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Abstract 
 
We show that economic incentives affect the commercial value of inventions 

generated in universities. Using data for 102 U.S. universities during the period 

1991-1999, we find that universities which give higher royalty shares to 

academic scientists generate higher license income, controlling for other factors 

including university size, quality, research funding and technology licensing 

inputs. We provide evidence that this is due to the fact that public universities 

are less effective at commercialising inventions, which weakens the incentive 

effect of higher royalty shares. Other findings include: 1) there is a Laffer effect 

in private universities: raising the inventor's royalty share increases the license 

income retained by the university; 2) the incentive effect works primarily by 

increasing the quality of inventions, and 3) the incentive effect appears to 

operate both by raising faculty effort and by sorting academic scientists across 

universities. 
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1 Introduction

Universities are an important source of technical change. By the end of the 1990�s, they

accounted for about 50 percent of basic research and almost �ve percent of domestic patent

grants in the U.S. (National Science Board, 2000). Academic research has had real e¤ects on

the economy by increasing the productivity of private sector R&D and the growth in total factor

productivity (Ja¤e, 1989; Adams, 1990). These bene�ts work through knowledge spillovers from

academia to the rest of the economy, and through the licensing of university-owned inventions

to private �rms.1 This licensing activity facilitates the transfer of new scienti�c knowledge and

the commercial development of these inventions by the private sector. Technology licensing

activity has grown dramatically in the past two decades.2 The number of U.S. patents awards

to university inventors rose from 500 in 1982 to more than 3,100 in 1998. The number of

licenses executed on university inventions grew more than three-fold during the last decade,

from 1,278 to 4,362, and gross licensing revenues increased nearly seven-fold, from $186 million

to nearly $1.3 billion.

Given the importance of university research for long term growth and productivity, it is

critical to understand what drives academic research and technology licensing activity. Is it a

purely intellectual pursuit, as many commentators claim, or do economic incentives in�uence

how academic scientists structure their research activities? In one of the �rst papers to analyse

theoretically the incentive e¤ects of various award schemes to basic research at universities (e.g.,

NSF awards) and their economic e¢ ciency, Lazear (1997) points out that �even research with

direct marketability will not be undertaken at the appropriate rate unless the inventor is entitled

to the full rents from the resulting advance�.

1There is substantial evidence of R&D spillovers (e.g., Ja¤e, 1989; Ja¤e and Trajtenberg, 2002; Adams,
1990, 2002). University research spillovers tend to be geographically localized as might be expected if direct
knowledge transfers are important (Ja¤e, Trajtenberg and Henderson, 1993; Audretsch and Stephan, 1996).
There is also a growing empirical literature on university patenting and technology transfer (e.g., Henderson,
Ja¤e and Trajtenberg, 1998; Thursby and Kemp, 2002; Siegel, Waldman and Link, 2003) and university research
productivity (Adams and Griliches, 1998).

2Part of this rapid growth in university innovation and licensing activity is due to the passage of the Bayh-
Dole Act of 1980 (Patent and Trademarks Amendments Act, PL 965-17) which gave universities the right to
patent and a mandate to license discoveries made with federally sponsored research to the private sector. By the
year 2000, nearly all American research universities had established, or expanded, technology licensing o¢ ces
and introduced explicit intellectual property policies and royalty sharing arrangements for academic scientists.
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In this paper we take a �rst step in examining this issue by presenting econometric evi-

dence on the role of economic incentives in shaping university research and licensing outcomes.

Speci�cally, we examine how the cash �ow rights from university inventions (the share of license

royalties received by academic inventors) a¤ect the licensing value of inventions generated by

universities. In the United States, university intellectual property policies typically grant the

university exclusive control rights over inventions. However, in all U.S. research universities

the royalty income derived from licensing inventions is shared between the inventor and various

parts of the university according to speci�ed royalty sharing schedules. We show that there

is substantial variation in these royalty sharing arrangements across U.S. research universities,

and use this cross-sectional variation to estimate the e¤ect of royalty sharing arrangements on

license income.

We develop a simple model in which scientists allocate e¤ort to produce more research

projects, to improve the quality of each project, and to other responsibilities (e.g., teaching).

Scientists attach private value to royalty income, publications and teaching, and face shadow

prices of di¤erent types of e¤ort set by the university. The model predicts that a rise in the

inventor�s share of royalties increases total revenues from licensed inventions. We test this

prediction with university-level data from the Association of University Technology Managers,

combined with information on the distribution of royalty shares, which we collected from the

university websites.

This paper makes two main empirical contributions. First, we show that academic re-

search and inventive activity respond to monetary incentives. This �nding is important because

it means that the design of intellectual property rights, and other forms of incentives, in acad-

emic institutions can have real e¤ects on economic growth and productivity. Second, we show

that the response to incentives is much stronger (and more signi�cant) in private universities

than in public ones. Controlling for a variety of other determinants, including university size,

quality, R&D funding and local demand conditions, private universities with higher royalty

shares generate higher levels of license income. In private universities, the incentive e¤ect is

strong enough to produce a La¤er e¤ect, where raising the inventor�s royalty share would in-

crease the license revenue actually retained by the university. We also show that technology

licensing o¢ ces are more productive in private universities, suggesting that private institutions
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have more e¤ective, commercially-oriented technology transfer activity.

We argue that this di¤erence in TLO e¤ectiveness (in terms of generating license income)

can help explain the greater faculty responsiveness to royalty incentives in private universities.

Because control rights over inventions reside with the university, the TLO e¤ectively has exclu-

sive rights to commercialise inventions disclosed by the faculty (unless expressly waived). As

the �gatekeeper�, the TLO�s e¤ectiveness at �nding licensees, negotiating license agreements

and other aspects of commercialising inventions, directly a¤ects the monetary returns to the

faculty scientist. Raising the royalty share should have a smaller e¤ect on incentives if the fac-

ulty scientist anticipates that the TLO will be ine¤ective at commercialising her inventions. To

examine this explanation we need to identify how public and private TLO�s di¤er in ways that

in�uence their e¤ectiveness. For this purpose we developed a survey questionnaire for directors

of TLO�s in public and private universities. The survey indicates that TLO�s in private univer-

sities are signi�cantly more likely to use performance-based pay, to be much less constrained

in their freedom of operation by state laws and regulations, and more likely to be focused on

generating license income as compared to more �social� objectives such as promoting local

and regional development. These �ndings provide reasons for the di¤erence in e¤ectiveness in

public and private TLO�s, and thereby a possible explanation for the private-public di¤erential

response to royalty sharing incentives.

The theoretical model serves to organize the empirical work, but it is very stylized. For

example, we do not model the academic labor market and thus the equilibrium allocation of

scientists across universities. As a consequence, the key empirical �nding in this paper �that

royalty incentives matter �may be due both to the e¤ect of such incentives on research e¤ort of

individual scientists and to sorting behavior whereby universities o¤er higher royalty share to

attract more productive scientists. Going beyond the model, in the empirical work we provide

some evidence that both mechanisms may be at work, i.e., that the incentive e¤ects work

partly by inducing sorting of scientists across universities as well as by increasing scientists�

e¤ort levels.

We emphasise that this paper does not provide a normative analysis of technology licens-

ing activity in universities. The trend toward greater commercialisation of university inventions

may have both bene�ts and costs. What we do here is to show that the bene�ts to universities,
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in the form of license income, are strongly a¤ected by how incentives are set. Of course, there

may also be costs associated with greater emphasis on invention and licensing: for example,

less �open science�in universities, a shift away from more basic towards more applied research,

and so on. The public debate has focused heavily on such potential costs, but there is very

little systematic evidence of these aspects to date. We do not address these costs in this paper.

The paper is organized as follows. Section 2 provides a detailed description of the data.

Section 3 presents the analytical framework that underlies the empirical work. In Section 4 we

present nonparametric evidence on the relationship between license income and inventor royalty

shares. Section 5 presents the basic econometric results and their implications, including a test

of whether incentives work both through e¤ort and sorting of faculty. We also examine whether

the incentive e¤ect works mainly on the quantity or quality of inventions. Section 6 provides

robustness checks. Brief concluding remarks follow.

2 Data Description

The data assembled for this project came from three main sources: 1) the Annual Licensing

Surveys for the years 1991-1999 published by the Association of University Technology Man-

agers (AUTM), 2) the 1993 National Survey of Graduate Faculty conducted by the National

Research Council (NRC), and 3) royalty sharing arrangements downloaded from technology

licensing o¢ ces�websites. De�nitions of the main variables and a description of the sample

selection process are provided in a data Appendix.

The AUTM surveys provide information on licensing income, number of licenses, number

of inventions reported to the TLO (invention disclosures), characteristics of the technology

licensing o¢ ce (TLO), and R&D funding from external sources in universities, medical research

institutes and patent management �rms.

In the empirical analysis we need to control for di¤erences across universities in faculty

size and scholarly quality. Data on the size and quality of university doctoral programs were

obtained from the 1993 NRC survey. For each university we used data on doctoral programs

in twenty-three di¤erent �elds of science.3 We measure university size as the total number of

3See the Appendix for a list of these �elds. Further details on the classi�cation can be found in Appendices
K, L and N in Goldberger et al. (1995).
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faculty members in the doctoral programs in these twenty-three �elds. We use three measures of

university quality: the number of citations per faculty, the number of publications per faculty,

and a scholarly quality rating score between zero (�not su¢ cient for doctoral education�) and

�ve (�distinguished�). The NRC survey reports these variables at the program level but we

aggregated them to the university level using faculty size weights. The size and quality variables

do not vary over time.

Table 1 reports descriptive statistics for the 102 universities in our sample. The univer-

sities in our sample account for 56.1 percent of the total license income reported by AUTM in

1995, and 68.1 percent of the total in 1999. The sample universities generate 3.4 million dollars

of licensing income per year, on average. Not surprisingly, this income is unevenly distributed

across universities: the median licensing income is just $620,000, but, the top universities earn

over $40 million per year while others have zero licensing income. Normalizing by the number

of active licenses (row 2) does not eliminate this variation. Half of the universities have licenses

generating less than $17,000 on average, while the top 5 percent of the universities have licenses

generating over $111,000. The same uneven pattern is observed in the number of invention dis-

closures, although some of the variance in disclosures is related to faculty size (rows 3 and

4). In sum, the distributions of licensing value and the number of invention disclosures are

very right-skewed: only a few universities produce large numbers of inventions, and only a few

inventions are very valuable.

The three measures for university quality are reported in rows 6-8. Citations per faculty

captures both the quantity and quality of publications and exhibits the highest dispersion across

universities. Technology licensing o¢ ces at most universities are quite small, with a mean of

about three full-time professionals. The average age of TLO�s in 1999 was 16, re�ecting the

stimulus to commercialize university inventions given by the 1980 Bayh-Dole Act.

Our third source of data was information on the distribution of licensing income between

faculty scientists and the university, i.e., on the arrangements for sharing the royalties generated

by the licensed inventions. This information was downloaded from the websites of individual

technology licensing o¢ ces during the summer of 2001 and it constitutes the novel aspect of

our data.

The intellectual property policies of the universities usually state that a percentage of
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the net income received by the university from licensing an invention is retained by the inventor

and the rest is allocated to the inventor�s lab, department, college and to the university. The

criterion we used for identifying the inventor share is that the inventor must gain either cash

�ow rights or direct control rights over the income. Thus, when the university IP policy states

that the share accruing to the lab was under the control of the inventor, we added it to the

inventor�s share, but otherwise we did not. We call this the inventor�s royalty share.

