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Abstract 
Strategic patenting is widely believed to raise the costs of innovating, especially in industries 
characterised by cumulative innovation. This paper studies the effects of strategic patenting 
on R&D, patenting and market value in the computer software industry. We focus on two key 
aspects: patent portfolio size which affects bargaining power in patent disputes, and the 
fragmentation of patent rights (.patent thickets.) which increases the transaction costs of 
enforcement. We develop a model that incorporates both effects, together with R&D 
spillovers. Using panel data for the period 1980-99, we find evidence that both strategic 
patenting and R&D spillovers strongly affect innovation and market value of software firms. 
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1 Introduction

There is an extensive empirical literature demonstrating that R&D creates positive technology

spillovers that contribute to innovation and productivity. This consensus underpins the justi�cation

for government R&D-support policies. At the same time, however, there is a growing concern

that the patenting of innovations is itself becoming an impediment to the innovation process. The

argument is that strategic patenting activity creates patent thickets that constrain �rms�freedom of

action in R&D and thus raise the costs of innovation. The dangers of patent thickets are frequently

raised in public debates on patent reform �for example, National Research Council (2004).

The concerns have been intensi�ed by the acceleration in patenting over the past two decades,

especially in high tech industries. During the period 1976-1996, the total number of patent appli-

cations in the U.S. grew at an average annual rate of 1.8 percent. The growth accelerated from the

mid-1980s, when there was a pro-patent shift associated with the establishment of the specialized

Court of Appeals for the Federal Circuit (CAFC) and other developments (Kortum and Lerner,

1999; Ja¤e and Lerner, 2004). In the period 1986-1996, aggregate patenting grew at 3.5 percent

annually. This growth was particularly rapid in high tech industries � for example, 4.0 percent

in pharmaceuticals, 7.1 in medical instruments, 9.3 in biotechnology, 11.0 in semiconductors and

11.2 percent in software. The growth in software patenting was due in part to recent judicial deci-

sions during this period that limited the scope of software copyright protection, and extended the

patentability of software (in particular algorithms not embedded in hardware).

There is evidence that �rms, especially in high-tech industries, try to resolve patent disputes by

cross licensing agreements, patent pools and other cooperative mechanisms (Lanjouw and Schanker-

man, 2004). The importance of such mechanisms is greatest in complex technology industries where

innovation is cumulative, building on component innovations from di¤erent �rms (Hall and Ziedo-

nis, 2001; Ziedonis, 2003a, 2003b). In such industries, it is a widely held view that patenting

activity creates a �thicket�of fragmented property rights that impedes R&D activity by constrain-

ing the ability of �rms to operate without extensive licensing of complementary technologies. This

position was �rst enunciated by Heller and Eisenberg (1998), who labelled it the �problem of the
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anti-commons.�1 By increasing the transaction costs of R&D, patent thickets provide an incentive

for �rms to patent defensively. In e¤ect, this argument implies that patenting creates a negative

externality on other �rms: by increasing the �rm�s bargaining power in the form of more �chits

to trade�in patent disputes, patenting by one �rm raises the cost to other �rms of protecting or

appropriating the rents from their innovations. Some authors have claimed that this creates a pris-

oner�s dilemma which can lead to excessive patenting in complex technology industries, including

semiconductors and software (Bessen and Maskin, 2000).

Strategic patenting encompasses two conceptually distinct issues, which have not always been

sharply distinguished in the literature. The �rst involves the link between patent portfolio size and

bargaining power. Having a larger patent portfolio puts a �rm in a better position to bargain with

other �rms when patent disputes arise. More �patent chits�mean greater bargaining power and

thus more favourable outcomes in the resolution of patent disputes. The second aspect involves

the link between transaction costs and the number of potential disputants. When a �rm faces

many �rms with whom patent disputes may arise, transaction costs rise. Moreover, since disputes

are normally resolved bilaterally (not collectively), having to deal with many disputants makes

bargaining failures more likely and creates the �complements problem��value maximisation requires

coordinated resolution which is ignored by independent claimants (Shapiro, 2001).

Despite widespread concern over the issue, the econometric evidence on the e¤ects of patent

thickets is limited. The two leading empirical studies are Hall and Ziedonis (2001) and Ziedonis

(2003a), both of which focus on the semiconductor industry. The Hall and Ziedonis study shows

that patenting rose sharply in the 1990�s (after controlling for R&D and other factors), especially

for capital intensive semiconductor �rms. While indirect, this evidence is consistent with defensive

patenting and patent thickets, since the danger of ex post holdup would be greater for such �rms.

Ziedonis (2003b) tests the hypothesis more directly by examining the relationship between �rm-

level patenting and a measure of the fragmentation of patent rights. She �nds that patenting is

higher (in the cross section of �rms) when �rms face greater fragmentation (lower concentration)

1For opposing views on the dangers of patent thickets in software, see Lessig (2001) and Mann (2005). Merges
(1996, 1999) has been a leading voice arguing that �rms �nd ways to contract around patent thickets. Walsh, Arora
and Cohen (2003) and Walsh, Cho and Cohen (2005) present supporting survey evidence in the context of biomedical
research activity.
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of patent rights among rival �rms. Both of these papers focus exclusively on the impact of patent

thickets on patenting behaviour. The impact of patent thickets on the R&D decision and the market

valuation of �rms remains unexplored. In addition, there is a need for a formal analytical model

that generates testable predictions about the impact of strategic patenting �both patent portfolio

size and the fragmentation of patent rights.2

This paper studies the impact of strategic patenting by technology rivals on the R&D spending,

patenting and market value of �rms in the computer software industry. Like semiconductors,

software is a classic example of a complex technology in which cumulative innovation plays a

central role. In this paper we incorporate both aspects of strategic patenting �portfolio size to

capture the bargaining power, and fragmentation of patent rights to capture the transaction costs of

enforcing patent rights. We develop a model that allows us identify the two negative externalities

from patenting, as well as the positive technology spillovers from R&D. All three externalities

are related to the �rm�s proximity to other �rms in technology space. We measure technology

proximity using information on the distribution of the citations contained in a �rm�s patents to

di¤erent technology classes. In the empirical speci�cation of the model, we follow the approach

developed in Bloom, Schankerman and Van Reenen (2005), using multiple indicators of performance

(market value, patents and R&D) in order to help identify the three types of externalities in which

we are interested.

Using panel data on �software �rms� in the U.S. during 1980-99, we �nd evidence of both

strategic patenting and R&D spillovers. There are three key �ndings. First, greater patenting

activity by technology rivals signi�cantly reduces the �rm�s market value, patenting and R&D. We

interpret this �nding as indicating the importance of bargaining power in resolving patent disputes.

Second, we �nd that higher concentration (less fragmentation) of patent rights �which corresponds

to lower transaction costs �is associated with higher market value, but lower R&D and patenting

activity. The third �nding is that R&D spillovers signi�cantly increase patenting and market value,

controlling for the �rm�s stock of R&D. These three �ndings are all consistent with the predictions

of the model. Finally, we also �nd that there is a large �patent premium�in the stock market for

2While not speci�cally testing the patent thickets hypothesis, in an unpublished empirical paper Bessen and Hunt
(2003) argue that software patenting has actually reduced the level of R&D. This highly controversial paper has been
sharply criticised by Hahn and Wallsten (2003).
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these software �rms, controlling for the stock of R&D and other factors. Calculations suggest that

this patent premium accounts for about 20 percent of the private return to R&D for these software

�rms.

Before proceeding we want to emphasise that, in addition to technology (or knowledge) spillovers,

R&D can also create a product market rivalry or business stealing e¤ect.3 In a recent paper, Bloom,

Schankerman and Van Reenen (BSV, 2005) develop a methodology for distinguishing between tech-

nology spillovers and product market rivalry and apply it to a large panel of U.S. �rms. Their iden-

ti�cation strategy relies on two features: �rst, using distinct measures for distance between �rms

in the technology and product market spaces, and second, using multiple outcome measures that

are a¤ected by spillovers and product market rivalry (namely, R&D, patents and market value).

As pointed out above, the current paper follows BSV in exploiting these three outcome measures.

However, the objective of the current paper is very di¤erent in that we want to identify the e¤ects

of strategic patenting in the context of technology spillovers. To keep the framework tractable,

we do not incorporate product market rivalry into the model or the empirical analysis. In prin-

ciple, it should be possible to construct an emcompassing model that includes strategic product

market rivarly as well as strategic patenting e¤ects, but we do not do that here. On the empirical

side, the current paper focuses on software �rms (whereas the BSV paper studies a wide range

of manufacturing and non-manufacturing industries). If demand complementarities are especially

important in software, as many believe, then it may prove empirically di¢ cult to isolate product

market rivalry e¤ects in this industry, but that question is beyond the scope of this paper.

The paper is organised as follows. Section 2 presents the theoretical model (details are in

Appendix 1) and summarises the empirical predictions. In Sections 3 and 4 we describe the data

set and the construction of the strategic patenting and technology spillover variables. Section 5

presents the econometric speci�cation of the three equations in the model �market value, patenting

and R&D. The empirical results and their implications are discussed in Section 6.

3The earliest attempt to distinguish technology spillovers and product market rivalry is Ja¤e 1988. Branstetter
and Sakikabara (2002) study the issue in the context of research consortia. For a theoretical and empirical analysis
of these issues, see Bloom, Schankerman and Van Reenen (2005).
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2 Analytical Framework

A �rm (say, �rm 0) produces knowledge by investing in R&D, but it also may bene�t from tech-

nology spillovers from �rms that are close in technology space (technology rivals, denoted by �).

The knowledge production function is k0 = �(r0; r� ): Its technology rivals have a similar knowl-

edge production function, k� = �(r� ; r0): We assume that � is non-decreasing and concave in both

arguments. When a �rm makes its R&D decision, it recognises that it generates as well as receives

technology spillovers.

The �rm chooses the fraction of its knowledge that it protects by patenting (�patent propensity�).

We let � 2 (0; 1) denote the patent propensity and � � 1 denote patent e¤ectiveness, i.e., the

appropriation of rents from a given innovation if it patented relative to the rents if it is not patented.

Thus �� 1 represents the patent premium.

The �rm has a variable pro�t function de�ned over prices of variable inputs, w, and the stock

of knowledge, k0, which we denote by �(�0k0; w) where �0 = �0�+ (1� �0): The pro�t function is

increasing and concave in k0, and decreasing and convex in w: For notational simplicity we suppress

the input prices in what follows.

