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Case study: Morecambe Bay
 Channels in Morecambe Bay 

can move by several 
kilometres in just a few years 

 Channel movement

 impacts on habitats in the 
bay

 affects access to ports

 has implications for flooding 
during storm events

 For example, Morecambe can 
be flooded by storm waves 
propagating up the deep-
water channels
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The general idea
 Coastal bathymetry is dynamic and evolves with time

 water action erodes, transports, and deposits sediment, which 
changes the bathymetry, which alters the water action, and so on

 Accurate knowledge of coastal bathymetry at the time of a storm 
event would allow improved flood forecasting using coastal flood 
inundation models
 but it is impractical to continually monitor large coastal areas in 

anticipation of a storm

 A solution may be to run an operational coastal area 
morphodynamic model
 and keep the model on track using data assimilation

 As observations become available they can be used to nudge 
model bathymetry back towards true bathymetry
 these observations may be infrequent and only sample a small part 

of the model domain 

 Data assimilation can also be used for  parameter estimation



Sequential data assimilation
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Waterline data for Morecambe Bay

Water elevation
( bathymetry)

An image of the land-sea 

boundary

(satellite SAR image © ESA)

Water elevation predicted along the 

boundary by a hydrodynamic model 

with surge component



LiDAR data from 

15/11/05 to be 

used for 

validation.



Morphodynamic model

Sediment 

transport
Hydrodynamics Bed update

Sediment 

conservation equation 

solved using a Lax-

Wendroff method

Sediment transport 

rates calculated using 

the van Rijn 

parameterised 

equations for bed load 

and suspended load

Tidal flow calculated 

using a 2DH tide & 

surge model from the  

Proudman 

Oceanographic 

Laboratory

Spatial resolution ~ 240m

A simple model, relative to state-of-the-art engineering models, but 

adequate for assessing the benefits of data assimilation



3D Var data assimilation

 Analysis state is found by minimising a cost function

B and R are the covariance matrices of the background and observation errors

observation
term

background term



3D Var data assimilation

 Analysis state is found by minimising a cost function

B and R are the covariance matrices of the background and observation errors
Choice of matrix is crucial to success of assimilation scheme

observation
term

background term



Choosing the lengthscale for B
Increment (Analysis-Background) for assimilation of 1 waterline  

L = 0.5 L = 3.0 



Comparison with lidar validation 
data 

No assimilation With assimilation
Calibrated params

With assimilation
Weighted ensemble mean 

Parameter ensemble



Parameter estimation

 Numerical models suffer from errors in their initial conditions 
and parameters.

 Initial conditions are often estimated by data assimilation; 
combining model predictions with observational data to 
produce an updated model state (the analysis) whilst keeping 
the model parameters fixed.

 Even with perfect initial data, inaccurate model parameters will 
lead to the growth of prediction errors.

 Using state augmentation in data assimilation we can estimate 
model parameters concurrently with the state. 



Joint state-parameter estimation
 Model state & parameter evolution

 Augmented system model

 Observations



Background error covariance

For joint state-parameter estimation, it is important that the a priori 
cross-covariances between the parameters and the state are well specified. 

observation
term

background term

state-parameter cross 
covariance

parameter background 
error covariance

State background 
error covariance



A hybrid approach

Combines ideas from 3D-Var and the extended Kalman filter (EKF)

- assumes Bzz and Bpp fixed

- uses a flow dependent state-parameter cross covariance Bzpk

where                                         



A simple sediment transport model
Based on the sediment conservation equation

where z(x,t) is the bathymetry, t is time, is the sediment porosity, q is the 
sediment transport rate, u(x,t) is the depth averaged current and A and n are 
constant parameters.

Can we use data assimilation to estimate the parameters A and n?

with



Experiments

 Identical twin:

- reference solution generated using ‘true’ parameter values A = 0.002 ms-1

and n = 3.4

- model then re-run with incorrect initial bathymetry and parameter values

 Observations assimilated sequentially at regular time intervals

- taken from reference solution & assumed perfect

- the 3D-Var cost function is minimized iteratively using a quasi-Newton 
descent algorithm

 Background error covariances

- Bzz fixed

- Bzpk
time varying



without data assimilation ...



with data assimilation



Parameter estimates
Initial estimates (a) A0 = 0.02 ms-1 (b) n0= 2.4 

(A true = 0.002 ms-1, n true = 3.4)



Summary
• Up-to-date knowledge of near-shore coastal bathymetry is important in flood 

prediction and risk management

• Assimilated SAR waterline data into a model of Morecambe Bay to keep the 
model on track 

• Best results are obtained using an ensemble of parameters

• Developed a new hybrid data assimilation scheme for joint estimation of model 
parameters and state.

• Recovers the true parameter values to a good level of accuracy, even when 
observations are noisy.

• Relatively simple to implement and computationally inexpensive to run

• Method also successfully applied to a range of simple dynamical system models.

• Expect this new technique to be easily transferable to more complex models.