The observed royalty shares were those in e¤ect (and posted) in 2001. Because we will

examine the e¤ect of these royalty shares on inventive outcomes, we were concerned by our

inability to identify any changes that might have occurred in these shares during the 1991-1999

period (when outcomes measures are available). We sent a question by e-mail about this to the

TLO�s in the sample and found that 70 percent of the universities did not change their royalty

distribution during 1991-1999. Thus, for most universities the royalty sharing rates remained

unchanged during the sample period. In fact, in many cases the arrangements were set in the

early 1980s and never changed.4

In 58 universities the inventor royalty share is a �xed percentage of the license income

generated by an invention (we call these linear royalty schedules). Interestingly, in the other 44

universities these royalty shares vary with the level of license income generated by an invention

(we call these non-linear royalty schedules). Because the income intervals di¤er across univer-

sities, we divided the license income into seven intervals based on the most frequently observed

structure (in US$): 0-10,000, 10,000-50,000, 50,000-100,000, 100,000-300,000, 300,000-0.5 mil-

lion, 0.5-1.0 million, and over 1 million.5

Table 2 presents the main features of the royalty share data. The mean inventor�s share

is 41 percent among the 58 universities using linear royalty schedules, but there is substantial

cross-sectional variation. About 25 percent of these universities have royalty shares lower than

a third, while the top 25 percent have royalty shares larger than 50 percent. The royalty shares

4 In total, 53 universities responded to this query. Of the 16 that reported a change in royalty shares during
1991-99, only 11 reported the pre- and post-change royalty sharing agreements. In these cases, we updated the
data according to the information received. In the remaining 5 universities, we used the shares reported in 2001.

5 In the many cases where our selected interval did not correspond to the interval chosen by the university, we
recomputed royalty shares with the correct weights. For example, if a university reports a 50 percent share for
income less than 5,000 and 40 percent share for income above 5,000, this would appear as an 45 percent share
in the �rst interval (0-10,000) and an 40 percent share in all the remaining intervals.
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in the 44 universities with non-linear schedules display even larger cross-sectional variability

within each license income interval. For these universities we compute an expected royalty

share by weighting the average share in each income interval by the probability of observing

license income in that interval. These probabilities were estimated non-parametrically from

the distribution of license incomes over all years in the AUTM sample. Let vit denote license

income per invention disclosure in university i in year t: There are 723 di¤erent values for v in

the sample. We �rst estimated the density f(vit) by kernel methods at these values. We then

computed an average royalty share for each value of v;
_
s(v); using the royalty schedule for each

university, taking into account the varying marginal royalty rates.6 The expected royalty share

is then

s � �v
_
s(v) bf(v)

Of course, when the royalty schedule is linear, the expected royalty rate is simply the reported

(constant) share.7

The estimated density function of v shows the extreme dispersion and skewness of license

income per invention disclosure (see Figure 1).8 Nearly all of the weight is on the �rst two

income intervals�50.2 percent in the 0-$10,000 interval and 46.1 in the $10,000-$50,000 bracket.

This feature shows that taking a simple average of all sharing rates in a nonlinear schedule would

be inappropriate. In fact, for practical purposes a good approximation is simply to average the

�rst two sharing rates.

Using the estimated f(v)0s, the expected royalty share averages to 51 percent across

universities, higher than the average royalty share in the universities having linear schedules

(Table 2). The expected inventor�s share also exhibits a large variability ranging from 20 to

6For example, with three marginal rates the average share is

s(v) =
s1v

v
I(0 � v � v1) +

s1v1 + s2(v � v1)

v
I(v1 < v � v2) +

s1v1 + s2v2 + s3(v � v2)I(v > v2)

v

where I(�) is an indicator function.

7Two other points should be noted. First, we also used yearly license income divided by the cumulative
number of active licenses as a measure of v and obtained essentially the same estimates of s. The two estimates
di¤er by at most 1.7 percentage points, and the average di¤erence is 0.7 percentage points. We normalized by
disclosures because data on cumulative licenses is available only since 1995 resulting in a smaller number of
observations. Second, one might want to estimate separate density functions for sub-categories of the pooled
data�e.g., for di¤erent technology �elds�but we do not have enough data to do this successfully.

8Such skewness is typical of distributions of the returns to innovation (Schankerman, 1998).
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97 percent. This remarkable variability across universities is clearly seen in Figure 2, where

the histogram and a nonparametric estimate of the density of the expected royalty share are

displayed.

Another striking feature of Table 2 is that inventor royalty shares are either constant or

decline in the level of license income per invention�royalty retention is regressive (equivalently,

the university �tax�on inventors is progressive). On average, they start at 53 percent in the

lowest interval and decline to 30 percent for inventions generating over $1 million. This fea-

ture holds in every quartile of the cross-sectional distribution and, in fact, it holds for every

university in our sample with non-linear royalty schedules.9

In a �rst attempt to understand the determinants of the variation in royalty shares across

universities, we split the sample into four quartiles de�ned by university characteristics (e.g.,

faculty size) and computed the mean royalty share in each quartile. Table 3 summarises the

results. Royalty shares are not related to faculty size, the number of citations per faculty, or the

size of the TLO o¢ ce (measured by the number of TLO professionals per faculty). In fact, the

hypothesis that the mean royalty rate is the same across the four quartiles of the distribution of

each characteristic cannot be rejected (last row). Apparently there is no signi�cant correlation

between royalty shares and a variety of university characteristics, taken individually.

These simple bivariate comparisons also hold in a regression context. Table 4 presents the

results from regressing the royalty shares on the above characteristics and additional controls,

using the time-averages of the variables (the between-university regression). In the �rst column

the royalty share is regressed on faculty size, and the three proxies for university quality. None

of these regressors is signi�cant, nor is the regression as a whole (p-value = 0.25). Adding

the scienti�c composition of the faculty�the shares of total faculty in each of six main science

9Regressive royalty schedules give inventors an incentive to discover many small-valued inventions rather than
a single valuable one, which seems odd if universities prefer quality to quantity of inventions. However, it may
be possible to rationalise such schedules by appealing to optimal taxation theory. That literature can generate
progressive tax schedules when there is uncertainty to e¤ort. The intuition is that, when high income ex post
is largely due to a favorable resolution of uncertainty, the incentive cost of higher marginal taxation is lower
(Tuomala, 1990). This argument may also apply to research e¤ort, if the quality of the project is unknown ex
ante to the scientist. However, if the inventor can distinguish between low and high quality projects in making
e¤ort decisions, then optimal incentives should involve a progressive inventor royalty to compensate for the
higher marginal cost of producing high-valued inventions. Of course, �fairness�considerations may also play a
role in how universities share royalties.
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�elds10�does not have a signi�cant e¤ect on inventor�s shares (column 2). This is interesting,

since academic scientists usually sit on the governance committees that set these rates.

In column 3 we add two features of the TLO: size, measured by the number of full time

professionals, and experience, measured by its (average) age. There is some evidence that

royalty shares are negatively related to the age of the TLO. Whatever the explanation for this,

we should not put too much emphasis on this �nding because the quantitative e¤ect is very

small. A one-year increase in TLO age is associated with a decline in royalty share of a third

of a percentage point.

Adding controls for the level of R&D funding for and the average salary at the univer-

sity level do not alter these results (column 4). Interestingly, the average salary is negatively

correlated with the expected royalty share: the point estimate implies that an additional thou-

sand dollars reduces the share by a quarter of a percentage point. This suggests a trade-o¤

between high-powered incentives and salaries. The average salary coe¢ cient, however, is not

signi�cantly di¤erent from zero.11

The private university dummy is also not signi�cant. The average inventor royalty shares

for public and private universities are almost the same: 46 and 44 percent, respectively, and

not statistically di¤erent (p-value = 0.48). Moreover, there are no signi�cant di¤erences in the

empirical distribution of royalty share in private and public universities.

To summarize, the two salient features of observed royalty shares are their variability

across universities and their regressiveness in the level of license income. Moreover, we have

shown that inventors�expected royalty shares are only weakly related to observed university

characteristics. This raises the question of whether existing royalty distribution schemes have

been set in any systematic or strategic way. Putting this aside, one may be tempted to conclude

that these shares do not matter for academic innovation and technology licensing performance.

Is royalty sharing a purely distributive matter, or does it a¤ect the �size of the pie�, i.e.,

innovative performance? In this paper we take the royalty shares as given and exploit their

10See the Appendix for de�nitions.

11This estimate is likely to be biased towards zero due to measurement error in the average salary. We use a
university-based average of salaries, but we would really like to have the average salary of faculty in hard science
departments.
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cross-sectional variation to identify whether they have an e¤ect on inventive activity.

3 Analytical Framework

There are two basic channels through which royalty incentives to faculty can a¤ect inventive

outcomes in universities. First, a higher royalty share can induce faculty to devote greater

e¤ort to more commercially-oriented research than to other types of research, teaching or

administrative activities. We call this the e¤ort channel. Second, a higher royalty share can

attract more productive and commercially-oriented researchers in a world where faculty di¤ers

in their research productivities. This results in a reallocation or sorting of more productive

faculty into universities with stronger royalty incentives. We call this the sorting channel. Of

course, both mechanisms may be operating at the same time.

Here we develop the e¤ort model in some detail in order to organize the empirical work.

With the available university-level data, both the e¤ort and sorting mechanisms generate the

same prediction and thus may appear to be observationally equivalent: higher royalty shares

lead to higher inventive output (e.g., licensing income) in both models. To di¤erentiate properly

between the two models, we would need data on the �ows of faculty and their quality across

universities, which to the best of our knowledge are not available in a systematic form. Nev-

ertheless, in Section 5.5 we develop one simple implication of the sorting model which can be

tested with our data. A more complete assessment of the e¤ort and sorting e¤ects is important

because their policy implications are very di¤erent. The e¤ort model implies that strengthen-

ing royalty incentives would increase aggregate inventive output, whereas a pure sorting model

would imply that this would only redistribute inventive output across universities.12

We assume that academic scientists use a �xed amount of e¤ort (work time) T to perform

three tasks: starting new research projects, improving their quality, and teaching/administrative

activities. The number of inventions n generated by a researcher depends on the scientist�s ef-

fort, z; devoted to starting new projects, given by n = n(z): This invention function satis�es

the usual properties n0(z) � 0; n00(z) � 0 and n(0) > 0: Each invention has the same initial

quality v0. By investing research e¤ort q into a (single) project, the researcher can transform

12Unless there are large externalities (spillovers) from concentrating more productive faculty in one location.
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it into an invention potentially worth

v(q) = v0 (q)"

where  (q) > 1 is increasing and concave and " is a multiplicative shock independent of q; with

mean value normalized to one and distribution function G. The shock " is observed after the

two types of e¤ort are invested. As there are no ex-ante di¤erences among the n inventions,

the inventor invests the same level of e¤ort q in each of them.13

We assume that the e¤ort constraint is binding so that the remaining e¤ort, T�z�n(z)q;

is spent in teaching and administrative activities. The research activities generate n inventions

with average commercial potential v; as well as academic publications. Academic publications

depend on the number of projects n and their quality v; so expected publications depend

ultimately on z and q, p(z; q): However, the partial e¤ects of quantity and quality e¤ort on

publications do not need to be positive if there is a con�ict between commercially-oriented and

academic research.

We assume that all inventions are disclosed to the TLO and that the TLO then chooses

whether or not to license the invention depending on the observed value of the idea. The TLO

licenses an invention if expected license income covers the �xed cost of licensing, which includes

�nding suitable licensees, negotiating terms, and enforcing contracts. We model the selection

rule as follows: license the invention if v > v: This implies that, given e¤ort q, an invention is

licensed if " > v
v0 (q)

; so a proportion 1�G
�

v
v0 (q)

�
of all inventions is licensed.14

The TLO is in charge of compiling a list of all inventions made by faculty and licensing

them to private �rms. If the TLO licenses the invention, it earns revenue �v, where 0 < � �

1 re�ects the e¤ectiveness of the TLO�s licensing activities. The amount v is the maximal

potential income derived from licensing the invention, which should re�ect the most favorable

13An equivalent formulation would be to allow the initial value of the idea to be random and unknown to
the researcher when the decision on e¤ort q is made. We need to have some form of uncertainty in the model
because otherwise the scientist would either set q = 0 or set q at a level to ensure that any developed idea would
pass the TLO selection rule (see below in the text). But this is not consistent with the data: the ratio of licenses
executed to invention disclosures in a given year is about 30 percent, on average.

14This way of speci�ying the TLO licensing decision is consistent with new survey data we gathered from
TLOs, described brie�y in Section 5.3. This was the licensing criterion most frequently cited by respondents.
On the theoretical level, Macho-Stadler, Perez-Castillo and Veugelers (2004) develop a model in which the TLO
has an incentive to shelve some projects, i.e., not commercialize them, because of reputation e¤ects.
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license fee and royalties schedule among all the potential licensees. The actual license income

depends on how good the TLO is at identifying the best match and negotiating the best

agreement.15 If the invention is not licensed, it earns zero revenue.