Patenting is costly. The unit cost of a patent includes a �xed administrative fee denoted by

f , and a patent enforcement cost denoted by H: Enforcement costs depend on two features of the

patenting environment in which the �rm operates. The �rst is the degree to which patent rights

are held by a relatively small number of other �rms rather than being widely dispersed. When

patent rights are more concentrated, it is less costly for a patentee to contract with other relevant

patentholders to conduct its R&D activity, which is referred to by Shapiro (2001) as �navigating

the patent thicket.� The second determinant of enforcement costs is the portfolio size of the �rm

relative to �rms with whom it needs to negotiate in order to avoid, or resolve, disputes. Having

a larger relative portfolio size puts the �rm in a better bargaining position, and facilitates patent

trading (cross licensing) arrangements to resolve disputes without resorting to expensive litigation.

To capture these ideas, we assume that the enforcement cost for �rm 0 is a function of two

factors: (1) the number of patents held by �rm 0 relative to �rm � ; denoted by x = �0k0
��k�

(the

bargaining power e¤ect), and (2) the degree of concentration of patents held by �rms in similar
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technology areas, denoted by c (the patent thicket e¤ect).4 Formally, we let H = H(x; c), where it

is assumed that Hx � 0; Hxx � 0; Hc � 0; Hxc 7 0; and H(0; 0) > 0: Relative portfolio size, x; is

endogenous since the �rm chooses its patent propensity �0: We treat the concentration of patents

by �rms in similar technology areas, c; as exogenous to the �rm.

By assuming that bargaining power depends on the relative (rather than absolute) number of

patents between a �rm and its technology neighbors, we highlight the idea that it might be mutually

bene�cial for �rms to reduce their propensities to patent, putting aside the lower level of innovation

rents if there was a patent premium. In other words, there may be a prisoner�s dilemma aspect to

strategic patenting. In the empirical section, we will use the parameter estimates to test whether

this prisoner�s dilemma actually operates for the software �rms in our sample.

The direct e¤ect of higher concentration of patents among a �rm�s technology rivals is to reduce

its enforcement costs � that is, Hc � 0. However, there is also an indirect e¤ect because higher

concentration may change the marginal value of accumulating patents to reduce enforcement costs,

which is j Hx j. This indirect e¤ect can be either positive or negative � it depends on the sign

of Hxc: We �nd it most plausible that higher concentration of patent rights reduces the marginal

value of accumulating patent portfolios �Hxc > 0 �because in such cases �rms are more likely to

have other ways of �tacit cooperation�apart from explicit patent trading arrangements. We will

investigate the theoretical implications of this hypothesis below and test it in the empirical section.

Firm 0 sets (r0; �0) to maximise the value of the �rm:

max
r0;�0

V = �(�0�(r0; r� ))� r0 � ff�0 +H(x; c)g�(r0; r� ) (1)

Recall that k0 = �(r0; r� ) also enters the function H(x; c) since x =
�0k0
��k�

: In this speci�cation we

assume that the enforcement cost applies both to patented and unpatented innovations. The idea is

that if a �rm has more trading chits in the form of patents, it can also more easily resolve disputes

over unpatented innovations.5

4Patent concentration is the obverse of the fragmentation of patent rights discussed in the literature on patent
thickets. In the next section we discuss the measurement of this variable.

5An alternative speci�cation is to assume that the enforcement cost is higher for patented innovations. We can
do this by expressing unit cost as f�0 + f(1 + �)�0 + (1 � �0)gH; where � > 0. The qualitative predictions in this
speci�cation are similar to those in the text.

7



The �rst order conditions are

Vr0 = �01f�0�0 � f�0 �Hg � (
�0k0
��k�

)(k��
0
1 � k0��2)Hx � 1 = 0 (2)

V�0 = �01(�� 1)�0 + fk0 + k0(
k0
��k�

)Hx = 0 (3)

where the superscripts on � refer to the �rm and subscripts 1 and 2 denote partial derivatives

with respect to the di¤erent arguments. The �rst term in equation (2) is the marginal bene�t of

R&D net of patent enforcement costs. The second term is the reduction in marginal enforcement

cost from increasing the stock of knowledge, holding the patent propensity constant. The sum of

these bene�ts must equal the marginal cost of R&D. In equation (3), the �rm�s choice of patent

propensity trades o¤ the administrative cost of patenting against the increased appropriation of

innovation rent due to the patent premium and the reduction in patent enforcement costs due to

having a larger patent portfolio.

We analyse the comparative statics of the best response functions of �rm 0; treating the R&D

and patenting decisions of rivals � as given (Appendix for details). Table 1 summarises the model�s

predictions about the impact of the patent propensity of rivals (�� , capturing bargaining power),

concentration of patent rights (c; capturing patent thickets), and technology spillovers (r� ). All

three e¤ects have testable implications in the R&D, patents and market value equations. Thus

using multiple outcomes provides a stronger test of the model than we would have from any single

indicator.

[Table 1 about here]

We can summarize the model�s predictions as follows. First, a higher patent propensity by

technology rivals (given their R&D spending) means less bargaining power in patent disputes for a

�rm. This lowers optimal R&D, patents and market value.6 Second, greater concentration of patent

6The result that more patenting by rivals reduces a �rm�s own patenting (conditional on its R&D) may be
surprising. If other �rms have more patents, then it may seem that the incentive to accumulate countervailing
bargaining chits would be higher. In the model, what matters is how patenting by rivals a¤ects the �rm�s marginal
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rights among technology rivals means lower transaction costs for a �rm in licensing complementary

patents and resolving patent disputes. This increases market value unambiguously. The direct

e¤ect of higher concentration on R&D and patenting is also to raise R&D and patenting. However,

the indirect e¤ect can go either way, depending on the sign of Hxc. If concentration reduces the

marginal value of accumulating patents in enforcing patent rights (Hxc > 0), then the direct and

indirect e¤ects work in opposite directions and the impact on R&D and patents is ambiguous.

Conversely, if Hxc < 0 then concentration must raise R&D and patenting. Therefore, if we �nd

that concentration has a negative impact on R&D and patenting, we can infer that Hxc > 0: Third,

technology spillovers increase patents and market value, but the e¤ect on R&D depends on how

spillovers a¤ect the marginal product of own-R&D.

3 Data

Our data set covers the period 1976-1999 and is constructed from three sources. We use Compustat

data on public �rms for information on R&D and components of Tobin�s Q: value of equities, debt

and physical assets. We use a variety of patent data from the U.S. Patent and Technology O¢ ce,

including the number of patents granted (dated by year of application), the number of backward

and forward citations, U.S. patent classi�cations and the identity of the assignee.7 In addition to

using patent counts in the patent equation, we use these data to construct technological proximity

and technological opportunity variables.

We focus on �rms whose patents are predominantly in software. Unfortunately, there is no

patent class simply called �software� so we need a procedure that can sensibly identify software

patents.8 One approach is to do a keyword search on the USPTO database (this is the approach

return to patent accumulation in terms of reducing patent enforcement costs. This depends on the sign of the
cross-derivative H�0�� : Recall the enforcement cost H(x; c) where x =

�0k0
��k�

. It follows that sign H�0�� = sign
(��0k0Hxx � Hx): Since Hx < 0; we obtain H�0�� > 0 provided that Hxx is �small�(diminishing returns to patent
accumulation for enforcement are not too strong). Thus greater patenting by rivals reduces the incentive for a �rm to
accumulate patents (recall that Hx < 0). In the appendix on comparative statics, we assume this holds (the resulting
predictions are veri�ed in the empirical section).

7Following the literature, we date patents by their application year because that is more closely tied to measures
of R&D and �rm value.

8For good discussions of di¤erent approaches to de�ning software patents, see Layne-Farrar (2005) and Hall and
MacGarvie (2006).
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adopted by Bessen and Hunt, 2003). This can be di¢ cult because many patent applications may

contain the word software or other related words but not be primarily about software itself. An

arduous alternative is to read each of the (thousands of) potential candidate patents and make a

subjective determination on each one (Allison and Tiller, 2003). A third approach is to base the

de�nition on a speci�c set of patent classes �e.g., Graham and Mowery (2003) use the classes most

common to well-known software �rms such as Microsoft or Adobe. We adopt a related approach:

we de�ne a software patent as any patent classi�ed by the Patent O¢ ce in International Patent

Classi�cation G06F (�Electric Digital Data Processing�). This single class accounts for about half

of all patents issued to the largest 100 packaged software companies, as tabulated by the trade

publication Softletter (1998).

Software (G06F) patents are taken out by �rms in many diverse industries (Schankerman and

Trajtenberg, 2006). Moreover, even �pure�software �rms are likely to patent outside G06F, and

may have genuinely non-software patents. The �rm with the highest specialisation in G06F patents

for large �rms in our dataset is Microsoft �yet even it has only 71 percent of its patents classi�ed in

this category. Therefore, we de�ne a software �rm as one which has at least 45 percent of its patents

classi�ed as software (G06F) patents, after normalization by Microsoft�s G06F percentage. There

are 149 publicly traded software �rms that satisfy this criterion and have R&D and market value

data. Of these, 121 �rms have complete data for at least two consecutive years, and these constitute

the �nal sample. We use all the patents held by a �rm, both software and non-software, because

R&D and market value refer to the entire �rm. The 121 publicly traded �rms in the �nal sample

cover the period 1980-99 and include 29,363 patents of which 12,507 are software patents. This

sample accounts for about 39 percent of all G06F patents issued to public �rms during this period.9

About two-thirds of the �rms (82 of 121) are classi�ed in SIC 7372 (�prepackaged software�), the

remainder falling into various computer, communications and semi-conductor classes. Appendix 2

provides a list of the �rms in our sample, together with their primary industry (SIC) classi�cation.

9 In the full Compustat data set of public �rms, there are 3441 �rms holding 31,950 G06F patents. More than
a third of these patents (12,612) are held by �ve large �rms: IBM, Hitachi, Hewlett Packard, Motorola, and Texas
Instruments. Of these �ve �rms, only IBM satis�es the software patent threshold we use (46 percent of its patents are
in the G06F class); the others are well below a 30 percent cuto¤. Excluding IBM dramatically reduces the percentage
of G06F patents captured by the sample, from 39 percent to only 18 percent. We check robustness of our empirical
results by rerunning all of the econometric experiments and computations using a 50 percent threshold to de�ne the
sample, which excludes IBM. The results were very similar to those reported in Section 6.

