKBench {PARallel Kernels and BEHCHmarks?}

1.8008888E+08 T e T
i Logging & Honitoring OM

Bare-Hetal Real tine —
KY¥H Real time —
HWEN Real tine —H—
WHuware Server Real time —H5—

1.888840E-81

1.988800E-82

1.6980840E-83

—

Tine per nessage (sec)

1.880000E-04

1.6980800E-85

1.8668080E-06 ' — L e L L L L L | I P \ L
1 18 188 1608 1866806 180688 1e+86

Hessage Size (Bytes}

15/09/2010 mark.baker@computer.org

Lapack

LAPACK is written in Fortran90 and provides routines
for solving systems of simultaneous linear equations,
least-squares solutions of linear systems of equations,
eigenvalue problems, and singular value problems.

The associated matrix factorisations (LU, Cholesky, QR,
SVD, Schur, generalized Schur) are also provided, as are
related computations and estimating condition numbers.

The original goal of the LAPACK project was to make the
widely used EISPACK and LINPACK libraries run
efficiently on shared-memory vector and parallel
processors.

LAPACK addresses this problem by reorganizing the
algorithms to use block matrix operations, such as matrix
multiplication, in the innermost loops.

LAPACK

LAPACK -- Linear Algebra PACKage

(L A P A C K} 1 1 1 1

{L =A P =k [=K) : =8 a -3 :
{ L A P Y =C =-K) 1/4 * - =

(L =R P -A -C K) E i -i -E i :
(L A -P -A C K) e e =-o -c)
{L -A -P A c -E) (k -k -k k)
Version 3.2.2 LAPACK User Forum | lapack@cs.utkedu | Subscribe to the LAPACK announcement list # Accesses

Home] [Contact] [FAQ] [Release Notes] [LAPACK Search Engine] [Individual Routines] [Quick Installation Guide] [LAPACK Installation Guide] [LAPACK Users' Guide] [LAPACK Working

Notes] [What's New in Version 3.2.27 Related Projects] [Support] [Contribution] [LICENSE

LAPACK is written in Fortran90 and provides routines for solving systems of simultaneous linear equations, least-squares solutions of linear systems of equations, eigenvalue problems, and
singular value problems. The associated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are also provided, as are related computations such as reordering of the Schur
factorizations and estimating condition numbers. Dense and banded matrices are handled, but not general sparse matrices. In all areas, similar functionality is provided for real and complex
matrices, in both single and double precision.

If you're uncertain of the LAPACK routine name to address your application's needs, check out the LAPACK Search Engine.

The original goal of the LAPACK project was to make the widely used EISPACK and LINPACK libraries run efficiently on shared-memory vector and parallel processors. On these machines,
LINPACK and EISPACK are inefficient because their memory access patterns disregard the multi-layered memory hierarchies of the machines, thereby spending too much time moving data
instead of doing useful floating-point operations. LAPACK addresses this problem by reorganizing the algorithms to use block matrix operations, such as matrix multiplication, in the innermost
loops. These block operations can be optimized for each architecture to account for the memory hierarchy, and so provide a transportable way to achieve high efficiency on diverse modern
machines. We use the term "transportable” instead of "portable" because, for fastest possible performance, LAPACK requires that highly optimized block matrix operations be already

15/09/2010 mark.baker@computer.org

LAPACK

High Performance LAPACK {HFL} Benchnarks

168 I T T
Logging 8 Honitoring OFF
Bare-Hetal —
KYH ——
98 [EN —— —
YHuware Server —&—
88 - —

48 -

38 -

Tine to zolve the linear systen {sec)
1
=
T

28 -

18

a i I I I
a 1888 2888 3eea 4888 11

Froblen Sizes {(H}

15/09/2010 mark.baker@computer.org

188

Tine to solve the linear systen {sec}

15/09/2010

98

&8

Fi

68

a8

48

38

28

18

LAPACK

High FPerformnance LAPACK {HFL} Benchmnarks

T
Logging & Honitoring ON

Bare-Hetal —
KVH ——
“EN ——
¥Huare Server —E—

1688

2808
Problen Sizes (N}

mark.baker@computer.org

3888

4888

a888

ScalLAPACK

The ScalLAPACK library includes a subset of LAPACK routines
redesigned for distributed memory MIMD parallel computers.

It is currently written in a Single-Program-Multiple-Data style using
explicit message passing for inter-processor communication.
— It assumes matrices are laid out in a two-dimensional block cyclic decomposition.

ScalLAPACK is designed for heterogeneous computing and is
portable on any computer that supports MPI or PVM.

ScalLAPACK routines are based on block-partitioned algorithms in
order to minimise the frequency of data movement between
different levels of the memory hierarchy.

The building blocks of the ScaLAPACK library are distributed
memory versions of the Level 1, 2 and 3 BLAS, and a set of Basic
Linear Algebra Communication Subprograms (BLACS) for
communication tasks that arise frequently in parallel linear algebra
computations.

One of the design goals of ScaLAPACK was to have the ScaLAPACK
routines resemble their LAPACK equivalents as much as possible.

ScalLAPACK

The ScaLAPACK Project

scalapack@cs.utk.edu | ScaLAPACK User Forum # Accesses

Acknowledgements: This material is based upon work supported by the National Science Foundation under Grant No. ASC-9313958 and DOE Grant No. DE-FG03-94ER25219. Any opinions,
findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation (NSF) or the
Department of Energy (DOE).