The expected license revenues generated by inputs (z; q) are

r(z; q) = �n(z)v0 (q)

Z 1

v
v0 (q)

"dG(") (1)

When n0(z) > 0 we have that @r
@z > 0; and when  

0(q) > 0; we have @r
@q > 0: Notice that

quality e¤ort has two e¤ects: it raises the value of the idea and it increases the probability that

it will be licensed by the TLO.

The academic scientist derives utility from research and from time spent in teaching. The

utility from research is composed of the expected monetary bene�t accruing to the scientist�s

inventions (royalty income, sr) and from publications,

U(z; q) = V (sr(z; q); p(z; q); T � z � n(z)q) (2)

where p denotes expected publications.16

We assume that U(z; q) is concave. Of course, we require that U be increasing in some

region of (z; q) but it is quite possible that, because of diminishing returns, at some point

investing more e¤ort in research decreases U because of the disutilities attached to less teaching

and possibly fewer academic publications.

We assume that the costs associated with research e¤ort, C(z; q); are convex. The

marginal costs Cz and Cq represent the opportunity cost of a unit of e¤ort invested in starting

more projects to the inventor (resp. investment in quality per project). These parameters

re�ect the university�s valuation of the two types of research e¤ort and teaching time. The

university control these shadow prices by setting promotion criteria and other rewards.17 The

faculty scientist�s objective is to choose (z; q) to maximize

15Jensen and Thursby (2001) analyse optimal contract design for university technology transfer.

16 In what follows we assume that s does not depend on v since this is not central to the argument.

17We view this speci�cation as a reduced form of some underlying model of the academic labour market.
The shadow prices imposed by the university presumably re�ect the marginal products of research e¤orts (z; q)
in terms of the university�s objectives. These may di¤er from the utility value attached by the scientist if
their objectives are not well aligned. Con�ict of interest provisions, which are commonly found in university
intellectual property policies, suggest that problems of alignment do exist.
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�(z; q) � U(z; q)� C(z; q)

The �rst order conditions at an interior solution are

sVr
@r

@z
+ Vp

@p

@z
� Vt(1 + n0(z)q) = Cz

sVr
@r

@q
+ Vp

@p

@q
� Vtn(z) = Cq

where Vj (j = r; p; t) is the marginal utility from license income, publications and teaching,

respectively.

At the optimum, the scientist balances the marginal utility associated with more research

�which itself depends on the various positive and negative contributions of the di¤erent ac-

tivities �with its marginal cost. To ensure that optimal research e¤ort levels are positive, we

require that �(z; q) is increasing at (0; 0):

The important point is that, provided the scientist cares about the monetary returns

from inventions, Vr > 0; the royalty share a¤ects e¤ort because it determines the scientist�s

expected income. We have:

Proposition 1 Provided that Vr > 0 and �zq is not too negative, optimal research e¤ort levels

are rising in the inventor�s royalty share s:18

The scientist�s expected income is also determined by the e¤ectiveness of the TLO in

exploiting the potential value of the invention v: For this reason, TLO e¤ectiveness should

also in�uence research e¤ort. In our modelling approach, the index of TLO�s e¢ ciency at

performing this task, �; enters the problem in the same way s does. Incentives can be increased

either by distributing a larger share of the invention value to faculty or by realizing a higher

fraction of the full potential of these inventions. Thus, � a¤ects research e¤orts (z; q) in the

same way as s:

In short, the model implies that, under certain conditions, research e¤ort z and q depend

positively on (s; �). This is the implication we would like to to test empirically. Unfortunately,

18Standard comparative statics give dz
ds
=

�qs�zq��zs�qq
A

and dq
ds
=

�zs�zq��qs�zz
A

; where �ij denotes a cross
partial and A = �zz�qq � �2zq > 0 by the second order conditions. But �zs = Vr

@r
@z

> 0 and �qs = Vr
@r
@q

> 0.

A rise in s raises the marginal utility of z and q due to the multiplicative speci�cation �sr(z; q)�. Thus dz
ds
> 0

and dq
ds
> 0 provided �zq is not �too negative�.
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data on research e¤orts are not available. However, we observe license income which, according

to the model, re�ects these e¤orts. In fact, since revenue per faculty, r(z; q); increases with z

and q the model implies that r(z; q) also rises with s:

Expected licensing revenues at the university equals (1) multiplied by the number of

university faculty, F :

R = rF = �v0 (q(s; �))n(z(s; �))F

Z 1

v
v0 (q(z;�))

"dG(") (3)

Because s increases both z and q; and thus r; total university expected license income also

increases with s: This is the implication we set out to test with the data.

To obtain our estimating equation, we transform (3) into logs and approximate the

nonlinear terms involving s and � by �s+ e� log �: This yields

logR = log � + log v0 + logF + log

 
 (q(s; �))n(z(s; �))

Z 1

v
v0 (q(z;�))

"dG(")

!
(4)

� �s+ e� log � + log v0 + logF + terms involving G; v and v0
We do not observe � directly. We use a set of observed variables x to proxy for log �:e� log � = �� + �; E(�jx) = 0; and collapse all the other factors a¤ecting license revenues into

a vector !: This results in the estimating equation

logR = �s+ x� + ! + u (5)

where u captures the deviation of logR from its expected value, as well as functional form

approximation and proxying errors.19

The vector ! includes variables that account for di¤erences in license revenues across

universities, other than through di¤erences in s and x; including: (log) faculty size, for which

we expect an elasticity of about unity, and the number of citations per faculty to account

for initial quality (v0); which should also have a positive e¤ect because inventions are more

valuable and are more likely to be licensed the higher is v0: Di¤erences in the distribution of

19We now abuse notation by denoting observed license revenues by R:
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quality shocks, G; across universities are captured by di¤erences in their research orientation,

measured by the shares of faculty employed in each of six science �elds (see Appendix), and by

the amount of R&D funding available to the university. These variables are also part of !:

We emphasize that the estimating equation (5) is not an invention production function.

The latter cannot be estimated because we do not observe the inputs z and q: Rather, equation

(5) is interpreted as a reduced form equation specifying the (exogenous) drivers of licensing

income. These drivers, s and �; operate through the unobserved research e¤ort levels and the

TLO licensing behavior. This last point is important. The observed data are not a random

sample of all inventions generated by the university faculty. The scientist selects which inven-

tions are worth reporting and the TLO selects which inventions are worth marketing. We have

taken only the TLO selection into account in the modelling framework, i.e., we conditioned

on disclosed inventions. As equation (3) makes clear, the estimated incentives e¤ects include

these TLO selection e¤ects.20

We assume that the royalty share is exogenous in equation (5) and estimate its para-

meters by ordinary least squares. We discuss the validity of this assumption in Section 5.2.

The data used to estimate equation (5) consist of an unbalanced panel of 102 universities over

9 years, 1991-1999 (see the Appendix for details). However, panel data estimation methods

that allow for a correlation between the royalty share and unobserved, time-invariant deter-

minants of license revenues �such as �xed e¤ects or �rst di¤erences �are of limited use here

because the royalty share does not vary over time in 90 percent of the observations. We rely on

cross-sectional variation to identify the incentive e¤ect on license income. We use a consistent

estimator of the covariance matrix that allows for arbitrary heteroskedasticity and serial corre-

lation within universities, but we assume that disturbances are uncorrelated across universities;

i.e., standard errors are clustered at the university level.21

20The estimated incentive e¤ect will also include any e¤ect of royalty shares on the willingness of faculty to
report inventions to the TLO. Such nonreporting bias can easily be incorporated into the model, but since we
cannot identify the separate selection e¤ects we refrain from doing so.

21There is one estimation issue that arises from the computation of the expected royalty share for universities
with nonlinear royalty schedules. The density estimates used to compute the expected royalty share are based
on the observed unconditional distribution of license income per disclosure. The model, however, says that the
distribution of license income per disclosure depends on the control variables s; x and !: In order to account for
this, we used an iterative procedure whereby the residuals from an initial license income per disclosure (i.e., v)
regression are used to recompute the kernel density estimates and the expected royalty shares. We found that
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4 Nonparametric Evidence

Because we showed that royalty shares, s, are mostly unrelated to other university observables,

we are arguably justi�ed in examining the expectation of license revenue conditional on s and

interpreting this relationship as causal. The advantage of abstracting from other determinants

of license income is that we can easily estimate this conditional expectation non-parametrically,

i.e., we can let the data determine the shape of the conditional expectation function, rather

than imposing a linear or log-linear form (as in (5)). We estimate the expectation of license

income per faculty conditional on s; using a Fan (1992) locally weighted regression smoother.

Figure 3 plots three estimates of E
�
R
F js
�
: for the 102 universities taken together and for the

68 and 34 public and private universities, separately.

E
�
R
F js
�
is clearly increasing in s and somewhat non-linear: although income is not very

responsive to economic incentives at the low range of the royalty shares this is strikingly reversed

at shares above 35-40 percent. From Table 2 we know that at least half the universities have

expected royalty shares above 40 percent. Also notice the di¤erential response to incentives

between private and public universities. These results suggest that university ownership type

is an important determinant of how responsive license income is to royalty incentives. To verify

these preliminary results and to get some quantitative assessment of the estimated relationships

and their precision, we proceed to a regression analysis of the data.

5 Regression Analysis

Table 5 presents estimates for equation (5). There are 102 universities in the sample but,

because of zero license revenues and other missing data, the regressions in columns (1) and (2)

are based on 98 and 97 universities, respectively.22 We begin by controlling for faculty size,

after one iteration the average di¤erence in the computed royalty shares for the nonlinear schedules was only 1.3
percentage points, or about 2.8 percent of the mean royalty share. Moreover, using the royalty shares computed
after one iteration gave estimated coe¢ cients very close to those obtained using the expected royalty shares
based on the unconditional distribution of v: The parameter estimates we report are based on the unconditional
distribution.

22There are 749 observations with non-missing license income data. 18 observations have zero license income,
reducing the sample to 731. Using zeros for the observations with zero license revenues does not change the results
(if anything, it makes the royalty e¤ect stronger and more signi�cant). Another 14 observations have missing
data on other regressors (TLO size, TLO age, R&D funding) further reducing the sample to 717 observations.
See the Appendix for details.
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citations per faculty and year dummies. As implied by equation (3), and expected from the

non-parametric analysis, the royalty share coe¢ cient is indeed positive but it is also moderately

signi�cant (p-value = 0.091). The income elasticity of faculty size is above one, but the null

hypothesis that it is unity cannot be rejected at the 0.10 signi�cance level. Also, as implied by

equation (3), higher quality universities have signi�cantly higher license income.

The sign and magnitude of the estimates is preserved when we add the other controls

in equation (5). In column (2), which we treat as the baseline speci�cation, we add the

determinants of � � TLO size and age � and the other variables in ! : R&D funding and

the shares of total faculty in each of the main science �elds.23 The important point to notice is

that the estimated incentive e¤ect of royalty shares remains essentially the same as in column

(1), but it is more precisely estimated (p-value=0.049). The regression results point to strong

and signi�cant e¤ects of incentives on license revenues. Increasing the inventor�s royalty share

by 10 percentage points results in a 19 percent increases in revenues. This sizeable e¤ect is

one of the main empirical �ndings of this paper. It con�rms the basic economic intuition

that monetary incentives do matter for university inventive activity. In view of all the other

determinants of license income for which we control, it is striking that we can still pin down

an empirical relationship between license income and royalty shares.

The e¤ect of faculty size in column (2) is sharply reduced when adding size-related

variables such as R&D and TLO size (the size coe¢ cient estimate is 0:63 = 1:35� 0:24� 0:48).

Nevertheless, the null that the size elasticity is unity cannot be rejected at a 0.10 signi�cance

level.

Because TLO size and age (i.e., experience) presumably make the TLO more e¤ective

in realizing the full potential value of the inventions, we expect positive coe¢ cients for these

two variables. We �nd that license revenue is positively related both to the size and age of

the TLO. Increasing the size of the TLO by 10 percent (the average TLO size is 3.1 full-time

professionals) would raise license income by 2.4 percent but this e¤ect is not quite signi�cant.