10



Finally, we must be careful to identify all patents held by each parent �rm for whom we have

R&D and value information. A parent �rm may register a patent in its own name or in the name

of one of its subsidiaries. The fact that subsidiaries can be bought and sold makes matching the

patent to data from the parent �rm more di¢ cult. Hall, Ja¤e, Trajtenberg (2005) matched patent

assignees to the parent �rm for patents for the period 1963-99 using 1989 ownership patterns. The

resulting database is known as the �NBER patent database�since it resides at NBER. However,

for the group of software �rms in which we are interested (some of which were established in the

1990�s), the 1989 match is antiquated. Therefore, for all �rms that recorded at least one software

patent between 1980 and 1999, we performed a new match of that �rm to its parent and all its

subsidiaries, based on 1999 ownership patterns. We then linked all patents of the subsidiaries to

the parent company to produce a consolidated account of patent activity of our sample �rms. For

every assignee in the NBER patent database that had at least one G06F patent assigned to it, we

checked whether the assignee was a parent �rm or a subsidiary to some parent �rm in 1999. If

the �rm was a subsidiary, we treated all patents of that subsidiary to be the patents of the parent

�rm. If the assignee was a parent �rm, then we included it in our dataset if three conditions are

met: the �rm is publicly traded, we have Compustat data for it, and the �rm meets the 45%

G06F-to-total-patents cuto¤, which is our lower limit for calling it a �software �rm�. Appendix 2

provides details on the how the matching was done.

Table 2 presents descriptive statistics for the sample.

[Table 2 about here]

A few points are worth noting. First, the sample �rms are large and R&D intensive. The mean

market value is $2.46 billion but the distribution is sharply skewed (median = $97 million). The

mean R&D stock is nearly six times as large as the physical capital stock. Second, Tobin�s Q is

very high, as compared with other industries. This mainly re�ects the fact that software �rms use

relatively little physical capital as compared to R&D, but also the over-valuation in the high tech

bubble of the 1990s. Third, there is substantial variation in the patent propensity of technology

rivals (Patprop). It is also worth noting (not reported in the table) that Patprop rose sharply

after 1994, after several court decisions signi�cantly weakened the copyright protection previously
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available to software inventions.10 The mean Patprop rose from 0.028 in the period 1980-94 to

0.133 for 1995-99. Finally, the 4-�rm citation concentration measure (Citecon) indicates that

patent citations are not dramatically fragmented �the sample mean is 0.47, which indicates that

�rms cite about eight other �rms, on average. This concentration index does not di¤er between

the pre- and post-1994 periods.

4 Measuring strategic patenting and technology spillovers

While our sample cover only software �rms, these �rms have patenting activity in other technology

�elds as well. Thus we need to take into account the potential technology spillovers from R&D done

by these �rms in all of their areas of activity. The standard approach (Ja¤e, 1986) is to measure

technological proximity between �rms as the uncentered correlation coe¢ cient between their patent

distributions across patent classes, and then to measure spillovers as a weighted sum of R&D by

other �rms using this proximity measure. We follow a similar approach except that, instead of

using the distribution of patenting by each �rm, we use the distribution of a �rm�s backward patent

citations across di¤erent patent classes to measure technological proximity. The backward patent

citations of a �rm i as of period t include all citations to previous patents (except a �rm�s own

patents) listed in �rm i�s patents up to year t. Since the citations in a patent re�ect the preceding

patents that an inventor is directly drawing on, this approach has strong appeal. To our knowledge

this is the �rst time the citations-based proximity measure has been implemented.

Formally, let Wi = fwikgKk=1 be the distribution of �rm i0s backward citations across patent

classes �i.e., wik is the share of �rm i0s total citations to preceding patents that fall into patent

class k: Then technological proximity between �rm i and j is

� ij =
Wi

0Wj

(W 0
iWi)

1
2 (W 0

jWj)
1
2

Self-cites are excluded. As a robustness check, we also constructed the standard Ja¤e measure based

on the distribution of patents. The cross-�rm correlation between the two technology proximity

10See Computer Associates Int�l Inc. v. Altai Inc. 23 USPQ.2d 1241 (2nd Cir. 1992), Apple Computer Inc. v.
Microsoft Corp. 35 F. 3d 1435 (9th Cir. 1994), and Lotus Development Corp v. Borland Int�l Inc., 49 F. 3d 807 (1st
Cir. 1995.) For details on the latter, see Lerner and Zhu (2005).
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measures is 0.69 (the econometric results are similar to those we report in Section 6 when we use

the patent-based measure).

We measure technology spillovers as the weighted sum of other �rms�R&D stock, Gjt, using

these technology proximity weights:

Spilloverit =
X
j 6=i

� ijGjt (4)

The R&D stock is constructed by initialising the stock at the beginning of the sample period and

using a 15 percent depreciation rate.11

To capture the patent portfolio e¤ect of strategic patenting, we compute the weighted average

of the �patent propensity�(the patent-R&D ratio) of other �rms that are rivals in technology space.

The idea is that, given the stock of own R&D and technology spillovers, �rms facing technology

rivals with higher patent propensities will �nd themselves at a disadvantage in bargaining over

patent disputes. Let Zjt =
PSjt
Gjt

denote the patent propensity of �rm j;where PS is the stock of

patents de�ned in the same way as the R&D stock, G: The patent propensity measure we use is12

Patpropit =
X
j 6=i

� ijP
j 6=i � ij

Zjt (5)

To capture the patent thicket e¤ect of strategic patenting, we want a measure of how many

rivals a �rm must negotiate with in order to preserve freedom of operation in its R&D activity. For

this purpose, we use a concentration index of a �rm�s patent citations �that is, the degree to which

patents cited by �rm i (called �backward citations�) are held by relatively few �rms. The idea is

that when a �rm�s patent citations are more concentrated among a few technology rivals, that �rm

will have lower transaction costs in dealing with any patent disputes that may arise. To construct

this concentration index of patent citations, we �rst identify the �rm which owns (patent assignee)

11This is conventional procedure (see Hall, Ja¤e, and Trajtenberg, 2005). Initial stock is de�ned as the intial sample
value of R&D divided by the sum of the depreciation rate and the average growth in R&D in the �rst three years of
the sample. We experimented with variations of this method and other depreciation rates with similar results.
12We also experimented with an alternative measure that does not normalise the weights. Empirical results are

similar to those reported in the text. However, the non-normalised measure results in a higher Patprop when there
are more technological competitors, in addition to when the average competitor patent propensity is higher. As such,
this measure blurs the distinction between the e¤ects of patent propensity and concentration.
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each patent that �rm i cites in any of the patents it holds as of year t: From this information, we

compute the share of �rm i0s backward citations that is accounted for by each of its cited �rms.

Self-cites are excluded. We then compute the 4-�rm concentration measure for each �rm in each

year (this varies over time as patents are accumulated).

Formally, let sijt (i 6= j) denote the share of the total number of citations by �rm i that refer

to patents held by �rm j; cumulated up to year t and arranged in descending order. The 4-�rm

concentration measure is

Citeconit =
4X
j=1

sijt (6)

We also experimented with two alternative measures �an 8-�rm and a Her�ndahl index of concen-

tration. The econometric results are similar to those reported in Section 6.

5 Econometric Speci�cation

5.1 Market Value (Tobin�s-Q) Equation

In the empirical speci�cation, we follow the approach of Bloom, Schankerman and Van Reenen

(2005) in using three outcome measures �market value, patents and R&D. In this section of the

paper we discuss the econometric speci�cation of these equations.

We adopt the representation of the market value function originally proposed by Griliches

(1981):

ln

�
V

A

�
it

= ln�it + ln

�
1 + v

�
G

A

�
it

�
(7)

where V is the market value of the �rm, A is the stock of tangible assets, G is the stock of R&D, and

the superscript v indicates that the parameter is for the market value equation.13 The parameter

�it is the shadow price of physical capital, and v is the ratio of the shadow price of R&D capital

to the shadow price of physical capital. The deviation of V=A (�Tobin�s average Q�) from unity

depends on the ratio of the R&D stock to the tangible capital stock (G=A) and the determinants

13For a good discussion of issues arising in such speci�cations, see Hall, Ja¤e and Trajtenberg (2005).
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of �it. We parameterize the latter as14

ln�it = �v1 lnPatpropit�1 + �
v
2 lnCiteconit�1 + �

v
3 lnSpilloverit�1

+XV 0
it�1�

v
4 + �

v
I + �

v
t + �

v
it (8)

where �vI is a full set of four-digit industry dummies, �
v
t a full set of time dummies, X

v
it denotes

other control variables such as industry demand and technological opportunity (explained below),

and �vit is an idiosyncratic error term.

The speci�cation of the value function is nonlinear in the parameter v. If (G=A) were �small,�

we could approximate ln
�
1 + v

�
G
A

�
it

�
by
�
G
A

�
it
; but this will not be adequate for many high tech

�rms (Hall and Oriani, 2004). Therefore, we approximate ln
�
1 + v

�
G
A

�
it

�
by a higher-order series

expansion, which we denote by �(G=A): We found that a �fth order polynomial is satisfactory.

Taking these elements together, our basic empirical market value equation is:

ln

�
V

A

�
it

= �((G=A)it�1) + �
v
1 lnPatpropit�1 + �

v
2 lnCiteconit�1 + �

v
3 lnSpilloverit�1 (9)

+Xv0
it�1�

v
4 + �

v
I + �

v
t + �

v
it

We want to emphasise two points about this speci�cation. The �rst point is that the interpre-

tation of the Spillover variable can be di¢ cult because of the re�ection problem (Manski, 1991).

