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Use of in vivo phage display to engineer novel adenoviruses for targeted delivery
to the cardiac vasculature
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We performed in vivo phage display in the stroke prone spontaneously hypertensive rat, a cardio-
vascular disease model, and the normotensive Wistar Kyoto rat to identify cardiac targeting pep-
tides, and then assessed each in the context of viral gene delivery. We identified both common
and strain-selective peptides, potentially indicating ubiquitous markers and those found selectively
in dysfunctional microvasculature of the heart. We show the utility of the peptide, DDTRHWG, for
targeted gene delivery in human cells and rats in vivo when cloned into the fiber protein of sub-
group D adenovirus 19p. This study therefore identifies cardiac targeting peptides by in vivo phage
display and the potential of a candidate peptide for vector targeting strategies.

� 2009 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
1. Introduction

A greater understanding of the pathophysiological mechanisms
of cardiovascular disease has aided the development of interven-
tion strategies. Gene therapy could correct debilitating and costly
disorders such as coronary heart disease and reduce the damage
caused by ischemia after myocardial infarction by delivering car-
dioprotective genes. Major hurdles exist before these disorders
can be treated routinely in the clinical setting. For example, the
therapeutic gene must be delivered safely and efficiently to its tar-
get site in vivo, ideally in a site-specific manner. Concerns over cur-
rently available vectors include their native tropism and the
inability to efficiently target to the heart after iv injection. It is pos-
sible to engineer novel tropism into viral vectors through vector
engineering strategies [1]. For this to be achieved effectively in
the context of heart disease, there is a need for ‘‘ligands” which
are specific and efficient at targeting the heart. To this end, ligands
have been identified by screening random peptide presenting li-
braries, in vitro/ex vivo, that are able to bind specifically to other
cell types [2–5] as well as the heart vasculature [6]. Targeting vec-
tors to specific vascular beds in vivo is possible due to the phenom-
enon termed ‘‘the vascular address system” [4].
on behalf of the Federation of Euro
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Molecular signatures exist in blood vessels of different organs
and tissues as well as between normal and angiogenic or remod-
elled blood vessels [5,7–9] providing a rational basis for developing
targeted gene therapy vectors. Phage display of peptide libraries is
based on the concept that insertion of a random oligonucleotide
encoding a peptide within a gene encoding one of the structural
proteins of the phage will lead to its display on the surface of the
phage. Aside from different peptide lengths, random peptide li-
braries can be presented differently on the phage surface, e.g. in lin-
ear or constrained forms, the latter created via the incorporation of
two additional cysteine residues flanking the peptide sequence and
consequently enabling formation of a disulfide bond in non-reduc-
ing conditions. Over 1 � 109 permutations of 7mer peptides are
possible, with each clone represented several times in the library.

Recipient vectors for targeting peptides include non-viral sys-
tems as well as those based on viral vectors, including retroviruses,
adenoviruses and adeno-associated viruses. Targeting of adenovi-
rus serotype 5 vectors (Ad5) has proven highly efficient in vitro
but difficult in vivo, likely due to previously unknown mechanisms
regarding liver transduction by Ad5. We recently identified that
the Ad5 hexon is responsible for liver delivery through recruitment
of host FX to the hypervariable region on the capsid surface
[10,11]. Furthermore, we recently created a potentially useful vec-
tor, Ad5/19p, a vector based on Ad5 but the fiber swapped for that
of the subgroup D prototype fiber 19p [12], for targeted gene deliv-
ery using peptides [13,14]. We show that basal transduction of
pean Biochemical Societies.
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hepatocytes in culture was very low compared to Ad5 and that the
HI loop of the 19p fiber was permissive for peptide insertions and
targeted gene delivery [14].

Here, we use in vivo phage display to identify targeting peptides
selective for the heart in two rat strains, the normotensive Wistar
Kyoto rat (WKY) and the stroke prone spontaneously hypertensive
rat (SHRSP), a model of human essential hypertension with a pro-
pensity for left ventricular hypertrophy. We demonstrate their
selectivity for the heart and utility in targeted vector delivery using
a novel Ad5/19p-based vector targeting strategy.