We also �nd returns to experience in TLO activity. An additional year of experience translates

into a 2.4 percent increase in license income.

23For ease of interpretation, TLO size and R&D funding are entered in the regression on a per faculty basis.
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The R&D variable includes funding from industry, government and non-pro�t sources.

R&D funding is associated with higher license revenue with an elasticity of 0.48. Diminishing

returns to R&D set in because we are increasing R&D funding, holding faculty �xed. If we

increase both R&D and faculty size proportionally, we get close to constant returns to scale �a

10 percent increase in both variables yields a 11.1 (s.e. 0.19) percent increase in license revenue

(1:11 = 1:35 � 0:24). Finally, as controls for di¤erences in research orientation, we use the

fraction of the faculty in each of six technology �elds (physical sciences is the reference group).

We do �nd signi�cant technology �eld di¤erences (p-value = 0.41), once we have controlled for

R&D and other characteristics.

5.1 Public vs Private Universities

A number of previous studies have examined the relative performance of public and private

universities, which is of considerable policy interest. This earlier research has shown that private

universities have higher levels of �productivity�, measured in terms of scienti�c publications

(Adams and Griliches, 1998) and various outcomes of technology transfer activity (Thursby

and Kemp, 2002; Siegel, Waldman and Link, 2003). We ask a di¤erent question: does license

income respond to monetary incentives di¤erently in public and private universities? Figure 3

suggests that it does: public universities have a milder response to royalty shares than private

institutions. In columns (3)-(6) of Table 5 we examine this issue in detail by splitting the

sample into public and private universities.24

We focus on speci�cations (4) and (6) based on 66 public and 31 public and private

universities, respectively. We observe that royalty shares have a positive incentive e¤ect on

license revenue both for private and public universities. The estimated � is strongly signi�cant

in private universities, but not signi�cantly di¤erent from zero for public universities. In this

paper we use cluster standard errors which allows for arbitrary heteroskedasticity and serial

correlation structure. If we are slightly less demanding and use an AR(1) speci�cation, we

�nd that the coe¢ cient on royalty share for public universities is also typically signi�cant at

the 0.05 level, or very close to it. However, the striking �nding is that the incentive e¤ect

24Pooling is rejected: the test of the null hypothesis that the 19 coe¢ cients, including year dummies, in
speci�cation (2) are the same for public and private universities has p-value = 0.01.
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is more than three times larger in private institutions than in public universities. The point

estimate implies that a ten percentage point increase in royalty share would increase license

income by 58 percent in private institutions. These results con�rm the non-parametric �ndings

and show, for the �rst time, that the degree of faculty responsiveness to royalty incentives

depends on university ownership. Since we have controlled for a number of relevant university

characteristics, the importance of university ownership type is not driven by these di¤erences.

The other striking �nding concerns the e¤ectiveness of the TLO. The estimated elasticity

of TLO size on license income is much larger in private universities than in public ones. A 10

percent increase in the number of TLO professionals (equivalent to one-third of a full time

employee, at the sample mean of the data) raises license income in private universities by

almost 8 percent increases but has no signi�cant e¤ect in public universities. We also allowed

the returns to experience to vary by adding a quadratic term in age. The estimated coe¢ cient

on the quadratic is insigni�cant for public universities but signi�cantly negative for private

institutions (results not shown). For private universities, an additional year of experience

increases revenues by 9.4 percent when TLO age is 8 and 6.4 percent at age 16. For public

universities, the estimate is only 2.6 percent. This again suggests important di¤erences in the

way TLOs operate: in private institutions experience gains are much larger and are realized

earlier than in public universities. Because the addition of age squared to the regression leaves

the incentive e¤ects and other parameters essentially unchanged we use the more parsimonious

linear speci�cation.25 Taken together, these �ndings on TLO size and age suggest that private

institutions have more e¤ective, commercially-oriented technology transfer activity. We discuss

why this might be so in Section 5.3.26

25The estimates of � are 1.62 (s.e. = 1.33) and 5.18 (s.e. = 2.15) in public and private universities, respectively.

26 It is worth emphasising at this point that public and private universities in the sample do not di¤er signi�-
cantly in any of the observable characteristics that we measure, except quality (private universities are higher).
There are no signi�cant di¤erences in faculty size (380 and 320, p-value =0.35), TLO size (3.1 and 3.2, p-
value=0.89) and age (11.9 and 12.5, p-value=0.78), R&D funding (149 million and 164 million, p-value=0.70),
and the technological mix of the faculty (details omitted). The di¤erence in quality between public and private
universities is captured by signi�cant di¤erences in our three measures of quality: the number of citations per
faculty, the number of publications per faculty and the NRC quality score. For public universities, the mean
of these indicators are 11.7, 6.8 and 2.8, respectively. For private universities, the means are 31.9, 8.6 and 3.4,
respectively. These di¤erences are statistically signi�cant (p-values < 0.01).
The same conclusions are reached if we compare di¤erent quartiles, or the whole distribution as con�rmed by

univariate Kolmogorov-Smirnov tests.

19



5.2 Potential Endogeneity of Royalty Shares

There are two potential sources of endogeneity bias in the OLS estimator of �. The �rst is

simultaneity bias. One might think that universities that perform poorly in terms of generating

license income may set higher inventor royalty shares to improve performance. But this would

make our estimates of the incentive e¤ect downward biased. An alternative possibility is that

when license income is high the university decides to make good to its faculty by increasing

their share of the royalties. This would generate an upward bias in the estimated incentive

e¤ect. There is no compelling logic to this type of compensation, in particular when license

income is driven by just a few inventions whereas a change in the distribution scheme applies

to all inventors. In any case, we expect the simultaneity bias to be relatively small mainly

for two reasons: 1) most royalty distribution schemes for universities in our sample were set

before the start of the sample period (1991) and, in many cases, they were never changed since

the foundation of the TLO and, 2) our �nding that royalty shares are weakly related to key

observable university characteristics (Table 4) limits the scope to which they can be related to

other unobservables features.

The second source of bias is nonreporting bias. A researcher has a choice between

reporting (disclosing) the invention and sharing the license revenues with the university, or not

reporting it and commercializing it outside (e.g., by forming a private start-up company). If

this nonreporting error is uncorrelated with the royalty share, there is no bias in the estimated

incentive e¤ect. But suppose the rate of misreporting decreases as the royalty share increases,

a reasonable assumption. Then when s increases, part of the observed rise in license revenue

would re�ect inventors now reporting previously unreported inventions, and the estimator of

� would be upward biased, i.e., it would overstate the incentive e¤ect of royalty sharing on

license income.27

Interestingly, this type of bias could potentially explain part of the public-private di¤er-

ence in � if misreporting is a more serious problem at private universities. However, we are

not aware of any systematic evidence on this issue nor have any good reasons to believe this is

actually the case. If anything, our �nding that TLOs at public universities are less successful

27The bias is magni�ed if the non-reported inventions are more likely to be high valued.
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in generating and capturing innovation rents than their counterparts at private universities

suggests that misreporting may be more pervasive at public universities.

With the available data we cannot identify the magnitude of this misreporting e¤ect

but, because university faculty have a contractual obligation to report invention disclosures to

the TLO, it is unlikely that this bias is large enough to undo the estimated positive e¤ect of

direct monetary incentives on license income. Of course, from the �nancial perspective of the

university, both the incentive e¤ect and the reporting e¤ect of royalty shares are relevant, since

they jointly determine how much license income the university actually earns.

In sum, the two likely sources of bias in our estimator of � work in opposite directions

and, although they do not have to cancel each other, we have good reasons to believe that they

cannot undo the strong positive estimates of the incentive e¤ects.28

5.3 Public vs Private Response: the Gatekeeper E¤ect

What accounts for the di¤erential response to royalty incentives in private and public universi-

ties? One possible, and simple, explanation for the private-public di¤erential response is that

royalty incentives depend to a large extent on the TLO�s capability in commercialising faculty

inventions. Recall that control rights over inventions always reside with the university so that

the TLO e¤ectively has exclusive rights (unless expressly waived) to commercialize the inven-

tions. Because the TLO is the �gatekeeper�(monopsonist over the inventions, as it were), its

e¤ectiveness at �nding licensees, negotiating agreements and other aspects of commercialising

inventions, directly a¤ects the monetary returns to the faculty scientist. Raising the royalty

share should have a smaller e¤ect on incentives if faculty scientists anticipate that the TLO

will be ine¤ective at commercialising their inventions.

In this section we explore the issue further. In the model, the scientist�s e¤ort can

be increased by raising the royalty rate, s; or by increasing the e¤ectiveness of the TLO at

commercialising the inventions they produce, �: In fact, under fairly general conditions, the

28We performed a Hausman test for endogeneity of s by comparing the GLS estimator to the �xed-e¤ect (FE)
estimator of �. The GLS estimator is very similar to the one reported in Table 5. The FE estimator is feasible
because in 11 universities we recorded a change in s over time but, of course, this is precisely what limits our
use of the FE estimator. In any case, the GLS and FE are similar to each other, particularly in the private
universities, and their di¤erence is not statistically di¤erent from zero. The t-value for the di¤erence between
FE and GLS is -0.87 in public universities and -0.29 in private universities.
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monetary incentives depend on the interaction between these two parameters.29 In the extreme

case where � = 0; the share apportioned to faculty will not matter at all. This gatekeeper e¤ect

does not appear in the empirical speci�cation �equation (5) �because we log-linearized the

revenue function.

This explanation for the private-public di¤erence in responsiveness to royalty incentives

is consistent with the �nding in Table 5 that the elasticity of license revenues with respect to

TLO size is much larger at private universities. But this proxy for � is crude. The challenge

is to identify characteristics in TLO�s that are systematically di¤erent in public and private

universities and which would help explain why the latter are more e¤ective in generating license

income. For this we developed a new survey questionnaire and sent it to directors of TLO�s in

both public and private universities.30 We received 101 responses, of which only 57 were in the

regression sample. Table 6 summarizes key results of this survey. First, we �nd that faculty are

well aware of monetary incentives associated with commercialising their inventions, and there

is no di¤erence between public and private universities in this regard (row 1). Second, we asked

whether the university faculty reward structures (salaries and promotion) gave any signi�cant

weight to any measures of technology transfer output. Nearly all report that technology transfer

output is not formally rewarded, and again there is no signi�cant di¤erence between university

types.

However, we �nd sharp di¤erences in three key dimensions: use of incentive pay, con-

29Formally, di¤erentiating (3)gives

@R

@s
= �Fv0

�
n(s; �)H(s; �) 0

@q

@s
+  (s; �)H(s; �)

@n

@s
+  (s; �)n(s; �)

@H

@s

�
where H(s; �) �

R1
v

v0 (q(s;�))
"dG("): The �gatekeeper e¤ect�operates if s and � are complementary in generating

license revenue:
@2R

@�@s
> 0

If the TLO licensed all inventions (H(s; �) = 1); it is easy to show that this property holds as long as diminishing
returns in the production function n(z) and  (q) are not too strong (i.e., n00 and  00 are su¢ ciently small). The
conditions are more complicated when invention quality also a¤ects the probability of being licensed. In this
case we also a condition on the distribution of invention values G(v) which requires that the density function
g(v) be declining (or not increasing �too much�) in v: Details are available on request.

30We sent the questionnaire to TLO directors in 198 public and private universities. These cover nearly all
universities in the U.S. and Canada that are members of the AUTM, and they include both those used in the
regression analysis as well as others. After several email and telephone follow-ups, we received a total of 101
responses, of which 57 were in the regression sample. The results of this survey will be analysed more fully in
another paper.
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straints, and objectives. First, fewer than half of the TLOs in public universities use any form

of performance-based pay (either merit pay or bonuses) in the TLO itself, as compared to 79

percent in private universities (row 3 in Table 6). This di¤erence is strongly signi�cant. The

second dimension is the extent to which state government constrains the e¤ectiveness of TLO

activity.31 The responses were coded on a Likert scale of 1-4 (1=very important, 2=moderately

important, 3=relatively unimportant and 4=unimportant). Here we group the responses into

two categories �important (1 or 2) and unimportant (3 or 4). The percentage reporting that

such constraints were important is very di¤erent for public and private universities, for each

of the six types of constraints examined. In every case, we �nd that public universities report

that they are more constrained, and the di¤erences are strongly signi�cant (rows 4.1-4.6).