Any variable that shifts the incentive for a �rm to perform R&D and thus its market value will

also be likely to a¤ect other �rms that operate in similar technology �elds. Thus a positive corre-

lation between R&D by technology rivals and the market value (or R&D decisions) of a �rm can

arise either from genuine technology spillovers or from common, unobserved demand or technology

opportunity shocks. Our defences against this problem are: (1) we include controls for demand

and technological opportunity (discussed below); (2) the spillover variable is based on stocks of

R&D, which should mitigate correlation with contemporaneous shocks; (3) we lag the independent

14We introduce the spillover and strategic patenting variables in the simplest, additive speci�cation. An alternative
is to allow these variables to a¤ect market value only through their impact on the R&D stock. While appealing, this
interactive speci�cation is more demanding on the data. Our approach can be thought of as an approximation to a
more complicated speci�cation.
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variables, which should also reduce the problem; and (4) we are particularly interested in testing

the strategic patenting coe¢ cients �v1 and �
v
2; which should be less directly a¤ected by the re�ection

problem. These remarks also apply to the patent and R&D equations below.

We control for the e¤ects of demand and technological opportunity in three di¤erent ways. First,

we include a full set of year dummies in all speci�cations. Second, we include two lag values of

�rm sales to pick up remaining demand shocks.15 Finally, we construct a measure of technological

opportunity as the total patenting in a technology class weighted by �rm i�s closeness to that class,

as measured by its backward citations. The idea is that �rms cite patents similar in nature to its

own, and if there is a large amount of patenting in areas it cites, it is an active technological �eld.

Let Wi = fwikgKk=1 be the distribution of �rm i0s backward citations across patent classes (wik

is the share of �rm i0s total patent citations to preceding patents that fall in class k), and PSjkt

be the patent stock of �rm j in class k at time t: We de�ne technological opportunity for �rm i

as Techoppit =
P
k

P
j 6=iwikPSjkt: Two lagged values of Techopp are included in the regression

equations.16

The second point about the speci�cation involves �rm �xed e¤ects. Since the software �rms in

our sample are classi�ed into di¤erent SIC industries, we include four-digit industry dummies to pick

up unobserved heterogeneity. Ideally we would want to include �xed �rm e¤ects in the speci�cation,

but when did so we found that it very hard to pin down any of the coe¢ cients of interest. In a

recent paper, Hall, Ja¤e and Trajtenberg (2005) reach a similar conclusion. The reason is that going

to the �within-�rm�dimension means that we are trying to explain variation over time in market

value (around the �rm mean), which can be very noisy. In a �rst-di¤erenced speci�cation, the

variation over time would be very close to unpredictable, under the e¢ cient markets hypothesis.17

The �within-�rm�estimator is not equivalent to �rst-di¤erences, so it is possible in some samples

to exploit �xed �rm e¤ects successfully (this depends on the time series properties of the data).

Using a much broader sample of �rms, Bloom, Schankerman and Van Reenen (2005) are able to

15We also constructed an industry sales measure for each �rm, equal to a weighted average of the sales in each of
the four-digit SIC classes in which the �rm operates. The weights are constructed from Compustat information on
the distribution of �rm sales across SIC classes during the period 1993-2001. Results using this control are similar.
16We also experimented with measures using citations rather than patents, and �ows rather than stock measures.

Empirical results were similar to those reported in the text.
17Strictly speaking, under the (weak form) e¢ cient market hypothesis, the market value in period t should not be

predictable with information publicly available at t� 1:
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estimate a market value equation with �xed �rm e¤ects, but in the current study we are not able

to do so.

Following Hall, Ja¤e and Trajtenberg (2005), we also estimate an extended version of the model

that allows for the stock market to value the patents held by a �rm, above and beyond its valuation

of the �rm�s R&D. There are basically two reasons such a patent premium may be present. First,

patenting may enhance the ability of the �rm to appropriate rents from any given innovation

outputs, relative to alternative methods of protection. Second, patents contain (noisy) information

about innovation output and as such may contain additional information about the expected pro�t

stream of the �rm, above and beyond measures of R&D input.18 It is important to include the

stock of R&D in the estimating equation, however, since some innovations may not be patented.

The extended speci�cation of the model treats the stock of patents, denoted by PS; in the same

way as the stock of R&D:

ln

�
V

A

�
it

= ln�it + ln

�
1 + v

�
G

A

�
it

+ �v
�
PS

A

�
it

�

where we expect �v > 0 if there is a patent premium in the stock market. For estimation we

approximate this term by adding a (�fth order) polynomial 	(PS=A) to equation (10).19

5.2 Patent Equation

Because patents are counts, we use a version of the negative binomial count data model that allows

for �xed e¤ects.20 The �rst moment of the estimator is

E(PitjXit) = expf�p1 lnPatpropit�1 + �
p
2 lnCiteconit�1 + �

p
3 lnSpilloverit�1

+Xp0
it �

p
3 + �

p
I + �

p
t g (10)

18A related interpretation is worth noting. Given the costs involved, we expect patents to be taken out on the more
valuable innovations, other things equal. Thus the patent premium may re�ect the additonal market value associated
with above-average quality R&D.
19We do not include an additional polynomial in the interaction term G

A
PS
A
because it is too demanding on the

available data.
20See Blundell, Gri¢ th and Van Reenen (1999) and Hausman, Hall and Griliches (1984) for discussions of count

data models of innovation.
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Writing this �rst moment as E(PitjXit) = exp(x0it�
p), for shorthand, the variance is V (Pit) =

exp(x0it�
p) + � exp(2x0it�

p) where the parameter � is a measure of over-dispersion. The Poisson

model restricts the mean to equal the variance, which corresponds to the special case � = 0. The

Negative Binomial estimator relaxes this assumption (empirically, overdispersion is important in

our data). We estimate the model by maximum likelihood. We allow for unobserved �rm hetero-

geneity using the approach developed by Blundell, Gri¢ th and Windmeijer (2002) and Blundell,

Gri¢ th and Van Reenen (2003) This uses pre-sample information on patents to control for het-

erogeneity. The alternative approach of Hausman, Hall and Griliches (1984), using conditional

maximum likelihood, is only consistent for strictly exogenous regressors, which does not hold for

our speci�cation.

5.3 R&D Equation

We write the R&D equation as:

lnRit = 'r lnRit�1 + �
r
1 lnPatpropit�1 + �

r
2 lnCiteconit�1

+�r3 lnSpilloverit�1 +X
r0
it�1�

r
3 + �

r
i + �

r
t + �

r
it (11)

where �ri is a full set of �rm dummies, �rt a full set of time dummies, X
r
it denotes other control

variables such as industry demand, and �rit is an idiosyncratic error term. In the R&D equation

we include �xed �rm e¤ects to capture unobserved heterogeneity.21 This speci�cation allows for

dynamics in R&D investment by including a lagged dependent variable. As in the market value

equation, unobserved, transitory shocks to demand are captured by the time dummies and a dis-

tributed lag of �rm sales, and �rm level variables on the right hand side of the R&D equation are

lagged by one period to mitigate endogeneity problems.

21The time dimension of the company panel is relatively long, so the �within groups bias�on weakly endogenous
variables (Nickell, 1981) is likely to be small. The average number of continuous time series observations is 9.1
(median is 7.0).
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6 Empirical Results

6.1 Market Value Equation

[Table 3 about here]

Table 3 presents the parameter estimates for the market value equation. The basic speci�cation

in column 1 strongly supports the predictions of the model. First, not surprisingly we �nd that

a �rm�s (lagged) R&D stock is strongly related to its market value. Using the coe¢ cients on the

polynomial in G=A; we �nd that a 10 percent increase in the stock of R&D is associated with a 8.4

percent increase in value. Evaluated at the sample means, this implies that an extra $1 of R&D

generates an increase of 96 cents in market value.22 This estimate for software �rms is very similar

to previous studies that do not focus on software �e.g., Hall, Ja¤e & Trajtenberg (2005) estimate

a marginal return to R&D of 86 cents. However, as we show below, this �gure underestimates the

full marginal return to R&D for sotftware �rms because there is a large indirect return in the form

of a patent premium on innovation output.

The second �nding is that R&D by technology-related rivals generates positive spillovers that

are valued by the stock market. The coe¢ cient on Spillover is positive and statistically signi�cant,

implying that a 10 percent increase in the pool of technology spillovers is associated with a 1.7

percent increase in a �rm�s market value. In absolute terms, the coe¢ cient implies that $1 of

additional Spillover is associated with an increase in market value of 13 cents. In other words, an

extra dollar of technology spillover is worth (in terms of market value) about 13 percent as much as

a dollar of own R&D for these software �rms. This estimate of the impact of technology spillovers

(relative to own R&D) is larger than previous estimates that are based on samples covering a

range of di¤erent industries (e.g., Hall, Ja¤e and Trajtenberg, 2005; Bloom, Schankerman and

Van Reenen, 2005), which is consistent with the widely-held view that cumulative innovation is

particularly important in software.

We now turn to the e¤ect of the strategic patenting variables. The third �nding is that �rms

which face technological rivals with higher patent propensities have lower market value. The coef-

22We compute the elasticity of market value with respect to R&D stock as eV G = G
A
�0(G

A
) where �0 is the derivative

of the polynomial �. The marginal value of R&D is @V
@G

= V
A
�0(G

A
):
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�cient on Patprop is negative and statistically signi�cant, implying that a 10 percent increase in

rivals�patent propensity reduces a �rm�s value by 1.3 percent.

The fourth �nding is that �rms whose patent citations are more concentrated in fewer technology

rivals have systematically higher market value. This �nding is consistent with the hypothesis

that higher concentration of patent rights should reduce the transactions costs of settling patent

disputes. The coe¢ cient on Citecon is statistically signi�cant and implies that a �ve percentage

point increase in the four-�rm citation concentration ratio (this is a 10 percent increase at the

sample mean) would raise market value by 1.7 percent. These two �ndings strongly support the

model�s predictions about strategic patenting � there is evidence both that patent portfolio size

(bargaining power) and transaction costs associated with the fragmentation of property rights a¤ect

the market value of �rm.

Finally, the coe¢ cients on the �rm sales and technological opportunity variables show that mar-

ket value is positively related to the growth in demand and the growth in technological opportunity,

as measured by aggregate patenting activity in the patent classes in which the �rm operates. This

is con�rmed by noting that the estimated coe¢ cients on the �rst and second lags of �rm sales are

nearly equal in magnitude but opposite in sign. The same holds for the coe¢ cients on the �rst and

second lags of the Techopp variable.

The basic speci�cation relates market value to the �rm�s stock of R&D, as a proxy for knowl-

edge. Since �rms typically do not patent all of their innovation output, R&D input is more a

more encompassing measure of knowledge than simply using patents. However, as Hall, Ja¤e and

Trajtenberg (2005) point out, there may also be a patent premium in the stock market for those

innovations that the �rm chooses to patent �i.e., their private value would be less if not patented.