2. Materials and methods

2.1. Animals

Twelve-week old male WKY and SHRSP were used. Animal
experiments were in accordance with the Animals Scientific Proce-
dures Act 1986.
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2 x 1011 pfu / rat

i.v. infu
5 mins cir
saline pe

Remove & homogenise organs

Amplify organ restricted phage pool

A

B

C

1
Heart Brain K

Ph
ag

e 
R

ec
ov

er
y

(p
fu

/ g
 ti

ss
ue

)

1x102

1x106
1x107

5

1x108

1x109

1x1010

1x1011

Ph
ag

e 
re

co
ve

ry
 fr

om
 s

er
um

 
pf

u/
 m

L

Circula

1x105

1x104

1x103

1x1010

1x109

1x108

1x107

1x106

1x105

1x104

1x103

1x102

1x101

Fig. 1. Optimisation of in vivo phage display. (A) Schematic representation of phage displa
Levels of phage associated with organs at 50 and 300 post iv injection in rats.
2.2. In vivo phage selections

For in vivo phage display (Fig. 1A), the femoral vein was ex-
posed and 2 � 1011 pfu phage (7mer M13 Phage Display Library;
New England Biolabs, UK) injected. Immediately prior to cardiac
perfusion at physiological pressure with saline 150 lL of heparin
was injected via the vena cava. Animals were perfused until the
perfusate was clear and the organs appeared free from blood.
Organs and tissues were placed in DMEM-PI (DMEM, 1% BSA,
1 lg/mL leupeptin, 2 lg/mL aproprotin, 1 mM Phenylmethylsulfo-
nylfluride) on ice before being snap frozen through isopentane for
storage at �70 �C.

2.3. Phage recovery

Tissues were thawed on ice, weighed, and homogenized in
DMEM-PI using a Ribolyser as previously described [15]. Briefly,
samples were homogenized via repeated cycles on the Ribolyser
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Fig. 2. Analysis of phage enrichment over successive rounds of in vivo phage
display. Phage libraries were injected into (A) WKY and (B) SHRSP rats (n = 3/strain/
round) and hearts harvested following saline perfusion 5 min post-injection. Heart-
bound phage were extracted, amplified and recycled through subsequent rounds.
The recovery in each target organ (heart) and control non-target organs (brain,
liver) were quantified.
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at a speed of 5.5 for 45 s per run (3 times) before the homogenate
was centrifuged and cleared lysate harvested. The organ tissue
lysate was stored at 4 �C before phage titering according to manu-
facturer’s instructions (New England Biolabs, UK). Titers were
normalized per gram of homogenized starting tissue. For subse-
quent rounds of biopanning, 500 lL of tissue lysate containing
phage from the previous round was amplified by infection into
bacteria and purified according to manufacturer’s instructions.
Three rounds of phage display to identify heart targeting pep-
tides was performed in each rat strain (n = 3 per round). The
phage was titred and the same input phage dose of 2 � 1011 PFU
was used for each round of panning. The values for the total phage
recovered do not represent the total for the whole organ rather
they represent the total number of phage obtained from homoge-
nized tissue normalized to input weight of tissue homogenized
thus phage per gram of tissue and for serum calculated per
milliliter.

2.4. Evaluating phage enrichment

The M13 antisense primer (50-CCC TCA TAG TTA GCG TAA
CG-30), and M13 sense primer (50-GCA ATT CCT TTA GTG GTA
CC-30), were designed based on the pIII gene sequence presented
in the Ph.D.-7 Phage Display instruction manual (New England
BioLabs, Hertfordshire, UK). The following PCR conditions were
used: 94 �C 1 min; denaturing: 94 �C, 1 min; annealing: 54 �C,
1 min; extending: 72 �C, 1 min (35 cycles), 72 �C for 15 min. The
PCR product, was then sequenced to determine the peptide
insertion.
2.5. Biodistribution analysis of individual candidate phage in vivo

Peptides were selected from in vivo biopanning based on fre-
quency of identification and/or selectivity for the heart. WKY and
SHRSP rats (n = 3) were predosed with 2 � 1011 PFU of non-peptide
expressing (control) M13 phage without LacZ a-complementation
via the femoral vein to saturate non-specific reticulo-endothelial
system sequestration. Five minutes later, a second infusion of a
homogeneous population of individual candidate peptide-express-
ing phage with LacZ a-complementation (5 � 1010 PFU) was in-
fused. After a further 5 min, the rats were killed and blood and
tissues harvested. The levels of candidate peptide-expressing
phage located in the heart were compared to that obtained in ani-
mals infused with a control phage which displayed no peptide by
infection into bacteria followed by plating serial dilutions onto
LB:X-Gal plates and calculating the ratio of blue:white plaques fol-
lowing 16 h incubation.