The third dimension examined is the importance of various objectives of the TLO, mea-

sured on the 1-4 Likert scale (again, we grouped responses into two categories for this test). As

rows 5.1-5.3 in Table 6 show, there is no di¤erence in terms of the importance of the number

of licenses or license income, as objectives. However, public universities are much more likely

to rank �promoting local or regional economic development� as an important objective, as

compared to private universities, and the di¤erence is signi�cant.

These survey �ndings suggest that the TLO e¤ectiveness in generating license income,

�; is likely to be higher in private universities. In principle, this can help explain our �nding

that license revenue is more responsive to royalty incentives in private universities. Ideally, we

would want to integrate the survey data into the regression analysis, but for this we would need

more survey responses from universities included in the regression sample.

5.4 Is There a La¤er Curve E¤ect?

The parameter estimates from Table 5 imply that raising the inventor�s royalty share would

increase total license income. The point estimate of the semi-elasticity of license revenue with

respect to royalty share, �, implies that raising the inventor royalty share by ten percentage

points, say from the sample mean of about 45 to 55 percent, would increase license income by

31The survey question is: �Does the state government impose any signi�cant constraints that the limit the
e¤ectiveness of [your] TLO activity...either explicit forms - such as statutes, regulations, covenants of the uni-
versity charter - or implicit forms such as pressure from political representatives or agencies.�Six speci�c types
of constraints were listed.
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16 and 58 percent in public and private institutions, respectively.

Raising the royalty share may even increase license income accruing directly to the univer-

sity, (1� s)R: The semi-elasticity for university�s income is d log(1�s)R
ds = � � 1

1�s : When � > 1

there can be a La¤er e¤ect for universities with su¢ ciently low royalty rates: i.e., raising the

inventor�s royalty share would increase the university�s license income when s < s� � 1� ��1.

We �nd such a La¤er e¤ect for all private universities in the sample (s� = 0:83), but only for

about a quarter of the public universities, those having s < s� = 0:38: The incentive e¤ect

in these universities is large enough that raising the inventor�s royalty share actually increases

license income both for the inventor and the university.

Of course, even without a La¤er e¤ect, it may be desirable for a university to raise

the royalty share if it attaches weight to the license income for its faculty inventors (e.g., the

university could reduce salaries in return for higher royalty shares). To illustrate, suppose the

university�s objective function W is a linear function of license income plus other variables

y : W = (1 � s)R(s) + �sR(s) + y; where � < 1 is the weight the university attaches to the

faculty�s license income. Then @W
@s > 0 if � > 1� �

1+s� : Using � = 1:62 and the mean of s = :46

for public universities, we conclude that raising the royalty share would increase university

welfare if � > 0:07: A rigorous analysis of this issue would require a model of university

objectives, policy instruments and the academic labour market, which is beyond the scope of

this paper.

5.5 Incentive E¤ects: E¤ort or Sorting?

Despite our controls for university quality, there is likely to be unobserved heterogeneity in re-

search productivity (or commercial orientation) of faculty. Universities might attempt to attract

more productive faculty by o¤ering higher royalty shares, even if compensated by salary reduc-

tions to keep the total compensation across faculty constant. If more productive researchers

have higher e¤ort elasticities, they will be more responsive to incentives at the margin. If sort-

ing occurs, universities with higher royalty shares have more productive faculty who are more

responsive to monetary incentives, which is consistent with the results reported in Tables 5.32

32The responsiveness of license income to s depends on the magnitudes of @r
@z
and @r

@q
: For the sorting story

to work we need that @r
@z
and @r

@q
be higher for more productive faculty, at the same (z; q). If more productive
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As we indicated in Section 3, monetary incentives are likely to work through their im-

pact on the e¤ort levels of individual researchers and through the sorting of scientists across

universities. Assessing the relative importance of the e¤ort and sorting channels is important

because they have very di¤erent policy implications. However, without productivity data for

individual inventors, it is di¢ cult to distinguish e¤ort from sorting e¤ects.33 Here we develop

an indirect test for the presence of a sorting channel based on aggregate data.

The intuition for the test is as follows. Let si denote the royalty share of university i and

sic be the mean share for the set of universities competing with university i: Under sorting, the

type of faculty a university attracts should depend on how high its royalty share is relative to

the set of competing universities. This carries two implications. First, the presence of sorting

implies that the e¤ect of sic on the license revenues of university i should be negative. Second,

pure sorting, i.e., when e¤ort (z; q) is not a¤ected by s; implies that licensing revenue should

be homogeneous of degree zero in si and sic: If university i and its competitors were all to

increase their inventor�s royalty shares by the same amount then the allocation of scientists

across universities will not change and, because s does not a¤ect research e¤orts by hypothesis,

license revenues should not change.

To test these predictions, we expand the license income regression to include sic :

logRi = �1si + �2sic + x� + ! + u (6)

Under pure sorting, we expect that �2 < 0 and �1 + �2 = 0: Under a pure e¤ort model, we

should �nd �2 = 0: In both cases, we should have �1 > 0: When there are both sorting and

e¤ort e¤ects, raising the royalty shares for all universities in the same reference group should

lead to an increase in innovation and licensing due to the increased e¤ort incentives. Thus, the

mixed sorting-e¤ort hypothesis implies �1 > 0; �2 < 0 and �1 + �2 > 0.

We assume that a scientist chooses from among �competing�universities. We rank the

universities according to a relevant index and de�ne the set of competing universities as those

faculty were not more responsive to changes in revenues, then the sorting mechanism will just a¤ect the revenue
level (the constant of the regression) but the not the slope of the r � s relationship.

33For a recent study of the e¤ects of performance-based pay on e¤ort and sorting, see Lazear (2000). He
analyzed the e¤ect on workers�productivity in a large auto glass company as it switched from hour to piece-rate
pay, and found that individual productivity increased substantially and the �rm attracted a more able workforce.
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close to university i in this ranking. Closeness is determined by a window of size 2k around

the ranking of university i: This means that we averaged the royalty shares of the universities

ranked up to (and including) k positions lower and higher than university i; 2k universities

altogether. In de�ning the competing universities, we pool public and private universities,

although we estimate the model separately for the two types. We experimented with two

di¤erent window sizes, k = 2; 3:

For this test we use two alternative criteria to de�ne competing universities: the level of

total R&D funding per faculty and the number of citations per faculty. In the new survey of

TLO directors we conducted, we asked whether �staying in line with competing universities�

was an important consideration in setting royalty sharing rates and, if so, how they would

de�ne that group. R&D funding and academic quality were the two most frequently listed

criteria.

Table 7 summarises the estimates of �1 and �2 (other parameters are omitted for brevity)

Using R&D funding per faculty (Panel A), we �nd clear evidence that sorting operates for pri-

vate universities. For each window size, the coe¢ cient on the royalty share for the competitor�s

group, �2, is negative and statistically signi�cant. Because of the large standard errors of b�2 the
point estimate of �1 + �2 is actually quite close to zero, and we cannot formally reject the zero

homogeneity hypothesis, �1 + �2 = 0: Given the associated standard error, we also would not

reject the hypothesis that �1+�2 is positive. For public universities, we �nd no evidence of any

sorting e¤ect, but nor do we �nd any direct incentive e¤ect either. When we use citations per

faculty to identify competing universities (Panel B), the point estimates again indicate sorting

behaviour for private universities, but the parameter estimates are not statistically signi�cant.

In short, the evidence indicates that the e¤ect of royalty shares on licensing revenues in

private universities works both through e¤ort and sorting channels, but we cannot pin down

their relative importance of these channels with the available university-level data.

5.6 Incentive E¤ects on Invention Quantity and Quality

License revenue per faculty depends both on the number of inventions and their value. It

is natural to ask wether one can distinguish between the quantity (n) and the quality (v)

components of the royalty share e¤ect on license revenue. It turns out that the available
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aggregate data allow us to address this question.

Let L be the the number of licenses obtained from nF invention disclosures. That is,

L = n(z(s; �))F
R1

v
v0 (q(z;�))

"dG("): Substituting into the revenues equation (3) gives

R = �v0 (q(s; �))L (7)

If the royalty share s has an e¤ect on the quality of inventions, then this equation says

that s should have an e¤ect on license revenues even after we control for the number of licenses.

If we do not observe this, then we can conclude that the incentive e¤ects of royalty sharing

work only through the quantity of inventions, but not their quality. The elasticity of revenues

with respect to licenses should be one.

Table 8 presents results of estimating equation (7) using a log approximation and the

cumulative number of active licenses. Data on the latter are available only since 1995, so for

purposes of comparison, the baseline regressions are shown in columns (1) and (5) for the same

period 1995-99. Notice that these estimates are very similar to those in Table 5 using the full

sample. We �nd that controlling for L reduces the estimated e¤ect of royalty shares on revenues

but it does not eliminate it completely.34 This is particularly true in private universities, but

less so in public ones where the incentive e¤ect was not signi�cantly di¤erent from zero even

when L was not controlled for. The estimates imply that increasing the royalty share at private

universities by 10 percentage points will generate 38 percent more license revenue, given the

same number of licenses. Because the total e¤ect of such a change in royalty shares on license

revenues is much higher �about 58 percent (Table 5) �it follows that the number of inventions

is also a¤ected by the royalty share.

Actually, we can gauge the e¤ect of s on the quantity of inventions directly by regressing

the available proxies for the number of inventions on s and the other controls. We use two

imperfect measures of inventions: the number of licenses executed and the number of invention

disclosures, both of them �ow measures. These quantity regressions are presented in columns

34As expected, the coe¢ cient on logL is not signi�cantly di¤erent from one. Also notice that faculty size does
not appear in equation (7) once L is included. Adding F to the regressions in columns (2) and (6) does not
a¤ect the results at all. For example, adding log F to column (2) reduces the license coe¢ cient from 0.77 to
0.64 (0.19) and increases the coe¢ cient on royalty share from 1.20 to 1.51 (1.55). Adding log F to column (6)
reduces the license coe¢ cient from 0.77 to 0.76 (0.31) and increases the coe¢ cient on royalty share from 3.83 to
3.94 (1.89).
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(3)�(4) and (7)�(8).35 There is no real evidence that royalty incentives have any e¤ect on

the number of inventions in public universities. The other controls have the expected signs.

Notice, in particular, the signi�cant positive e¤ect of the TLO. In private universities, we �nd

a positive and signi�cant e¤ect of s on the number of licenses executed but no e¤ect on the

number of disclosures. Increasing the royalty share at private universities by 10 percentage

points will generate 26 percent more licenses. Added to the 38 percent increase in the mean

value of licensed inventions (column (6)), this gives a predicted e¤ect on license income of

64 percent, which is very close to the 58 percent e¤ect found in Table 5, even though the

regressions are based on di¤erent cuts of the data. The main implication of this analysis is

that the quality channel is more important than the quantity channel in private universities.

In public universities, however, s has a an overall very weak e¤ect because neither quantity nor

quality seems to be a¤ected by royalty incentives.

The use of quantity measures in these regression may introduce measurement error be-

cause of the possibility that faculty do not report all their inventions to the TLO. We now show

that this is likely to bias the e¤ect of royalty shares upward in the quantity regression, and

downward in the revenue regression. Let N� be the true number of disclosures at the university

and let N be the observed number (nF in the model). Assume

N = N� (1� �) 0 � � � 1

where � is the rate of misreporting. When � = 0 faculty reports all inventions to the TLO.

Similarly, the true and observed number of licenses are

L� = N�H(s)

L = NH(s) = L�(1� �)

where H(s) �
R1

v
v0 (q(z;�))

"dG("):

In the license income regression, when logL is used instead of logL� as a regressor in

columns (2) and (6), it adds � log(1 � �) to the error in the regression. If � and s are not

correlated then there is no bias. However, if Cov(�; s) < 0, i.e., misreporting decreases as the

inventor�s royalty share increases, then s and -log(1� �) are negatively correlated and we get a

35Disclosure data are available for all years, but the number of licenses executed are available only for 1991-96.
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downward bias in the estimated coe¢ cient of s in the regressions in columns (2) and (6). The

coe¢ cient of logL would also be biased downward.