To test this for software �rms, we add to the empirical speci�cation a (�fth-order) polynomial

in the ratio of the patent stock to stock of �xed assets (denoted by PS=A), analogously to our

treatment of R&D (column 2). We �nd clear evidence of a patent premium. Using the estimated

coe¢ cients on the polynomial in PS=A (evaluating at the sample means), we compute an elasticity

of market value with respect to the stock of patents, denoted by eV;PS , at 0.31 � a 10 percent

increase in the patent stock is associated with a 3.1 percent rise in market value, holding the stock
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of R&D constant.23 In this extended speci�cation, we also estimate an elasticity of market value

with respect to the R&D stock, denoted by eV G; at 0.71. Taken together, these �ndings imply

constant returns to scale in the value equation �a 10 percent increase in both the stocks of R&D

and patents is associated with about a 10.2 percent increase in market value. Nonetheless, allowing

for a patent premium in the speci�cation of the market value equation has almost no e¤ect on

the other coe¢ cients in the model �in particular, the coe¢ cients on the technology spillovers and

strategic patenting variables remain virtually unchanged.

As we indicated earlier, the full return to an increase in R&D includes both the direct market

valuation of R&D plus the indirect return through the patent premium. Formally, we can express

the total elasticity of market value with respect to R&D stock as EV G = eV G + eV;PS ePS;G: We

use the parameter estimates on the polynomial terms in G=A and PS=A (column 2 in Table 3) to

compute the elasticities eV G and eV;PS : To get the elasticity of patents with respect to R&D, ePS;G,

we use the coe¢ cients estimated in the patent equation which are presented later (column 2 in Table

4). This computation yields the following decomposition: EV G = 0:71 + 0:31 x 0:60 = 0:90. That

is, once we account for both the direct impact of R&D and the e¤ect through the patent premium, a

10 percent increase in the stock of R&D raises market value by 9.0 percent. From this we conclude

that the patent premium accounts for 21 percent of the total elasticity e¤ect of R&D (= 0:31 x

0:60=0:90).24 This �nding shows that patents are important as a means of appropriating innovation

rents in software.

One other interesting implication of the empirical results is worth noting. We found patenting

by its technology rivals reduces a �rm�s market value (the coe¢ cient on Patprop is negative). As

we pointed out in the introduction, however, some researchers (e.g., Bessen and Maskin, 2000) have

suggested that patent regimes in complex technology industries may create a prisoner�s dilemma

in which �rms could be better o¤ by collectively reducing their levels of patenting. In our context,

23We compute the elasticity of market value with respect to patent stock as eV;PS = PS
A
	0(PS

A
) where 	0 is the

derivative of the polynomial 	. It is interesting to note that Hall and MacGarvie (2006), using a very di¤erent sample
(covering �rms doing any software patenting, rather than �software��rms as we de�ne them) estimate an elasticity
of market value with respect to patents per R&D dollar of 0.3, which is very similar to our �nding.
24We can also do the decomposition in terms of the marginal return to R&D (instead of elasticities). Note that

dV
dG

= @V
@G

+ @V
@PS

@P
@G

@PS
@P

; where the last three terms constitute the patent premium. We compute the �rst three
derivatives from the estimated coe¢ cients of the polynomial � and 	: Using the relationship between the stock and
�ow of patents, we get @PS

@P
= 1

r+�
where r and � are the real interest rate and depreciation rate (we set r = :05;

� = :15). We �nd that the patent premium accounts for 25 percent of the full marginal return to R&D.
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this hypothesis implies that a proportional increase in patenting by all �rms would reduce the

market value of the individual �rm, holding R&D for all �rms constant. In Table 3, this requires

that the sum of the coe¢ cient on Patprop and the elasticity on own patent stock (computed

from the polynomial in PS=A) should be negative. The parameter estimates do not support this

claim �using the estimates from column 2, we �nd that the sum of these elasticities is positive

(�0:12 + 0:31 = 0:19):

The scope of software patent protection was gradually increased, and that of software copyright

protection reduced, in a series of court decisions during the 1980s, culminating in two key decisions

in 1994 and 1995 (for case references, see note 10). These decisions made it increasingly desirable

for �rms to protect software algorithms using patents rather than by copyright as they had done

previously. As noted in the introduction, this led to a sharp increase in software patenting. We

want to investigate whether the changes in patent policy toward software raised the shadow price

on patents and R&D, or increased the importance of the strategic patenting variables. To examine

this, we re-estimated the market value equation separately for the pre-1994 and post-1994 periods

(columns 3 and 4 in Table 3).25

There is no evidence that the shadow price of R&D changed as a result of the change in patent

regime. We cannot reject the null hypothesis that the coe¢ cients on R&D are the same in both

periods (p-value = 0:20). However, we strongly reject the hypothesis that the coe¢ cients on

patents remained constant over the two periods (p-value < :01). Nonetheless, the elasticity of

market value with respect to the stock of patents, implied by the coe¢ cients, does not change

very much between periods � it is estimated at 0.50 in the 1980-94 period and 0.39 for 1995-99.

Similarly, the estimated marginal value of a patent is not sharply di¤erent between the periods �

$5.3 million versus $3.9 million. However, we �nd that the coe¢ cients on both strategic patenting

variables increased substantially in the post-1994 period. The point estimates of the Patprop and

Citecon coe¢ cients are not statistically di¤erent from zero in the earlier period, but in the later

period they are both larger (in absolute value) and statistically signi�cant.

25The are more observations in the second (shorter) sub-period because data are available for more �rms. However,
when we restrict the analysis to those �rms that also appear in the �rst sub-period, we get very similar results. This
point also applies the analysis of the patent equation in Section 6.2.
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In summary, we conclude that the change in patent regime was associated with a sharp increase

in the importance (as measured by the coe¢ cients) of the strategic patenting variables. At the

same time, despite a large increase in the level of patenting during this later period, we do not

�nd a sharp reduction in the impact of patents on market value. Evidently, whatever diminishing

returns that was associated with the intensi�cation of software patenting appears to have been

largely countervailed by the increased value from the strengthening of software patent protection.

6.2 Patent Equation

[Table 4 about here]

Table 4 presents the results for the patent equation.26 In the regressions we allow for unobserved

�rm heterogeneity using the approach developed by Blundell, Gri¢ th and Windmeijer (2002) which

conditions on pre-sample patent counts.27 The alternative approach of Hausman, Hall and Griliches

(1984) for including �rm �xed e¤ects is only consistent for strictly exogenous regressors, which does

not hold for our speci�cation.

Not surprisingly, we �nd that patenting is signi�cantly related to the �rm�s stock of R&D, but

there are sharp decreasing returns both in the model without and with the control for unobserved

�rm heterogeneity (columns 1 and 2). Note that the coe¢ cient on the pre-sample patents variable

is positive and statistically signi�cant (this holds in all speci�cations), which con�rms that unob-

served �rm heterogeneity in patenting behaviour is important. Using the speci�cation with the

pre-sample control, the elasticity of patents with respect to the R&D stock is 0.60 and statistically

signi�cant. This �nding is broadly in line with the extensive empirical literature on patent pro-

duction functions.28 Also note that the coe¢ cients on our measures of technological opportunity

26 In all the empirical speci�cations in the table, the estimate of the over-dispersion coe¢ cient, �; is signi�cantly
di¤erent from zero. This result rejects the Poisson model for patents (� = 0) in favor of the Negative Binomial
speci�cation.
27We also estimated the model using citation rather than patent counts (to capture variation in patent quality),

and conditioning on pre-sample patent citations. The empirical results were very similar to those reported in the
table.
28The R&D elasticity drops sharply if we include �rm size in the regression, which is not surprising since R&D

stock is highly correlated with �rm size. The case for including �rm size here is not compelling. Conditional on
R&D (i.e., the number of innovations generated), the decision to patent will depend on the incremental pro�ts from
patenting relative to protecting those innovations by alternative means. This will depend in part on the incremental
sales associated with patenting, not the level of total sales which is what we observe.
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(Techopp) are surprising �they suggest that the growth in �technological opportunity�reduces cur-

rent patenting (the coe¢ cients are about equal in magnitude and opposite in sign). But recall that

Techopp measures the aggregate patent activity in the patent classes in which the �rm operates.

Thus the estimated coe¢ cients point to a ��shing out�interpretation �when aggregate patenting

growth is higher, the �rm is less likely to generate patented innovations from its stock of R&D.29

We now turn to the key variables of interest. Overall, the empirical results support the hypoth-

esis that both technology spillovers and strategic patenting variables a¤ect the decision to patent.

First, we �nd strong R&D spillovers in patenting once we control for unobserved �rm heterogeneity

(column 2). The coe¢ cient on Spillover is positive and highly signi�cant. The spillover e¤ect is

substantial: a ten percent increase in technology spillovers is associated with a 6.4 percent increase

in patenting, holding the �rm�s own R&D stock constant.

Second, we �nd evidence that �rms do less patenting, conditional on their R&D, when they

face technology rivals with higher patent propensities. The point estimate on Patprop is negative

and strongly signi�cant in the speci�cation with the pre-sample patents control. This �nding is

consistent with the view that �rms are in a worse bargaining position in resolving patent disputes

with rivals that have large patent portfolios, which thereby reduces the pro�tability of patenting.

The e¤ect is substantial � the point estimate implies that a 10 percent increase in the average

patent propensity of technology rivals is associated with a reduction in patenting by the �rm of 4.5

percent.

Third, there is strong evidence that greater concentration of citations (lower patent transaction

costs) a¤ects the level of patenting. Greater citations concentration is associated with a statistically

signi�cant reduction in patenting by the �rm. This �nding is consistent with the evidence for

semiconductors from Ziedonis (2003a), who �nds that greater fragmentation (lower concentration)

of patent rights increases patenting, conditional on R&D. In the context of our model, this �nding

implies that greater concentration reduces the marginal value of accumulating a patent portfolio in

29We experimented with alternative lags on Techopp and found that the ��shing out� result is robust � higher
past growth in aggregate patenting reduces the �rm�s patenting, conditional on its R&D. One possible alternative
explanation is that this result re�ects resource constraints in a given �eld of expertise within the patent o¢ ce. If a
backlog of patent applications in a �eld builds up, the probabilty that any given new patent application is granted
within a given time declines. Since our patent measure refers to patent grants, dated by their year of application,
this explanation would work only if �rms delay their applications to the patent o¢ ce as a consequence of the backlog,
which seems unlikely.