2.6. Construction of targeted Ad5/19p vectors

The Ad19p fiber cDNA in the plasmid pDV145 and the cloning
plasmid Ad19p-Eco47III, which contains a unique restriction site
in the Ad19p HI loop were constructed as previously described
[14]. Oligonucleotides encoding the peptide DDTRHWG were pur-
chased from MWG (Milton Keynes, UK) and ligated into Eco47III
digested pDV145-Eco47III and sequenced to ensure correct orienta-
tion. The following plasmid was produced pDV145-DDTRHWG and
used to generate Ad19p-DDTRHWG virus. Stocks of recombinant
pseudotyped adenoviruses Ad19p-DDTRHWG and Ad19p-Eco47III
were generated by transfection of 293T cells (ATCC) with the mod-
ified plasmids described above followed by superinfection with a
fiber-deleted Ad5 vector [16,17]. Briefly, 293T cells were transfected
with the appropriate fiber-expressing plasmid. 16 h later cells were
superinfected with an E1, E3, fiber-deleted rAd5 (Ad5DF) (b-galac-
tosidase) at 2000 virus particles (VP)/cell. Virus particles were puri-
fied by CsCl ultracentrifugation and dialysed into 10 mM TRIS (pH
8.1), 150 mM EDTA and 10% glycerol. Virus particles were quantified
by BCA protein assay with bovine serum albumin (BSA) standards
according to the conversion: 1 lg protein = 4 � 109 VP [18].

3. Results

3.1. Selection of optimal phage harvest time point by in vivo analysis in
rats

For in vivo phage display in rats (Fig. 1A) we first injected 2 � 1011

plaque forming units (PFU) of phage peptide library into the femoral
vein of WKY rats for either 5 or 30 min. A blood sample was taken
prior to saline perfusion and organ harvest. The levels of phage in
serum after 30 min of circulation fell to 55.8% of input at 5 min
(Fig. 1B). In harvested organs at 5 min post-injection, the brain had
the lowest level of phage per gram of tissue (2.69 � 105 PFU), fol-
lowed by heart (8.86� 105 PFU), lung (5.06� 106 PFU), kidney
(1.95� 107 PFU), spleen (7.82� 107 PFU), and liver (8.26� 108 PFU)
(Fig. 1C). After a 30 min circulation time, the brain remained the
organ with the lowest mean phage levels and the pattern of phage
distribution remained essentially the same as that at 5 min
(Fig. 1C). The 5 min circulation time was therefore selected for all
further experiments.

3.2. In vivo phage display

We first ensured the heterogeneity of the input library by plating
and sequencing 91 individual plaques. As shown in Supplementary
Table 1 all 91 sequences were different. We therefore proceeded to
in vivo phage display. Phage titers in organs from normotensive
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WKY rats and hypertensive SHRSP were compared over three indi-
vidual rounds of phage display following sacrifice and tissue har-
vesting 5 min post injection (Fig. 1A; Fig. 2). In WKY rats, phage
levels in the heart increased significantly over the rounds of phage
display while levels in the two control organs (liver and brain; repre-
senting organs with and without a reticulo-endothelial system,
respectively) were not altered. As expected, through each individual
round of phage display, the liver remained the predominant tissue
for phage accumulation, yet elevated heart-homing phage pools
were clearly identified (Fig. 2A). Similarly, in the SHRSP a statistically
significant increase in heart-homing phage was observed by round 3,
with no accompanying elevation in the brain homing phage,
although an elevation in the phage in the liver was noted (Fig. 2B).

3.3. Identification of peptide sequence enrichment for heart-homing
phage

To identify candidate heart-homing peptide motifs, we se-
quenced the peptide inserts in individual phage clones and
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Fig. 3. Analysis of heart homing of individual populations of individual candidate peptide
into (A) WKY or (B) SHRSP rats (3/group) using a double-infusion protocol and homi
quantified and expressed as a fold change vs. control phage (also n = 3/group).
calculated their frequency in the phage pool (based on the total
number of phage sequenced at each round). Following phage dis-
play, clones isolated from the hearts of perfused WKY and SHRSP
in phage display rounds 2 and 3 were sequenced. In WKY animals
(Supplementary Table 2), although a number of peptides appeared
relatively frequently (e.g. SPTQELF and VQASNSN) we noted remain-
ing heterogeneity in the phage pool. We therefore performed an
additional round of biopanning to enrich the pool further (Supple-
mentary Table 2). Following this additional round a powerful enrich-
ment of the peptide VQASNSN (from 3% to 43% of the pool) was
observed with IPTHIRP (7% of the pool) being the second most fre-
quent peptide (Supplementary Table 2). Analysing peptide structure
via side chain characteristics of individual amino acids highlighted
further conserved structure amongst peptides (Supplementary
Table 2). In SHRSP (Supplementary Table 3) identical and different
peptides to those in WKY, with substantial enrichment of the pool
by round 3 were also identified. In agreement with WKY rats
VQASNSN (47%), LPPPPNP (24%) and LPLTPLP (3%) were recovered.
However, other different peptides including DDTRHWG (7%) and
CONTROL          