In the quantity regressions, using logN or logL as dependent variable instead of logN�

or logL� adds log(1� �) to the error in the regression. If Cov(�; s) < 0; then s and log(1� �)

are positively correlated and there is an upward bias in the estimated coe¢ cient of s in the

quantity equation. That is, part of the observed rise in the number of inventions, associated

with an increase in s; is due to the reporting of previously unreported invention rather than to

new inventions. Thus the point estimate of the incentive e¤ect on the quantity of inventions in

private universities may overstate its true e¤ect.

The direction of the possible biases in both the income and the number of licenses regres-

sions reinforce our conclusion that the incentive e¤ect of royalty sharing works predominantly

through the quality channel.

6 Robustness Checks

In this section we discuss a variety of extensions to the baseline speci�cation in Table 5, es-

timated separately for public and private universities. We focus on the robustness of the

estimated incentive e¤ect of inventor royalty shares, but there is also independent interest in

some of the speci�cations we examine.

First, we check robustness of the parameter estimates to "outliers." As pointed out in

Section 2, the distribution of license income is highly skewed across universities. This raises

a concern that our empirical results may be driven by a few outliers in the sample in terms

of the dependent variable. We address this issue in two di¤erent ways: (1) we re-estimate the

model dropping the top license income earners, and (2) we estimate the model using median

regression (this procedure minimizes the sum of absolute deviations and thus gives less weight to

outliers). Table 9 presents the results. For the �rst experiment, we drop three universities from

the sample: the University of California System in the public university sample, and Stanford

and Columbia Universities in the private sample. These were the top earners over the sample

period and their license income was an order of magnitude higher than other universities. For

private universities, the estimated coe¢ cients on the royalty share are slightly lower than the

least squares estimates in Table 5, but still very large and signi�cant. Dropping California
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does not a¤ect the estimated � in public universities, but using the median regression cuts the

estimate in half. The elasticity of TLO size in public universities is also increased considerably

when median regression is used. Overall, the �nding of a strong incentive e¤ect in private

universities and of a much weaker e¤ect in public universities is not a¤ected by the presence

or absence of the top license earners.36

Second, we introduced dummy variables to capture the Carnegie Foundation research

classi�cation of universities (doctoral/research universities, master�s colleges and universities,

etc.). The coe¢ cients are not signi�cantly di¤erent from zero and do not a¤ect the estimated

incentive e¤ects or other coe¢ cients (results not reported). The estimated � is 1.53 (1.36) and

5.78 (2.15) in public and private universities, respectively. The same conclusions hold when we

introduce a dummy for the presence of a medical school at the university.37

Third, we re-estimate the model using alternative measures of quality: the number of

publications per faculty, the NRC scholarly quality score and the average faculty salary at the

university (Table 10). All the alternative measures a¤ect revenues in a positive way at private

universities. Also, the point estimates of the incentive e¤ect, although marginally lower than

in the baseline speci�cation, where citations per faculty are used (Table 5), remain quite high.

None of the quality measures a¤ects license revenues in public universities either individually

or jointly. Nor is the estimated e¤ect of royalty shares a¤ected by the use of a particular quality

proxy. The remaining parameters estimates are also robust to the choice of quality proxy, both

for public and private universities.

Fourth, we allow for the possibility that the incentive e¤ect of royalty shares varies with

two characteristics of the university: quality and the percentage of faculty which is tenured.

Turning �rst to quality, it is commonly argued that faculty at more prestigious institutions

are likely to be motivated mainly by scienti�c recognition and status rather than by monetary

rewards. In the model this takes the form of a lower marginal utility of license revenue in

36The standard errors of the median regression are not robust standard errors. We also estimated quantile
regressions for the �rst and third quartiles. In public universities, the estimated �0s are 0.15 (.11) and 1.20
(0.75), respectively. In private universities, the estimates are 3.9 (1.4) and 5.3 (1.9), respectively.

37The medical dummy is not signi�cant in public universities and marginally signi�cant in private ones with
a positive coe¢ cient equal to 1.4 (0.78). The estimated � is 1.62 (1.32) and 6.69 (2.11) in public and private
universities, respectively. The same conclusions holds if we use the medical school dummy instead of the
technology �elds shares.
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higher quality universities. To test this, we include interactions terms between the inventor

royalty share and dummy variables for the lowest and highest quartile of the citations per

faculty distribution (Columns 1 and 3, Table 11). In support of the popular view, we �nd that

the incentive e¤ects of royalty shares declines with university quality. In public universities the

estimated coe¢ cient declines from 3.4 (s.e.=1.8) in the �rst quartile of the quality distribution

to 1.6 (s.e.=1.02) in the fourth quartile. In private universities, we �nd the same pattern: b� is
6.6 (s.e.=1.63) in the �rst quartile and declines to 4.8 (s.e.=2.25) in the fourth quartile.

Turning to faculty tenure, if doing research that produces commercially usable inventions

comes at the cost of doing less (quality-adjusted) academic publications, then one would expect

untenured faculty members to be less responsive to royalty shares than tenured members. To

test this, we include interactions terms between the inventor royalty share and dummy variables

for the lowest and highest quartile of the tenure distribution (the percentage of tenured faculty

at each university). As columns 2 and 4 (Table 11) show, the hypothesis is con�rmed for

public universities. The incentive e¤ect of royalty shares is signi�cant and positive in the top

quartile of the tenure distribution, but not in the lower three quartiles. This is particularly

interesting, since the baseline estimate of the incentive e¤ect for public universities was not

signi�cantly di¤erent from zero (Table 5). For private universities, there is no support for the

hypothesis, but the estimated incentive e¤ects are again much larger than for public universities

and statistically signi�cant.

In Table 12 we allow industry and publicly-funded R&D to have di¤erent e¤ects on

licensing income. Publicly-funded R&D has a positive e¤ect on license revenue, but it is

signi�cant only in public universities. The point estimates of the elasticities imply that raising

public R&D by 10 percent would increase license revenue by about 4 percent.38 By contrast,

we �nd that industry-�nanced R&D has no signi�cant e¤ect on license income. This is what

one would expect if the bulk of such funding is contract R&D with free licensing provisions

(i.e., ex ante R&D funds are given in place of ex post licensing income). One could even argue

that industry-�nanced R&D may reduce the average license income received by the university

38Payne and Siow (2003) analyze the e¤ect of federal funding on university research. Using a sample of 68
research universities, they conclude that increasing federal research funding results in more, but not necessarily
higher quality, research output.
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because the �rms are likely to get more favorable licensing arrangements. Importantly, the

estimated coe¢ cients on the royalty shares, and on the other regressors, are nearly identical to

the baseline case.

Finally, we added a variable to control for di¤erences in the potential demand for licenses

by private �rms. If demand for licensing is localized, because of information or other factors,

universities located in more dense high-tech areas should license more inventions from a given

pool of invention disclosures and obtain more revenue. Moreover, faculty response to incentives

may depend on local demand factors. A more developed local high-tech market may increase

faculty awareness of the potential rewards to university inventions. On the other hand, it

may also increase the demand for faculty consultants, advisors, and other type of scienti�c

endeavours that compete with university research time making university monetary incentives

less relevant.

To address this issue, we use the 1995 Milken index of high-tech activity for the area

where the university is located (Friedman and Silberman, 2003).39 The index is a continuous

variables ranging from zero to a maximum of 23.7 (for Stanford University) but we discretized

it by grouping universities into three groups: universities in the �rst quartile of the Milken

index distribution, universities in the second and third quartiles and universities in the fourth

quartile. Royalty shares do not vary much with the Milken index of high-tech activity: the

average s at universities in the three groups is 42, 47 and 43 percent, respectively. This suggests

that royalty shares are not set in response to the value of outside options available locally to

university scientists. Table 13 shows the results of the baseline models with dummies for the

�rst and fourth quartile and their interaction with s:

The local demand argument implies that the coe¢ cients of the dummies representing

each of the three groups should be increasing as we move from the �rst to the fourth quartile.

We �nd a strong local, high-tech demand e¤ect for private universities but not public ones.

License revenues in private universities located in the most dense high-tech areas are over

300 percent higher than comparable universities in less high-tech surroundings (we reject that

the coe¢ cients on the dummies are jointly zero, p-value < 0:01). But license revenues in

39Nine observations are dropped because the index is not available.
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public universities do not vary with the index of local demand (the coe¢ cients on the two

dummies are not di¤erent from zero, p-value = 0.86). This �nding again suggests that private

universities are more e¤ective than public ones to exploit the potential of being located in high-

tech areas. But the fact that local demand conditions matter at all indicates the importance of

structuring technology transfer institutions so that they can more e¤ectively exploit demand

for inventions in non-local areas. For this purpose, specialization of TLO�s by university (the

current arrangement) may be inferior to alternatives such as having TLO�s that specialize by

technology area and serve multiple universities.

The responsiveness to monetary incentives again di¤ers by ownership type. In public

universities, the royalty e¤ect does not vary much with the index of local demand (we cannot

reject the hypothesis that the interaction terms are zero, p-value = 0.88). In private universities,

however, the responsiveness to the inventor�s royalty share exhibits a clear pattern: b� decreases
sharply from about 12 at universities located in low high-tech areas to about 4 at universities

in the fourth quartile (the p-value for the test that the interaction coe¢ cients are zero is

0.08). Though speculative, this �nding is consistent with the argument that a concentration of

high-tech �rms may lure faculty away into consultancy jobs and lower their responsiveness to

university incentives.

7 Concluding Remarks

In this paper we exploit cross-university variation in the share of licensing royalties received by

academic scientists in order to estimate the e¤ect of monetary incentives on inventive output,

as measured by the license income generated by the inventions.

We report two main results. First, we show that academic research and inventive activ-

ity in universities respond to variations in inventors�royalty shares. Controlling for a variety

of other determinants, including university size, quality, R&D funding and local demand con-

ditions, we �nd that universities with higher royalty shares generate higher levels of license

income. This �nding is important because it implies that the design of intellectual property

rights, and other forms of incentives, in academic institutions can have real e¤ects. We also

explore whether the incentive e¤ects of royalty sharing work by inducing greater e¤ort by sci-

entists or through sorting of scientists across universities. We �nd evidence of sorting e¤ects,
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but we cannot pin down the relative contribution of e¤ort and sorting with the available data.

We also show that these incentive e¤ects work primarily by increasing the quality, rather than

the quantity, of inventions.

Second, we show that the response to incentives, and the e¤ectiveness of technology

licensing o¢ ces, are much larger and more signi�cant in private universities than in public ones.

In order to rationalise this sharp di¤erence, we argue that there is a "gatekeeper e¤ect": because

TLOs in public universities are less e¤ective at commercialising inventions, the incentive e¤ect

of higher royalty shares is muted. We provide survey evidence that the use of incentives, the

constraints and the objectives of TLOs in public and private universities di¤er in ways that are

consistent with this claim. Finally, in private universities the incentive e¤ect is strong enough

to produce a La¤er e¤ect, where raising the inventor�s royalty share would increase the license

revenue actually retained by the university.