24



order to enforce patent rights (in the model, Hxc > 0):The point estimates are nearly identical, and

statistically signi�cant, in the speci�cations without and with the the pre-sample patent control.

The e¤ect is large �for example, the point estimate in column (2) implies that a 5 percentage point

increase in citations concentration (equivalent to a 10 percent increase at the sample mean) reduces

patenting by 12.8 percent.

As with the market value equation, we want to test whether the change in judicial treatment

of software patentability increased the impact of patent portfolios or patent thickets on patenting

behaviour. To examine this hypothesis, we estimate the patent equation separately for the pre-

1994 and post-1994 periods (columns 3 and 4). The key results on R&D spillovers and the strategic

patenting variables hold for both sub-periods, but we do not �nd any signi�cant change between the

two periods. While the point estimates on Spillover and Citecon are larger in the later sub-period,

and the coe¢ cient on Patprop is lower, the di¤erences are not statistically signi�cant.

6.3 R&D Equation

[Table 5 about here]

Finally, we turn to the parameter estimates for alternative speci�cations of the R&D equation.

Overall, the results (Table 5) provide support for the hypothesis that the strategic patenting vari-

ables �especially the concentration of patent rights, Citecon �a¤ect the R&D decision. We discuss

each of the key �ndings in turn, looking across the speci�cations to check robustness.

First, we do not �nd strong evidence that technology spillovers a¤ect the R&D decision, once

we control for �rm �xed e¤ects. In the static speci�cation with industry �xed e¤ects, but not �rm

e¤ects (column 1), we get a positive and signi�cant coe¢ cient on the Spillover variable (elasticity of

0.21). This also holds when we add dynamics to the speci�cation without �xed e¤ects (column 2),

the implied long run elasticity of technology spillovers rising to 0.40. However, when we add �xed

�rm e¤ects either to the static or dynamic speci�cation (columns 3 and 4, respectively), the point

estimate of the spillovers coe¢ cient becomes negative but statistically insigni�cant.30 Moreover,

the �rm �xed e¤ects are jointly signi�cant (p-value <.001). As an empirical matter, R&D at the
30 It is worth noting that these negative point estimates for the �xed e¤ect speci�cations do not appear when we

use the smaller sample based on a 50% software (G06F) patent threshold, which excludes IBM. In the latter case,
the point estimates are 0.19 for column 3 and 0.21 for column 4, but neither is statistically signi�cant.
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�rm level is highly persistent and one needs either �rm e¤ects or dynamics in the speci�cation to

capture it. Picking up this persistence with dynamics allows us to pin down a positive e¤ect of

technology spillovers, but not if we use �xed e¤ects. However, we emphasize that this �nding that

technology spillovers do not a¤ect the R&D decision is consistent with the model � it indicates

that such spillovers do not materially a¤ect the marginal product of own R&D. Nonetheless, recall

from Sections 6.1 and 6.2 that spillovers strongly increase the number of patents and market value,

indicating that such spillovers do raise the average product of the recipient �rm�s R&D.

Second, there is only mixed evidence that R&D investment is a¤ected by the patent propensities

of technology rivals. While the point estimates of coe¢ cient on Patprop are negative, as predicted

by the model, and robust to introducing dynamics and �xed �rm e¤ects in the model (columns 2

and 3, respectively), they are not generally statistically signi�cant. Thus it does not appear that

patent portfolio accumulation by technology rivals is an important deterrent to doing R&D.

However, the R&D decision is signi�cantly a¤ected by the degree of concentration of patent

rights, i.e., by the level of patent transaction costs. In the static model without �xed e¤ects

(column 1), we �nd that greater citations concentration (Citecon) is associated with a statistically

signi�cant reduction in R&D. This result holds up when we introduce dynamics or �xed �rm e¤ects

in the regression (columns 2 and 3, respectively), and the size of the e¤ect is substantial. In the

static speci�cation with �xed e¤ects, the estimate implies that a 5 percentage point increase in

citations concentration (this is a 10 percent increase at the sample mean) reduces R&D by 1.4

percent (the implied long run impact of this change in the dynamic speci�cation is much larger,

at 4.2 percent). As before, however, when we introduce both �xed e¤ects and dynamics the point

estimate is broadly similar but no longer statistically signi�cant.

In the model, the e¤ects of higher concentration of patent rights on the level of R&D and

patents are ambiguous. The direction of the e¤ect depends on how citations concentration a¤ects

the marginal value of having a larger patent portfolio in order to enforce patent rights (i.e., on

the cross derivative of the patent enforcement cost function, Hxc): As explained in Section 2, our

�nding that higher concentration of patent rights reduces R&D implies that Hxc > 0: This means

that there is a smaller gain from having a larger patent portfolio when patent rights are more

concentrated among rival �rms. This �nding is consistent with our expectations, since tacit forms
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of cooperation are more likely to develop in such cases and these make large patent portfolios less

important as threats to resolve disputes.

Finally, it is interesting to note that the coe¢ cients of the time dummies show no evidence that

R&D changed systematically over the sample period. We cannot reject the null hypothesis that

the coe¢ cients on the year dummies are jointly zero in any of the speci�cations of the model. This

�nding suggests that the expansion of patentability over software during the 1980s and early 1990s

was not associated with any major changes in R&D investment by these software �rms as of the

end of our sample period. Whether the expansion of software patentability will eventually intensify

innovation incentives remains an important, but open, question. Nonetheless, we emphasise that

our �ndings contradict the controversial claim by Bessen and Hunt (2003) that the expansion of

software patenting led �rms to reduce R&D over this period.

Table 6 concisely summarizes our main �ndings on market value, patents and R&D by comparing

the predictions from the model with the empirical results from Tables 3-5. There is a close match

between the theoretical predictions and the empirical �ndings for the key technology spilllover

variable (Spillover) and the strategic patenting variables (Patprop and Citecon).

[Table 6 about here]

7 Conclusion

This paper studies the impact of strategic patenting and technology spillovers on R&D investment,

patenting activity and market value of �rms in the computer software industry. Software is a

classic example of a complex technology in which cumulative innovation plays a central role, and

where there is growing concern that patent thickets may impede innovation. We develop a model

to analyse and estimate the impact of strategic patenting and technology spillovers. The model

incorporates two distinct aspects of strategic patenting �patent portfolio size (patent propensity)

to capture the �rm�s bargaining power in patent disputes and licensing, and concentration of patent

rights among rivals to capture the transaction costs of enforcing patent rights. Using panel data

for the period 1980-99, we �nd clear evidence that strategic patenting and technology spillovers are

present.
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There are four key empirical �ndings in the paper. First, there are large, positive technology

spillovers from R&D for software �rms. Second, we �nd that patenting by technology rivals reduces

the �rm�s R&D investment, patenting and market value. Third, greater concentration (less frag-

mentation) of patent rights among rivals reduces both R&D and patenting by the �rm �re�ecting

less need to have an arsenal of patents to resolve disputes when there are fewer players �but it

increases market value because transaction costs are lower. Finally, we �nd that there is a large

patent premium in the stock market valuation of these software �rms, which accounts for about

twenty percent of the overall private returns to R&D investments.
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Appendix 1. Comparative Statics

The �rst order conditions are

Vr0 = �01f�0�01 � f�0 �Hg � (
�0k0
��k�

)(k��
0
1 � k0��2)Hx � 1 = 0

V�0 = (�� 1)k0�01 � fk0 � k0(
k0
��k�

)Hx = 0

where superscripts on functions � and � refer to the �rm and subscripts 1 and 2 denote partial

derivatives with respect to the di¤erent arguments. To simplify notation, we supress the arguments

in functions, but it should be borne in mind that H = H( �0k0��k�
; c): Di¤erentiating totally we obtain
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where, using the �rst order conditions and after considerable algebra, we obtain the following

expressions:
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Second order conditions imply Vr0r0 < 0; V�0�0 < 0; and Vr0r0 V�0�0 � V 2r0�0 > 0: We can also

show that Vr0�0 > 0 provided that �
0
1 >> �

�
2 (spillovers are not too large) and Hxx is su¢ ciently

small.31 Under these same two conditions, we can unambiguously sign Vr0�� � 0; V�0�� � 0 and

V�0r� � 0; as indicated above. However, we cannot sign Vr0r� without further restriction.32 Finally,

if Hxc > 0 then V�0c < 0 but Vr0c cannot be signed. If Hxc � 0 then Vr0c � 0 and V�0c � 0:

In addition, using the envelop theorem we get the following results for the value of the �rm:
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31Using the �rst order condition for �0;we obtain
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which is positive if �01 >> �
�
2 and Hxx is su¢ ciently small (i.e., elasticity of Hx.is less than unity).

32 If there is no spillover e¤ect (�2 = �12 = �22 = 0); we get Vr0r� > 0: If we have spillovers but no strategic
patenting e¤ect (Hx = Hxx = 0); we also get Vr0r� > 0; provided dimimishing returns in the pro�t function are not
too large.

34



Appendix 2. Construction of the Sample

We began with two main data sets: the CorpTech data (purchased from Corporate Technology

Information Services) and the G06F (�software�) patent database. The CorpTech data cover more

than 15,000 companies (parent companies and subsidiaries) which report some involvement in a

software-related activity (product classi�cation) over the period 1990-2002. Of the �rms covered

by CorpTech, 12 percent are publicly traded �rms. We focus exclusively on public �rms in order

to use market value and other balance sheet information for the empirical analysis.

The �rst step was to match subsidiaries to their parent companies. Subsidiaries and parent

�rms are identi�ed in the CorpTech data by �type of ownership�variables. The CorpTech data set

includes the �rm identi�er (CUSIP), but this information was missing for many �rms. All public

companies with missing CUSIP�s were checked manually (primarily from company websites) and

the information was added where available.

The second step was to match the �rms in CorpTech (both parents and subsidiaries) to the

assignees in the G06F patent database. This �rst required that we get the CUSIP for the assignee

of each G06F patent. This was done by matching the G06F patent number to the NBER database.