DDTRHWG        

HPWPTSI          

IPTHIRP         

SPYRSLS        

TKVGIDI         

VQASNSN

               Liver                     Spleen

                  Liver                     Spleen

CONTROL          
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-expressing phage. About 5 � 1010 phage (for each individual peptide) were infused
ng capacity for the heart and control, non-target organs (brain, liver and spleen)
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LPPPPNP (3%) were also identified. Since both strains yielded a pool
of phage with VQASNSN being very predominant we further ana-
lysed the pool sequenced from rounds 3 and 4 in the WKY and 2
and 3 in the SHRSP for related peptides. Remarkably, we identified
an array of closely related peptide sequences, particularly enriched
in the final round of biopanning in each strain (representing 70% of
the pool for WKY and 52% for SHRSP; Supplementary Table 4).

3.4. Evaluation of candidate peptide-expressing phage in vivo

From all the sequencing data, several candidate peptides were
selected for further analysis in the two rat strains. Pure populations
of each candidate peptide-expressing phage were injected individu-
ally into rats (3/peptide) via a double phage infusion strategy (see
Section 2). In the WKY rat, we assessed DDTRHWG, HPWPTSA,
IPTHIRP, SPYRSLS, TKVGIDI and VQASNSN and compared homing
to brain, heart, liver and spleen compared to insertless phage
(Fig. 3A; n = 3 animals/group). For WKY, all peptides examined
homed to the heart at levels at least 9-fold-higher than control
phage. For example, IPTHIRP phage was 49.8-fold higher and HPWP-
TSI 66.3-fold higher than control phage. VQASNSN, the most fre-
quently identified peptide (Supplementary Table 2) homed to the
heart and the brain (Fig. 3A). The profiles of each selected peptide
were all different yet all possessed a degree of heart homing capacity
(Fig. 3A). In the SHRSP, the heart-homing capabilities of phage dis-
playing ASAGGPN, DDTRHWG, HQSESSP and VQASNSN peptides
were compared to control phage. VQASNSN homed to the heart at
levels 200-fold higher than control phage (Fig. 3B). In addition,
VQASNSN also homed to the lung, liver and kidney at levels more
*
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than 10-fold higher than control phage. Both ASAGGPN and
DDTRHWG homed to the heart considerably more than control
phage (by 27.4- and 46.4-fold, respectively). DDTRHWG therefore
showed 46-fold enhancement in SHRSP compared to 11-fold in
WKY further supporting its potential selectivity for the SHRSP heart.

3.5. Assessment of phage binding to vascular endothelium and
hepatocytes

Based on the heart selectivity and heart homing capacity we fo-
cused on DDTRHWG for further studies as a candidate for targeted
gene delivery. In order to evaluate targeted virus-mediated gene
delivery we further screened phage displayed-peptide in vitro in
endothelial (RGE and Y-PEN) and non-endothelial (hepatocyte-de-
rived – ARL6) cell lines from the rat. Exposure of each cell line to
control phage and phage expressing DDTRHWG was performed
for 30 min at 4 �C and phage binding quantified following exten-
sive washing to remove unbound or weakly bound phage. Both
rat endothelial lines showed high level binding for the peptide
compared to control phage, an effect that was not apparent in
the hepatocyte cell line (Fig. 4). This confirms the selectivity of this
peptide for endothelial cell targeting.