There are three main directions for further research. The �rst is to combine the data in

this paper with information on the objectives, internal incentives and organisational structure

of technology licensing o¢ ces, in order to understand why private universities perform so much

better than public ones in technology transfer. The second avenue is to examine university-

level data (and other public research organisations) for other OECD countries in which there

is variation both in cash �ow and control rights. The third, and most ambitious, avenue is to

model university behavior and the academic labour market, incorporating pecuniary incentives

(salaries and royalties), multi-tasking and career concerns. To do this will require a suitable

speci�cation of the objectives and decision-making rules of the university. Such a model could

be used as the basis for more detailed studies of incentives and university research using micro-

data on academic scientists.
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Table 1. Descriptive Statistics1

Variable N Mean Std. Dev. 25% 50% 75%

1. Licensing income (�000s)2 102 3,351.6 8,103.8 162.3 620.1 2,942
2. Licensing income (�000s) per license2;3 96 48.2 162.8 9.5 17.3 39.4
3. No. of invention disclosures 102 66.9 81.0 19.5 44.7 81.1
4. No. of invention disclosures per faculty 102 0.22 0.19 0.11 0.17 0.26
5. Faculty Size 102 360 369 136 288 494
6. Citations per faculty4 102 18.5 22.7 5.1 11.7 21.2
7. Publications per faculty4 102 7.4 3.0 5.2 7.1 9.7
8. Scholarly quality (0-5) 102 3.0 0.8 2.5 3.1 3.6
9. Average size of TLO5 102 3.1 5.2 1.0 2.0 3.3
10. Age of TLO in 1999 (years) 99 16.0 12.6 8.0 13.0 17.0

Notes:
1 Statistics computed on the time-averaged data for each of the N universities.
2 Income data in nominal dollars.
3 Licensing income in year t divided by the cumulative number of active licenses through year t.
4 During 1988-92.
5 Number of full time professionals employed by the TLO.
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Table 2. Distribution of Inventor Royalty Shares (percent)1

Mean 25% 50% 75% Min Max

Linear Schedules (No. universities=58) 41 33 40 50 21 65

Nonlinear Schedules: Expected Royalty Share2 51 42 49 49 20 97
(No. universities=44)

Income Interval:
0-10,000 53 43 50 50 20 100
10,000-50,000 45 40 50 50 20 93
50,000-100,000 42 33 44 50 20 85
100,000-300,000 35 29 33 40 20 85
300,000-500,000 33 25 30 40 20 85
500,000-1 million 32 25 30 35 20 85
Over 1 million 30 25 30 34 15 85

Notes:
1Using time-averaged royalty shares for the 11 universities that changed their shares during 1991-99.
2 See text for details.
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Table 3. Inventor Royalty Shares (percent)
by University Characteristics1

Faculty Size Citations per Faculty TLO Size per Faculty
1 st quartile 50 48 44
2nd quartile 43 43 48
3 rd quartile 44 46 46
4 th quartile 43 44 43

F-test 1.67 0.74 0.55
(p-value) (0.18) (0.53) (0.65)

Notes:
1 Using time-averaged data for the 102 universities.
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Table 4. Determinants of Expected Royalty Shares

dependent variable: expected royalty share (s� 100)

Constant 46.1�� 54.7�� 56.1�� 60.1��

(7.28) (13.3) (15.2) (18.2)
Faculty size -0.006 -0.005 -0.022� -0.021

(.009) (.009) (.012) (.014)
Citations/faculty -0.15 -0.15 -0.24�� -0.19

(.10) (0.10) (.10) (.13)
Publications/faculty 0.58 0.96 -1.16 0.87

(1.00) (1.11) (1.13) (1.25)
Quality index -0.11 -2.79 -0.11 2.02

(4.82) (4.48) (4.65) (5.30)
Biomedical � -0.03 -6.11 -2.39

(11.6) (13.7) (15.6)
Other Biological � -6.63 -9.98 -8.15

(11.5) (13.3) (14.9)
Computer Science � 53.0 35.3 39.8

(54.0) (50.8) (58.4)
Chemical Science � -18.2 -22.8 -19.4

(15.7) (14.8) (15.6)
Engineering � -14.1 -13.7 -9.50

(15.8) (17.5) (21.3)
TLO size � � 1.56 1.45

(1.09) (1.14)
TLO age � � -0.38�� -0.41��

(0.13) (0.13)
R&D (millions) � � � 0.004

(.030)
Private University � � � -1.92

(3.15)
Average Salary (�000s) -0.25

(.32)
R2 0.05 0.12 0.24 0.26
Test for zero coe¢ cients
p-value 0.251 0.314 0.010 0.003
No. obs. 102 102 99 97

Notes:
Using time-averaged data for the 102 universities, when available.
In parenthesis, heteroskedasticty-robust standard errors using
the HC3 �nite-sample correction (Davidson and MacKinnon, p. 554).
� Signi�cant at the 5 % level
�� Signi�cant at the 1 % level
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Table 5. Parameter Estimates for Licensing Revenues [eq.(5)]

All Universities Private Universities Public Universities
(1) (2) (3) (4) (5) (6)

Royalty share 1.85 1.91�� 4.09�� 5.82�� 0.80 1.62
(1.09) (.96) (1.04) (2.11) (1.35) (1.34)

Log faculty size 1.22�� 1.35�� 0.91�� 1.59�� 1.36�� 1.41��

(.144) (.142) (.261) (.277) (.140) (.166)
Citations/faculty 0.023�� 0.015�� 0.025�� 0.018�� 0.018 0.007

(.005) (.004) (.006) (.005) (.013) (.014)
Log (R&D/faculty) � 0.480�� � 0.36 � 0.48��

(.225) (.329) (.203)
Log (TLO/faculty) � 0.243 � 0.774�� � -0.009

(.162) (.317) (.159)
Age TLO � 0.024�� � 0.010 � 0.026��

(.009) (.016) (.010)
Biomedical � 0.82 � 0.55 � 1.17

(1.14) (2.33) (1.41)
Other Biological � 0.06 � 1.60 � -0.89

(1.09) (2.53) (1.36)
Computer Science � 2.88 � -4.00 � 2.85

(2.85) (8.06) (2.57)
Chemical Science � 0.39 � 4.10 � 0.66

(1.35) (6.45) (1.54)
Engineering � 1.53 � 3.47 � 0.97

(1.28) (2.50) (1.52)
R2 0.50 0.60 0.50 0.69 0.52 0.61
No. obs. 731 717 250 246 481 471
No. Universities 98 97 32 31 66 66

Notes:
Standard errors clustered by university in parentheses. Year dummies included in all regressions.
� Signi�cant at the 5 % level, �� Signi�cant at the 1 % level
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Table 6. Incentives, Constraints and Objectives in Public and Private TLO�s1

Public Private P-value of Equality
Universities Universities of Means Test

1. Faculty Awareness of Incentives
% responding YES 91.7 96.4 0.41

2. University Rewards Technology Transfer
% responding YES 9.4 15.4 0.42

3. Incentive-pay
% using incentive pay2 49 79 0.007

4. Government constraints on:
% reporting important
4.1. Choice of license partners 23 0 <.001
4.2. Setting license contract terms 19 0 <.001
4.3.License con�dentiality 27 0 <.001
4.4 Use of equity stakes 23 3.5 0.024
4.5 University liability/indemni�cation 75 18 5.02
4.6. Dispute resolution mechanisms 49 3.6 3.80

5. Objectives
% reporting important
5.1 Number of licenses 97 100 0.38
5 2. License income 88 93 0.44
5.3 Promoting local/regional development 88 57 0.001

Notes:
1Based on survey data. Numbers of public and private universities are 73 and 28, respectively.
2Merit pay and/or bonuses

43



Table 7. Tests of E¤ort and Sorting [eq.(6)]

Public Universities Private Universities
k = 2 k = 3 k = 2 k = 3

Panel A
Own royalty share (�1) 1.87 1.65 5.47�� 5.10��

(1.28) (1.34) (2.05) (2.04)
Competitors�royalty share (�2) 2.25 0.38 -4.55�� -5.67��

(3.20) (4.0) (1.70) (2.36)
�1+�2 4.11 2.04 0.92 -0.57

(3.27) (4.36) (2.18) (3.25)
R2 0.61 0.61 0.71 0.71
No. obs 471 471 246 246
No. Universities 66 66 31 31

Panel B
Own royalty share (�1) 1.59 1.39 5.96�� 5.84��

(1.39) (1.43) (2.09) (2.14)
Competitors�royalty share (�2) -0.58 -2.27 -3.46 -0.96

(2.24) (2.94) (4.61) (3.15)
�1+�2 1.01 -0.88 2.51 4.88

(2.98) (3.64) (4.20) (3.18)
R2 0.61 0.61 0.70 0.69
No. obs 471 471 246 246
No. Universities 66 66 31 31

Notes:
Standard errors clustered by university in parentheses. All other control variables appearing
in Table 5 included in all regressions but are not reported.
In Panel A competing universities identi�ed by R&D funding per faculty.
In Panel B competing universities identi�ed by citations per faculty.
� Signi�cant at the 5 % level, �� Signi�cant at the 1 % level
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Table 8. Incentive E¤ect on Invention: Quantity vs Quality [eq.(7)]

Public Universities Private Universities

Dep. variable1 Revenues Licenses Disclosures Revenues Licenses Disclosures
(1) (2) (3) (4) (5) (6) (7) (8)

Log (licenses) � 0.77�� � � � 0.77�� � �
(.20) (.32)

Royalty share 1.65 1.20 0.08 -0.32 5.91�� 3.83�� 2.60�� 0.52
(1.53) (1.55) (.39) (.24) (2.22) (1.73) (.96) (1.06)

Log faculty size 1.36�� � 0.90�� 0.94�� 1.68�� � 1.20 0.85�

(.19) (.096) (.046) (.26) (.21) (.16)
Citations/faculty 0.001 -0.008 0.002 0.008�� 0.013�� 0.007 0.007�� 0.006

(.017) (.015) (.006) (.004) (.006) (.006) (.003) (.004)

Log
�
R&D
faculty

�2
0.53�� 0.58�� 0.31�� 0.38�� 0.34 0.11 0.31�� 0.48��

(.24) (.19) (.096) (.069) (.42) (.30) (.11) (.12)

Log
�

TLO
faculty

�2
-0.003 -0.11 0.19�� 0.26�� 1.11�� 0.68�� 0.65�� 0.23�

(.19) (.20) (.094) (.047) (.31) (.29) (.14) (.12)
Age TLO 0.024�� 0.006 0.012�� 0.006�� 0.008 0.004 0.002 0.004

(.011) (.011) (.005) (.003) (.017) (.012) (.008) (.007)

R2 0.59 0.61 0.67 0.84 0.69 0.74 0.73 0.73
No. obs 270 270 305 480 137 137 165 250
No. Universities 65 65 65 67 30 30 31 32
Notes:
1 Dependent variables always in logs.
2 In columns (2) and (6), regressor is not normalized by faculty size
Standard errors clustered by university in parentheses.
Technological �elds and year dummies included in all regressions but are not reported.
� Signi�cant at the 5 % level, �� Signi�cant at the 1 % level
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Table 9. Controlling for Outliers, [eq.(5)]

Private Universities Public Universities
w/o Columbia & Median w/o California Median

Stanford Regression Regression

(1) (2) (3) (4)
Royalty share 4.72�� 5.03�� 1.61 0.83

(1.92) (.81) (1.35) (0.48)
Log faculty size 1.40�� 1.50�� 1.39�� 1.49��

(.24) (.11) (.19) (.083)
Citations/faculty 0.015�� 0.018�� 0.008 0.025��

(.006) (.003) (.014) (.007)
Log (R&D/faculty) 0.46 0.127 0.48�� 0.42��

(.33) (.13) (.20) (.12)
Log (TLO/faculty) 0.56� 0.831�� -0.020 0.153�

(.30) (.11) (.17) (.091)
Age TLO 0.017 0.007 0.025�� 0.026��

(.013) (.008) (.010) (.005)

R2 0.65 0.48 0.56 0.40
No. obs. 228 246 462 471
No. Universities 29 31 65 66

Notes:
Standard errors clustered by university in parentheses in the OLS regressions (1) and (3).
Non-robust standard errors in the median regressions (2) and (4).
Technological �elds and year dummies included in all regressions but are not reported.
� Signi�cant at the 5 % level, �� Signi�cant at the 1 % level
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Table 10. Alternative Quality Measures [eq.(5)]

Private Universities Public Universities

(1) (2) (3) (4) (5) (6) (7) (8)
Royalty share 4.69�� 3.76 3.84�� 4.68�� 1.67 1.67 1.75 1.65

(2.10) (2.10) (1.93) (2.24) (1.33) (1.33) (1.34) (1.37)
Log faculty size 1.19�� 0.99�� 1.03�� 1.07� 1.40�� 1.45�� 1.37�� 1.52��

(.36) (.42) (.37) (.56) (.18) (.23) (.17) (.27)
Publications/faculty 0.19�� � � -0.032 0.006 � � -0.037