The next step was to match the G06F patents to the CorpTech database using the company CUSIP.

This matching was done under the supervision of Josh Lerner at the Harvard Business School. The

matching was done for each CorpTech �rm using name recognition software and followed up by two

independent rounds of manual checks (one under Josh Lerner and the other by Irina Danilkina of

the Law and Economics Consulting Group)..

For this study, we need to match the data for the public �rms in CorpTech to all of their patents,

not just their G06F patents. In principle, this could be done by matching the CorpTech and NBER

patent data, using the CUSIP in each data set. The NBER data include all USPTO patents (up

to 1999) and CUSIP numbers from the Hall, Ja¤e and Trajtenberg (2004) match, which is based

on publicly registered �rms in 1989. However, for our purposes this match is antiquated, given the

substantial entry and rapid growth of the software industry in the 1990s. We found 1,198 public
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�rms with CUSIP�s in CorpTech that do not show up in the NBER dataset. These are �rms that

were born or became public after 1989. So while the second step above provides a good match

of �rms and their G06F patents, there remained no reliable match of �rms to their non-software

patents. If we were to use this match and include all �rms with at least one G06F patent, there

would be 70 �rms with a total of 18,628 software patents and 127,553 total patents. The vast

majority of these �rms have very low software to total patent ratios. Using our 45% software to all

patent ratio cuto¤, we would be left with only 15 �rms covering 11,561 software patents and 28,041

total patents. Using the 50% cuto¤ (which excludes IBM), there would remain 14 �rms with 4,905

software patents and 8,736 total patents.

It is clear that the match using the 1989 ownership patterns in the NBER patent database was

outdated for our purposes, as many software �rms were established or became public after 1989.

Thus the third step was to do a new match between the CorpTech and NBER databases. The

focus was to identify patents in the NBER database whose assignees were public �rms either born

or becoming public after 1989. The matching was done manually, as follows. For each of the 1,198

public companies in the CorpTech data with CUSIP numbers that do not appear in the NBER

data, we searched the NBER database for matching assignees. This match was done using the

�Soundex�command in SAS to �nd similar sounding names (including spellings, di¤erent abbrevi-

ations etc.). This procedure yielded 514 additional name matches. Because many similar sound-

ing names may not be the same �rms at all (e.g., Andromedia vs Andromeda, FoundryNetworks

vs.FoundryManagement etc.), each name that di¤ered was manually checked (using company web-

sites) to see if the �matched�companies were in fact the same. Fifty of the 514 provisional matches

were discarded, leaving 464 con�rmed �rm matches. Finally, for all these �rms, both the names of

the parent and all its subsidiaries were checked in the NBER patent assignee list. This procedure

results in the �nal sample of 445 �rms with at least one G06F patent. We then applied the 45%

threshold for the ratio of G06F to total patents in order to identify what we call �software �rms�.

This yielded the �nal sample of 121 �rms used in the paper.
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TABLE 1 
PREDICTIONS OF THE MODEL 

 
 

  Endogenous Variable 
Exogenous Variable R&D, r0  Patents, ρ0  Market value, V0 

 
    

Rivals’ Patent Propensity, ρτ
(bargaining power 
hypothesis) 
 

Negative Negative Negative 

Patent concentration, c
(patent thicket hypothesis) 
 

Ambiguous* Ambiguous* Positive 

R&D spillovers, rτ 
 

Ambiguous Positive Positive 

 
* If this coefficient is negative, then Hxc> 0. If the coefficient is positive, we can not infer the 
sign of Hxc . 



 
TABLE 2 

DESCRIPTIVE STATISTICS 
 

Variable Mnemonic Mean Median Standard 
deviation 

 
Market value, $m 
 

V 2462 97.0 10,886 

Tobin’s Q V/A 6.5 4.3 6.7 
 

R&D flow, $m 
 

R 188.0 14.7 739 

Stock R&D/fixed capital 
 

G/A 5.7 2.2 18.2 

Patent flow  
(positive values only) 

P 26.2 
(61.9) 

0 
(2) 

162.4 
(245.3) 

 
Sales, $m 
 

S 2891 109.7 12,111 

Stock of fixed capital, $m 
 

A 1189 20.4 5880 

Technology spillovers, $m Spillover 20,717 20,067 11,615 
 

Patent propensity of 
technology rivals 
 

Patprop 0.080 0.075 0.064 

4-firm patent citation 
concentration index 

 
Citecon 

 
0.47 

 
0.38 

 
0.25 

 
Notes: The sample is an unbalanced panel covering 121 firms over the period 1980-99.  The cells are 
computed using all non-missing observations over the sample period. Dollar figures are in 1999 values. 



TABLE 3 
  MARKET VALUE EQUATION 

 
 (1) (2) (3) (4) 

Dependent variable: 
Log(V/A) 
 

Baseline 
1980-99 

Patent 
Premium 
1980-99 

Patent 
Premium 
1980-94 

Patent 
Premium 
1995-99 

     
Log Spillover t-1 0.167** 

(.050) 
0.187** 
(.049) 

0.168** 
(.074) 

0.155* 
(.091) 

Log Patprop t-1 -0.129* 
(.074) 

-0.122* 
(.073) 

-0.013 
(.11) 

-0.276** 
(.12) 

Citecon t-1 0.344** 
(.11) 

0.460** 
(.11) 

0.188 
(.16) 

0.713** 
(.16) 

Log Firm sales t-1 0.185** 
(.065) 

0.196** 
(.065) 

0.021 
(.12) 

0.253** 
(.067) 

Log Firm sales t-2 -0.178** 
(.062) 

-0.160** 
(.062) 

-0.012 
(.12) 

-0.183** 
(.063) 

Log TechOpp t-1 2.301** 
(.70) 

2.449** 
(.70) 

5.025** 
(.95) 

0.670 
(.84) 

Log TechOpp t-2 -2.202** 
(.68) 

-2.377** 
(.68) 

-4.842** 
(.92) 

-0.740 
(.80) 

(G/A) t -1 0.092** 
(.013) 

0.074** 
(.014) 

0.045** 
(.024) 

0.139** 
(.035) 

(G/A) 2 t -1 -0.003** 
(.0005) 

-0.002** 
(.0004) 

-0.002** 
(.001) 

-0.008** 
(.003) 

(G/A) 3 t -1 x 103 0.027** 
(.005) 

0.024** 
(.005) 

0.020** 
(.010) 

0.195* 
(.11) 

(G/A) 4 t -1 x 106 -0.109** 
(.020) 

-0.099** 
(.018) 

-0.085** 
(.038) 

-2.330 
(1.46) 

(G/A) 5 t -1x 109 0.149** 
(.027) 

0.138** 
(.025) 

0.120** 
(.046) 

10.300 
(6.7) 

(PS/A) t -1  0.712** 
(.21) 

1.373** 
(.40) 

0.967** 
(.22) 

(PS/A)2 t -1  -0.348** 
(.16) 

-0.846** 
(.30) 

-0.622** 
(.15) 

(PS/A) 3 t -1  0.065* 
(.039) 

0.202** 
(.079) 

0.143** 
(.038) 

(PS/A) 4 t -1   -0.005 
(.004) 

-0.021** 
(.008) 

-0.013** 
(.003) 

(PS/A) 5 t -1 x 103  0.146 
(.11) 

0.734** 
(.29) 

0.377** 
(.10) 



 
Industry dummies 
(p-value: zero effects) 

Yes 
(<.01) 

Yes 
(<.01) 

Yes 
(<.01) 

Yes 
(<.01) 

 
Year dummies 
(p-value: zero effects) 

Yes 
(.066) 

Yes 
(.073) 

Yes 
(.47) 

Yes 
(.10) 

 
No. observations 865 865 399 466 

 
R2 0.49 0.51 0.61 0.52 

 
  
Notes: Tobin’s Q is defined as market value of equity plus debt, divided by the stock of fixed capital. 
Estimation is by OLS. Newey-West standard errors (in brackets) are robust to heteroskedasticity and 
first-order serial correlation. Dummy variables are included for observations where Citecon or lagged 
R&D stock is zero.  * denotes significance at the 10% level, ** at the 5% level. 



TABLE 4 
PATENT EQUATION 

 

Dependent variable: 
Patent Count 

(1) 
No initial 
conditions 
1980-99 

(2) 
Initial 

conditions 
1980-99 

(4) 
Initial 

conditions 
1980-94 

(5) 
Initial 

conditions 
1995-99 

     

Log Spillover t-1 0.106 
(.096) 

0.637** 
(.12) 

0.542** 
(.15) 

1.040** 
(.23) 

Log Patprop t-1 0.210 
(.24) 

-0.453** 
(.22) 

-0.808** 
(.33) 

-0.501 
(.41) 

Citecon t-1 -2.540** 
(.38) 

-2.553** 
(.34) 

-2.171** 
(.42) 

-2.785** 
(.47) 

Log R&D Stock t-1 0.761** 
(.036) 

0.599** 
(.043) 

0.578** 
(.065) 

0.626** 
(.052) 

Log TechOpp t-1 -4.238** 
(2.07) 

-6.328** 
(1.83) 

-9.394** 
(3.14) 

-6.686** 
(2.21) 

Log TechOpp t-2 4.593** 
(2.08) 

5.982** 
(1.80) 

9.627** 
(3.06) 

5.386** 
(2.04) 

Log Pre-sample patents  0.368** 
(.052) 

0.346** 
(.076) 

0.272** 
(.073) 

Over-dispersion, α 1.161** 
(.14) 

1.336** 
(.12) 

1.005** 
(.15) 

1.423* 
(.17 

Industry dummies 
(p-value: zero effects) 

Yes 
(<.01) 

No No No 

Year dummies 
(p-value: zero effects) 

Yes 
(<.01) 

Yes 
(<.01) 

Yes 
(.028) 

Yes 
(<.01) 

 
No. observations 991 991 472 519 

 
Pseudo R2 0.27 0.26 0.27 0.27 

 
 
Notes: ‘IC’ denotes the pre-sample control for initial conditions. Estimation is based on the Negative 
Binomial model. Standard errors (in brackets) are robust to heteroskedasticity. Dummy variables are 
included for observations where Citecon or lagged patent flow is zero. The initial conditions in 
columns (2)-(4) are estimated with ‘pre-sample mean scaling approach’ of Blundell, Griffith and Van 
Reenen (1999). * denotes significance at the 10% level, ** at the 5% level. 