[Home] [Contact] [FAQ] [Errata] [Scal. APACK] [BLACS] [Scal APACK Users' Guide] [PARPACK] [ARPACK] [MFACT] [ParPre] [LAPACK Working Notes] [Support
Maintenance/Contributing code] [Year 2000 Readiness Disclosure] [LICENSE]

dEFREEE AR R AR AR R R R A

This directory contains a number of different software packages
involved in the ScaLAPACK project.

FEEREEETERTE

PLEMSE NOTE: ScaLlAPACE, version 1.B.0, is now available!
HEEkE kR kR ScalAPACE installer is now available!

PROTOTYPE codes are in scalapack/prototype directory.

The URL for the BLAS is http://www.netlib.org/blas/.

The URL for the BLACS is http://www.netlib.org/blacs/.
The URL for the LAPACK is http://www.netlib.org/lapack/.
The URL for PVM is http://www.netlib.org/pvm3/.

The URL for MPI is http://www.netlib.org/mpi/.

e e W W S e W e %R Rk %k S e R R

A R A

15/09/2010 mark.baker@computer.org

ScalLAPACK

ScalAPACK LU Factorization Benchmarks

388 T T T

T
Logging & Honitoring OFF
Bare-Hetal Real time
280 KyH Real tine —— -
HWEN Real tine —k—

268 MHware Server Real time —5— _

248 - -

228 - =

288 -

188 -

168

148

Tine {sec}

128

188 -

88 -

68

28

8 il 1 1 1
a 1888 20008 3068 4068 Sa8a

Problen Sizes (N}

15/09/2010 mark.baker@computer.org

Tine (zec)

15/09/2010

Joa

288

2608

248

228

268

188

168

148

128

188

&8

68

40

28

ScalLAPACK

S5calLAPACK LU Factorization Benchmarks

|
Logging 8 Honitoring ON

Bare-Hetal Real tine
KVH Real tine
WEN Real time

'
+
+

¥Huware Server Real tine —5—

1668

2080
Froblen Sizes (N}
mark.baker@computer.org

3oao

48808

Saoa

DL_POLY

« DL_POLY is a general purpose serial and parallel molecular
dynamics simulation package developed at Daresbury Laboratory by
W. Smith, T.R. Forester and I.T. Todorov.

« The original package was developed by the Molecular Simulation
Group (now part of the Computational Chemistry Group, MSG) at
Daresbury Laboratory under the auspices of the Engineering and
Physical Sciences Research Council (EPSRC) for the EPSRC's
Collaborative Computational Project for the Computer Simulation
of Condensed Phases (CCP5).

« Later developments were also supported by the Natural
Environment Research Council through the eMinerals project. The
package is the property of the Central Laboratory of the Research
Councils.

15/09/2010 mark.baker@computer.org

DL_POLY

High Ferfornance LAPACK {HPL} Benchmarks

188 T T T T
Logging & Honitoring OFF
Bare-Hetal —
KYH ——
98 [+EN —— -
YHuware Server —&—
88 -1
-~
2
o
o 78 - .
£
o
i)
t
7 68 .
L
]
o
5
—~ 508 -
W
=
)
2
2 a8 - .
=,
b
a
FE)
] i - -1
£
=]
==
28 —
i8 -1
a : | | |

a 18688 2008 3060 4880 batalo)s)
Froblen Sizes (H}

15/09/2010 mark.baker@computer.org

Jaaa

2808

2608

2488

2208

28088

18088

1688

1488

1288

RealfHall Tine {secl

1888
8808
688
488

288

15/09/2010

DL_POLY

DL_FOLY Holecular Sinulation Package

T
Logging & Honitoring ON
1, Sinulation of metallic aluninium at 388K tenperature
2, Sinulation of 15 peptide in 1247 water nolecules
3, Sinulation of a sodium=-potassium dizilicate glass

| Bare=Hetal Real tine —
KVYH Real time ——
HEN Real tine ——
YHuare Server Real time —H—

1 2

Holecular Simulation Benchmark Hunber

3

mark.baker@computer.org

ParkBench

It has been found that PARKBench ping-pong communication
benchmark performs best on the bare metal.

The throughput decrease is less on XEN virtualisation system
than KVM and VMware.

The performance of virtualisation systems improves as the size
of the message increases.

The performance trend between XEN, KVM and VMware remains
consistent for smaller and larger message sizes.

The results also show that the logging and monitoring imposes
less performance overhead on the virtualisation systems.

It is also interesting to note that for all the virtualisation
systems, the overhead of logging and monitoring is not
significant.

HPL

The performance of HPL benchmarks on virtualisation
systems is almost equivalent to the bare metal
performance.

For the problem size 2000, the time taken by XEN is
1.0057 times the time taken by bare-metal.

Similarly the time taken by KVM is 1.011 times the time
taken by bare metal and the time for VMware is 1.048
times the time taken by bare metal.

The results 1.0057, 1.011 and 1.048 for XEN, KVM and
VMware show that the virtualisation overhead on the
performance of HPL application is not significant.

The same trend has been observer for the problem sizes
1000, 3000 and 4000.

DLPOLY

The DLPOLY molecular simulation benchmarks performance is slower
on the KVM and VMware virtualisation system.

This is an interesting result because DLPOLY is also computational
intensive application like HPL.

It is also interesting to note that the performance of DLPOLY on
XEN virtualisation system is almost comparable with bare metal
performance.

For the benchmark "Simulation of a sodium-potassium dislocates
glass” the time taken by XEN is 1.0037 times the time on bare
metal.

The time taken by the same benchmark on KVM is 1.3117 times the
time on the bare metal and the time on VMware is 1.3192 times the
time taken by the benchmark on the bare metal.

Similarly like in other benchmarks, the logging and monitoring
affects KVM and VMware more than the XEN in DLPOLY
benchmarks.