(.069) (.12) (.068) (.11)
NRC quality score � 1.05�� � 0.57 � -0.068 � -0.174

(.41) (.66) (.35) (.45)
Log (Average Salary) � � 4.95�� 1.91 � � 0.55 0.51

(1.75) (2.28) (1.33) (1.33)
Citations per faculty � � � 0.011 � � � 0.016

(0.010) (.022)
Log (R&D/faculty) 0.32 0.49 0.14 0.13 0.51�� 0.54�� 0.49�� 0.53��

(.35) (.33) (.27) (.24) (.20) (.25) (.20) (.27)
Log (TLO/faculty) 0.89�� 0.82�� 0.83�� 0.77�� -0.010 -0.007 -0.027 -0.015

(.32) (.34) (.33) (.32) (.16) (.16) (.16) (.16)
Age TLO 0.014 0.002 0.019 0.007 0.026�� 0.026�� 0.026�� 0.026��

(.019) (.019) (0.021) (.018) (.010) (.010) (.010) (.010)

F- test for quality e¤ects
p-value <0.001 0.91

R2 0.68 0.69 0.69 0.72 0.61 0.61 0.61 0.61
No. obs. 246 246 245 245 471 471 471 471
No. Universities 31 31 30 30 66 66 66 66

Notes:
Standard errors clustered by university in parentheses. Missing wage data for one private university
appearing in one year only. Technological �elds and year dummies included in all regressions but are not
reported. � Signi�cant at the 5 % level, �� Signi�cant at the 1 % level
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Table 11. Quality and Tenure Interactions with Incentive E¤ects [eq.(5)]

Public Universities Private Universities

Royalty share interacted with:
Quality Tenure Quality Tenure
quartiles quartiles quartiles quartiles

Royalty share 1.30 1.08 3.46 4.46��

(2nd & 3 rd quartiles) (1.03) (1.21) (2.05) (1.68)

Royalty share � 2.10� 0.60 3.17�� 1.78��

1st quartile dummy (1.10) (.91) (1.28) (.76)

Royalty share � 0.30 1.46�� 1.31 -0.517
4st quartile dummy (.89) (.75) (.86) (1.05)

Log faculty size 1.53�� 1.44�� 1.74�� 1.51��

(.17) (.18) (.27) (.22)
Citations/faculty 0.028 0.003 0.018�� 0.017��

(.024) (.015) (.005) (.007)
Log (R&D/faculty) 0.38� 0.55�� 0.19 0.27

(.21) (.20) (.33) (.37)
Log (TLO/faculty) 0.006 0.007 .50 0.54��

(.16) (.16) (.32) (.26)
Age TLO 0.028�� 0.025�� 0.014 0.018

(.010) (.009) (.020) (.017)

R2 0.63 0.63 0.73 0.73
No. obs 471 471 246 246
No. Universities 66 66 31 31

Notes:
Standard errors clustered by university in parentheses.
Technological �elds and year dummies included in all regressions but are not reported.
� Signi�cant at the 5 % level, �� Signi�cant at the 1 % level
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Table 12. R&D by Source: Industry and Government [eq.(5)]

Public Universities Private Universities
Royalty share 1.65 5.83��

(1.32) (2.16)
Log faculty size 1.40�� 1.57��

(.17) (.28)
Citations/faculty 0.010 0.018��

(.014) (.005)
Log (public R&D/faculty) 0.45�� 0.38

(.21) (.32)
Log (private R&D/faculty) -0.052 -0.046

(.14) (.19)
Log (TLO/faculty) -0.009 .789��

(.16) (.31)
Age TLO 0.022�� 0.011

(.010) (.017)

F-test for equal R&D e¤ects
p-value 0.094 0.325

R2 0.61 0.70
No. obs 461 246
No. Universities 66 31

Notes:
Standard errors clustered by university in parentheses.
Technological �elds and year dummies included in all regressions but are not reported.
� Signi�cant at the 5 % level, �� Signi�cant at the 1 % level
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Table 13. Demand Control: High-Tech Activity [eq.(5)]

Public Universities Private Universities

1st quartile dummy 0.50 -0.085
(1.32) (1.96)

4st quartile dummy -0.089 3.11��

(1.20) (1.06)
Royalty share (in 2nd & 3rd quartiles) 2.10 10.32��

(2.31) (1.76)
Royalty share�1st quartile dummy -0.096 1.63

(2.93) (3.81)
Royalty share�4st quartile dummy 0.78 -6.57��

(2.28) (2.92)
Log faculty size 1.37�� 1.82��

(.19) (.31)
Citations/faculty 0.009 0.016��

(.014) (.005)
Log (R&D/faculty) 0.55�� 0.46

(.24) (.29)
Log (TLO/faculty) -0.061 .85��

(.16) (.29)
Age TLO 0.028�� 0.003

(.011) (.019)

R2 0.62 0.72
No. obs 462 246
No. Universities 65 31

Notes:
Standard errors clustered by university in parentheses.
Technological �elds and year dummies included in all regressions but are not reported.
� Signi�cant at the 5 % level, �� Signi�cant at the 1 % level
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Appendix

A Description of the Data

A.1 Variable De�nitions

Data from AUTM Licensing Surveys 1991-99.

1. Licensing income includes license issue fees, payments under options, annual minimums,

running royalties, termination payments, the amount of equity received when cashed-in,

and software and biological material end-user license fees equal to $1,000 or more. License

income includes net transfers of license income from other institutions.

2. TLO Size is the number of person(s) employed in the TLO whose duties are speci�cally

involved with the licensing and patenting processes in either full or fractional allocation.

Licensing examples include licensee solicitation, technology valuation, marketing of tech-

nology, license agreement drafting and negotiation, and start-up activity e¤orts. Because

this information is not available for 1991, we used the data for 1992 to measure size in

1991. The change in the point estimates is minimal but their precision increases due to

the larger number of observations.

3. TLO Age is measured using the year when then TLO was established as reported by

the AUTM surveys. When the foundation year was on 1991 or later we recoded the

foundation year to be the �rst year when the TLO size was larger than 0.5�one half

full-time equivalent professional employed.

4. R&D funding includes the total amount of research support committed to the university

(even if the funds are to be spent over several years) that was related to license/options

agreements.

Data from the 1993 National Survey of Graduate Faculty

The Survey provides data on doctoral programs that participated in the 1993 National

Research Council (NRC) National Survey of Graduate Faculty (appendix K on engineering

programs, appendix L on life science programs, and appendix N on biological sciences).
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1. Science Fields: 23 doctoral programs were aggregated into 6 science �elds. We used

the shares of faculty employed in each �eld to proxy for the research orientation of the

university. The �elds are:

(a) Biomedical and Genetics - biochemical/molecular biology, cell and development bi-

ology, biomedical engineering and molecular and general genetics

(b) Other Biological Sciences - neurosciences, pharmacology, physiology and ecology/evolution

and behavior

(c) Computer Science includes only the department of computer sciences

(d) Chemical Science - chemistry and chemical engineering

(e) Engineering - aerospace, civil engineering, electrical engineering, industrial engineer-

ing, material science, and mechanical engineering

(f) Physical Sciences - astrophysics/astronomy, geosciences, mathematics, oceanogra-

phy, physics, and statistics/biomedical statistics.

2. Faculty Size is the total number of faculty in the 23 doctoral programs as reported in the

Survey.

3. Quality measures:

(a) Citations per faculty : ratio of total number of program citations in the period 1988-

92 to the number of program faculty. Aggregated to the university level using faculty

weights.

(b) Publications per faculty: ratio of total number of program publications in the period

1988-92 to the number of program faculty. Aggregated to the university level using

faculty weights.

(c) Scholarly quality index of program faculty is the trimmed mean of the responses

received in the Survey for each doctoral program. Scores were converted to a scale

of 0 to 5, with 0 denoting �Not su¢ cient for doctoral education�and 5 denoting �ve

�Distinguished�. Aggregated to the university level using faculty weights.
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In some instances, a university appears more than once in the NRC �le because the

NRC has information on two or even three units of the same department, e.g., statistics and

biostatistics or meteorology and geology (in geosciences). In these instances we averaged their

quality measures weighting each unit by its share in the total faculty number of both units

combined. In other instances, a university appears more than once in the NRC �le because

the NRC has information on two or more campuses (e.g., California, Rutgers, etc.). In these

instances we averaged their quality measures weighting each campus by its share in the total

faculty number of all campuses combined.

Data from TLO�s Websites

1. Inventor�s royalty share: This information was downloaded from the websites of each

university technology licensing o¢ ces during the summer of 2001. The net income received

by the university from licensing an invention is distributed between the inventor and the

university. The university allocates its share to various units such as the inventor�s

laboratory, department or college. The criterion we use for identifying the inventor share

is that the inventor must gain either cash �ow rights or direct control rights over the

income. Thus, when the university IP policy states that the share accruing to the lab

was under the control of the inventor, we added it to the inventor�s share, but otherwise

we did not. Royalty shares were computed out of net license income after deducting

direct licensing expenses from gross income. We also made an adjustment for the TLO�s

overhead rate, when it was reported.

Other Data

1. Average Salary at the university level, i.e., not just hard science departments. Source:

NSF WebCASPAR Database System.(http://caspar.nsf.gov/webcaspar).

2. Percentage of Tenured Faculty at the university level, i.e., not just hard science depart-

ments. Source: NSF WebCASPAR Database System.(http://caspar.nsf.gov/webcaspar).

3. Milken Institute Tech-Pole composite index
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A.2 Data Selection Process

1. Starting with the nine �les containing the Association of University Technology Managers�

(AUTM) Annual Licensing Surveys for 1991-99 we compiled a list of 209 institutions

with licensing income and disclosure data for all or part of the 1991-99 period. These

institutions include American and Canadian universities, medical research institutes and

patent management �rms.

2. The size and quality measures from the 1993 National Survey of Graduate Faculty con-

ducted by the National Research Council (NRC) are available for universities with doc-

toral programs only. This reduces the sample of institutions with AUTM and NRC data

to 146.

3. Merging with the royalty share distribution data further reduced the number of insti-

tutions with AUTM, NRC and royalty share data to 102. Most teaching hospitals and

patent management �rms do not post royalty distribution information on the internet.

Since all but one (Albert Einstein Healthwork Network) of these institutions are univer-

sities, we refer to the observations as universities.

A.3 Structure of the Data

We have an panel data on 102 universities with non-missing license income data ranging from

T = 1 to T = 9 years. The distribution of universities with T = t is given in the second column

of the Table below,
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Distribution of Panel Time Length
Overall Baseline Regression

T Frequency Frequency
1 3 1
2 2 2
3 3 5
4 7 3
5 5 6
6 11 12
7 10 11
8 5 7
9 56 51

Total 102 97
Number of Observations 749 717

This gives a total of 749 university-year observations with non-missing license income

data. Tables 1�4 rely on the full sample of 102 universities but the sample used in Tables

5-13 is smaller because of missing variables and observations with zero license income (we use

the log of license income). There are 18 observations with zero license income. Eight of these

observations, belong to four universities not having any non-zero license data. Thus, they are

excluded from the baseline sample used in the regressions. The remaining 10 observations

belong to 4 institutions having other non-zero license data so they remain in the baseline

regression sample. In particualr, the �short�speci�cations in columns (1), (3) and (5) of Table

5 are based on 98 universities (102 - 4 universities with all their license data equal to zero).

Assigning a zero value to the dependent variable of the universities with zero license revenue,

and including them in the regression, did not change the parameter estimates.

Other control variables are also missing. Three universities have missing information on

the TLO foundation year so that the TLO age cannot be computed. Because two of these also

have zero license income data, we only have to drop 4 observations (and one university) on

account of missing TLO age from the baseline regression sample. In addition nine observations,

corresponding to 5 universities, have missing TLO size data and one observation has missing

data on R&D funding. These 10 observations, but not the universities, are dropped from the

baseline regression sample.

To summarise, a total of 32 observations and 5 universities are dropped from the base-

line regression sample because of zero licence income or other missing data. This leaves 717
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observations in 97 universities used in the �long� speci�cations in Table 5, columns (2), (4)

and (6). The distribution of universities with di¤erent numbers of observations in the baseline

regression samples is given in the third column of the table.
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