TABLE 5 
R&D EQUATION 

 
Dependent variable:  
Log R&D 

(1) 
Static, no 

firm effects 
1980-99 

(2) 
Dynamic, no 
firm effects 

1980-99 
 

(3) 
Static, 

 firm effects 
1980-99 

(4) 
Dynamic 

firm effects 
1980-99 

Log Spillover t-1 0.214** 
(.096) 

0.104** 
(.036) 

-0.156 
(.14) 

-0.102 
(.096) 

Log Patprop t-1 -0.033 
(.10) 

-0.060 
(.056) 

-0.091 
(.075) 

-0.075 
(.059) 

Citecon t-1 -1.016** 
(.17) 

-0.198** 
(.095) 

-0.281* 
(.17) 

-0.124 
(.14) 

Log R&D t-1  0.756** 
(.033) 

 0.410** 
(.058) 

Log firm sales t-1 0.952** 
(.078) 

0.467** 
(.048) 

0.709** 
(.075) 

0.496** 
(.075) 

Log Firm sales t-2 -0.219** 
(.069) 

-0.284** 
(.039) 

0.029 
(.065) 

-0.077* 
(.048) 

Log TechOpp t-1 0.906 
(1.03) 

-0.161 
(.54) 

-0.070 
(.82) 

-0.283 
(.63) 

Log TechOpp t-2 -1.162 
(1.04) 

0.087 
(.51) 

-0.074 
(.77) 

0.173 
(.61) 

Industry dummies 
(p-value: zero effects) 

Yes 
(<.01) 

Yes 
(<.01) 

No No 

Firm dummies 
(p-value: zero effects) 

No No Yes 
(<.01 ) 

Yes 
(<.01 ) 

Year dummies 
(p-value: zero effects) 
 

Yes 
(.88) 

Yes 
(.52) 

Yes 
(.70) 

Yes 
(.71) 

No. observations 866 866 866 866 
 

R2 0.90 0.96 0.96 0.97 

 
Notes: Estimation is by OLS. Newey-West standard errors (in brackets) are robust to heteroskedasticity 
and first-order serial correlation. The sample includes only firms which performed R&D continuously 
in at least two adjacent years. A dummy variable is included for observations where Citecon is zero.  
* denotes significance at the 10% level, ** at the 5% level 



 TABLE 6 
COMPARISON OF EMPIRICAL RESULTS WITH MODEL’S PREDICTIONS 

 
 

 Partial correlation of: 
 

  Theory Empirics Consistency 

∂V0/∂ρτ Market value with 
Patprop 

 
Negative 

 
-0.12* 

 
Yes 

∂V0/∂c Market value with 
Citecon 

 
Positive 

 
0.50** 

 
Yes 
 

∂V0/∂rτ Market value with 
Spillover 

 
Positive 

 
0.19** 

 
Yes 
 

 
∂k0/∂ρτ

 
Patents with Patprop 

 
Negative 

 
-0.45** 

 
Yes 

 
∂k0/∂c 

 
Patents with Citecon 

 
Ambiguous 

 
-2.59** 

 
N/A 

 
∂k0/∂rτ

 
Patents with Spillover 

 
Positive 

 
0.64** 

 
Yes 

 
∂r0/∂ρτ

 
R&D with Patprop 

 
Negative 

 
-0.091 

 
Yes 

 
∂r0/∂c  

 
R&D with Citecon 

 
Ambiguous 

 
-0.28** 

 
N/A 

 
∂r0/∂rτ

 
R&D with Spillover 

 
Ambiguous 

 
-0.16 

 
N/A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: The empirical results are taken from the market value equation with a patent premium (column 
2, Table 3), the patent equation with the pre-sample control (column 2, Table 4), and the static R&D 
equation with fixed firm effects (column 3, Table 5). * denotes significance at the 10% level, ** at the 
5% level. 
 



APPENDIX TABLE  
LIST OF SAMPLE FIRMS (FIRST HALF) 

 
Cusip SIC Company Name Cusip SIC Company Name 
         
004334 3663 Accom, Inc.  205638 7372 Compuware Corp.  
004930 7372 Activision, Inc.  206186 7372 Concord Communications, Inc.  
00651F 3661 Adaptec, Inc.  206710 3571 Concurrent Computer Corp.  
00724F 7372 Adobe Systems, Inc.  208547 7372 Consilium, Inc.  
00826M 7372 Affinity Technology Group, Inc.  232462 7372 CyberCash, Inc.  
036384 7372 Ansoft Corp.  233326 7372 DST Systems, Inc.  
037833 7372 Apple Computer, Inc.  238016 3625 Data Translation, Inc.  
037935 3829 Applied Microsystems Corp.  253798 3577 Digi International, Inc.  
043412 3661 Asante Technologies, Inc.  25387R 3577 Digital Video Systems, Inc.  
04362P 7372 Ascential Software Corp.  281667 7372 J.D. Edwards & Company  
045327 7372 Aspen Technology, Inc.  292475 3669 Emulex Corp.  
052754 7379 Auto-trol Technology Corp.  36227K 7372 GSE Systems, Inc.  
052769 7372 Autodesk, Inc.  362555 3669 Gadzoox Networks, Inc. 
05367P 7372 Avid Technology, Inc.  370253 7372 General Magic, Inc.  
055921 7372 BMC Software, Inc.  40425P 7372 HNC Software Inc.  
073308 7375 Be Free, Inc.  451716 7372 IKOS Systems, Inc.  
073325 7372 BEA Systems, Inc.  45666Q 7372 Informatica Corp.  
079860 7379 BellSouth Information Systems  45812Y 7371 Integrated Surgical Systems, Inc. 
109704 7372 Brio Technology, Inc.  458140 3674 Intel Corp.  
111412 7372 BroadVision, Inc.  458153 7372 IntelliCorp, Inc.  
12487Q 7375 CCC Information Services Inc.  458176 7372 Starfish Software, Inc.  
126349 7372 CSG Systems, Inc.  458683 7371 Intergraph Corp.  
127387 7372 Cadence Design Systems, Inc.  459200 7372 IBM Corp. 
14167A 7372 MCS-Simione Central, Inc.  46060X 7372 Internet Security Systems, Inc.  
162813 7372 CheckFree Corp.  461202 7372 Intuit, Inc.  
17275R 3669 Cisco Systems, Inc.  46145F 7372 ITG, Inc.  
177376 7372 Citrix Systems, Inc.  465754 7372 i2 Technologies, Inc.  
204493 3571 Compaq Computer Corp.  514913 7372 Landmark Graphics Corp.  
20482G 7375 CompuServe Interactive Services  51506S 7372 Landmark Systems Corp.  
204912 7372 Computer Associates International 524651 7372 Legato Systems, Inc.  
204925 7372 Computer Network Tech Corp.  530129 7372 Liberate Technologies  
      
 



APPENDIX TABLE  
LIST OF SAMPLE FIRMS (SECOND HALF) 

 
Cusip SIC Company Name Cusip SIC Company Name 
         
545700 7372 Lotus Development Corp.  826565 7372 Sigma Designs, Inc.  
553903 3572 MTI Technology Corp.  827056 7371 Silicon Graphics, Inc.  
555904 7372 GLOBEtrotter Software, Inc.  827068 7372 Silicon Valley Research, Inc.  
556100 7372 Macromedia, Inc.  834021 3571 SofTech, Inc.  
587200 7372 Mentor Graphics Corp.  852192 7372 Spyglass, Inc.  
589378 7371 Mercury Computer Systems, Inc.  859205 7372 Sterling Commerce, Inc.  
589405 7372 Mercury Interactive Corp.  86211A 7372 Storage Computer Corp.  
589981 7372 Merge Technologies Inc.  862685 3577 Stratasys, Inc.  
594918 7372 Microsoft Corp.  866810 3572 Sun Microsystems, Inc.  
604567 7371 MIPS Technologies, Inc.  871130 7372 Sybase, Inc.  
641074 7372 Nestor, Inc.  871503 7372 Symantec Corp.  
64108P 7375 Netcentives Inc.  871607 7372 Synopsys, Inc.  
641149 7372 Netscape Communications Corp.  871926 7372 SystemSoft Corp.  
64120N 3577 Network Computing Devices, Inc. 879101 8742 IEX Corp.  
669937 7372 Novadigm, Inc.  879516 7372 Telescan, Inc.  
670006 7372 Novell, Inc.  885535 3669 3Com Corp.  
68370M 7372 Open Market, Inc.  88553W 7372 3DO Co. (The)  
68389X 7372 Oracle Corp.  887336 7372 Timeline, Inc.  
699173 7372 Parametric Technology Corp.  895919 3577 Trident Microsystems, Inc.  
705573 7372 Pegasystems, Inc.  896121 3669 Tricord Systems, Inc.  
712713 7372 PeopleSoft, Inc.  903891 3571 Ultradata Systems, Inc.  
719153 7372 Phoenix Technologies Ltd  923429 7372 Verifone, Inc. 
741379 7372 Preview Systems, Inc.  923436 7372 VERITAS Software Corp.  
743312 7372 Progress Software Corp.  92343C 7372 Verity, Inc.  
74838E 7372 Quickturn Design Systems, Inc 92672P 7372 Viewpoint Corporation  
750862 3577 Rainbow Technologies, Inc.  973149 7372 Wind River Systems, Inc.  
75409P 7372 Rational Software Corporation  980903 7372 Workgroup Technology Corp. 
811699 3663 SeaChange International, Inc.  984149 7372 Xybernaut Corp.  
813705 7372 Secure Computing Corp.  G8846W 7372 3Dlabs, Inc.  
815807 7372 Segue Software, Inc.    
      
The SIC codes are defined as follows: 3571 Electronic Computers, 3572 Computer Storage Drives, 
3577 Computer Peripheral Equipment, 3625 Relays and Industrial Controls, 3661 Telephone and 
Telegraph Apparatus, 3663 Radio & Television Broadcasting and Communications Equipment, 3669 
Communication Equipment, 3674 Semiconductors and Related Devices, 3829 Measuring and 
Controlling Devices, 7371 Computer Programming Services, 7372 Pre-packaged Software, 7375 
Information Retrieval Services, 7379 Computer Related Services, 8742 Management Consulting 
Services.   
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