3.6. Analysis of peptides in the context of targeted adenovirus-
mediated gene delivery

Therapeutic avenues for peptides that home to defined tissues
include both delivery of biologically active peptides and small
molecules as well as their utility in driving targeted gene therapy
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approaches. For the latter, we have previously used both adenovi-
rus and adeno-associated viruses as vectors for assessment of tar-
geted gene delivery evoked by phage display-derived peptides.
However, due to the spatial constraints on peptides dictated by
the site in which they are inserted into the viral capsids, not all
peptides maintain their targeting potential in the context of viral
delivery. We therefore cloned DDTRHWG into the HI loop of the
novel adenovirus vector Ad5/19p [14]. We have previously shown
that Ad5/19p has reduced tropism for hepatocytes compared to
Ad5 and that the HI loop can be modified by targeting peptides
to achieve modified tropism in vitro and in vivo [14]. Insertion of
DDTRHWG in this study was well tolerated as evidenced by equiv-
alent titers for both non-modified and peptide-modified vectors
(not shown). We next assessed gene delivery to human endothelial
cells. For Ad5/19p-DDT we observed significantly improved gene
delivery to endothelial cells compared to control Ad5/19p
(Fig. 5A) which was not observed in the human hepatocyte cell line
HepG2. This indicates the efficiency of the peptide for mediating
selective endothelial targeting across species. We also assessed
the peptide-modified virus for binding to endothelial vs. cardiomy-
ocyte specificity using RGE rat endothelial cells and H9c2 rat
cardiomyocyte cells. Ad5/19p-DDT showed strong selectivity for
RGE cells (Fig. 5B). In order to assess if binding to cells was
increased in the presence of cytokines, we stimulated rat and
human endothelial cells with interleukin-1a, TNF-a or a combina-
tion of the two and assessed the resulting transgene expression
levels. Neither cytokine, nor the combination resulted in elevated
endothelial cell transduction (data not shown). Finally, we injected
1 � 1012 VP/kg of Ad5/19p or Ad5/19p-DDT expressing LacZ
into SHRSP rats and assessed cardiac targeting (Fig. 5C). Ad5/
19p-DDT virus showed efficient transduction of the cardiac vascu-
lature at levels clearly higher than that achieved with control Ad5/
19p (Fig. 5C). Livers for both viruses showed no transduction
(Fig. 5C).
4. Discussion

In this study we performed extensive in vivo phage display in
normotensive Wistar WKY and hypertensive SHRSP rats to identify
phage-displayed peptides which possess homing capacity for the
heart in vivo. We report a number of peptides that were identified
from hearts in both strains and some peptides found selectively in
SHRSP. We further show the heart selectivity of phage by infusion
of individual candidate peptide-expressing phage. Based on this we
selected the peptide DDTRHWG for further studies in vitro and in
the context of targeted gene delivery using a novel adenovirus
vector, Ad5/19p. We demonstrate the selectivity of these peptides
for vascular endothelial cells in the context of phage and once
engineered into a novel adenovirus targeting vector Ad5/19p
in vitro and in vivo. Importantly, the peptide showed the ability
to mediate targeted gene delivery across species as efficiency could
be shown in both rat and human cells, supporting its translational
promise.

The ability to identify heart-homing peptides offers significant
improvements in developing selective therapies, to enable their
use as targeting moieties within the context of liposomes or viral
gene delivery systems. Thus, phage display offers broad potential
in this context. Our phage display highlighted several important
points worthy of discussion. First, enrichment of selected phage
was clear over sequential rounds of phage display since we se-
quenced the peptide insert from the phage recovered from the
heart at multiple rounds. The enrichment for certain phage dis-
played-peptides (VQASNSN and derivatives – Supplementary
Tables 2–4) was marked. In future studies it will be important to
isolate the cognate receptors for such peptides and assess their
in vivo biodistribution to correlate peptide homing and receptor
expression. This is particularly important since injection of high
quantities of individual candidate peptide-expressing phage popu-
lations (Fig. 3) showed, importantly, that all peptides possessed
heart homing capacity. However, increased targeting to certain
other tissues was also evident, and in a peptide-dependent man-
ner. Based on the combination of sequencing to identify the en-
coded peptide and profiling by injection of individual candidate
peptide-expressing phage we were able to identify efficient pep-
tides for the targeted gene delivery approach.

In the context of gene delivery we have used a novel virus (Ad5/
19p) that showed reduced liver tropism compared to Ad5 and can
be targeted to alternate tissues when efficient peptides are in-
cluded in the HI loop of the fiber [14]. Here, we show the inclusion
of our cardiac homing peptides and show its efficiency for cardiac
targeting following iv delivery. This novel vector will therefore
have utility for future applications for in vivo gene delivery to
the heart.
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